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Abstract. This study tackles the limited quantification of irregular spatial geochemical patterns and weak interpretability 

in deep learning models in geochemical anomaly recognition. We propose a hybrid approach that that integrates 

geological knowledge (GK) into deformable convolutional networks (DCN), creating a model termed GK_DCN, with 

the aim of enhancing both the performance and transparency of geochemical anomaly recognition. This model introduces 10 

learnable parameters that allow the convolutional kernels to adaptively adjust their sampling locations, enabling them to 

more accurately capture complex, irregular geochemical anomaly patterns caused by mineralization. To enhance 

geological consistency, ore-controlling fault are incorporated as geological knowledge constraints, guiding the network 

to prioritize spatial correlations between deposits and faults. Experimental results in southern Tianshan Au-Cu 

polymetallic ore district demonstrate that the GK_DCN significantly enhances the accuracy and reliability of geochemical 15 

anomaly recognition verified across multiple evaluation metrics, producing more distinct spatial anomalous patterns and 

higher consistency with known mineral deposits by adaptively adjusting the receptive field. Visualization of the kernel 

offsets revealed the model's superior adaptive spatial sampling mechanism. Furthermore, using Grad-CAM to generate 

feature significance heatmaps highlighted the key features the model focused on during geochemical anomaly recognition, 

significantly improving interpretability and proving effectiveness in capturing complex geochemical patterns. This work 20 

provides an effective intelligent method for geochemical pattern recognition and offers a reference for interpretable deep 

learning in geochemical exploration through multi-angle visualization. 

1. Introduction 

Geo-anomalies, detected through various observational datasets such as geological, geochemical, geophysical, and remote 

sensing methods, play a vital role in identifying mineralization-related geological processes. Their significance lies in the 25 

fact that these anomalies reveal underlying causative features or events that are not directly observable (Cheng and Zhao, 

2011). Hydrothermal mineralization is a systematic yet complex geological phenomenon, involving the movement of ore-
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bearing hydrothermal fluids, interactions between fluids and host rocks, mineral precipitation, and the eventual 

concentration of ore materials (Pirajno, 2008). Since these processes result from the interplay of multiple geological 

factors operating across different spatial and temporal scales, the associated geo-anomalies display considerable 30 

complexity (Cheng, 2012). Analyzing their spatial distribution in detail can significantly refine and advance geological 

understanding of numerous scientific questions. Geochemical anomalies associated with mineralization represent one of 

the most significant types of geo-anomalies for mineral exploration (Zuo et al., 2021). These anomalies often exhibit 

anisotropic spatial distributions that are controlled by ore-forming geological structures-such as strata, faults, folds, and 

magmatic intrusions-which provide essential space, heat, fluid, and material conditions required for mineralization 35 

(Pirajno, 2008). For example, hydrothermal mineralization frequently presents as linear-trending geochemical anomalies 

along fault zones, where fault systems act as pathways for the transport and deposition of ore-forming materials (Wang 

et al., 2013). Consequently, recognizing the spatial anisotropy of geochemical patterns is crucial for accurately identifying 

significant anomalies, thus can greatly enhance the success of mineral exploration (Cheng, 2012; Zuo, 2017; Xiao et al., 

2018). 40 

Long-term research and practice have demonstrated that integrating spatial structure through geostatistics, spatial 

autocorrelation analysis, spatial decomposition, moving window statistics, and spatially aware machine learning offers a 

more geologically realistic and robust framework for recognizing geochemical anomalies. Geostatistical techniques, such 

as kriging, allow for the estimation of values at unsampled locations, generating a spatially continuous model of the 

geochemical background. Anomalies are identified where measured values significantly exceed the kriging predictions, 45 

indicated by large prediction errors (Jimenez-Espinosa et al., 1993). Additionally, incorporating directional variograms 

into kriging methods, such as anisotropic ordinary kriging, enables explicit accounting for directional trends and local 

heterogeneity in anomalies (Reis et al., 2003). Spatial autocorrelation analysis, using methods like local Moran's I, helps 

detect statistically significant spatial clusters-such as high-high clusters (indicating potential anomalies surrounded by 

other high values) and high-low clusters (representing isolated high values) (Yin et al., 2021). Spatial decomposition 50 

primarily employs two categories of methods: trend surface analysis and multifractal filtering. Trend surface analysis 

involves fitting polynomial surfaces, using either global or local regression, to model regional trends. The residuals 

derived from this surface represent local deviations, which can serve to highlight anomalies against the broader regional 

pattern (Wang and Zuo, 2015). Multifractal filtering methods mainly include the Concentration-Area (C-A) model and 

the Spectrum-Area (S-A) model (Cheng et al., 1994, 2000). These methods plot element concentration against area and 55 

identify breaks in the observed power-law (scaling) behavior. These breakpoints are used to separate background 

populations from anomalous ones. This approach explicitly models the scale-dependent heterogeneity of spatial patterns 
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and establishes thresholds based on deviations from fractal behavior across different scales (Cheng, 2012). Moving 

window statistics methods, such as local singularity analysis and the local gap statistic, calculate local statistics (e.g., 

mean, median, standard deviation) within a defined spatial window (Cheng, 2007; Wang and Zuo, 2016). Values that 60 

significantly exceed the local background within their respective window are identified as geochemical anomalies. This 

technique effectively captures local spatial context and non-stationarity, although the choice of window size is a critical 

and subjective step. To account for anisotropy, these methods are often adapted by incorporating elliptical or directionally 

weighted windows (Xiao et al., 2018, 2020; Wang et al., 2018). The final category for analyzing geochemical spatial 

patterns is spatially aware machine learning. This approach primarily includes two types: models that integrate spatial 65 

features or components (Cheng et al., 2011; Wang et al., 2015), and models with inherent capabilities to capture spatial 

structures (LeCun and Bengio, 1998). In the first type, spatial characteristics are incorporated into traditional statistical 

methods-often through distance-based kernels or spatial weighting schemes-to address geographic heterogeneity and non-

stationarity, where variable relationships vary across space. Commonly applied spatially weighted machine learning 

techniques for identifying geochemical anomaly patterns include geographically weighted regression (GWR) (Wang et 70 

al., 2015; Tian et al., 2018), spatially weighted principal component analysis (SWPCA) (Cheng et al., 2011; Xiao et al., 

