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Abstract. We present a dynamic probabilistic flood risk model that addresses key challenges in the implementation of in-

tegrated flood risk management. These include the need for holistic, large-scale risk assessments that adopt a system-based

perspective, and a decision-making framework based on benefit-cost analysis. The proposed model allows for the explicit sim-

ulation and dynamic coupling of the flood process components, including downstream flood wave propagation and possible

dike failures, in a computationally efficient and data-sparse manner. It enables the consideration of aleatory and epistemic un-5

certainties in a 2-level Monte Carlo framework. By separating these uncertainties, the model supports robust risk assessments

and facilitates the uncertainty-aware evaluation of the benefit of mitigation measures. The model is applied to the Bavarian

Danube, demonstrating its ability to estimate the flood risk reduction potential from mitigation measures.

1 Introduction

Over the past few decades, the approach to flood management has transitioned from a mainly technical focus on flood pro-10

tection to a more comprehensive flood risk management strategy (Vitale, 2023; Thomas and Knüppe, 2016). This shift was

catalyzed by significant flood events, such as the catastrophic 2002 flood in Central Europe, which traditional flood protection

measures failed to prevent. With estimated direct damages of 22.6 billion Euros (reference year 2005; Petrow et al. (2006)),

the 2002 flood stands as the most expensive natural hazard recorded in Germany. In response, numerous administrative and

legislative initiatives were launched at both the EU and national levels to enhance preparedness for future flooding (Thieken15

et al., 2016). However, subsequent flood events in 2013, 2021, and 2024 have highlighted the need for further advancements

in the implementation of integrated flood risk management, which can be summarized by three necessary key developments

(Merz et al., 2010a):

1. Comprehensive risk assessment: While traditional engineering approaches relied on predefined design floods and corre-20

sponding protection levels (Messner et al., 2007), flood risk management encompasses the entire spectrum of potential

flood events and their uncertain consequences. It acknowledges the possibility of flood protection failures, even below

established design standards, and recognizes that absolute safety against flooding is unattainable. Deterministic models,

which assume fixed relationships between return periods, water levels, and flood damage, are increasingly insufficient.
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Recent studies have highlighted the downstream impacts of dike failures (Apel et al., 2009b; Curran et al., 2020). Con-25

sequently, flood risk assessments must explicitly model the flood process chain and dynamically couple its components.

Different aleatory uncertainties exist in these components, which should, if possible, be represented in the model (Hall

and Solomatine, 2008): Climate change affects both the frequency and magnitude of flood hazards, while uncertainties

regarding dike breach resistance influence the likelihood of severe flooding in areas considered safe. Additionally, so-

cioeconomic development impacts vulnerability. Alongside these aleatory uncertainties, epistemic uncertainties inherent30

in every flood risk model must be addressed. Numerous studies emphasize the critical role of these uncertainties in flood

risk assessment (Hall and Solomatine, 2008; Dittes et al., 2018). There is a scientific consensus advocating for proba-

bilistic approaches to enhance robust flood risk assessment and estimate the impact of uncertainties (Domeneghetti et al.,

2013; Apel et al., 2004; Hall and Solomatine, 2008; Merz and Thieken, 2009).

2. Shift in decision-making criteria: Decision-making processes must move from regulation-based frameworks to performance-35

based approaches, wherein the potential for flood risk reduction is weighted against the costs of mitigation measures

(Messner et al., 2007). This criterion promotes a more transparent and cost-effective allocation of limited resources

(Gamper et al., 2006). To evaluate the benefits of mitigation measures, flood risk must be estimated both with and with-

out their implementation. Therefore, a model capable of simulating the impacts of mitigation measures — at the site of

implementation as well as downstream — is essential. Both aleatory and epistemic uncertainties should be integrated and40

communicated within benefit-cost analyses (Hall and Solomatine, 2008). Decision-oriented sensitivity studies (Straub

et al., 2025) can further enhance the decision-making process, ensuring robustness and transparency. While several stud-

ies (de Kok and Grossmann, 2010; Apel et al., 2006) have developed models that fulfill both the requirement of 1.

Comprehensive risk assessment as well as 2. Shift in decision-making criteria, their integration into official practice is

still lacking.45

3. Integrated, cross-border approaches: It is increasingly recognized that isolated, local flood protection strategies must

be replaced by integrated approaches that frame flood risk mitigation as a comprehensive task spanning large spatial

scales and involving multiple riparian communities (Thieken et al., 2016). Local flood mitigation efforts can have trans-

local consequences (Metin et al., 2018). Dikes may temporally and spatially shift flood hazard, potentially exacerbating

flood risk downstream. Other flood protection measures, such as detention basins, are designed in a way that their50

impact propagates far downstream (Förster et al., 2005). Ignoring these interdependencies can undermine the optimal

allocation of resources and diminish risk reduction potential. Moreover, integrated flood risk management encompasses

not only technical solutions but also a diversification of management strategies, including spatial planning, early warning

systems, nature-based solutions, and flood-proofing (Merz et al., 2010a). Despite decades of research advocating for

integrated flood risk management, decision-making and its practical implementation often remain fragmented across55

various professional sectors that focus on local flood protection planning.

The transition towards integrated flood risk management requires a model capable of addressing the three critical develop-

ments outlined. The first probabilistic national-scale flood risk assessment in England was developed by Hall et al. (2003). In
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this model, dike reliability is represented using fragility functions, which are coupled with a static inundation model to estimate

expected annual flood risk across different regions. A basic uncertainty analysis is included to provide upper and lower bounds60

on the estimated risk. This methodology was further enhanced by Gouldby et al. (2008) at a regional scale, where the fragility

functions were refined and hydraulic load scenarios probabilistically generated from extreme value distributions. However, both

models lack dynamic coupling between components and, consequently, do not account for downstream discharge reductions

following dike failures. Another model developed by Apel et al. (2004), applied to the Rhine River in North Rhine-Westphalia,

Germany, incorporates hydrological load scenarios derived from a flood frequency curve, Muskingum-based flood routing,65

levee breach and outflow modeling as well as a static inundation and damage assessment. Dike failure due to overtopping is

modeled using a 2D fragility function derived via Monte Carlo simulation of a limit state function under uncertain dike proper-

ties. However, breach assessment is limited to only two locations. Subsequent extensions of this model introduced uncertainty

analysis (Apel et al., 2006) and allowed for quasi-continuous dike breach locations (Apel et al., 2009b). Similarly, the flood

risk model developed by de Kok and Grossmann (2010) for the Elbe River in Germany integrates scaled synthetic flood events70

(based on predefined return periods), a dike breach module, a 1D hydraulic flood routing model, and a macro-scale economic

damage assessment. Dike breaches are assumed to occur deterministically as a result of overtopping. While this approach al-

lows for scenario-based risk assessment, it does not include a formal uncertainty analysis. More recently, the Germany-wide

flood risk assessment by Sairam et al. (2021) employs a flood event catalog derived from 5,000 years of hydro-meteorological

simulation data, coupled with a 1D-2D hydrodynamic model to simulate flood propagation and inundation as a consequence of75

dike overtopping. Dike failure and its consequences are not included, but a comprehensive uncertainty analysis is conducted.

