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Abstract. This study tackles the limited quantification of irregular spatial geochemical patterns and weak interpretability
in deep learning models in geochemical anomaly recognition. We propose a hybrid approach that that integrates
geological knowledge (GK) into deformable convolutional networks (DCN), creating a model termed GK_DCN, with
10  the aim of enhancing both the performance and transparency of geochemical anomaly recognition. This model introduces
learnable parameters that allow the convolutional kernels to adaptively adjust their sampling locations, enabling them to
more accurately capture complex, irregular geochemical anomaly patterns caused by mineralization. To enhance
geological consistency, ore-controlling fault are incorporated as geological knowledge constraints, guiding the network
to prioritize spatial correlations between deposits and faults. Experimental results in southern Tianshan Au-Cu
15 polymetallic ore district demonstrate that the GK_DCN significantly enhances the accuracy and reliability of geochemical
anomaly recognition verified across multiple evaluation metrics, producing more distinct spatial anomalous patterns and
higher consistency with known mineral deposits by adaptively adjusting the receptive field. Visualization of the kernel
offsets revealed the model's superior adaptive spatial sampling mechanism. Furthermore, using Grad-CAM to generate
feature significance heatmaps highlighted the key features the model focused on during geochemical anomaly recognition,
20  significantly improving interpretability and proving effectiveness in capturing complex geochemical patterns. This work
provides an effective intelligent method for geochemical pattern recognition and offers a reference for interpretable deep

learning in geochemical exploration through multi-angle visualization.

1. Introduction

Geo-anomalies, detected through various observational datasets such as geological, geochemical, geophysical, and remote
25 sensing methods, play a vital role in identifying mineralization-related geological processes. Their significance lies in the
fact that these anomalies reveal underlying causative features or events that are not directly observable (Cheng and Zhao,

2011). Hydrothermal mineralization is a systematic yet complex geological phenomenon, involving the movement of ore-
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bearing hydrothermal fluids, interactions between fluids and host rocks, mineral precipitation, and the eventual
concentration of ore materials (Pirajno, 2008). Since these processes result from the interplay of multiple geological
30 factors operating across different spatial and temporal scales, the associated geo-anomalies display considerable
complexity (Cheng, 2012). Analyzing their spatial distribution in detail can significantly refine and advance geological
understanding of numerous scientific questions. Geochemical anomalies associated with mineralization represent one of
the most significant types of geo-anomalies for mineral exploration (Zuo et al., 2021). These anomalies often exhibit
anisotropic spatial distributions that are controlled by ore-forming geological structures-such as strata, faults, folds, and
35 magmatic intrusions-which provide essential space, heat, fluid, and material conditions required for mineralization
(Pirajno, 2008). For example, hydrothermal mineralization frequently presents as linear-trending geochemical anomalies
along fault zones, where fault systems act as pathways for the transport and deposition of ore-forming materials (Wang
etal., 2013). Consequently, recognizing the spatial anisotropy of geochemical patterns is crucial for accurately identifying
significant anomalies, thus can greatly enhance the success of mineral exploration (Cheng, 2012; Zuo, 2017; Xiao et al.,
40  2018).
Long-term research and practice have demonstrated that integrating spatial structure through geostatistics, spatial
autocorrelation analysis, spatial decomposition, moving window statistics, and spatially aware machine learning offers a
more geologically realistic and robust framework for recognizing geochemical anomalies. Geostatistical techniques, such
as kriging, allow for the estimation of values at unsampled locations, generating a spatially continuous model of the
45  geochemical background. Anomalies are identified where measured values significantly exceed the kriging predictions,
indicated by large prediction errors (Jimenez-Espinosa et al., 1993). Additionally, incorporating directional variograms
into kriging methods, such as anisotropic ordinary kriging, enables explicit accounting for directional trends and local
heterogeneity in anomalies (Reis et al., 2003). Spatial autocorrelation analysis, using methods like local Moran's I, helps
detect statistically significant spatial clusters-such as high-high clusters (indicating potential anomalies surrounded by
50 other high values) and high-low clusters (representing isolated high values) (Yin et al., 2021). Spatial decomposition
primarily employs two categories of methods: trend surface analysis and multifractal filtering. Trend surface analysis
involves fitting polynomial surfaces, using either global or local regression, to model regional trends. The residuals
derived from this surface represent local deviations, which can serve to highlight anomalies against the broader regional
pattern (Wang and Zuo, 2015). Multifractal filtering methods mainly include the Concentration-Area (C-A) model and
55 the Spectrum-Area (S-A) model (Cheng et al., 1994, 2000). These methods plot element concentration against area and
identify breaks in the observed power-law (scaling) behavior. These breakpoints are used to separate background

populations from anomalous ones. This approach explicitly models the scale-dependent heterogeneity of spatial patterns
2



https://doi.org/10.5194/egusphere-2025-4877
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