2012), density-based spatial clustering of applications with noise (DBSCAN) (Zhang et al., 2019; Hajihosseinlou et al., 

2024), and geographical random forest (GRF) (Soltani et al., 2024). The second type involves machine learning 

architectures specifically designed to handle spatial data, such as convolutional neural networks (CNN) (LeCun and 

Bengio, 1998) and graph neural networks (GNN) (Scarselli et al., 2008). CNN learns local spatial features and 75 

mineralization-related patterns through convolutional and pooling operations. However, a key limitation is their reliance 

on fixed, regular convolution kernels (e.g., 3×3 grids), which restricts their ability to adequately model the anisotropic 

nature of geochemical distributions (Dai et al., 2017). In contrast, GNN directly represents non-Euclidean spatial 

relationships using nodes (e.g., sample points with geochemical attributes) and edges (encoding spatial proximity or 

geological links), allowing anomaly detection based on complex neighborhood interactions (Xu et al., 2023, 2024, 2025; 80 

Chen et al., 2025). Nevertheless, GNN requires high-quality data and substantial domain knowledge to define meaningful 

graph structures. In particular, defining appropriate edges-based on spatial distance or geological similarity-is crucial yet 

challenging. Improper edge definitions may introduce noise, mask genuine anomalies, and ultimately impair model 

performance (Gong and Cheng, 2019; Zhou et al., 2020). 

Deformable Convolutional Networks (DCN) address a fundamental constraint of traditional CNN: the fixed geometric 85 

structure of their convolution kernels (Dai et al., 2017). By introducing learnable spatial offsets for each sampling point 

in the kernel, DCN adaptively adjust the sampling locations, effectively warping the kernel’s receptive field to align with 
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irregular and complex patterns (Dai et al., 2017; Zhu et al., 2018). This flexibility allows the kernel to conform to non-

rigid and deformed structures, enabling more precise feature extraction from key regions of irregular shapes (Dai et al., 

2017; Zhu et al., 2019). As a result, DCNs exhibit greater robustness to geometric variations such as changes in orientation, 90 

scale, or deformation, maintaining consistent feature representation across diverse pattern states. These capabilities make 

DCN especially valuable in tasks involving irregular spatial structures, where they significantly improve recognition and 

quantification performance. By offering essential spatial adaptability, DCN provide a powerful tool for analyzing the 

complex and often messy geometries encountered in real-world data across various domains, which include irregular 

seismic data interpolation (Zhao et al., 2023; Luo et al., 2024; Sun et al., 2024), earthquake crack detection (Yu et al., 95 

2022), flood boundary detection (Yu et al., 2023), surface wave suppression (Gao et al., 2024), underwater image 

enhancement (Tian et al., 2023), atmospheric forecasting (Nielsen et al., 2022), precipitation forecasting (Xu et al., 2024), 

morphological characteristics of clouds modelling (Liu et al., 2021), images denoising (Guan et al., 2022; Liu et al., 2024), 

hyperspectral image classification (Zhu et al., 2018; Zhao et al., 2021), identification of anomalous deformation areas 

(Zhang et al., 2022), hyperspectral anomaly detection (Wu et al., 2023), soil moisture monitoring (Na et al., 2025). By 100 

capturing nuanced spatial deformations, DCN offer a transformative approach for extracting meaningful metrics from the 

inherent irregularity of geoscientific data. 

In this study, we utilize a DCN as the foundational model for recognizing and extracting complex anisotropic geochemical 

spatial patterns. Just as purely data-driven deep learning methods such as CNN face interpretability issues, so too does 

the DCN, whose function is regarded as complex "black boxes". While they achieve high prediction accuracy, 105 

understanding why they make a specific prediction, which features in the input data were decisive, or how their learned 

representations map to established geological concepts is extremely difficult (Rudin, 2019; Gilpin et al., 2018). For 

instance, especially for DCN, are the learned offsets geologically meaningful, or are they exploiting subtle. Current 

approaches to enhance the interpretability of deep learning models primarily operate at three levels: model input, model 

construction, and model output (Zuo et al., 2024). At the model input level, interpretability is enhanced through 110 

metallogenic models, feature engineering, and geologically constrained data augmentation methods (Zuo et al., 2024). At 

the model construction stage, key ore-controlling factors are integrated into the hidden layers, while the spatial coupling 

relationship between known mineral deposit locations and these factors is incorporated into the loss function (Xiong et 

al., 2022; Luo et al., 2023; Zuo et al., 2025). At the model output stage, visualization techniques are employed to examine 

the outputs of each hidden layer, providing insight into the extraction and integration processes of prospecting information. 115 

Meanwhile, attribution techniques are applied to assess the importance of input variables, helping to quantify their 

contributions to the formation of mineral deposits (Luo et al., 2023; Xu et al., 2025). In this study, we enhance the 
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interpretability of the DCN at both the model construction and output levels. During model construction, a governing 

equation representing the spatial correlation between known mineral deposits and ore-controlling factors is embedded 

into the loss function (Xiong et al., 2022; Zuo et al., 2024). This approach introduces conceptual models and expert 120 

knowledge into the training process, ensuring that the model's outputs are consistent with established geological principles 

(Zuo et al., 2024). At the model output stage, we utilize class activation mapping (CAM) (Jung and Oh, 2021) and its 

variant, Grad-CAM (Selvaraju et al., 2016), to visualize the regions within the input data that most influence the model's 

predictions. CAM visually identifies the most discriminative regions in an input image responsible for a specific class 

prediction of CNN and its variants (e.g., DCN). It leverages the weights of the final fully connected layer to compute a 125 

weighted sum of the activation maps from the last convolutional layer, thus can transform CNN and its variants from a 

"black box" into a more transparent model by generating a heatmap (class activation map). Besides, the learned offsets 

are also visualized to reveal how DCN dynamically adapts sampling locations, enhancing understanding of model 

behavior for spatial pattern quantification. Ultimately, the constructed model was applied to the study area of the southern 

Tianshan Au-Cu polymetallic ore district to verify its effectiveness and interpretability in identifying geochemical 130 

anomalies. 

