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Abstract. The unexpectedly high global mean surface temperature (GMST) anomalies in 2023 and 2024 greatly exceeded the 

temperatures observed in the years directly prior. In this paper, we use a multiple linear regression energy balance model to 

quantify the contributions of several natural and anthropogenic factors to the GMST, including the large reduction of sulfur 

emissions from the shipping sector since 2020. The model is trained on 170 years of historical climate data, and allows for the 

attribution of warming to various natural and anthropogenic factors. The influence of anthropogenic activity on the GMST is 15 

quantified using a 160,000 member ensemble that considers the uncertainty in the magnitude of aerosol radiative forcing and 

the strength of climate feedbacks. We find that in response to a rise in global radiative forcing of either 0.1 W m−2 or 0.15 W 

m−2 due to the reduction of sulfur emissions from international shipping, the associated rise in GMST by the end of 2024 is 

either 0.028 ⁰C [0.025 to 0.031 ⁰C, 5−95% range] or 0.043 ⁰C [0.038 to 0.046 ⁰C], respectively. We also show that 

approximately 0.092 ⁰C of the rise in annual mean GMST from 2022 to 2023 can be attributed to a shift from La Niña to El 20 

Niño conditions, which is approximately a third of the observed 0.3 ⁰C rise in GMST between these two years. Additional 

increases in the annual mean GMST in 2023 and 2024 (both relative to 2022) of 0.075 ⁰C [0.036 to 0.096 ⁰C] and 0.053 ⁰C 

[0.019 to 0.074 ⁰C] are attributed, respectively, to a strong positive Indian Ocean Dipole (IOD) event that began in 2023. Our 

study is the first to suggest a significant contribution from the IOD to the anomalously high values of GMST observed in 2023 

and 2024. Anomalously high Sea Surface Temperatures (SSTs) in the North Atlantic region led to a rise in GMST of 0.070 ⁰C 25 

[0.054 to 0.094 ⁰C] and 0.069 ⁰C [0.055 to 0.091 ⁰C] in 2023 and 2024 relative to 2022, respectively. This contribution is 

almost 90% lower when the short-term variability component of North Atlantic SSTs is removed, resulting in lower estimates 

of the GMST anomaly in 2023 and 2024 than observed. These results suggest that short-term variability in the North Atlantic 

SSTs may have played a significant role in influencing the GMST anomalies in both 2023 and 2024; however, it is unclear 

whether this variability is internally or externally forced. Increased incoming solar radiation due to the 11-year solar cycle led 30 

to an additional rise in GMST of 0.025 ⁰C [−0.009 to 0.051 ⁰C] and 0.029 ⁰C [−0.008 ⁰C to 0.056 ⁰C] in 2023 and 2024 relative 

to 2022, respectively. While the 2023 and 2024 GMST anomalies can be reconstructed fairly well from a combination of 
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natural and anthropogenic factors, uncertainties remain in the reconstruction, driven primarily by the imprecise knowledge of 

the radiative forcing of aerosols, and the strength of climate feedbacks.   

1. Introduction 35 

The global mean surface temperature (GMST) anomaly measured in 2023 and 2024 greatly exceeded expectations 

(Schmidt, 2024; Tollefson, 2025) and raised questions about the underlying cause. Several natural and anthropogenic factors, 

such as the onset of El Niño after a rare triple-dip La Niña event (Raghuraman et al., 2024), a record-low planetary albedo 

(Goessling et al., 2025; Tselioudis et al., 2025), the eruption of the Hunga volcano (Millán et al., 2022; Vömel et al., 2022; 

Zhang et al., 2022; Zhu et al., 2022; Asher et al., 2023; Evan et al., 2023; Jenkins et al., 2023; Schoeberl et al., 2023; Schoeberl 40 

et al., 2024; Randel et al., 2024; Gupta et al., 2025; Stenchikov et al., 2025), or the reduction of sulfur emissions from 

international shipping (Gettelman et al., 2024; Jordan and Henry, 2024; Quaglia and Visioni, 2024; Watson-Parris et al., 2024; 

Yoshioka et al., 2024; Yuan et al., 2024) are among the proposed causes of the unusually high GMST observed in 2023 and 

2024. 