and establishes thresholds based on deviations from fractal behavior across different scales (Cheng, 2012). Moving
window statistics methods, such as local singularity analysis and the local gap statistic, calculate local statistics (e.g.,
60 mean, median, standard deviation) within a defined spatial window (Cheng, 2007; Wang and Zuo, 2016). Values that
significantly exceed the local background within their respective window are identified as geochemical anomalies. This
technique effectively captures local spatial context and non-stationarity, although the choice of window size is a critical
and subjective step. To account for anisotropy, these methods are often adapted by incorporating elliptical or directionally
weighted windows (Xiao et al., 2018, 2020; Wang et al., 2018). The final category for analyzing geochemical spatial
65 patterns is spatially aware machine learning. This approach primarily includes two types: models that integrate spatial
features or components (Cheng et al., 2011; Wang et al., 2015), and models with inherent capabilities to capture spatial
structures (LeCun and Bengio, 1998). In the first type, spatial characteristics are incorporated into traditional statistical
methods-often through distance-based kernels or spatial weighting schemes-to address geographic heterogeneity and non-
stationarity, where variable relationships vary across space. Commonly applied spatially weighted machine learning
70  techniques for identifying geochemical anomaly patterns include geographically weighted regression (GWR) (Wang et
al., 2015; Tian et al., 2018), spatially weighted principal component analysis (SWPCA) (Cheng et al., 2011; Xiao et al.,
2012), density-based spatial clustering of applications with noise (DBSCAN) (Zhang et al., 2019; Hajihosseinlou et al.,
2024), and geographical random forest (GRF) (Soltani et al., 2024). The second type involves machine learning
architectures specifically designed to handle spatial data, such as convolutional neural networks (CNN) (LeCun and
75 Bengio, 1998) and graph neural networks (GNN) (Scarselli et al., 2008). CNN learns local spatial features and
mineralization-related patterns through convolutional and pooling operations. However, a key limitation is their reliance
on fixed, regular convolution kernels (e.g., 3x3 grids), which restricts their ability to adequately model the anisotropic
nature of geochemical distributions (Dai et al., 2017). In contrast, GNN directly represents non-Euclidean spatial
relationships using nodes (e.g., sample points with geochemical attributes) and edges (encoding spatial proximity or
80 geological links), allowing anomaly detection based on complex neighborhood interactions (Xu et al., 2023, 2024, 2025;
Chen et al., 2025). Nevertheless, GNN requires high-quality data and substantial domain knowledge to define meaningful
graph structures. In particular, defining appropriate edges-based on spatial distance or geological similarity-is crucial yet
challenging. Improper edge definitions may introduce noise, mask genuine anomalies, and ultimately impair model
performance (Gong and Cheng, 2019; Zhou et al., 2020).
85 Deformable Convolutional Networks (DCN) address a fundamental constraint of traditional CNN: the fixed geometric
structure of their convolution kernels (Dai et al., 2017). By introducing learnable spatial offsets for each sampling point

in the kernel, DCN adaptively adjust the sampling locations, effectively warping the kernel’s receptive field to align with
3
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irregular and complex patterns (Dai et al., 2017; Zhu et al., 2018). This flexibility allows the kernel to conform to non-

rigid and deformed structures, enabling more precise feature extraction from key regions of irregular shapes (Dai et al.,

90 2017; Zhu et al., 2019). As a result, DCNs exhibit greater robustness to geometric variations such as changes in orientation,

scale, or deformation, maintaining consistent feature representation across diverse pattern states. These capabilities make

DCN especially valuable in tasks involving irregular spatial structures, where they significantly improve recognition and

quantification performance. By offering essential spatial adaptability, DCN provide a powerful tool for analyzing the

complex and often messy geometries encountered in real-world data across various domains, which include irregular

95 seismic data interpolation (Zhao et al., 2023; Luo et al., 2024; Sun et al., 2024), earthquake crack detection (Yu et al.,

2022), flood boundary detection (Yu et al., 2023), surface wave suppression (Gao et al., 2024), underwater image

enhancement (Tian et al., 2023), atmospheric forecasting (Nielsen et al., 2022), precipitation forecasting (Xu et al., 2024),

morphological characteristics of clouds modelling (Liu et al., 2021), images denoising (Guan et al., 2022; Liu et al., 2024),

hyperspectral image classification (Zhu et al., 2018; Zhao et al., 2021), identification of anomalous deformation areas

100 (Zhang et al., 2022), hyperspectral anomaly detection (Wu et al., 2023), soil moisture monitoring (Na et al., 2025). By

capturing nuanced spatial deformations, DCN offer a transformative approach for extracting meaningful metrics from the
inherent irregularity of geoscientific data.

In this study, we utilize a DCN as the foundational model for recognizing and extracting complex anisotropic geochemical

spatial patterns. Just as purely data-driven deep learning methods such as CNN face interpretability issues, so too does

105 the DCN, whose function is regarded as complex "black boxes". While they achieve high prediction accuracy,

understanding why they make a specific prediction, which features in the input data were decisive, or how their learned

representations map to established geological concepts is extremely difficult (Rudin, 2019; Gilpin et al., 2018). For

instance, especially for DCN, are the learned offsets geologically meaningful, or are they exploiting subtle. Current

approaches to enhance the interpretability of deep learning models primarily operate at three levels: model input, model

110 construction, and model output (Zuo et al., 2024). At the model input level, interpretability is enhanced through

metallogenic models, feature engineering, and geologically constrained data augmentation methods (Zuo et al., 2024). At

the model construction stage, key ore-controlling factors are integrated into the hidden layers, while the spatial coupling

relationship between known mineral deposit locations and these factors is incorporated into the loss function (Xiong et

al., 2022; Luo et al., 2023; Zuo et al., 2025). At the model output stage, visualization techniques are employed to examine

115  the outputs of each hidden layer, providing insight into the extraction and integration processes of prospecting information.