2. Geological setting and Datasets 

2.1. Geological setting 

The South Tianshan Metallogenic Belt, extending across Central Asia from Uzbekistan through Tajikistan, Kyrgyzstan, 

and into western China (Xinjiang), is one of the world's most significant gold and copper provinces (Fig. 1). Its formation 135 

is intrinsically linked to the protracted and complex tectonic history of the Central Asian Orogenic Belt, specifically the 

final closure of the Paleo-Asian Ocean (Gao et al., 2009; Han et al., 2011). The regional geology is dominated by the 

collage of multiple terranes, including Precambrian continental blocks, early Paleozoic oceanic crust fragments, and 

island arcs, which were accreted and subsequently deformed during the Late Paleozoic collision between the Tarim Craton 

to the south and the Kazakhstan-Yili Block to the north (Gao et al., 2009). This continental collision, culminating in the 140 

Late Carboniferous to Early Permian, created a major suture zone characterized by extensive thrusting, folding, and large-

scale strike-slip fault systems. These structures provided crucial conduits for subsequent fluid migration and 

mineralization. 

 

The primary mineralization events are temporally and genetically associated with this collisional orogeny and the post-145 
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collisional extensional phase. Two major mineralization styles prevail: (1) Orogenic gold deposits, often hosted in shear 

zones within Neoproterozoic to Paleozoic metamorphic rocks (e.g., the giant Muruntau deposit in Uzbekistan). These 

deposits formed from metamorphic fluids released during devolatilization of subducted slabs or thickened crust. (2) 

Copper-gold skarn and porphyry-style mineralization, frequently associated with Late Carboniferous to Permian post-

collisional I-type granitoids intruding carbonate-rich sequences. These intrusions provided the heat and magmatic fluids 150 

responsible for widespread hydrothermal alteration and metal deposition. The conjunction of fertile source rocks (often 

black shales), ideal structural traps (fault jogs, shear zones, lithological contacts), and the timing of magmatism relative 

to tectonic stress changes created the perfect conditions for the formation of world-class gold and copper deposits. The 

Chinese segment of the South Tianshan, such as the Sawayaerdun gold belt, continues this metallogenic trend, hosting 

numerous deposits with similar genetic models (Chen et al., 2012; Goldfarb et al., 2014; Seltmann et al., 2014). 155 

 

Figure 1: Simplified geological map of the Southern Tianshan showing the main tectonic units and Au-Cu deposits (modified 

from Xue et al. (2014); Zhao et al. (2020)). 

2.2. Datasets 

The 1:200,000 scale geochemical samples in this study area were sourced from the Chinese national geochemical mapping 160 

project (Xie et al., 1997). The standard sampling density was 1-2 samples per square kilometer, with every 4 km² 

constituting one analytical unit. Sampling density was appropriately reduced in areas where fieldwork was difficult to 

conduct (1 sample per 20–50 km2). Multiple sub-samples were collected within a certain range (20-50 m) around the 
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sampling point and combined into a single composite sample. The sample was sieved through a 60-mesh stainless steel 

screen, with the final sample weight exceeding 200g. A total of 32 elements and 7 oxides were analyzed: Bi, Cu, P, La, 165 

Li, Ag, Sn, Au, Mo, Th, U, Y, W, Sb, Hg, Mn, Cr, Sr, Nb, Pb, Ni, Ti, Cd, Co, Ba, Be, V, Zn, B, As, Zr, F, as well as Fe₂O₃, 

K₂O, CaO, MgO, Na₂O, Al₂O₃, and SiO₂. The detection limits and analytical methods for each element are listed in Table 

1. 

Table 1 Elements, analytical methods, and detection limits from the Chinese national geochemical mapping project 

Elements Unit Detection Limit 
Analytical 

Method 
Elements Unit Detection Limit Analytical Method 

Ag ng/g 0.02 ES Pb μg/g 2 ICP–MS 

As μg/g 1 HG-AFS Sb μg/g 0.1 HG-AFS 

Au ng/g 0.0003 GF-AAS Sn μg/g 1 ES 

B μg/g 5 ES Sr μg/g 5 ICP-AES 

Ba μg/g 50 ICP-AES Th μg/g 4 ICP–MS 

Be μg/g 0.5 ICP-AES Ti μg/g 100 XRF 

Bi μg/g 0.1 ICP–MS 
U μg/g 0.5 ICP–MS 

Cd ng/g 0.05 ICP–MS 

Co μg/g 1 ICP–MS V μg/g 20 ICP-AES 

Cr μg/g 15 XRF W μg/g 0.5 ICP–MS 

Cu μg/g 1 ICP–MS Y μg/g 5 XRF 

F μg/g 100 ISE Zn μg/g 10 ICP-AES 

Hg μg/g 0.0005 CV-AFS Zr μg/g 10 XRF 

La μg/g 30 ICP–MS Al2O3 % 0.05 XRF 

Li μg/g 5 ICP-AES CaO % 0.05 ICP-AES 

Mn μg/g 30 ICP-AES Fe2O3 % 0.05 XRF 

Mo μg/g 0.4 ICP–MS K2O % 0.05 XRF 

Nb μg/g 5 ICP–MS MgO % 0.05 ICP-AES 

Ni μg/g 2 ICP-AES Na2O % 0.05 ICP-AES 

P μg/g 100 XRF SiO2 % 0.1 XRF 

Note: XRF: X-ray fluorescence spectrometry; ICP-AES: Inductively coupled plasma-atomic emission spectrometry; ICP–170 