The flood hazard model of Apel et al. (2009a) was further refined by Vorogushyn et al. (2010) and extended by the failure

mechanisms piping and micro-instability. Moreover, the original flood routing approach was replaced with a 1D hydrodynamic

simulation, and the inundation assessment upgraded to a 2D storage-cell-based hydrodynamic model. These enhancements

necessitate runtime coupling of the probabilistic model with process-based simulations, increasing the degree of process rep-80

resentation. Domeneghetti et al. (2013) applied this advanced model to a 50 km reach of the Po river in Italy, demonstrating its

capability for probabilistic flood hazard mapping under uncertainty. The comparative analysis of all these works emphasizes

the trade-off in large-scale flood modeling between accurate process representation, broad spatial coverage, and comprehensive

integration within uncertainty analyses.

In this work, we introduce a novel probabilistic flood risk model that dynamically couples process components at runtime85

(Fig. 2). The model enables the assessment of flood risk as well as flood risk reduction potential of mitigation measures,

accounting for inherent uncertainties in flood hazard and explicitly considering the potential for dike failures. The central

advantage of the model is its computational efficiency, which facilitates a comprehensive uncertainty analysis. This is achieved

through diverse pre-processing simulations that decouple the model at runtime from computationally expensive hydraulic and

hydrodynamic simulations. Essential to this decoupling is a flood routing method that efficiently captures the downstream90

propagation of dike failures and mitigation impacts. The flood risk model is embedded in a 2-level Monte Carlo framework,

where aleatory and epistemic uncertainties enter separately, which supports robust decision-making processes. Ultimately, the

flood risk model promotes integrated, cross-border decision-making by enabling direct integration into benefit-cost analyses of
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Figure 1. Overview of the study area.

mitigation measures. The model is currently implemented for the Bavarian Danube to evaluate the benefit of flood mitigation

measures. Section 2 introduces the study area. Section 3 outlines the various flood components and their integration in the95

developed flood risk model. Section 4 presents the model’s incorporation into a two-level Monte Carlo framework. Illustrative

results are provided in Section 5.

2 Study area

The study area utilized in this work to develop, test and demonstrate the application of the flood risk model is the Bavarian part

of the Danube River, Germany, shown in Fig. 1. The Danube originates in Baden-Württemberg in western Germany, flowing100

for approximately 380 km through Bavaria before crossing the border into Austria, east of Passau. The river’s hydrology is

heavily influenced by its tributaries, many of which originate in the Alps, including the Iller, Lech, Isar, and Inn rivers. In

addition, the northern catchment area is fed by key tributaries such as the Wörnitz, Altmühl, Naab, and Regen rivers, which

arise in the Central German Uplands. Notably, flood dynamics in the northern and southern catchment areas of the Danube

differ in terms of underlying formation mechanisms and seasonal patterns, which, in turn, affect flood wave characteristics.105

This plays an important role in shaping the overall flood hazard associated with the Bavarian Danube. Approximately 54%

of the catchment area is used for agriculture, 34% is covered by forests, and 13% is urbanized. Significant industrial centers,

including Donauwörth, Ingolstadt, and Regensburg, are located along the river. The cities Regensburg and Ingolstadt are the

third and fourth most populous cities in Bavaria.

3 Flood risk model110

The developed flood risk model comprises five primary modules that collectively represent the flood process chain: the hy-

drological load module, the dike failure module, the hydrodynamic module, the inundation module, and the damage module.
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Figure 2. Schematic overview of the flood risk model.

Among these, the dike failure, hydrodynamic, and inundation modules are dynamically coupled to enable updates between

them during simulation runs. The flood risk model is summarized in Fig. 2 and further explained in the following sections. It is

integrated within a 2-level Monte Carlo framework, which distinguishes between aleatory and epistemic uncertainty (see Sec-115

tion 4). To optimize computational efficiency, all modules utilize pre-computed runs from various modeling tools, as indicated

by the pre-processing box in Fig. 2.

To apply the flood risk model to a specific case study, several preparatory steps must be undertaken. Although these steps

are exemplified for the Bavarian Danube study area, they can be easily adapted to other catchments. First, the river and its

surrounding foreland are contained on both sides by a longitudinal embankment line. In areas where river dikes exist, this120

embankment line coincides with their alignment; in other locations, it follows the border of the 100-year event. Second,

the river and its longitudinal embankment line are laterally discretized into sections ranging from 300 to 600 m in length,

following the recommendations of CUR/TAW (1990). This choice ensures that the response of dikes of this length to hydraulic

loading is approximately independent of its neighbours (Vorogushyn et al., 2010). Additionally, the river reach is longitudinally

divided into two parts to model river bifurcations. As a result of this discretization process, a total of 2x892 river segments are125

defined along the Bavarian Danube. The adjacent longitudinal structures are termed embankment segments, which are further

categorized as either dike or non-dike segments. Dike segments with overlapping hypothetical inundation areas are grouped

together into impact zones. Figure 3 illustrates the spatial structure of the model. The segmentation and zoning enable efficient

modeling of the flood process but introduce model inaccuracies, such as the overestimation of water heights when flooding

exceeds the extent of the 100-year event.130

3.1 Hydrological load module

Flood hazard can be characterized by a range of representative flood scenarios, each associated with a specific occurrence

probability. The derivation of these flood scenarios can be accomplished through various approaches. While early flood risk
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Figure 3. Schematic spatial discretization structure of the river.

assessments predominantly relied on historical or design hydrographs, these approaches have mostly been replaced by the

synthetic generation of flood waves based on (multi-variate) distributions (Curran et al., 2020) or climate-based precipitation135

simulations (Sairam et al., 2021). Methods that depend on historical observations often face challenges in extrapolation, partic-

ularly when predicting flood events and their probabilities beyond the range of observed data. Various extreme value statistics

and clustering methods have been employed in the literature to derive synthetic hydrographs based on flood frequency anal-

yses (Vorogushyn et al., 2010). By contrast, climate-based precipitation simulations are theoretically independent of specific

historical flood events and thus offer the greatest potential for representing flood hazard beyond the range of observed records140

(Ludwig et al., 2019). Simulated flood events often undergo post-processing—such as rescaling or adjustment of occurrence

rates—for bias correction based on historical observations; in practice, they are not entirely independent of past events. Fur-

thermore, these simulations are computationally demanding and susceptible to systematic errors if not rigorously calibrated.