Tropospheric sulfate aerosols, which originate from anthropogenic emissions, exhibit a considerable cooling effect on 45 

GMST (Twomey, 1974; Albrecht, 1989; Bellouin et al., 2020; Forster et al., 2021) and offset a fraction of the Greenhouse Gas 

(GHG) induced global warming. Efforts to improve air quality have resulted in a gradual reduction of sulfur emissions in the 

recent two decades (Smith and Bond, 2014; Quaas et al., 2022). A new effort to improve air quality is the regulation on the 

sulfur content of fossil fuel used in international shipping, which began in January 2020 under the auspices of the International 

Maritime Organization (IMO). The IMO regulation limits the allowed sulfur content of marine fuels to 0.5% outside of 50 

Emission Control Areas, which is much lower than the previous value of 3.5% (IMO, 2019). Here and throughout, we refer to 

this regulation as IMO2020. Sulfate aerosols are major contributors to the overall Effective Radiative Forcing (ERF) from 

tropospheric aerosols (ERFAER), both through the aerosol direct (ERFari) and indirect (ERFaci) effects (Albrecht, 1989; 

Twomey, 1974; Szopa et al., 2021; Forster et al., 2021). Several recent studies have quantified how IMO2020 affects ERFAER 

and GMST, using various observational and modelling products (Diamond, 2023; Gettelman et al., 2024; Quaglia and Visioni, 55 

2024; Jordan and Henry, 2024; Skeie et al., 2024; Watson-Parris et al., 2024; Yoshioka et al., 2024; Yuan et al., 2024; Hansen 

et al., 2025). Table A1 of Jordan and Henry (2024) provides an overview of recent estimates on the impact of the IMO2020 

regulations on ERFAER. 

In this paper, we quantify the impact on GMST of several natural and anthropogenic factors, including the IMO2020 

regulations, using a multiple linear regression (MLR) energy balance model (EBM), the Empirical Model of Global Climate, 60 

EM−GC (Canty et al., 2013; Mascioli et al., 2012; Hope et al., 2017; McBride et al., 2021; Farago et al., 2025b). Our model 

is trained on 170 years of historical climate data from various measurements, and provides an estimate of Effective Climate 

Sensitivity (EffCS) that is consistent with recent literature values (Farago et al., 2025b). A major advantage of EM−GC is the 

inclusion of internal variability in simulations, a feature not present in other EBM-based analyses of the impacts of IMO2020 
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on GMST (Watson-Parris et al., 2024). Consequently, EM−GC has the ability to quantify the impact of various natural (such 65 

as El Niño-Southern Oscillation) and anthropogenic factors (i.e., IMO2020) on the recent GMST anomaly in a computationally 

efficient manner. For this paper, EM−GC was modified to include an updated two-layer ocean module that follows similar 

core equations as the simplified climate model (SCM) emulators used by the authors of the Sixth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC AR6, Sect. 7.SM.2 of Smith et al., (2021a)). A unique feature of our 

analysis is the quantitative evaluation of the contribution of the Indian Ocean Dipole to the GMST, a natural factor that is 70 

absent in other analyses of the GMST anomaly in 2023 and 2024. 

2. Data and Methods 

2.1 Empirical Model of Global Climate 

In this section, we provide a brief overview of the EM−GC model, and the datasets used in this study. A more detailed 

description of EM−GC can be found in Farago et al., (2025b) and McBride et al., (2021). For this paper, the energy balance 75 

component of the model was updated to the two-layer EBM formulation proposed by Held et al., (2010). We briefly summarize 

this update in Sect. 2.1.1, and provide a more detailed description, including the calibration of the energy balance component 

of our model in Appendix A.  

EM−GC uses an MLR analysis of the historical climate record (Lean and Rind, 2008, 2009; Foster and Rahmstorf, 2011; 

Zhou and Tung, 2013; Canty et al., 2013; Chylek et al., 2014) between 1850 and 2019 to compute the C0−C6 regression 80 

coefficients in Eq. (1), in a manner that the cost function in Eq. (2) is minimized. We refer to this process as the training of the 

model.  