MS: Inductively coupled plasma–mass spectrometry; ES: Emission spectrometry; HG-AFS: Hydride generation atomic 

fluorescence spectrometry; GF-AAS: Graphite furnace atomic absorption spectrometry; CV-AFS: Cold vapor atomic 

fluorescence spectroscopy; ISE: Ion selective electrode. 
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3. Methods 

3.1. Deformable convolutional networks (DCN) 175 

Deformable convolution (Dai et al., 2017; Zhu et al., 2019), enables adaptive adjustment of the receptive field positions 

by incorporating learnable offset parameters for each sampling point within the convolutional kernel. Figure 2 illustrates 

the distinction between the sampling points of standard convolution and those of deformable convolution. This approach 

overcomes the limitations imposed by a fixed grid structure, thereby facilitating more flexible and precise extraction of 

image features exhibiting complex geometric deformations. 180 

 

Figure 2: Illustration of the sampling locations in 3 × 3 standard and deformable convolutions. (a) Regular sampling grid of 

standard convolution; (b–d) deformed sampling locations of deformable convolution with augmented offsets. The red areas 

are the sampling locations in 3 × 3 standard convolution. The grey areas and the blue areas are the initial sampling locations 

and final sampling locations of the deformable convolution, respectively. The yellow arrow points from the initial sampling 185 

location to the corresponding final sampling location. 

The computation involved in deformable convolution remains a form of two-dimensional convolution, with an emphasis 

on spatial interactions across all channels. The fundamental aspect of this method lies in learning the offsets of sampling 

points via a parallel branch network, allowing the convolutional kernel to dynamically adjust its sampling locations based 

on the content of the input feature map. This mechanism directs convolutional operations to concentrate on regions of 190 

interest, substantially enhancing the network’s capacity to represent features associated with geometric transformations. 

In this study, a standard 3×3 two-dimensional convolutional kernel, denoted as R, is employed as an illustrative example. 

𝑅 = (−1, −1),  (−1,0), ⋯ , (0,1), (1,1), (1) 

In conventional convolutional kernels, the weight matrix is denoted by 𝑤, the input feature map by 𝑥, and 𝑝𝑛 represents 

any pixel within the convolutional window 𝑅. For each output position 𝑝0 in the feature map, the convolution operation 195 

can be mathematically expressed as follows: 

𝑦(𝑝0) = ∑ 𝑤

𝑝𝑛∈𝑅

(𝑝𝑛)x(𝑝0 + 𝑝𝑛), (2) 

In the context of deformable convolution, the introduction of an offset Δ𝑝𝑛{Δ𝑝𝑛 ∣ 𝑛 = 1, ⋯ , 𝑁}𝑁 = |𝑅| modifies the 

original formulation, transforming it into: 
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𝑦(𝑝0) = ∑ 𝑤

𝑝n∈𝑅

(𝑝n) × (𝑝0 + 𝑝n + Δ𝑝𝑛), (3) 200 

This adjustment results in sampling points that are spatially shifted, with the offset positions denoted as 𝑝n + Δ𝑝𝑛. Since 

the offset Δ𝑝𝑛  generally assumes non-integer values, the computation of the convolution must be performed using 

bilinear interpolation, as described by: 

𝑥(𝑝) = ∑ 𝐺 (𝑞, 𝑝)𝑥(𝑞), (4) 

The value at any position 𝑝  is thus a function of 𝑝 = 𝑝0 + 𝑝n + Δ𝑝𝑛  and is computed over all spatial locations 𝑞 205 

within the input feature map 𝑥  by employing the bilinear interpolation kernel 𝐺(⋅,⋅) . Notably, the two-dimensional 

interpolation kernel is separable and can be decomposed into the product of two one-dimensional kernels, which serves 

to optimize computational efficiency: 

𝐺(𝑞, 𝑝) = 𝑔(𝑞𝑥, 𝑝𝑥)𝑔(𝑞𝑦 , 𝑝𝑦), (5) 

Where 𝑔(𝑎, 𝑏) = 𝑚𝑎𝑥( 0,1 − |𝑎 − 𝑏|). 210 

Figure 3 delineates the detailed implementation procedure of deformable convolutional layers. Initially, the learned offset 

vectors are applied to the fixed sampling grid of the input feature map, enabling adaptive adjustment of each sampling 

point’s position. Subsequently, bilinear interpolation is utilized to estimate feature values at the offset, non-integer 

coordinate locations, thereby ensuring that the sampled feature distribution effectively concentrates on the target region. 

Figure 4 provides a comparative visualization between standard convolution and deformable convolution with respect to 215 

their receptive fields for geochemical pattern recognition. By incorporating offsets, the receptive field in deformable 

convolution transcends the constraints imposed by the fixed, regular grid of standard convolution. This flexibility allows 

the receptive field to adaptively assume irregular spatial configurations that better correspond to the actual geometric 

structure of the target object, thereby substantially enhancing the accuracy of feature extraction. 
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 220 

Figure 3: The framework of proposed geological knowledge guided deformable convolution networks. 

 

Figure 4: Illustration of the sampling locations for (a) normal convolution and (b) deformable convolution. Maps showing 

irregular geochemical patterns. It is observed that deformable convolutions can adaptively extracts the features of the input 

by adjusting its shape according to the actual patterns by shifting the convolutional kernel, but normal convolutions only 225 

describe the fixed receptive field. 

3.2. Geologically-constrained DCN 

This study introduces soft constraints on deformable convolutional networks to enhance geochemical anomaly detection 

by incorporating geological prior knowledge. In typical geochemical anomaly recognition tasks, deformable 

convolutional neural networks optimize their parameters by minimizing the cross-entropy loss, which measures the 230 

divergence between predicted and true label distributions. To improve this optimization process, the present work 
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augments the loss function with an additional penalty term derived from established geological principles, thereby guiding 

the model to learn feature representations that better conform to geological laws (Semenov et al., 2019).  