In the current study, a set of flood events is derived from the ClimEx project, which conducted quasi-random, climate-based

simulations of hydrometeorological events in Bavaria (Ludwig et al., 2019). A total of 50 transient simulations over the time145

horizon of 1980 to 2099 were carried out, employing the IPCC emission scenario RCP8.5 (IPCC, 2013). From these simula-

tions, 3,500 years of precipitation data covering the period from 1980 to 2050 are extracted. Hence, the selected precipitation

events reflect the climatic conditions of the recent past, present, and the near future relative to the reference year 2020 of the

study. The decision to exclude simulations beyond this period is based on the significant uncertainties associated with future

climatic conditions and their potential impact on precipitation patterns. Following intermediate simulations of runoff genera-150

tion using WaSim (Schulla and Jasper, 2007) and flood routing within the catchment via Larsim (Bremicker, 2000), 72 flood

events are identified that exceed a 100-year event on at least one of the gauging stations along the Bavarian Danube. The de-

tention basin evaluated in this study (5 is designed to be activated only when the discharges exceed the threshold of a 100-year

event. Consequently, the identified flood events can be interpreted as Monte Carlo samples of flood occurrences for which the

evaluated measure provides a benefit, representing the aleatory uncertainty (randomness) associated with the flood event. The155

occurrence rate of these flood events is estimated as λ = 72/3,500 years−1. If measures are examined that already take effect

at lower discharge thresholds, the flood event catalog must be extended accordingly. The 72 flood events are subsequently

routed through the Danube River channel using the 1D non-stationary hydraulic modeling tool SOBEK (Deltares, 2018). Each

river segment is linked to a hydraulic SOBEK node, ensuring that the flood events are spatially discretized according to the
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Figure 4. Hydrograph of 19 exemplary flood events at four locations along the Bavarian Danube. Segment number of location in brackets.

One randomly chosen flood event is shown in blue.

model’s resolution. A temporal resolution of one hour is used in the flood risk model. In case of unbifurcated river reaches, the160

two segments of a river section are linked to the same SOBEK node; for the bifuricated case, different nodes are assigned to

the two opposite segments of a river section. For illustration, 19 flood events are depicted in Fig. 4 at four exemplary segments

along the Bavarian Danube.

In addition to discharges Q along the river network, the hydraulic simulations provide corresponding absolute and relative

water levels W . For each river segment, an empirical stage–discharge relationship is derived by binning simulated Q–W165

pairs from all flood events based on discharge values. Within each bin, mean discharge and water level values are calculated to

construct a discretized stage-discharge curve. In the flood simulation model, water levels are then estimated via piecewise linear

interpolation between these values. While computationally efficient, this method assumes a single-valued Q–W relationship

and therefore does not capture hysteresis effects.

3.2 Dike failure module170

Dikes are most likely to fail when water levels significantly exceed design specifications. In this study, failure refers to the

physical breach or collapse of the dike, while overtopping denotes the overflow of water across the dike crest without implying

structural damage. Failure resulting from overtopping is implicitly accounted for through the fragility function, as outlined

below. Dike failures can result in catastrophic damage, especially when affecting densely populated areas, a phenomenon

often referred to as the "levee effect". Studies have extensively investigated the relationship between dike breaches and flood175

damage, underscoring the importance of understanding dike reliability (Vorogushyn, 2008; Curran et al., 2019; Gouldby et al.,

2008). The reliability of dike systems can be assessed through three primary approaches: empirical analyses, expert judgment,

and model-based probabilistic analyses (Schultz et al., 2010). First efforts to systematically quantify the probability of dike

failure using fragility functions were made by the U.S. Army Corps of Engineers in the early 1990s (USACE, 1991). Since

then, considerable research has been conducted, and model-based probabilistic approaches have gained significant traction in180

the field. Dike failure modes can be categorized into three primary types: hydraulic, geohydraulic, and global static failure
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(Vorogushyn, 2008). Hydraulic failure occurs when overtopping water erodes the dike material from the landward side. If

wave-induced overtopping is neglected — an assumption adopted by Vorogushyn (2008); Apel et al. (2004); Domeneghetti

et al. (2013) — the probability of hydraulic failure is zero for water levels below the dike crest height. Geohydraulic failure

arises from an uplift of the dike core, typically resulting from piping processes occurring in the dike foundation. In contrast,185

global static failure is induced by microinstability within the dike core due to internal seepage processes. A comprehensive

study of the analytical description of dike failure modes was conducted by Vorogushyn (2008).

Vorogushyn (2008) describes the physical processes leading to failure through the use of limit state functions, which typically

compare the stress S acting on a structure with its resistance R: g(R,S) = R−S. Failure occurs if g(R,S)≤ 0, i.e., when

S exceeds R. Both R and S are treated as uncertain and are characterized by a range of random variables corresponding to190

different dike properties. For the three distinct failure modes, different (conditional) sub-mechanisms are incorporated into the

limit state function. In this work, the limit state functions for the (sub-)mechanisms contributing to g(R,S) are derived from

the work of Vorogushyn (2008) and evaluated using a Monte Carlo simulation to generate fragility functions. For all random

variables entering g(R,S) for which no site-specific data was available, probability distributions are based on Vorogushyn

(2008). The resulting conditional failure probabilities are in function of various load variables, such as water level relative to195

crest height, overtopping duration, and impoundment duration. To reduce computational complexity and streamline the model,

these variables are not directly evaluated in the flood simulation model. Instead, the fragility functions are evaluated in a pre-

processing step at each dike segment independently, utilizing the flood events outlined in the hydrological load module in

Section 3.1. By calculating the expected value of the failure probability conditional on the maximum water level relative to

the crest height hk of each dike segment, a fragility function is obtained that is conditional solely on the relative water level.200

This function incorporates all three failure mechanisms and implicitly contains information regarding the characteristics of the

underlying flood scenarios. Hence the fragility function is specific for the considered study area and flood events. It is presented

in Fig. 5.

In the flood simulation model, the fragility function is applied to each dike segment. A breach resistance value — defined

as the maximum water level the segment can withstand before failure — is randomly sampled from the fragility function. The205

resistances of dike segments are considered independent of one another, justified by the rationale for the choice of segment

length outlined in Section 3. Dike failure is defined to occur when the water level, at any time during the flood event, exceeds

the breach resistance. In case of breaching, the breach width b is quasi-randomly sampled from a lognormal distribution with

parameters µb = 58.5 m and σb = 61.3 m, following Vorogushyn (2008). If the sampled breach width falls outside the range

[3m, bs], with bs equal to the segment width, it is truncated to conform to these limits. Thus, both breach resistance and breach210

width — and therefore the aleatory uncertainties inherent in the breaching process — are accounted for by the Monte Carlo

simulation. The breach development rate is assumed to be one hour, consistent with the methodology employed by Apel et al.

(2004, 2006) and Vorogushyn (2008). The breach is assumed to erode the entire dike down to the toe level of the dike, ht.
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Figure 5. Developed fragility function for single dike segments. This function is specific to the case study.