Meanwhile, attribution techniques are applied to assess the importance of input variables, helping to quantify their

contributions to the formation of mineral deposits (Luo et al., 2023; Xu et al., 2025). In this study, we enhance the
4
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interpretability of the DCN at both the model construction and output levels. During model construction, a governing
equation representing the spatial correlation between known mineral deposits and ore-controlling factors is embedded
120 into the loss function (Xiong et al., 2022; Zuo et al., 2024). This approach introduces conceptual models and expert
knowledge into the training process, ensuring that the model's outputs are consistent with established geological principles
(Zuo et al., 2024). At the model output stage, we utilize class activation mapping (CAM) (Jung and Oh, 2021) and its
variant, Grad-CAM (Selvaraju et al., 2016), to visualize the regions within the input data that most influence the model's
predictions. CAM visually identifies the most discriminative regions in an input image responsible for a specific class
125 prediction of CNN and its variants (e.g., DCN). It leverages the weights of the final fully connected layer to compute a
weighted sum of the activation maps from the last convolutional layer, thus can transform CNN and its variants from a
"black box" into a more transparent model by generating a heatmap (class activation map). Besides, the learned offsets
are also visualized to reveal how DCN dynamically adapts sampling locations, enhancing understanding of model
behavior for spatial pattern quantification. Ultimately, the constructed model was applied to the study area of the southern
130  Tianshan Au-Cu polymetallic ore district to verify its effectiveness and interpretability in identifying geochemical

anomalies.

2. Geological setting and Datasets

2.1. Geological setting

The South Tianshan Metallogenic Belt, extending across Central Asia from Uzbekistan through Tajikistan, Kyrgyzstan,
135 and into western China (Xinjiang), is one of the world's most significant gold and copper provinces (Fig. 1). Its formation
is intrinsically linked to the protracted and complex tectonic history of the Central Asian Orogenic Belt, specifically the
final closure of the Paleo-Asian Ocean (Gao et al., 2009; Han et al., 2011). The regional geology is dominated by the
collage of multiple terranes, including Precambrian continental blocks, early Paleozoic oceanic crust fragments, and
island arcs, which were accreted and subsequently deformed during the Late Paleozoic collision between the Tarim Craton
140 to the south and the Kazakhstan-Yili Block to the north (Gao et al., 2009). This continental collision, culminating in the
Late Carboniferous to Early Permian, created a major suture zone characterized by extensive thrusting, folding, and large-
scale strike-slip fault systems. These structures provided crucial conduits for subsequent fluid migration and

mineralization.

145 The primary mineralization events are temporally and genetically associated with this collisional orogeny and the post-

5
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collisional extensional phase. Two major mineralization styles prevail: (1) Orogenic gold deposits, often hosted in shear
zones within Neoproterozoic to Paleozoic metamorphic rocks (e.g., the giant Muruntau deposit in Uzbekistan). These
deposits formed from metamorphic fluids released during devolatilization of subducted slabs or thickened crust. (2)
Copper-gold skarn and porphyry-style mineralization, frequently associated with Late Carboniferous to Permian post-
150 collisional I-type granitoids intruding carbonate-rich sequences. These intrusions provided the heat and magmatic fluids
responsible for widespread hydrothermal alteration and metal deposition. The conjunction of fertile source rocks (often
black shales), ideal structural traps (fault jogs, shear zones, lithological contacts), and the timing of magmatism relative
to tectonic stress changes created the perfect conditions for the formation of world-class gold and copper deposits. The
Chinese segment of the South Tianshan, such as the Sawayaerdun gold belt, continues this metallogenic trend, hosting

155 numerous deposits with similar genetic models (Chen et al., 2012; Goldfarb et al., 2014; Seltmann et al., 2014).
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Figure 1: Simplified geological map of the Southern Tianshan showing the main tectonic units and Au-Cu deposits (modified

from Xue et al. (2014); Zhao et al. (2020)).

2.2. Datasets

160 The 1:200,000 scale geochemical samples in this study area were sourced from the Chinese national geochemical mapping
project (Xie et al., 1997). The standard sampling density was 1-2 samples per square kilometer, with every 4 km?
constituting one analytical unit. Sampling density was appropriately reduced in areas where fieldwork was difficult to

conduct (1 sample per 20-50 km2). Multiple sub-samples were collected within a certain range (20-50 m) around the

6



https://doi.org/10.5194/egusphere-2025-4877
Preprint. Discussion started: 15 October 2025

(© Author(s) 2025. CC BY 4.0 License.

165

170

EGUsphere\

sampling point and combined into a single composite sample. The sample was sieved through a 60-mesh stainless steel

screen, with the final sample weight exceeding 200g. A total of 32 elements and 7 oxides were analyzed: Bi, Cu, P, La,

Li, Ag, Sn, Au, Mo, Th, U, Y, W, Sb, Hg, Mn, Cr, Sr, Nb, Pb, Ni, Ti, Cd, Co, Ba, Be, V, Zn, B, As, Zr, F, as well as Fe:03,

K20, CaO, MgO, Na:0, Al:Os, and SiO:. The detection limits and analytical methods for each element are listed in Table

1.