The conventional loss function 𝐿𝐷𝐶𝑁, is defined as follows: 

𝐿𝐷𝐶𝑁(𝑝, 𝑝̂) = − ∑ 𝑝

𝑥

(𝑥) log 𝑝̂ (𝑥), (6) 235 

Where𝑝(𝑥) and the predicted distribution 𝑝̂(𝑥) denote the true and predicted distributions, respectively. Building upon 

this, a novel penalty term grounded in geological knowledge is formulated and integrated into the loss function. Following 

the approach proposed by Zuo (2016) for penalty term construction, the relationship between the distance control factor 

and the spatial distribution of mineral deposits is modeled by a power-law function 𝑤, expressed as: 

𝑤 =
𝑚

𝑚max

=
𝑁𝑑𝑘

𝑚max

  , (7) 240 

Here, 𝑁 is a constant, 𝑑 represents the distance between the control factor and the mineral deposit, 𝑚 denotes the 

density of mineral points at distance 𝑑, and 𝑘 corresponds to the line fitting parameters relating 𝑙𝑜𝑔𝑚 and 𝑙𝑜𝑔𝑑 . 

Here, 𝑤 serves as a control equation embedding prior geological knowledge to characterize the spatial coupling between 

known mineral occurrences and their controlling factors. As the DCN progressively learns the spatial distribution patterns 

between mineral deposits and their surrounding grid units, it becomes essential to extract spatial structural features 245 

encapsulated by the weight function w and incorporate them into the training process. Consequently, a geology-informed 

penalty term 𝐿geology is constructed, formulated as: 

𝐿𝑔𝑒𝑜𝑙𝑜𝑔𝑦 = ||𝑓𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑝̂(𝑥)) − 𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑(∑ 𝑎

n

i=1

𝑤𝑖 + 𝑏)||2, (8) 

In this expression, 𝑎 and 𝑏 are trainable parameters within the combined kernel used for feature aggregation, where 𝑎 

represents weights and 𝑏  denotes bias terms; 𝑛  is the number of feature maps. The aggregated features undergo 250 

normalization via the function 𝑓s𝑖𝑔𝑚𝑜𝑑  , and the network output is subsequently transformed into mineral potential 

prediction values through the mapping function 𝑓𝑠𝑜𝑓𝑡𝑚𝑎𝑥 . 

Finally, a total loss function 𝐿𝑡𝑜𝑡𝑎𝑙 was constructed in the variable convolution that integrates prior geological knowledge, 

and its expression is as follows: 

Ultimately, a comprehensive loss function 𝐿𝑡𝑜𝑡𝑎𝑙 is developed for the deformable convolutional network, integrating 255 

prior geological knowledge, and is expressed as: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐷𝐶𝑁 + 𝜆𝐿𝑔𝑒𝑜𝑙𝑜𝑔𝑦 , (9) 

This formulation effectively constrains the model to produce predictions that are consistent with both data-driven learning 

and established geological understanding (Fig. 3). 
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3.3. Gradient-weighted Class Activation Mapping 260 

To improve the interpretability and discriminative localization capabilities of deformable convolutional neural networks, 

the integration of class activation mapping (CAM) techniques can be employed. The conventional CAM approach 

leverages the weights from the global average pooling (GAP) layer and the final classification layer to visualize the 

discriminative regions utilized by the CNN during classification. By projecting the output layer’s weights back onto the 

convolutional feature maps, the relative importance of different image regions can be identified.  265 

Initially, it is necessary to remove all fully connected layers following the last convolutional block, as CAM requires a 

fully convolutional architecture to maintain spatial information up to the final layer. A GAP layer is introduced subsequent 

to the last deformable convolutional layer to substitute the fully connected layers (Jung and Oh, 2021). The function of 

this GAP layer is to compute the spatial average value 𝐹𝑘 of each feature map in the final convolutional layer, which 

can be mathematically expressed as: 270 

𝐹𝑘 =
1

𝑋 ⋅ 𝑌
∑ ∑ 𝑓𝑘

𝑌

𝑦=1

𝑋

𝑥=1

(𝑥, 𝑦), (10) 

where 𝑓𝑘(𝑥, 𝑦) denotes the activation at spatial location (𝑥, 𝑦) in the k-th channel of the feature map output by the last 

deformable convolutional layer, and 𝑋 and 𝑌 represent the width and height of the feature map, respectively. 

Following the GAP layer, a single fully connected layer with a softmax activation function is appended. For a given class 

c, this layer assigns a weight 𝑤𝑘
𝑐 to each averaged feature map value 𝑓𝑘(𝑥, 𝑦). The linear classification logit score 𝑆𝑐 275 

for class c is then computed as: 

𝑆𝑐 = ∑ 𝑤𝑘
𝑐

𝑘

𝐹𝑘 =
1

𝑋 ⋅ 𝑌
∑ ∑ 𝑤𝑘

𝑐

𝑘𝑥,𝑦

𝑓𝑘(𝑥, 𝑦), (11) 

Here, 𝑆𝑐  is a scalar representing the classification score. To generate the class activation map, the weights 𝑤𝑘
𝑐  are 

multiplied element-wise with the corresponding feature maps 𝐹𝑘 and summed across all channels: 

𝑀𝑐(𝑥, 𝑦) = ∑ 𝑤𝑘
𝑐

𝑘

𝑓𝑘(𝑥, 𝑦), (12) 280 

This operation preserves spatial information along the width and height dimensions. Subsequently, bilinear interpolation 

is applied to upsample the matrix 𝑀𝑐 to the original input image size, thereby producing the complete CAM visualization.  