3.3 Inundation module

The hourly outflow discharge through the dike breach (or overflow over the crest in the absence of failure) into the hinterland215

at time step t is calculated using a modified broad-crested weir equation:

Qout(t) = 2/3 ·µ0 ·µ∗ ·
√

2g · b ·h3/2(t) (1)

where g [m/s2] is the gravitational force, h [m] the overfall height, µ0 = 0.577 [-] the flow factor and µ∗ = 0.7 [-] a discharge

reduction factor to account for the influence of the dike breach, motivated by the studies of Kamrath et al. (2006). The overfall

height is220

h(t) =





ht + w(t) for breaching

w(t)−hc for overtopping
(2)

with ht and hc the height of the dike toe and dike crest respectively, and w(t) the water level in the river segment. Discharge

over the dike crest or through the dike breach is constrained. For each river segment, a limit discharge remaining in the river

channel Ql at both dike crest height and dike toe height is estimated in a pre-processing step based on the Q-W relationship

obtained from the hydraulic simulation discussed in Section 3.1. With Qout(t) = min{Qout(t),Qriver(t)−Ql}, it is ensured225

that the outflow does not exceed physically plausible limits, neglecting wave influence. Additionally, w(t) in the river segment

is compared to the inundation elevation in the hinterland Ein(t) at the respective time step. Consequently, the model automat-

ically switches between free and drowned overfall, depending on the water levels in the river and the hinterland. The outflow

volume V (t) is approximated as the sum of the outflow discharges V (t) =
∑t−1

t′=1 Qout(t′) · 3600s. Backwater discharges are

not modeled directly; rather, the outflow volume is constrained by a segment-specific maximum volume Vmax determined by230

the topography and the surrounding dike heights, which is further outlined below.
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Inundation modeling aims at estimating the extent of flooding given the topography and the boundary conditions of the

breach and can be conducted with varying degrees of detail. The choice depends on the available computational and data

resources, the objectives and scale of the study area, and the level of detail of other components of the flood risk model. In their

national-scale flood risk assessment, Hall et al. (2003) estimated flood extent using a simple approximation method, spreading235

the calculated flood volume while assuming an average flood depth and a semi-circular or trapezoidal outline shape. de Kok and

Grossmann (2010) utilized pre-computed volume-storage functions based on a 100x100 m grid to determine inundation depths.

For their study at the Rhine River in Germany, Apel et al. (2004, 2006) derived so-called damage functions prior to the Monte

Carlo simulation, assuming a horizontal filling of the hinterland in 0.5 m increments. This approach involved intersecting a

horizontal plane with the digital elevation model (DEM). Vorogushyn et al. (2010) simulated the inundation process at run240

time using a 2D raster-based diffusive wave model that solves the continuity and momentum equations. This study employed

a DEM with a 50x50 m grid cell resolution and average, land-use-specific roughness values based on literature data. A similar

approach was pursued in the Italian flood hazard study conducted by Domeneghetti et al. (2013) at the Po River.

In this work, the relationship between inundation elevation (E) and inundation volume (V ) is derived statically for each

dike segment using ArcGIS. The developed method iteratively performs intersections between a 5x5 m digital elevation model245

(DEM) and horizontal surfaces at 0.1 m height increments. As a constraint, the algorithm assesses the connectivity of the

resulting surfaces with their corresponding dike segments, systematically removing any disconnected islands. Additionally,

inundation areas are cut along tributaries. Five resulting inundation areas at breach segment 500 are depicted in Fig. 6. As a

result, V -E tables and hypothetical inundation areas are created for each segment. Furthermore, segments with overlapping

hypothetical inundation areas at reasonably high inundation elevations are grouped together into impact zones. To account for250

backwater effects, the maximum outflow volume for each dike segment Vmax is derived based on a simple approximation. This

is achieved by considering the terrain slope in the direction of river flow, the height of the downstream protective structures

within the same impact zone, and the derived V -E relationship. Additionally, in case of several breaches in a single impact

zone, it is assumed that water flows together and forms one inundation area. Hence, the sum of the individual outflow volumes

is used for inundation elevation and damage estimation. Elevation and damage (D) estimations are conducted based on the V -255

E and V -D (see Section 3.5) relationships of all involved segments using the total volume. The lowest resulting elevation and

the highest damage estimate are chosen as decisive. Exemplarily, the resulting relationship between volume V and elevation E

for segment 500 downstream of Regensburg is depicted in Fig. 9. In analogy to the dike segments, inundation areas are derived

for all river sections. As a constraint in the GIS-based derivation of inundation areas for river sections, the algorithm assesses

the connectivity of the inundation surfaces with the river network.260

The simplified static approach offers the advantage that, in case of breaching or overtopping, no process-based simulation

of the flood wave in the hinterland is needed. Instead, a computationally inexpensive interpolation is conducted for each time

step of outflow discharge. However, this approach neglects the influence of various parameters such as terrain roughness, flow

velocity, flow direction, and settlement structures on the propagation of the flood wave. The impact of these simplifications

varies depending on the existing topography, as studied by Apel et al. (2009a). Generally, it can be assumed that water depths265
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Figure 6. Five exemplary inundation areas at breach segment 500 derived with static GIS approach. Inundation elevations are: 328, 329, 330,

331 and 331.8 meters.

may be overestimated. However, Apel et al. (2009a) concluded that the consequences of the inaccuracies resulting from static

inundation modeling are small compared to those resulting from large-scale damage assessments.

3.4 Hydrodynamic module

The influence of dike breaches on downstream flood hazard has been emphasized in several studies over the past two decades,

e.g., Vorogushyn (2008); Curran et al. (2019); Apel et al. (2009b). If not properly incorporated, the downstream flood hazard270

can be significantly overestimated. At the same time, flood protection measures, such as detention basins, are designed in a

way that they take effect until far downstream (Förster et al., 2005). This influence of mitigation measures and their possible

failure on the flood hydrographs at downstream locations is modelled using a flood routing technique. Flood routing can be

incorporated into flood risk models in varying degrees of detail. de Kok and Grossmann (2010) employ an empirical quick

routing model that multiplies the discharges by a dimensionless system function. This system function depends on the length275

of the river segment, as well as translation and diffusion coefficients. Apel et al. (2004) apply the Muskingum method for flood

routing, estimating travel time and form parameters based on 1D hydraulic simulations. Vorogushyn et al. (2010) utilize an

unsteady 1D hydrodynamic model based on the Saint-Venant equations and cross-sectional profiles for river flood routing.

In this work, a vector-based flood routing approach is developed, which is composed of a translational and attenuation vector.