Δ𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀,𝑖𝑖 = Δ𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴,𝑖𝑖 + 𝐶𝐶0 + 𝐶𝐶1 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖−6 + 𝐶𝐶2 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖−1 + 𝐶𝐶3 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖−2 + 𝐶𝐶4 × 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝐶𝐶5 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 + 𝐶𝐶6 × 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖  (1) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  ∑ 1
𝜎𝜎𝑂𝑂𝑂𝑂𝑂𝑂,𝑖𝑖
2 (Δ𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂,𝑖𝑖 − Δ𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀,𝑖𝑖)2 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1         (2) 

In Eq. (1), ΔTANTH corresponds to the change in GMST due to anthropogenic activity. This value is computed by the 85 

EBM component of our model from the magnitude of time-invariant climate feedback, the ERF of the climate due to GHGs, 

tropospheric aerosols and land-use change, as well as the export of heat to oceans. The model uses a monthly time grid, with i 

being the indicator of a given month. ΔTMDL and ΔTOBS in Eqs. (1) and (2) correspond to the modelled, and observed GMST 

anomaly, respectively. The term σOBS,i in Eq. (2) represents the uncertainty in the observations of GMST. The impact on GMST 

of major volcanic eruptions and variations in the intensity of solar radiation due to the 11-year solar cycle are quantified using 90 

Stratospheric Aerosol Optical Depth (SAOD) and Total Solar Irradiance (TSI), respectively. Other natural factors included in 

Eq. (1) are the El Niño-Southern Oscillation (ENSO), Atlantic Multidecadal Variability (AMV), Pacific Decadal Oscillation 

(PDO) and Indian Ocean Dipole (IOD). The SAOD, TSI and ENSO indices are lagged by 6, 1 and 2 months, respectively, 

following the correlation analysis described by McBride et al., (2021). The IOD term is not lagged, since the GMST anomaly 
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found from a regression that removes the contribution of all other natural and anthropogenic factors exhibits strongest 95 

correlation with the IOD index at zero lag time (Fig. S1). While we refer to AMV being a natural factor, the AMV is believed 

to be the result of a combination of internally and externally forced processes (Ting et al., 2009; Zhang et al., 2019b; Deser 

and Phillips, 2021). This important detail is addressed further in Sect. 2.2.5. 

 
Fig. 1: (a) Observed (black) and modelled (red) GMST anomaly, relative to an 1850−1900 baseline. This panel also displays the 100 
values of λΣ and χ2ATM (see text). (b) Contribution of anthropogenic activity (ΔTANTH, orange) to the modelled GMST. The value of 
AAWR (see text) and the corresponding 2σ uncertainty of the linear fit is also shown. This uncertainty only considers the goodness 
of fit between the linear fit and ΔTANTH, and does not account for the uncertainty in climate feedback or ERFAER. The uncertainty 
in climate feedback or ERFAER is accounted for using an ensemble method (see text). (c) Contribution of SAOD (gray) and TSI (gold) 
to ΔTMDL. (d) Contribution of ENSO (red) to ΔTMDL. (e) Contribution of AMV (green) to ΔTMDL. (f) Contribution of IOD (pink) and 105 
PDO (purple) to ΔTMDL. (g) Observed OHC in the upper 700 m of global oceans, based on an average of five OHC datasets (black), 
and modelled OHC (red). This panel also displays the values of γ and χ2OCEAN (see text). The single ensemble member shown in this 
figure is obtained from an EM−GC simulation trained between 1850 and 2019, for the IPCC AR6 best estimate trajectory of ERFAER 
that exhibits a value of −1.1 W m−2 in 2019, relative to 1750 (IPCC, 2021b; Smith et al., 2021b).  

Figure 1a shows a single modelled fit (red line) to the observed GMST record obtained from version 5 of the Hadley 110 

Centre Climatic Research Unit (HadCRUT5 (Morice et al., 2021), black), over 1850 to 2024. Panels b−f show the modelled 

contributions to the GMST from anthropogenic activity (ΔTANTH in Eq. (1), Fig. 1b) and natural variability (Fig. 1c−f). 