Table 1 Elements, analytical methods, and detection limits from the Chinese national geochemical mapping project

Elements Unit  Detection Limit Analytical Elements Unit Detection Limit ~ Analytical Method
Method
Ag ng/g 0.02 ES Pb ng/g 2 ICP-MS
As ng/g 1 HG-AFS Sb ng/g 0.1 HG-AFS
Au ng/g 0.0003 GF-AAS Sn ng/g 1 ES
B ug/g 5 ES Sr ng/g 5 ICP-AES
Ba ng/g 50 ICP-AES Th ng/g 4 ICP-MS
Be ug/g 0.5 ICP-AES Ti ng/g 100 XRF
Bi /| 0.1 ICP-MS
cd :Z/z 0.05 ICP-MS v he/e 03 ICPMS
Co ng/g 1 ICP-MS \% ne/g 20 ICP-AES
Cr ug/g 15 XRF W ne/g 0.5 ICP-MS
Cu ug/g 1 ICP-MS Y ng/g 5 XRF
F ug/g 100 ISE Zn ne/g 10 ICP-AES
Hg ug/g 0.0005 CV-AFS Zr ne/g 10 XRF
La ug/g 30 ICP-MS ALO3 % 0.05 XRF
Li ng/g 5 ICP-AES CaO % 0.05 ICP-AES
Mn ug/g 30 ICP-AES Fe203 % 0.05 XRF
Mo ug/g 0.4 ICP-MS K0 % 0.05 XRF
Nb ug/g 5 ICP-MS MgO % 0.05 ICP-AES
Ni ug/g 2 ICP-AES Na:0 % 0.05 ICP-AES
P ug/g 100 XRF SiO2 % 0.1 XRF

Note: XRF: X-ray fluorescence spectrometry; ICP-AES: Inductively coupled plasma-atomic emission spectrometry; ICP—

MS: Inductively coupled plasma—mass spectrometry; ES: Emission spectrometry; HG-AFS: Hydride generation atomic

fluorescence spectrometry; GF-AAS: Graphite furnace atomic absorption spectrometry; CV-AFS: Cold vapor atomic

fluorescence spectroscopy; ISE: Ion selective electrode.
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3. Methods

175 3.1. Deformable convolutional networks (DCN)

Deformable convolution (Dai et al., 2017; Zhu et al., 2019), enables adaptive adjustment of the receptive field positions
by incorporating learnable offset parameters for each sampling point within the convolutional kernel. Figure 2 illustrates
the distinction between the sampling points of standard convolution and those of deformable convolution. This approach
overcomes the limitations imposed by a fixed grid structure, thereby facilitating more flexible and precise extraction of

180 image features exhibiting complex geometric deformations.
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Figure 2: Illustration of the sampling locations in 3 x 3 standard and deformable convolutions. (a) Regular sampling grid of
standard convolution; (b—d) deformed sampling locations of deformable convolution with augmented offsets. The red areas
are the sampling locations in 3 x 3 standard convolution. The grey areas and the blue areas are the initial sampling locations
185 and final sampling locations of the deformable convolution, respectively. The yellow arrow points from the initial sampling
location to the corresponding final sampling location.
The computation involved in deformable convolution remains a form of two-dimensional convolution, with an emphasis
on spatial interactions across all channels. The fundamental aspect of this method lies in learning the offsets of sampling
points via a parallel branch network, allowing the convolutional kernel to dynamically adjust its sampling locations based
190 on the content of the input feature map. This mechanism directs convolutional operations to concentrate on regions of
interest, substantially enhancing the network’s capacity to represent features associated with geometric transformations.
In this study, a standard 3x3 two-dimensional convolutional kernel, denoted as R, is employed as an illustrative example.
R = (~1,-1), (=1,0),,(0,1), (1,1), (1)
In conventional convolutional kernels, the weight matrix is denoted by w, the input feature map by x,and p,, represents
195 any pixel within the convolutional window R. For each output position p, in the feature map, the convolution operation

can be mathematically expressed as follows:

Y0 = ) wEXEo + o), 2)

Pn€R

In the context of deformable convolution, the introduction of an offset Ap,{Ap, |n =1,--,N}N = |R| modifies the

original formulation, transforming it into:
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200 y(po) = Z w (pn) X (Do + pn + Apy), (3)

Pn€R

This adjustment results in sampling points that are spatially shifted, with the offset positions denoted as p,, + Ap,,. Since
the offset Ap, generally assumes non-integer values, the computation of the convolution must be performed using

bilinear interpolation, as described by:

x() = )6 (@»x(@), @)

205 The value at any position p is thus a function of p = py + p, + Ap,, and is computed over all spatial locations g
within the input feature map x by employing the bilinear interpolation kernel G(-,-). Notably, the two-dimensional
interpolation kernel is separable and can be decomposed into the product of two one-dimensional kernels, which serves
to optimize computational efficiency:

6(a,p) = 9@ p)9(4y.py). (5)
210  Where g(a,b) = max(0,1 —|a — b]).
Figure 3 delineates the detailed implementation procedure of deformable convolutional layers. Initially, the learned offset
vectors are applied to the fixed sampling grid of the input feature map, enabling adaptive adjustment of each sampling
point’s position. Subsequently, bilinear interpolation is utilized to estimate feature values at the offset, non-integer
coordinate locations, thereby ensuring that the sampled feature distribution effectively concentrates on the target region.

215  Figure 4 provides a comparative visualization between standard convolution and deformable convolution with respect to
their receptive fields for geochemical pattern recognition. By incorporating offsets, the receptive field in deformable
convolution transcends the constraints imposed by the fixed, regular grid of standard convolution. This flexibility allows
the receptive field to adaptively assume irregular spatial configurations that better correspond to the actual geometric

structure of the target object, thereby substantially enhancing the accuracy of feature extraction.
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Figure 4: Illustration of the sampling locations for (a) normal convolution and (b) deformable convolution. Maps showing
irregular geochemical patterns. It is observed that deformable convolutions can adaptively extracts the features of the input
225 by adjusting its shape according to the actual patterns by shifting the convolutional kernel, but normal convolutions only

describe the fixed receptive field.