It efficiently updates temporally and spatially discretized discharges downstream of a failed dike or an activated detention basin.280

The derivation of translational and attenuation vector is calibrated with the hydraulic modeling outcomes of the 1D simulation,

conducted in the scope of Section 3.1. The translational vector is defined as T = (T1,T2, . . . ,Tn) ∈ N1×n
0 , where n = 892 is

the total number of river segments. Each entry Ti represents the mean travel time from the reference section 1 to segment

i. T is derived from a set of Nsim = 18 hydraulic simulations, where artificial discharge reductions are applied to the flood

hydrographs at the most upstream segment, resulting in Nsim discharge matrices Q(k)
red ∈ RNt×n. Nt is the number of time285

steps in the flood scenario k. For each flood simulation k, the discharge reduction ∆Qi at segment i is defined as:

∆Q(k)
i = Q(k)

i −Q(k)
red,i, (3)
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where Q(k)
i ∈ RNt×1 is the original discharge matrix of scenario k at segment i. The time of maximum discharge reduction

t
(k)
i is extracted for each segment i:

t
(n)
i = argmax

t

{
∆Q

(k)
i (t)

}
(4)290

A sliding-window median filter is applied to {t(k)} for all simulations k, resulting in t̃
(k)

. The final translational vector entries

Ti ∈T are computed as the mean of the median-smoothed values over all flood scenarios:

Ti =
1

Nsim

Nsim∑

k=1

t̃
(k)
i (5)

In the flood simulation module, the relative travel time between a breach segment b and a downstream segment i is then

computed as295

T
(rel)
i = Ti−Tb (6)

Given a computed discharge reduction ∆Q̂b ∈ RNt×1 at the breach location b, the corresponding discharge reduction without

retention and attenuation effects at each downstream segment i is computed by time-shifting ∆Qb according to the relative

travel time T
(rel)
i , and applying the reduction across the relevant time steps t:

Q
(k)
i (t)−∆Q̂b(t−T

(rel)
i ), for all i > b and t ∈ [tB + T

(rel)
i , tB + T

(rel)
i + NtR

], (7)300

where tB is the time instance of breaching and NtB
the duration of breaching. To model retention and attenuation effects, an

attenuation vector is defined as

A = (A1,A2, . . . ,An) ∈ N1×n
0 , (8)

where each entry Ai represents the temporal spread of the discharge reduction at segment i. For each segment i, the attenua-

tion factor Ai defines a symmetric temporal window of size τi = 2 ·Ai +1. The discharge reduction is then redistributed evenly305

across this window:

Q̂red,i(t) = Q
(k)
i (t)−

Ai∑

j=−Ai

1
τi
·∆Q̂b(t + j−T

(rel)
i ), for all i > b and t ∈ [tB + T

(rel)
i , tB + T

(rel)
i + NtR

] (9)

This operation preserves the total reduction volume while approximating the attenuation observed in the hydraulic sim-

ulations. The attenuation vector A is composed of a generic, segment-independent component Ag , and a segment-specific

component As. The attenuation vector entry i given a discharge reduction at a location b is calculated as310
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Figure 7. Comparison of 1D hydraulic SOBEK model results and vector based approach at 8 different locations. Kilometer values indicate

distance to discharge reduction section. In blue: Uncapped input hydrograph, in red: propagated discharge reduction using 1D hydraulic

model, in yellow: vector-based discharge reduction propagation.

Ai = Ag,i + As,i−As,b (10)

To derive the attenuation vector components, a set of Nsim = 18 additional hydraulic simulations are performed, where

artificial discharge reductions are applied at different locations in the river network. The optimal attenuation vector components

A
(opt)
g,i and A

(opt)
s,i for each segment i are determined through a parameter search procedure that minimizes the global error

between the 1D hydraulic model and the translated and attenuated discharge reductions applying the vector-based approach315

across all scenarios for a range of candidate values:

[A(opt)
g ,A(opt)

s ] =
1

Nsim

Nsim∑

k=1

arg min
Ag,As

{
Nt∑

t=1

n∑

i=1

(
Q(k)

red(t, i)− Q̂
(k)
red(t, i)

)2
}

(11)

The vector-based flood routing approach is tested using an independent set of 40 1D hydraulic simulations, in which the

peak discharge is reduced by 8 million m3 at the location of the detention basin at segment 216, which is introduced in Section

5. The comparison of one resulting set of hydrographs at eight downstream segments is presented in Fig. 7.320

Differences in peak discharge ∆Q relative to the vector-based peak discharge, temporal offset of peak discharge, ∆T ,

absolute difference in peak water level, ∆W , as well as the continuous Nash-Sutcliffe-Efficiency (NSE) criterion are evaluated
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Figure 8. Quality criteria of vector-based flood routing approach, evaluated at 15 downstream segments. ∆Q refers to the difference in peak

discharge between vector-based and 1D hydraulic simulation relative to the absolute peak discharge in the 1D simulation. ∆T is the temporal

offset of the peak discharge [h], ∆W the absolute difference in peak water level [m], NSE the Nash-Sutcliffe-Efficiency of all discharge

times series of the vector-based approach compared against the 1D hydraulic simulation.

at 15 downstream gauges for all 40 flood scenarios. The NSE is defined as

NSE = 1−
∑Nt

t=tstartfill
(Qref (t)−Qmodel(t))2

∑Nt

tstartfill
(Qref (t)−Qref (t))2

(12)

where model indicates the results of the vector-based propagation approach, ref those of the 1D hydraulic simulation that325

serve as the reference, tstartfill the first time instance at which the detention basin is filled (and the discharge downstream

reduced) and Nt the total number of time steps. The resulting statistics of the quality criteria are shown in Fig. 8. They indicate

that the differences between the hydraulic and vector-based routing results are low, especially compared to the discrepancy

between the 1D and 2D hydraulic simulations.

At bifurcation points, where the river splits into multiple reaches, the vector-based routing approach does not explicitly330

resolve travel time or retention differences between the diverging paths. However, discharge reductions must be accurately

partitioned between downstream reaches. To achieve this, a main reach and a threshold discharge Qth are defined at each bifur-

cation segment. Secondary reaches are activated only when the local discharge exceeds Qth. The distribution of the discharge

reduction is then determined using lookup tables Qshare, derived from the hydraulic simulations in Section 3.1. For each bifur-

cation segment, Qshare maps the effective discharge Qeff(t) = Q(t)−Qth to a discharge split ratio across the available reaches.335

This ensures that discharge reductions are apportioned consistently with observed flow behavior in the hydraulic model.
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3.5 Damage module

Flood damages can be classified into direct and indirect damages and further subdivided into tangible and intangible damages

(Merz et al., 2010a). The proposed flood risk model primarily addresses tangible damages. Considerable research has been

conducted on direct tangible flood damage estimation, resulting in the introduction of various methodologies in recent years.340

Factors such as available data, understanding of damaging processes, study scale, and computational resources may limit the

accuracy of direct tangible damage assessments. The general procedure for tangible flood damage assessment can be outlined

in three steps (de Moel et al., 2015; Messner et al., 2007): 1) classification of elements at risk, 2) exposure analysis estimating

the number, type, and asset value of these elements, and 3) vulnerability analysis, which evaluates the relative damages of

exposed assets given the flood impact.345

1. In large-scale flood risk analyses, elements at risk are typically grouped into classes. Within a class, all elements are

treated uniformly; for example, their vulnerability to flooding is assumed to be identical. The number of groups and

the corresponding detail of the classification depend on the study’s scale and objectives, the significance of the objects

within each class, data availability, and computational resources. In flood risk studies, classification is commonly based

on land-use classes.350

2. The exposure analysis identifies elements at risk from flooding. This is typically achieved by intersecting land-use data

(or other class data) with inundation data using geographic information systems. Disaggregation may be necessary when

class polygons are large.