Following McBride et al., (2021), the rate of rise in GMST due to anthropogenic activity, termed the Attributable 

Anthropogenic Warming Rate (AAWR), is computed as the slope of a linear fit to ΔTANTH between 1975 and 2014 and is given 

in Fig. 1b. Fig. 1g shows the modelled Ocean Heat Content (OHC) in the upper 700 m of the global oceans (red), overlaid with 115 

the time series of observed OHC. The observed OHC record (black) and the corresponding uncertainty time series (grey 

shading in Fig. 1g) are a composite of five observational OHC datasets, which we describe in Sect. 2.2.6. In Fig. 1g, we also 

display the value of the heat transfer parameter (γ, (Geoffroy et al., 2013b)) between the two layers of the EBM component of 
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the model, which we describe in detail in Appendix A. The single fit shown in Fig. 1 assumes a certain value of time-invariant 

climate feedback (λΣ, panel (a)) and a single time series of ERFAER (see caption). The parameter λΣ is the sum of all feedbacks 120 

(water vapor, lapse rate, clouds, etc.), except for the Planck-feedback (Farago et al., 2025b); we describe the mathematical 

relation of this quantity to the feedback parameter commonly used in two-layer EBMs in Appendix A.  

The uncertainty in the magnitude of climate feedback and ERFAER is considered using an ensemble method (McBride et 

al., 2021; Farago et al., 2025b). For the ensemble, regressions are performed for 160,000 members as described in Sect. 2.1.2. 

Each ensemble member is constrained by the model’s ability to reproduce observed GMST and OHC using three reduced chi-125 

square metrics as described in Sect. 2.1.2. The values of two of these reduced chi-square indicators (χ2
ATM and χ2

OCEAN) for the 

single ensemble member shown in Fig. 1 are given on panels (a) and (g).  

2.1.1 Two−layer Energy Balance Model 

In this section, we briefly summarize the updates to the energy balance component of the EM−GC model adapted for this 

paper, with additional details provided in Appendix A. To capture the short-term response to a sudden increase of ERF by a 130 

constant magnitude (hereafter termed step forcing), we employ the two-layer EBM formulation from Held et al. (2010). The 

two-layer EBM is sufficiently simple for use in reduced complexity climate models, and provides a temperature response under 

step forcing scenarios that is consistent with the response of Earth System Models (ESMs) (Geoffroy et al., 2013a; Geoffroy 

et al., 2013b; Gregory et al., 2015; Tsutsui and Smith, 2025). In this paper, we use the EBM−1 formulation described by 

Geoffroy et al., (2013b), and associate the temperature of the upper layer in the two-layer EBM with ΔTANTH in Eq. (1). The 135 

two-layer EBM approximation was also used extensively by the authors of the IPCC AR6 report (Sect. 7.SM.2 of Smith et al., 

(2021a)) in emulators calibrated using the output of CMIP6 models. Importantly, while two-layer EBMs are usually calibrated 

using CMIP model output, we use the observed rise in GMST and OHC for calibration, also described in Appendix A.  

2.1.2 Ensemble Method and Probabilistic Forecasts 

Here we describe the quantitative manner in which the impact of the uncertainties in the magnitude of climate feedback 140 

and ERFAER are evaluated. An ensemble of 160,000 members, comprised of combinations of the time-invariant climate 

feedback parameter λΣ and time series of ERF due to anthropogenic activity is generated and then used in the regression model 

(McBride et al., 2021; Farago et al., 2025b). The time series of the total ERF is expressed from the sum of ERF due to GHGs, 

the radiative forcing due to land-use change (LUC), and a best estimate time series of ERFAER, scaled with a constant 

multiplicative factor (s), as shown in Eq. (3).  145 

𝐸𝐸𝐸𝐸𝐸𝐸 (𝑡𝑡) =  ∑𝐸𝐸𝐸𝐸𝐸𝐸𝐺𝐺𝐺𝐺𝐺𝐺  (𝑡𝑡) + 𝑠𝑠 × 𝐸𝐸𝐸𝐸𝐸𝐸𝐴𝐴𝐴𝐴𝐴𝐴  (𝑡𝑡) + 𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿  (𝑡𝑡)      (3) 

We pair 400 different values of λΣ with 400 values of the scaling parameter s, thereby creating an ensemble of 160,000 

members, which accounts for the uncertainties in both the magnitude of climate feedback, and the magnitude of the radiative 

forcing due to tropospheric aerosols. The time series of ERF (t) in Eq. (3) is used as the radiative forcing input to the two-layer 
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EMB component of EM−GC (F in Eq. (A1)) for each ensemble member. The input time series of ERFGHG, ERFAER and ERFLUC 150 

in Eq. (3) are based on the time series published in Annex III of the IPCC AR6 report (IPCC, 2021b; Smith et al., 2021b), as 

described in Sect. 2.2.2.  