3.2. Geologically-constrained DCN

This study introduces soft constraints on deformable convolutional networks to enhance geochemical anomaly detection
by incorporating geological prior knowledge. In typical geochemical anomaly recognition tasks, deformable
230 convolutional neural networks optimize their parameters by minimizing the cross-entropy loss, which measures the

divergence between predicted and true label distributions. To improve this optimization process, the present work

10
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augments the loss function with an additional penalty term derived from established geological principles, thereby guiding
the model to learn feature representations that better conform to geological laws (Semenov et al., 2019).

The conventional loss function Lpcy, is defined as follows:
235 Low(@.5) =~ ). p()1ogp (1),(6)
x

Wherep(x) and the predicted distribution p(x) denote the true and predicted distributions, respectively. Building upon
this, a novel penalty term grounded in geological knowledge is formulated and integrated into the loss function. Following
the approach proposed by Zuo (2016) for penalty term construction, the relationship between the distance control factor

and the spatial distribution of mineral deposits is modeled by a power-law function w, expressed as:

m  Nd*

240 w= (D

mmax mmax
Here, N is a constant, d represents the distance between the control factor and the mineral deposit, m denotes the
density of mineral points at distance d, and k corresponds to the line fitting parameters relating log™ and log®.
Here, w serves as a control equation embedding prior geological knowledge to characterize the spatial coupling between
known mineral occurrences and their controlling factors. As the DCN progressively learns the spatial distribution patterns
245 between mineral deposits and their surrounding grid units, it becomes essential to extract spatial structural features

encapsulated by the weight function w and incorporate them into the training process. Consequently, a geology-informed

penalty term Lgeology is constructed, formulated as:

Lgeolagy = ”fsaftmax(ﬁ(x)) - fsigmaid(z aw; + b)“zr (8)
i=1

In this expression, a and b are trainable parameters within the combined kernel used for feature aggregation, where a
250  represents weights and b denotes bias terms; n is the number of feature maps. The aggregated features undergo
normalization via the function f;gmea, and the network output is subsequently transformed into mineral potential
prediction values through the mapping function fortmax-
Finally, a total loss function L, Wwas constructed in the variable convolution that integrates prior geological knowledge,
and its expression is as follows:
255 Ultimately, a comprehensive loss function Ly is developed for the deformable convolutional network, integrating
prior geological knowledge, and is expressed as:
Liotat = Lpen + /‘{Lgealagy: €©))
This formulation effectively constrains the model to produce predictions that are consistent with both data-driven learning

and established geological understanding (Fig. 3).

11
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260 3.3. Gradient-weighted Class Activation Mapping

To improve the interpretability and discriminative localization capabilities of deformable convolutional neural networks,
the integration of class activation mapping (CAM) techniques can be employed. The conventional CAM approach
leverages the weights from the global average pooling (GAP) layer and the final classification layer to visualize the
discriminative regions utilized by the CNN during classification. By projecting the output layer’s weights back onto the
265 convolutional feature maps, the relative importance of different image regions can be identified.
Initially, it is necessary to remove all fully connected layers following the last convolutional block, as CAM requires a
fully convolutional architecture to maintain spatial information up to the final layer. A GAP layer is introduced subsequent
to the last deformable convolutional layer to substitute the fully connected layers (Jung and Oh, 2021). The function of
this GAP layer is to compute the spatial average value F¥ of each feature map in the final convolutional layer, which

270 can be mathematically expressed as:

X Y
1
Fe=7 0. . fi (). (10)
x=1y=1

where fi(x,y) denotes the activation at spatial location (x,y) inthe k-th channel of the feature map output by the last

deformable convolutional layer, and X and Y represent the width and height of the feature map, respectively.

Following the GAP layer, a single fully connected layer with a softmax activation function is appended. For a given class
275 ¢, this layer assigns a weight wi to each averaged feature map value fj(x,y). The linear classification logit score S,

for class c is then computed as:

1
Se= D WiFe =50 Y ) wE filoy), (11)
k xy k

Here, S, is a scalar representing the classification score. To generate the class activation map, the weights wy are

multiplied element-wise with the corresponding feature maps F* and summed across all channels:

280 M(xy) = ) wifuCy), (12)
k

This operation preserves spatial information along the width and height dimensions. Subsequently, bilinear interpolation
is applied to upsample the matrix M, to the original input image size, thereby producing the complete CAM visualization.
In summary, each feature map channel corresponds to a specific class of visual features extracted by a convolutional
kernel from the input image. The weights wy implicitly indicate the significance of these features for the classification
285 of category c, reflecting the degree of attention that the model allocates to each feature with respect to that class.
However, CAM technique necessitates the substitution of the fully connected layer with a GAP layer and is limited to

analyzing only the final convolutional layer. To overcome these constraints, we adopted the Gradient-weighted CAM

12
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(Grad-CAM) approach, which derives the requisite weights indirectly through gradient computations rather than

depending on the GAP layer and softmax activation (Selvaraju et al., 2016). This method can be applied to a wide range
290 of contemporary models incorporating deformable convolutional layers without modifying the existing network

architecture or requiring retraining. Consequently, it enables the generation of class-specific activation heatmaps for

convolutional layers situated at various depths within the network.