3. Damage functions relate the (relative) damage within an asset class to specific intensity parameters. The most frequently

used intensity parameter in flood damage assessments is inundation depth; however, other parameters, such as flow ve-355

locity, duration of inundation, contamination, and time of occurrence, also affect the losses. Neglecting these parameters

may lead to significant overestimations of water depths and inundation extent, as highlighted in Section 3.3, which in

turn can lead to overestimated damages. Nevertheless, such simplifications are frequently made due to data or computa-

tional constraints. Damage functions can be derived through empirical or synthetic approaches (Merz et al., 2010a). A

wide variety of different damage functions for the same asset classes exists in the scientific literature, as well as in flood360

risk management and insurance practices, indicating substantial uncertainties at this stage (Messner et al., 2007). When

selecting a damage function, it is crucial to ensure compatibility between asset classes and the corresponding damage

functions.

The damage assessment approach employed in this study aligns with the established three-stage methodology. Damage

classes are assigned based on the land-use classifications utilized in the Basic European Assets Map (BEAM) (geomer GmbH365

and Ruiz Rodriguez + Zeisler + Blank GbR, 2020). This map comprises 12 land-use classes, which are further subdivided

into asset classes to facilitate more precise asset assessment. BEAM is composed of polygons based on the underlying land

use structure. A land use class and relative asset value [EUR/m2] is assigned to each polygon. For every inundation area, a

GIS-based intersection is conducted between the DEM, BEAM polygon layer, and the inundation polygon. For every grid cell
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Figure 9. Relation between volume and elevation (upper) and volume and damage (lower) of dike segment 500 (left river side).

of the DEM, the height difference between the DEM and the inundation polygon is calculated, referred to as water depth. To370

optimize computational efficiency, water depth is discretized into intervals. Additionally, the predominant land-use class at

each cell and its corresponding asset value are extracted. Asset value information for each cell is organized in a table based

on land-use and water depth classes, with all values in the same table entry summed up. To calculate the direct damage, each

asset value in the table is multiplied by the respective value of the specific damage function for the land-use class and water

depth. The BEAM-specific damage functions developed for southern Germany, are adopted for this analysis (geomer GmbH375

and Ruiz Rodriguez + Zeisler + Blank GbR, 2020). The total direct damage for each inundation area is derived by summing all

individual polygon damages. Given that inundation areas are delineated at 10 cm intervals for each dike segment (see Section

3.3), direct damages are available for every 10 cm of inundation elevation. Using the inundation volumes generated in the flood

simulation model as an input, a linear interpolation is performed between these V -D data pairs to convert segment-specific

inundation volumes into direct damages in a post-processing step, which is depicted in the lower panel of Fig. 9 for segment380

500. This approach facilitates computationally efficient damage evaluations across numerous potential failure locations.

Based on the inundation areas of the river sections derived in the inundation module, damages are additionally estimated

for river sections following the approach outlined for dike segments. As a result, every river section is associated with a W -D

relation, where W denotes the water level in the river section. Flooding in the river section is treated as deterministic conditional

on the maximum water level over all time steps resulting from the probabilistic breach analysis. If the river is bifuricated in385

the section, the lower, non-zero maximum water level of the two segments of a river section is taken as decisive. All damages,

e.g., from river sections and dike segments, are summed up to obtain the total direct damage of the simulation run.
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Following a comprehensive literature review (Sieg et al., 2019; Carrera et al., 2014; Olesen et al., 2017; de Bruijn et al.,

2015; Pfurtscheller, 2014), indirect damages are estimated at 30% of the direct damages. Business interruption costs are also

included at 30% of direct damages, based on recommendations of these studies. Hence, the direct damages are augmented by390

a total of 1.3 · 1.3 = 1.69. It is generally expected that indirect costs and business interruption expenses increase non-linearly

with increasing damages; however, the extent of this relationship remains unclear and is influenced by various factors (Koks

et al., 2015). Current methods for the comprehensive quantification of indirect damages and business interruption costs at

large scale studies are still inadequate (Merz et al., 2010b), justifying the choice to employ two constant factors. Intangible

damages are quantified in non-monetary terms, considering factors such as fatalities, natural reserves, critical infrastructure and395

drinking water protected areas. The reduction of risk associated with these factors is communicated as an additional benefit of

the measures implemented, but it is not included in the formal benefit-cost analysis.

3.6 Model Implementation

The developed flood risk model differs from other methodologies, such as those presented by Vorogushyn (2008) and Domeneghetti

et al. (2013), primarily in that the flood simulation model is executed independently of a coupling with hydraulic and hydrody-400

namic simulation models. This approach enhances computational efficiency while explicitly modeling the effects of the flood

process components and their interactions. This enables its incorporation into a comprehensive uncertainty analysis frame-

work, as outlined in the next section. The computational cost of the flood simulation model is on average 0.76 seconds per run

(8-thread, 2.8 GHz CPU, no explicit parallelization). This cost scales approximately linearly with the number of breaches. A

schematic representation of the model’s architecture, implemented in a Matlab environment, is provided in Fig. 10, illustrating405

the workflow that is executed during each simulation run.

4 Uncertainty modeling

Flood risk models and their parameters have uncertainties. It is essential to acknowledge and communicate them, particularly

in a decision-making context. Generally, uncertainties can be categorized into two types: aleatory and epistemic (Hall and

Solomatine, 2008). Aleatory uncertainties refer to the inherent natural variability or randomness within the flood process that410

cannot be reduced by the modeler. By contrast, epistemic uncertainties denote the uncertainties associated with the model and

its input data, which can potentially be reduced. Thus, it is imperative, especially within a decision-making context, to quantify

the impact of epistemic model uncertainties on the relevant decision parameter(s). For that purpose, the flood risk model is

embedded in a 2-level Monte Carlo framework, which is enabled by its low computational costs.

4.1 2-level Monte Carlo framework415

Here, Y = Y(X) denotes the outcome of the flood simulation model, i.e. the damage estimate associated with a single flood

event, with aleatory and epistemic uncertain input parameters X = [Xa,Xe], which are modeled as random variables. Xa is a

set of multiple hundreds of aleatory random variables, which represent the flood scenarios, the resistance of all dike segments
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Figure 10. Process diagram of flood simulation model. Schematically shown is the procedure for one Monte Carlo run.

and the breach widths of failed dike segments. Given the large number of aleatory random variables and the strong non-linearity

of the model result with respect to Xa, the expectation of the damage conditional on Xe is evaluated through a first-level Monte420

Carlo analysis with nMCa
= 3600 samples:

Ye(Xe = xe) = EXa|Xe=xe
[Y([Xe = xe,Xa])]

≈ 1
nMCa

nMCa∑

j=1

Y(Xe = xe,x(j)
a ), (13)

The epistemic uncertainty is represented by 13 random variables Xe, listed in Table 1. They are modeled by beta distributions

and incorporated through a second-level Monte Carlo analysis with nMCe = 200 samples. For each quasi-random realization425

of Xe, the first-level analysis is performed. The expected damage over all simulation runs is estimated as:

18

https://doi.org/10.5194/egusphere-2025-4875
Preprint. Discussion started: 10 November 2025
c© Author(s) 2025. CC BY 4.0 License.