In summary, each feature map channel corresponds to a specific class of visual features extracted by a convolutional 

kernel from the input image. The weights 𝑤𝑘
𝑐 implicitly indicate the significance of these features for the classification 

of category 𝑐, reflecting the degree of attention that the model allocates to each feature with respect to that class.  285 

However, CAM technique necessitates the substitution of the fully connected layer with a GAP layer and is limited to 

analyzing only the final convolutional layer. To overcome these constraints, we adopted the Gradient-weighted CAM 
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(Grad-CAM) approach, which derives the requisite weights indirectly through gradient computations rather than 

depending on the GAP layer and softmax activation (Selvaraju et al., 2016). This method can be applied to a wide range 

of contemporary models incorporating deformable convolutional layers without modifying the existing network 290 

architecture or requiring retraining. Consequently, it enables the generation of class-specific activation heatmaps for 

convolutional layers situated at various depths within the network. 

The Grad-CAM algorithm involves computing the gradient of the target score—typically corresponding to the class of 

interest—with respect to the feature maps of a selected convolutional layer. From these gradients, the importance weight 

𝛼𝑘
𝑐 for each channel 𝑘 is obtained, as expressed by the following equation: 295 

𝛼𝑘
𝑐 =

1

𝑍
∑ ∑

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘

𝑣

𝑗=1

𝑢

𝑖=1

, (13) 

Here, 𝑐  denotes the target class, 𝛼𝑘
𝑐  represents the weight of the 𝑘 -th channel for class 𝑐 , and 𝑦𝑐  is the linear 

classification logit score for class 𝑐. The partial derivative 
𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘  corresponds to the sensitivity of the output score 𝑦𝑐 

with respect to the activation at spatial location (𝑖, 𝑗) in the 𝑘-th feature map, where 𝑢 and 𝑣 indicate the width and 

height of the feature map, respectively. 300 

Mathematically, the weight 𝛼𝑘
𝑐 serves a role analogous to the weight 𝑤𝑘

𝑐 in the original CAM formulation. By linearly 

combining these weights with the corresponding feature maps, the class activation map 𝑀𝑐 can be computed as follows: 

 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈 (∑ 𝛼𝑘

𝑐

𝑘

𝐴𝑘) , (14) 

The application of the ReLU function ensures that only features exerting a positive influence on the class 𝑐 are retained. 

Finally, the resulting heatmap "𝑀𝑐"  is upsampled to match the input image dimensions using bilinear interpolation, 305 

thereby facilitating effective visualization of the class-discriminative regions (Fig. 5). 
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Figure 5: The workflow diagram for obtaining Grad-CAM within convolution neural network and deformable convolution 

networks. 

4. Results and Discussions 310 

The process begins by preprocessing the geochemical data: each of the 39 elements is interpolated onto a 1 km × 1 km 

grid using inverse distance weighting. Small cubes are then cropped from this 3D grid and fed into a GK_DCN for feature 

extraction and anomaly recognition. As a supervised algorithm, the GK_DCN requires a dataset labeled with known 

anomalies (positive samples) and background (negative samples). A critical aspect of the model is its ability to leverage 

the varying discriminative power of different spatial positions within the data cubes, which significantly boosts its learning 315 

capacity.  

Geochemical anomalies that deviate from regional patterns are key indicators of mineral deposits (Cheng, 2012). To 

model these anomalies, favorable areas were defined as 3x3 grid blocks centered on known Au-Cu deposits. From each 

central grid, a 9 x 9 cell patch was extracted, generating 84 positive samples representing mineralized areas. An equal 

number of negative samples with known deposits were randomly selected from barren regions, following Nykänen et al. 320 

(2015). The similar strategy was used for negative sample augmentation generating 84 patches. The dataset was split 8:2 

for training and validation, resulting in a final input data cube of dimensions 134 × 9 × 9 × 39 (67 patches per class). 

4.1. Recognizing geochemical anomalies by GK_DCN 

DCN and CNN exhibit significant differences in the extraction of geochemical anomalies. By introducing deformable 

convolution modules, DCN gains the ability to adaptively adjust the shape and size of receptive fields. Through the 325 
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incorporation of learnable offset parameters, the convolutional kernels of DCN can dynamically deform based on the 

characteristics of the input data, learning the complex spatial distribution and structural features of geochemical elements. 

This allows the model to actively "focus" on the spatial anisotropy of geochemical anomalies, effectively capturing 

irregular anomaly patterns controlled by geological factors such as lithology. The extracted anomaly boundaries show 

higher consistency with known ore-forming geological bodies and exhibit stronger spatial continuity (Fig. 6a). In contrast, 330 

CNN is constrained by its fixed geometric structure, leading to insufficient responsiveness to irregular boundaries. Its 

extraction results tend to be overly smooth, with significant loss of anomaly information (Fig. 6b). Comparative results 

demonstrate that DCN holds clear advantages in improving the spatial positioning accuracy of anomalies and their 

relevance to geological factors, providing more reliable geochemical indicators for deep mineral exploration. In summary, 

DCN significantly enhances the ability to represent the nonlinear and anisotropic characteristics of geochemical spatial 335 

distributions through its adaptive mechanism.  

 

(a)DCN 

  
(b)CNN 340 
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Figure 6: Geochemical anomalies associated with mineralization obtained by (a) DCN and (b) CNN 

Reflecting the geological setting where faults and subsidiary fractures provided fluid pathways and deposition sites for 

Au-Cu mineralization, the quantified spatial relationship between ore-controlling faults and known deposits (Fig. 7) was 

incorporated into the DCN and CNN's loss function (Fig. 3). A non-linear controlling function between perspective density 

𝜌  and 𝑑  was fitted: 𝜌 = 3.28𝑑−0.53 . The 𝑑  was the distance, and 𝜌  was normalized for building a geologically 345 

constrained loss term. By incorporating geological constraints constructed from prior knowledge of fault-related 

mineralization to guide the training of both DCN and CNN, thus generating the GK_DCN and GK_CNN models. These 

models not only thoroughly learn the spatial distribution patterns and combinatorial relationships of geochemical elements 

but also strengthen their understanding of the geological background. This effectively suppresses background and noise 

interference unrelated to mineralization. The results show that compared to traditional methods, the anomalies extracted 350 

by the geologically constrained models exhibit higher spatial structural consistency with known mineralized fault 

structures, and the anomaly concentration centers are more prominent (Fig. 8). This approach significantly reduces the 

multiplicity of solutions in anomaly recognition and enhances the reliability and geological interpretability of the anomaly 

results. 