The Grad-CAM algorithm involves computing the gradient of the target score—typically corresponding to the class of

interest—with respect to the feature maps of a selected convolutional layer. From these gradients, the importance weight

295 ay for each channel k is obtained, as expressed by the following equation:

Here, ¢ denotes the target class, aj represents the weight of the k-th channel for class ¢, and y°© is the linear

. . . . . ayS e
classification logit score for class c. The partial derivative a/};" corresponds to the sensitivity of the output score y°¢

ij

with respect to the activation at spatial location (i,j) in the k-th feature map, where u and v indicate the width and
300  height of the feature map, respectively.

Mathematically, the weight aj serves a role analogous to the weight wy in the original CAM formulation. By linearly

combining these weights with the corresponding feature maps, the class activation map M, can be computed as follows:

Viraa—can = ReLU (Z o A") ,(14)

k

The application of the ReLU function ensures that only features exerting a positive influence on the class ¢ are retained.

305 Finally, the resulting heatmap "M_" is upsampled to match the input image dimensions using bilinear interpolation,

thereby facilitating effective visualization of the class-discriminative regions (Fig. 5).
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Figure 5: The workflow diagram for obtaining Grad-CAM within convolution neural network and deformable convolution

networks.

310 4. Results and Discussions

The process begins by preprocessing the geochemical data: each of the 39 elements is interpolated onto a 1 km x 1 km
grid using inverse distance weighting. Small cubes are then cropped from this 3D grid and fed into a GK_DCN for feature
extraction and anomaly recognition. As a supervised algorithm, the GK_DCN requires a dataset labeled with known
anomalies (positive samples) and background (negative samples). A critical aspect of the model is its ability to leverage
315 the varying discriminative power of different spatial positions within the data cubes, which significantly boosts its learning
capacity.
Geochemical anomalies that deviate from regional patterns are key indicators of mineral deposits (Cheng, 2012). To
model these anomalies, favorable areas were defined as 3x3 grid blocks centered on known Au-Cu deposits. From each
central grid, a 9 x 9 cell patch was extracted, generating 84 positive samples representing mineralized areas. An equal
320 number of negative samples with known deposits were randomly selected from barren regions, following Nykénen et al.
(2015). The similar strategy was used for negative sample augmentation generating 84 patches. The dataset was split 8:2
for training and validation, resulting in a final input data cube of dimensions 134 x 9 x 9 x 39 (67 patches per class).
4.1. Recognizing geochemical anomalies by GK_DCN
DCN and CNN exhibit significant differences in the extraction of geochemical anomalies. By introducing deformable

325 convolution modules, DCN gains the ability to adaptively adjust the shape and size of receptive fields. Through the
14
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incorporation of learnable offset parameters, the convolutional kernels of DCN can dynamically deform based on the
characteristics of the input data, learning the complex spatial distribution and structural features of geochemical elements.
This allows the model to actively "focus" on the spatial anisotropy of geochemical anomalies, effectively capturing
irregular anomaly patterns controlled by geological factors such as lithology. The extracted anomaly boundaries show
330 higher consistency with known ore-forming geological bodies and exhibit stronger spatial continuity (Fig. 6a). In contrast,
CNN is constrained by its fixed geometric structure, leading to insufficient responsiveness to irregular boundaries. Its
extraction results tend to be overly smooth, with significant loss of anomaly information (Fig. 6b). Comparative results
demonstrate that DCN holds clear advantages in improving the spatial positioning accuracy of anomalies and their
relevance to geological factors, providing more reliable geochemical indicators for deep mineral exploration. In summary,
335 DCN significantly enhances the ability to represent the nonlinear and anisotropic characteristics of geochemical spatial

distributions through its adaptive mechanism.
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Figure 6: Geochemical anomalies associated with mineralization obtained by (a) DCN and (b) CNN

Reflecting the geological setting where faults and subsidiary fractures provided fluid pathways and deposition sites for
Au-Cu mineralization, the quantified spatial relationship between ore-controlling faults and known deposits (Fig. 7) was
incorporated into the DCN and CNN's loss function (Fig. 3). A non-linear controlling function between perspective density
345 p and d was fitted: p = 3.28d"%53. The d was the distance, and p was normalized for building a geologically
constrained loss term. By incorporating geological constraints constructed from prior knowledge of fault-related
mineralization to guide the training of both DCN and CNN, thus generating the GK_DCN and GK_CNN models. These
models not only thoroughly learn the spatial distribution patterns and combinatorial relationships of geochemical elements
but also strengthen their understanding of the geological background. This effectively suppresses background and noise
350 interference unrelated to mineralization. The results show that compared to traditional methods, the anomalies extracted
by the geologically constrained models exhibit higher spatial structural consistency with known mineralized fault
structures, and the anomaly concentration centers are more prominent (Fig. 8). This approach significantly reduces the
multiplicity of solutions in anomaly recognition and enhances the reliability and geological interpretability of the anomaly

results.
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365 Figure 8: Geochemical anomalies associated with mineralization obtained by (a) GK_DCN and (b) GK_CNN.