EX[Y(X)] = EXe
[Ye(Xe)]

≈ 1
nMCe

nMCe∑

k=1

Ye(x(k)
e ). (14)

The separation of aleatory and epistemic uncertainties is described in more detail in Straub et al. (2025).

4.2 Risk and benefit estimation430

Ultimately, the flood risk model is developed to quantify the expected benefit of implementing individual or combined mitiga-

tion measures. The risk reduction associated with a measure M is defined as

∆r(aM ) = r(a0)− r(aM ) (15)

where a denotes a decision variable: a0 represents the baseline scenario without additional mitigation, and aM corresponds to

the implementation of measure M . The annual flood risk under decision a, r(a), is computed as435

r(a) = λ ·EX[Y(X,a)], (16)

We remind that λ = 72/3500 is the rate of flood events. The benefit B(aM ) is defined as the sum of the discounted annual risk

reduction ∆r(aM ) over the operational lifetime of the measure to

B(aM ) = ∆r(aM ) · 1− (1 + rd)−to

rd
, (17)

with rd the annual discount rate. Based on the damage samples Y = Y(X) resulting from the MC-based flood simulation, a loss440

exceedance curve can be derived. Therefore, the samples are ordered based on their damage estimate Y1 ≥ Y2 ≥ ...≥ YnMCa
.

The exceedance probability of each damage Yi is calculated as

P (Y ≥ Yi) = i · 72
3500 ·nMCa

(18)

This is shown in Fig. 12 for a0, no measure, and the implementation of the measure under study, aM . The area in between the

two curves corresponds to the expected annual risk reduction in Eq. 15 (Arnel, 1989). To calculate the benefit-cost ratio of a445

measure, the benefit B(aM ) is compared against the sum of discounted costs.

4.3 Sensitivity analysis

Sensitivity analysis generally aims at explaining how variations in model outputs can be attributed to uncertainties in input

parameters (Pianosi et al., 2016). In this study, first-order Sobol’ indices are calculated as a byproduct of the uncertainty

analysis. They offer insights into the relative importance of parameter uncertainties, calculated as the direct contribution of450

each input parameter to the output variance

SXe,i =
Var(E[Ye|Xe,i])

Var(Ye)
. (19)
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Figure 11. Loss exceedance curve at entire Bavarian Danube. Mean (blue), 90% quantile (grey) and five randomly selected loss exceedance

curves given fixed epistemic parameters.

Since aleatory uncertainty cannot be reduced, quantifying the sensitivity with respect to all uncertainties X = [Xa,Xe] is not

expedient, especially in a decision making context. Therefore, the sensitivity analysis considers as input only the epistemic un-

certainties Xe and as output the expected value of Y(X,a) with respect to the aleatory uncertainties Xa, Ye = Ye(Xe = xe),455

estimated in Eq. 13. To approximate E[Ye|Xe,i] based on the samples, a one-dimensional linear regression S is applied, which

is depicted in Fig. 14 for three uncertainties. If the absolute influence of parameter uncertainties on a specific decision is of

interest, the expected value of partial perfect information (EVPPI) (Straub et al., 2025) is a more suitable metric. EVPPI quan-

tifies the expected monetary benefit of making an improved decision, assuming perfect information about a specific uncertain

input Xe. It can be used to assess whether it is worthwhile to invest in reducing uncertainty in a particular input parameter, or460

to identify which uncertainties should be prioritized in further analysis or data collection.

5 Results

Due to ongoing work on the climate inputs, the following results are preliminary. In this study, a total of nMC = nMCa
·nMCe

=

3600·200 = 720,000 Monte Carlo simulation runs are performed. The samples are used to derive the expected loss exceedance

curve at the Bavarian Danube, shown in blue in Fig. 11. The sampling process follows the 2-level framework outlined in465

Section 4.1 that enables the distinction between the influence of aleatory and epistemic uncertainties. The impact of epistemic

uncertainties is represented by the 90% quantile in Fig. 11. Five loss exceedance curves, selected randomly from the nE = 200

second-order simulation runs, are depicted in black to illustrate the effect of epistemic model uncertainties. As apparent from

Fig. 11, the influence of model uncertainties is more pronounced for larger, less frequent damage events.

The developed flood risk model is further applied to quantify the flood risk reduction potential ∆r(aM ) of a controlled470

detention basin located near Riedensheim at the Bavarian Danube. It fits a volume of around 8 · 106 m3 with a maximum

intake capacity of 170 m3/s. Its operating mode is directly included in the flood simulation model and follows predefined rules
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Figure 12. Loss exceedance curve at Bavarian Danube with (blue) and without (red) mitigation measure. Respective 90% quantile shown as

shaded area.

Figure 13. Probability distribution (PDF) of the annual flood risk reduction at the Bavarian Danube achieved by the detention basin. The blue

PDF corresponds to the assumption of a constant climate, the red PDF to a linear increase in flood frequency until 2120 by a factor γ = 2

and the yellow PDF to an flood frequency increase by a factor of γ = 3. No numbers are shown on the x-axis due to the preliminary nature

of the results.

assuming perfect forecasts. The resulting preliminary loss exceedance curve is presented in blue in Fig. 12. As outlined in

Section 4.2, the annual risk reduction is equivalent to the area between the two loss exceedance curves.

Kernel-smoothing is applied to estimate the probability density function (PDF) of the annual risk reduction, which is depicted475

in blue in Fig. 13. No numerical values are provided as the result is preliminary. To incorporate these results into a benefit-

cost analysis, the expected annual flood risk reduction over the projected lifetime of the measure is discounted relative to the

reference year, summed, and compared to the discounted costs of the measure, as described in section 4.2.
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Figure 14. Scatter plot of the influence of three epistemic uncertain parameters on the expected damage and their assigned underlying beta

distribution.

The nep = 13 epistemic model uncertainties are listed in Table 1. A comprehensive presentation of all 13 model uncertainty

factors is omitted here. Instead, we focus on three selected factors, namely the uncertainty in the dike crest heights X3, modeled480

by an additive factor; the uncertainty in the V -D relation X10, modeled by a multiplicative factor; and the indirect damage X12,

represented as a proportion of direct damage. The distributions of these three model uncertainty factors are illustrated in blue

in Fig. 14. The expected damages with respect to the aleatory uncertainties, EXa|Xe=xe
[Y([Xe = xe,Xa])], are plotted against

the sampled factor values X3 = x3, X10 = x10, and X13 = x13 in the same Fig.. The substantial influence of the indirect

damage factor on the overall damage is clearly evident. Additionally, a formal variance-based sensitivity analysis is conducted,485

and the first-order Sobol’ indices are provided in Table 1.