 355 

(a) 
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(b) 

Figure 7: (a) Log–log plots between the density of mineral deposits ρ and the distance from faults. (b) Density value for faults 

in the case area. 360 

  

(a)GK_DCN 
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(b)GK_CNN 

Figure 8: Geochemical anomalies associated with mineralization obtained by (a) GK_DCN and (b) GK_CNN. 365 

To compare the feature extraction capabilities of CNN and DCN in the identification of geochemical anomalies, this study 

visualizes the offsets and employs Grad-CAM technology to visualize the spatial features learned by both types of models, 

followed by a comparison with the geochemical patterns, which can be obtained by integrating multiple geochemical 

variables via robust principal component analysis (RPCA). PC1 vs. PC2 plots for the 39 elements (Fig. 9a) reveal two 

distinct compositional assemblages. The assemblage characterized by positive loadings of PC2 (Au, Cu, As, Hg, Bi, Mo, 370 

W, Co, Pb, Zn and Ni) (Fig. 9a) corresponds to Au–Cu mineralization in the region. The spatial distribution of PC2 scores 

(Fig. 9b) shows that low values, associated with this mineralization-related assemblage, correlate with areas of Au–Cu 

mineralization.  
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(a)  375 

 

(b)  

Figure 9: (a) Biplots of the PC1 and PC2 obtained by the RPCA methods, (b) Map showing the spatial distribution of the 

second principal component related to mineralization.  

As mentioned above, offsets are the core idea of deformable convolution. By introducing a parallel "offset prediction" 380 

structure, the network learns the shape and size of the receptive field on its own. For each sampling point of standard 

convolution, the network additionally learns two values (Δx, Δy), representing its offsets in the x and y directions. Based 
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on this, the actual sampling positions are no longer regular grid points but new positions formed by the original locations 

plus the predicted offsets. These new positions may distribute along the actual contours of the target object, thereby 

capturing more precise features. Figure 10 illustrates the geochemical patterns corresponding to ten mineral deposits 385 

clipped from PC2 score maps, as well as the offsets direction and magnitude learned by the DCN for ten irregular spatial 

patterns. For irregular spatial patterns, deformable convolution adjusts the sampling positions of the convolution kernel 

through offsets. For each position of the convolution kernel, the deformable network adds their corresponding offsets to 

the original grid points, resulting in new sampling positions that "pull" the originally regular sampling points to more 

effective locations. The arrows pointing from the original grid points to the new sampling points represent the direction 390 

and magnitude of the offsets. Both the direction and magnitude of the offsets indicate that, during the training process, 

the actual sampling positions of the deformable convolution significantly shift toward areas with higher concentrations 

of geochemical elements. This demonstrates that the network is more capable of adapting to the quantification and 

extraction of irregular geochemical spatial patterns. 

 395 

Figure 10: Comparison of offset direction and magnitude maps obtained by GK_CNN and GK_DCN with the geochemical 
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patterns of ten mineral deposits clipped from PC2 score maps in this study. The yellow in the maps represent high concentration 

and high offset magnitude. The longer the arrow in the offset direction maps, the greater the offset. 

CAM is a visualization technique used to reveal the image regions that DCN and CNN focus on when making decisions. 

It generates a "heatmap" by taking the feature maps of the last convolutional layer and performing a weighted summation. 400 

Bright areas indicate regions critical for predicting a specific class. The limitation of CAM is that it requires the network 

architecture to include a global average pooling layer. Grad-CAM is a generalization and enhancement of CAM. It 

overcomes the structural constraints of CAM by computing the gradients of the target class with respect to the feature 

maps of the last convolutional layer to obtain weights, generating a heatmap that localizes key regions of the image. This 

heatmap visually demonstrates which features the model focuses on to make predictions, thereby enhancing the model's 405 

interpretability. It allows us to intuitively understand the basis of the model's decisions and verify whether it is focusing 

on reasonable features. Figure 10 displays the geochemical patterns corresponding to ten mineral deposits clipped from 

PC2 score maps, along with the Grad-CAM maps generated by the GK_CNN and GK_DCN models. As can be seen, 

GK_DCN, with their ability to adaptively adjust receptive fields, generate Grad-CAM maps that more accurately align 

with the spatial distribution patterns of actual geochemical spatial patterns. 410 

This indicates that the deformable network's ability to adjust the sampling locations of convolutional operations through 

offset modulation allows it to effectively capture complex and irregular geochemical patterns. Consequently, the 

deformable network demonstrates greater flexibility and accuracy in identifying and extracting geochemical spatial 

patterns. Their heatmaps clearly outline the spatially anisotropic distribution of geochemical fields, exhibiting higher 

spatial coupling with actual geochemical spatial patterns, and enhance the interpretability of model decisions (Fig. 11). 415 
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Figure 11: Comparison of Grad-CAM maps obtained by GK_CNN and GK_DCN with the geochemical patterns of ten 

mineral deposits clipped from PC2 score maps in this study. The yellow in the geochemical patterns of mineral deposits 

represent high concentration. The red highlighted regions in the Grad-CAM maps are the parts where models give more 

weight and contribute more the final classification. The black crosses represent the known deposits. 420 

4.2. Comparative experiments 

This section assesses the performance of our proposed model using seven metrics—Accuracy (ACC), Area Under the 

Curve (AUC), Kappa, Matthews Correlation Coefficient (MCC), Precision, Recall, and F1, and compares it with models 

that are either non-geologically constrained or do not employ deformable convolution operation. The aim is to identify 

and interpret the performance differences (Chicco and Jurman, 2020; Powers, 2020). The metrics are defined as follows: 425 

𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
, (15)  

𝐾𝑎𝑝𝑝𝑎 =
𝐴𝐶𝐶−𝑃𝑒

1−𝑃𝑒
;  𝑃𝑒 =

𝑛

2
(𝑇𝑃+𝐹𝑃)+

𝑛

2
(𝐹𝑁+𝐹𝑇𝑁)

𝑛2 , (16)  

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
, (17) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
, (18)  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, (19)  430 

𝐹1 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
, (20)  

Here, true positive (TP), true negative (TN), false positive (FP), and false negative (FN) represent the agreement between 

the actual labels (true or false) and the classifier’s predictions (positive or negative), with n denoting the total number of 

samples. The AUC (Area Under the Curve) corresponds to the area under the Receiver Operating Characteristic (ROC) 

curve, expressed as a proportion of the total area of the unit square. The ROC curve plots the true positive rate (TPR, or 435 

sensitivity) against the false positive rate (FPR, or 1 − specificity) (Fawcett, 2006). 

Below is a comparative performance analysis of CNN and DCN in geochemical anomaly recognition tasks based on 

seven performance metrics. The radar chart comparison clearly shows that the DCN outperforms the standard CNN in the 

vast majority of performance metrics, demonstrating superior overall performance. In terms of recognition accuracy and 

reliability, DCN exhibits significant advantages. Its higher accuracy indicates a stronger overall prediction correctness 440 

and greater certainty in positive class predictions. In terms of model discriminative ability and error control, DCN also 

leads. Its larger AUC indicates a stronger ability to distinguish between positive and negative samples and superior 

ranking quality. Additionally, DCN's lower false positive rate (FPR) means fewer false alarms where normal samples are 

misclassified as anomalies, which is crucial in practical applications emphasizing safety and efficiency. In summary, due 

to its deformable convolutional structure, DCN can adaptively adjust the receptive field and more accurately capture the 445 

irregular and complex spatial features of anomalies. This enables a comprehensive outperformance over traditional CNN 

across most of metrics, particularly in reducing missed detections (high recall) and lowering false alarms (low FPR). This 

demonstrates DCN's stronger applicability and robustness for complex anomaly recognition tasks (Fig. 12). 
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Figure 12: Evaluation of model performance between CNN and DCN in Accuracy, Precision, Recall, F1-score, AUC, Kappa, 450 

and MCC. 

The model must prioritize not only accuracy but also geological consistency. The radar plot compares its geologically 

constrained counterpart (GK_CNN and GK_DCNN) (Fig. 13). While both models demonstrate excellent predictive 

capabilities, GK_CNN and GK_DCN, which incorporates geological knowledge directly within the model architecture, 

outperformed the unconstrained CNN and DCN. This is evident in key metrics like AUC, Recall, and F1-score, where the 455 

knowledge-enhanced model achieved higher performance while successfully integrating geological constraints. The 

experimental results demonstrate that incorporating geological knowledge (e.g., physical models, constraints) as a 

physics-based regularization term within the loss function significantly boosts pattern recognition performance and model 

interpretability. This geologically constrained model effectively identifies potential mineral deposits by guiding training 

optimization to recognize anomalies associated with ore-controlling faults, enhancing learning and generalization 460 

capabilities. 
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Figure 13: Evaluation of model performance between GK_CNN and GK_DCN in Accuracy, Precision, Recall, F1-score, 

AUC, Kappa, and MCC. 

5. Conclusions 465 

This study introduces deformable convolutional neural networks (DCN) into the field of geochemical anomaly 

identification to address the issues in capturing irregularly shaped anomalies within complex geological backgrounds. 

The adaptive receptive field adjustment capability of deformable convolution units enables more precise capture of the 

spatial distribution characteristics of geochemical anomalous in complex geological settings, enhancing the model's 

ability to learn and represent geochemical spatial distribution features, thereby achieving superior anomaly identification 470 

results. Experimental results demonstrate that, compared to conventional CNN, this method significantly improves 

accuracy and spatial continuity in anomaly identification, allowing more effective separation of mineralization-related 

anomalous information from high-dimensional, nonlinear geochemical data. 

Prior knowledge of ore-controlling fault is incorporated into the model’s loss function as a constraint. The fault-

constrained loss function effectively guides the network’s learning process, resulting in identified geochemical anomalies 475 
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that exhibit higher spatial alignment with known fault structures. This enhances the geological significance of the 

anomalies, reduces interference from the geochemical background field, and improves the accuracy of anomaly 

identification. 

The interpretability of the model is further examined through visualizations of the learned offsets and Grad-CAM. First, 

the visualization of the offset fields learned by the deformable convolution kernels clearly reveals the network’s adaptive 480 

receptive field adjustment behavior. The learned offset vectors effectively point to key anomalous spatial structures and 

irregular trends in the geological mineralization process, serving as important quantitative indicators of anomaly 

irregularity. Second, Grad-CAM intuitively demonstrates the key regions focused on by the model during decision-

making. The highlighted areas in the heatmap show strong overlap with known mineral deposits and high anomaly zones, 

providing compelling evidence from the "black-box" decision-making process and demonstrating the model’s focus on 485 

geochemical response features related to mineralization. In summary, this study not only validates the effectiveness of 

combining deformable convolution with geological prior knowledge in geochemical anomaly identification but also 

provides a window into understanding the model’s decision-making process through offset and Grad-CAM visualizations, 

significantly enhancing the accuracy and interpretability of AI models in geochemical data processing. This method offers 

a new tool for deep learning-driven geochemical data analysis and holds practical value for future geochemical 490 

exploration. 

Code and Data Availability 

The code used for geochemical pattern recognition based on the geological knowledge guided deformable convolution 

network are archived on Zenodo (https://zenodo.org/records/17243487; Zhang et al., 2025). Data supporting this research 

are available in Wang et al. (2007) from China Geological Survey. 495 
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