To compare the feature extraction capabilities of CNN and DCN in the identification of geochemical anomalies, this study
visualizes the offsets and employs Grad-CAM technology to visualize the spatial features learned by both types of models,
followed by a comparison with the geochemical patterns, which can be obtained by integrating multiple geochemical
variables via robust principal component analysis (RPCA). PC1 vs. PC2 plots for the 39 elements (Fig. 9a) reveal two
370 distinct compositional assemblages. The assemblage characterized by positive loadings of PC2 (Au, Cu, As, Hg, Bi, Mo,
W, Co, Pb, Zn and Ni) (Fig. 9a) corresponds to Au—Cu mineralization in the region. The spatial distribution of PC2 scores
(Fig. 9b) shows that low values, associated with this mineralization-related assemblage, correlate with areas of Au—Cu

mineralization.
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Figure 9: (a) Biplots of the PC1 and PC2 obtained by the RPCA methods, (b) Map showing the spatial distribution of the

second principal component related to mineralization.

As mentioned above, offsets are the core idea of deformable convolution. By introducing a parallel "offset prediction”

structure, the network learns the shape and size of the receptive field on its own. For each sampling point of standard

convolution, the network additionally learns two values (Ax, Ay), representing its offsets in the x and y directions. Based
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on this, the actual sampling positions are no longer regular grid points but new positions formed by the original locations
plus the predicted offsets. These new positions may distribute along the actual contours of the target object, thereby
385 capturing more precise features. Figure 10 illustrates the geochemical patterns corresponding to ten mineral deposits
clipped from PC2 score maps, as well as the offsets direction and magnitude learned by the DCN for ten irregular spatial
patterns. For irregular spatial patterns, deformable convolution adjusts the sampling positions of the convolution kernel
through offsets. For each position of the convolution kernel, the deformable network adds their corresponding offsets to
the original grid points, resulting in new sampling positions that "pull" the originally regular sampling points to more
390 effective locations. The arrows pointing from the original grid points to the new sampling points represent the direction
and magnitude of the offsets. Both the direction and magnitude of the offsets indicate that, during the training process,
the actual sampling positions of the deformable convolution significantly shift toward areas with higher concentrations
of geochemical elements. This demonstrates that the network is more capable of adapting to the quantification and

extraction of irregular geochemical spatial patterns.

Deposits Offset Offset magnitude Deposits Offset Offset magnitude
spatial pattern  direction heatmap spatial pattern  direction heatmap

Low High

395

Figure 10: Comparison of offset direction and magnitude maps obtained by GK_CNN and GK_DCN with the geochemical
20
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patterns of ten mineral deposits clipped from PC2 score maps in this study. The yellow in the maps represent high concentration
and high offset magnitude. The longer the arrow in the offset direction maps, the greater the offset.
CAM is a visualization technique used to reveal the image regions that DCN and CNN focus on when making decisions.
400 It generates a "heatmap" by taking the feature maps of the last convolutional layer and performing a weighted summation.
Bright areas indicate regions critical for predicting a specific class. The limitation of CAM is that it requires the network
architecture to include a global average pooling layer. Grad-CAM is a generalization and enhancement of CAM. It
overcomes the structural constraints of CAM by computing the gradients of the target class with respect to the feature
maps of the last convolutional layer to obtain weights, generating a heatmap that localizes key regions of the image. This
405 heatmap visually demonstrates which features the model focuses on to make predictions, thereby enhancing the model's
interpretability. It allows us to intuitively understand the basis of the model's decisions and verify whether it is focusing
on reasonable features. Figure 10 displays the geochemical patterns corresponding to ten mineral deposits clipped from
PC2 score maps, along with the Grad-CAM maps generated by the GK_CNN and GK_DCN models. As can be seen,
GK_DCN, with their ability to adaptively adjust receptive fields, generate Grad-CAM maps that more accurately align
410 with the spatial distribution patterns of actual geochemical spatial patterns.
This indicates that the deformable network's ability to adjust the sampling locations of convolutional operations through
offset modulation allows it to effectively capture complex and irregular geochemical patterns. Consequently, the
deformable network demonstrates greater flexibility and accuracy in identifying and extracting geochemical spatial
patterns. Their heatmaps clearly outline the spatially anisotropic distribution of geochemical fields, exhibiting higher

415 spatial coupling with actual geochemical spatial patterns, and enhance the interpretability of model decisions (Fig. 11).
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Figure 11: Comparison of Grad-CAM maps obtained by GK_CNN and GK_DCN with the geochemical patterns of ten

mineral deposits clipped from PC2 score maps in this study. The yellow in the geochemical patterns of mineral deposits

represent high concentration. The red highlighted regions in the Grad-CAM maps are the parts where models give more

420 weight and contribute more the final classification. The black crosses represent the known deposits.

4.2. Comparative experiments

This section assesses the performance of our proposed model using seven metrics—Accuracy (ACC), Area Under the

Curve (AUC), Kappa, Matthews Correlation Coefficient (MCC), Precision, Recall, and F1, and compares it with models

that are either non-geologically constrained or do not employ deformable convolution operation. The aim is to identify

425 and interpret the performance differences (Chicco and Jurman, 2020; Powers, 2020). The metrics are defined as follows:

ACC = —2N__ (15
TP+FP+TN+FN
ACC—P, F(TP+FP)+5(FN+FTN)
Kappa = s ; P = = ,(16)
TP XTN — FP X FN
MCC =

JTP +FP)x (TP + FN) x (TN + FP) x (TN + FN)’ v



https://doi.org/10.5194/egusphere-2025-4877
Preprint. Discussion started: 15 October 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