The results of the sensitivity analysis suggest that the uncertainty of parameters entering the damage module has the greatest

impact on the expected flood damages and, consequently, the annual flood risk. This finding supports the conclusions of Apel

et al. (2009a), who noticed that the choice of the flood damage model has a more significant impact on the flood risk estimate

than the parameters within the flood simulation model, emphasizing the need for further development of the damage module.490

The uncertainties inherent in the hydrological load module are not incorporated in this uncertainty analysis. To assess the

impact of an expected climate change based increase in flood frequency on the risk reduction potential, a scenario analysis is

conducted. The occurrence rate of a flood λ = 72/3500 years−1 is linearly increased until the year 2120 by a factor γ

λ̂(t) =
γ− 1

to
· t ·λ for t ∈ [0, to] (20)

The influence of γ on the distribution of annual flood risk reduction is illustrated in Fig. 13 for the two scenarios γ = 2 and495

γ = 3. An increased flood occurrence rate leads to larger expected flood risk reduction, and consequently a higher benefit of

the detention basin; however, this also results in increased uncertainty.
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Table 1. Quantified uncertain parameters and their first order Sobol’ indices.

Uncertainty Sobol’ index

X1 Fragility function 0

X2 Q-W relation river segments 0.02

X3 Dike crest height 0.05

X4 Discharge reduction factor 0.01

X5 Breach width PDF 0.01

X6 Breach height 0.01

X7 Limit discharge 0.01

X8 Maximum outflow volume 0.02

X9 V-E relation dike segment 0.04

X10 V-D relation dike segment 0.13

X11 W-D relation river section 0.06

X12 Business interruption factor 0.16

X13 Indirect damage factor 0.34

6 Concluding remarks

This work proposes a flood risk model to enable large-scale uncertainty-aware flood risk assessments for decision support on

mitigation measures. The model is computationally efficient because it makes use of the results of different climatic, hydro-500

dynamic and hydraulic simulations conducted in a pre-processing step. As a result, it does not depend on computationally

intensive simulations during run time. A key element enabling this independence is the developed flood routing method, along

with segment-specific lookup tables that store the relationships between inundation elevation, floodwater volume, and dam-

ages. This computational efficiency allows the model to be integrated into a two-level Monte Carlo framework for uncertainty

quantification. Within this framework, different types of uncertainty — aleatory and epistemic — are treated separately. This505

separation allows for the isolated examination of epistemic uncertainties, helping to understand the influence of various model

uncertainties and make targeted improvements. Furthermore, the separation ensures that the estimated benefits of mitigation

measures remain robust across a wide range of possible flood events and failure scenarios. Especially in the context of natural

hazards like floods, which are characterized by high aleatory uncertainty, it is essential to quantify, communicate, and incor-

porate this uncertainty into the decision-making process. The literature review in Section 1 highlighted the inherent trade-offs510

in flood risk models between process representation, spatial coverage, and the integration within uncertainty analyses. The

developed model enables both large-scale flood risk and benefit assessments as well as detailed uncertainty analyses. However,

a compromise is made through simplifications that are necessary to allow pre-processing of parts of the model, which reduce

the model’s accuracy locally. Nevertheless, results of module verification and the uncertainty analysis suggest that the effect

of these inaccuracies remains within an acceptable range, in particular when considering mitigation measures that act globally,515
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such as flood detention basins. Sensitivity analyses indicate that future improvements should focus on components of the dam-

age assessment module. For applications to mitigation measures that act locally, integrating a more precise damage model for

the affected region is possible due to the modular nature of the model framework.

The developed model provides a solid foundation for decision-making, such as in benefit-cost analyses. In an ongoing study,

it is being applied to the Bavarian Danube in Germany to evaluate the benefit of a flood mitigation measure, along with its520

associated uncertainties. In the future, the model can support assessments of various mitigation strategies, help identify high-

risk areas, or optimize the combination of mitigation measures. In this way, the model contributes to the advancement of

integrated flood risk management. It demonstrates how dynamic, probabilistic, and integrated flood risk management can be

implemented in practice. We hope that our work encourages and supports decision-makers in moving toward a more holistic

approach to flood risk management.525
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Dittes, B., Špačková, O., Schoppa, L., and Straub, D.: Managing uncertainty in flood protection planning with climate projections, Hydrology

and Earth System Sciences, 22, 2511–2526, https://doi.org/10.5194/hess-22-2511-2018, 2018.

Domeneghetti, A., Vorogushyn, S., Castellarin, A., Merz, B., and Brath, A.: Probabilistic flood hazard mapping: effects of uncertain boundary565

conditions, Hydrology and Earth System Sciences, 17, 3127–3140, https://doi.org/10.5194/hess-17-3127-2013, 2013.

Förster, S., Kneis, D., Gocht, M., and Bronstert, A.: Flood risk reduction by the use of retention areas at the Elbe River, International Journal

of River Basin Management, 3, 21–29, https://doi.org/10.1080/15715124.2005.9635242, 2005.

Gamper, C. D., Thöni, M., and Weck-Hannemann, H.: A conceptual approach to the use of Cost Benefit and Multi Criteria Analysis in natural

hazard management, Natural Hazards and Earth System Sciences, 6, 293–302, https://doi.org/10.5194/nhess-6-293-2006, 2006.570

25

https://doi.org/10.5194/egusphere-2025-4875
Preprint. Discussion started: 10 November 2025
c© Author(s) 2025. CC BY 4.0 License.



geomer GmbH and Ruiz Rodriguez + Zeisler + Blank GbR: Bewertung des Hochwasserrisikos auf der Grundlage von Schadenspotenzialen

– Anwendung von Schadensfunktionen in repräsentativen Beispielsregionen im Rahmen des Länderfinanzierungsprogramms „Wasser,

Boden und Abfall“, Tech. rep., 2020.

Gouldby, B., Sayers, P., Mulet-Marti, J., Hassan, M. A. A. M., and Benwell, D.: A methodology for regional-scale flood risk assessment,

Proceedings of the Institution of Civil Engineers - Water Management, https://doi.org/10.1680/wama.2008.000.0.1, 2008.575

Hall, J. and Solomatine, D.: A framework for uncertainty analysis in flood risk management decisions, International Journal of River Basin

Management, 6, 85–98, https://doi.org/10.1080/15715124.2008.9635339, 2008.

Hall, J. W., Dawson, R. J., Sayers, P. B., Rosu, C., Chatterton, J. B., and Deakin, R.: A methodology for national-scale

flood risk assessment, Proceedings of the Institution of Civil Engineers - Water and Maritime Engineering, 156, 235–247,

https://doi.org/10.1680/wame.2003.156.3.235, 2003.580

IPCC: Summary for Policymakers, Cambridge University Press, United Kingdom and New York, USA, 2013.

Kamrath, P., Disse, M., Hammer, M., and Köngeter, J.: Assessment of Discharge through a Dike Breach and Simulation of Flood Wave

Propagation, Natural Hazards, 38, 63–78, https://doi.org/10.1007/s11069-005-8600-x, 2006.
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