. TP
Precision = ——, (18)
TP+FP

430  Recall = —2—,(19)
TP+FN

F1=—2 _ 20

T 2XTP+FP+FN’
Here, true positive (TP), true negative (TN), false positive (FP), and false negative (FN) represent the agreement between
the actual labels (true or false) and the classifier’s predictions (positive or negative), with n denoting the total number of
samples. The AUC (Area Under the Curve) corresponds to the area under the Receiver Operating Characteristic (ROC)
435 curve, expressed as a proportion of the total area of the unit square. The ROC curve plots the true positive rate (TPR, or
sensitivity) against the false positive rate (FPR, or 1 — specificity) (Fawcett, 2006).
Below is a comparative performance analysis of CNN and DCN in geochemical anomaly recognition tasks based on
seven performance metrics. The radar chart comparison clearly shows that the DCN outperforms the standard CNN in the
vast majority of performance metrics, demonstrating superior overall performance. In terms of recognition accuracy and
440  reliability, DCN exhibits significant advantages. Its higher accuracy indicates a stronger overall prediction correctness
and greater certainty in positive class predictions. In terms of model discriminative ability and error control, DCN also
leads. Its larger AUC indicates a stronger ability to distinguish between positive and negative samples and superior
ranking quality. Additionally, DCN's lower false positive rate (FPR) means fewer false alarms where normal samples are
misclassified as anomalies, which is crucial in practical applications emphasizing safety and efficiency. In summary, due
445 to its deformable convolutional structure, DCN can adaptively adjust the receptive field and more accurately capture the
irregular and complex spatial features of anomalies. This enables a comprehensive outperformance over traditional CNN
across most of metrics, particularly in reducing missed detections (high recall) and lowering false alarms (low FPR). This

demonstrates DCN's stronger applicability and robustness for complex anomaly recognition tasks (Fig. 12).
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450 Figure 12: Evaluation of model performance between CNN and DCN in Accuracy, Precision, Recall, F1-score, AUC, Kappa,
and MCC.

The model must prioritize not only accuracy but also geological consistency. The radar plot compares its geologically
constrained counterpart (GK_CNN and GK_DCNN) (Fig. 13). While both models demonstrate excellent predictive
capabilities, GK_CNN and GK_DCN, which incorporates geological knowledge directly within the model architecture,
455 outperformed the unconstrained CNN and DCN. This is evident in key metrics like AUC, Recall, and F1-score, where the
knowledge-enhanced model achieved higher performance while successfully integrating geological constraints. The
experimental results demonstrate that incorporating geological knowledge (e.g., physical models, constraints) as a
physics-based regularization term within the loss function significantly boosts pattern recognition performance and model
interpretability. This geologically constrained model effectively identifies potential mineral deposits by guiding training
460  optimization to recognize anomalies associated with ore-controlling faults, enhancing learning and generalization

capabilities.
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Figure 13: Evaluation of model performance between GK_CNN and GK_DCN in Accuracy, Precision, Recall, F1-score,
AUC, Kappa, and MCC.

465 5. Conclusions

This study introduces deformable convolutional neural networks (DCN) into the field of geochemical anomaly
identification to address the issues in capturing irregularly shaped anomalies within complex geological backgrounds.
The adaptive receptive field adjustment capability of deformable convolution units enables more precise capture of the
spatial distribution characteristics of geochemical anomalous in complex geological settings, enhancing the model's
470 ability to learn and represent geochemical spatial distribution features, thereby achieving superior anomaly identification
results. Experimental results demonstrate that, compared to conventional CNN, this method significantly improves
accuracy and spatial continuity in anomaly identification, allowing more effective separation of mineralization-related
anomalous information from high-dimensional, nonlinear geochemical data.
Prior knowledge of ore-controlling fault is incorporated into the model’s loss function as a constraint. The fault-

475 constrained loss function effectively guides the network’s learning process, resulting in identified geochemical anomalies
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that exhibit higher spatial alignment with known fault structures. This enhances the geological significance of the
anomalies, reduces interference from the geochemical background field, and improves the accuracy of anomaly
identification.
The interpretability of the model is further examined through visualizations of the learned offsets and Grad-CAM. First,
480 the visualization of the offset fields learned by the deformable convolution kernels clearly reveals the network’s adaptive
receptive field adjustment behavior. The learned offset vectors effectively point to key anomalous spatial structures and
irregular trends in the geological mineralization process, serving as important quantitative indicators of anomaly
irregularity. Second, Grad-CAM intuitively demonstrates the key regions focused on by the model during decision-
making. The highlighted areas in the heatmap show strong overlap with known mineral deposits and high anomaly zones,
485 providing compelling evidence from the "black-box" decision-making process and demonstrating the model’s focus on
geochemical response features related to mineralization. In summary, this study not only validates the effectiveness of
combining deformable convolution with geological prior knowledge in geochemical anomaly identification but also
provides a window into understanding the model’s decision-making process through offset and Grad-CAM visualizations,
significantly enhancing the accuracy and interpretability of Al models in geochemical data processing. This method offers
490 a new tool for deep learning-driven geochemical data analysis and holds practical value for future geochemical

exploration.

Code and Data Availability

The code used for geochemical pattern recognition based on the geological knowledge guided deformable convolution

network are archived on Zenodo (https://zenodo.org/records/17243487; Zhang et al., 2025). Data supporting this research

495 are available in Wang et al. (2007) from China Geological Survey.
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