The EM−GC ensemble is constrained by observed GMST and OHC through the use of three reduced χ2 indicators, as 

described in Sect 2.1 of McBride et al., (2021) and Sect. 2.7 of Farago et al., (2025b). Only those ensemble members are 

accepted that satisfy all three reduced χ2 constraints, defined as the value of each χ2 indicator being lower than 2. Two of these 155 

indicators, χ2
ATM and χ2

RECENT, represent how well the time series of modelled GMST aligns with observed GMST during the 

entire training period (1850 to 2019) and the recent few decades (1940 to 2019), respectively. The use of χ2
RECENT as a constraint 

ensures that all accepted ensemble members succeed in capturing the observed rapid rise of GMST due to anthropogenic 

activity since the 1940s. The third indicator, termed χ2
OCEAN, quantifies how well the modelled OHC compares to the observed 

OHC anomalies. After the application of the observational constraints, the ensemble members are weighted by the magnitude 160 

of ERFAER using an asymmetrical Gaussian function that is centered around the IPCC AR6 best estimate of −1.1 W m−2 for 

the value of ERFAER in 2019 relative to 1750 (Farago et al., 2025b). This weighted ensemble is then used to provide a 

probabilistic forecast of the GMST between 2020 and 2025, which we then compare to the observed GMST anomalies in Sect. 

3.2 and 3.3.  

2.2 Data and Model Input 165 

2.2.1 Temperature Records 

Throughout this paper, we use the HadCRUT5 GMST record (Morice et al., 2021) between 1850−2019 for the training 

of EM−GC, and for comparison with modelled GMST anomalies from 2020 to 2024. All values of the GMST anomaly, 

denoted ΔT, are with respect to a pre-industrial baseline (1850 to 1900).  

2.2.2 Effective Radiative Forcing  170 

We use ERF as defined in Chapter 7 of AR6 (Forster et al., 2021) to compute the influence of GHGs and tropospheric 

aerosols on ΔT. The ERF due to GHGs is the sum of ERF due to CO2, CH4, N2O, halogenated compounds, tropospheric ozone 

(O3) and stratospheric water vapor from the oxidation of methane, obtained from Annex III of AR6 and the corresponding data 

repository (IPCC, 2021b; Smith et al., 2021b). These time series, provided on an annual time grid, are interpolated to a monthly 

grid for use as inputs to the EM−GC.  175 

Between 2020 and the end of 2024, we use the global concentrations of CO2, CH4 and N2O inferred from the 

measurements obtained at a globally distributed network of air sampling sites and averaged by the NOAA Global Monitoring 

Laboratory (GML) (Lan et al., 2024a; Lan et al., 2024b). Here and throughout, we refer to these time series as NOAA-GML 

global GHG concentrations. The NOAA-GML GHG concentrations are converted to ERF using the formulations and 

tropospheric adjustments described in the Supplement of Chapter 7 of AR6 (Smith et al., 2021a). For the ERF of halogenated 180 
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compounds and tropospheric ozone, we use the SSP2−4.5 ERF trajectories from 2020 onwards from Annex III of AR6 (IPCC, 

2021b; Smith et al., 2021b). The ERF due to stratospheric water vapor from the oxidation of methane is a linear function of 

ERFCH4 (IPCC, 2021b), which we compute by scaling the NOAA-GML based ERFCH4. The ERF due to stratospheric water 

vapor described in this section does not account for the abrupt injection of water vapor from volcanic eruptions, such as the 

eruption of Hunga in 2022. We address the inclusion of the eruption of Hunga in Sect 2.2.4. 185 

We compute the total ERF due to tropospheric aerosols (ERFAER in Eq. (3)) between 1850 and 2019 by summing the 

ERF time series of the direct (ERFARI) and indirect effects (ERFACI) from Annex III of AR6 (IPCC, 2021b; Smith et al., 2021b). 

Between 2020 and the end of 2024, we use the sum of the direct and indirect effects under an SSP2−4.5 scenario (O'Neill et 

al., 2016) as the baseline trajectory for ERFAER. This baseline trajectory is used as a reference scenario, where the IMO2020 

regulations are assumed to have had no impact on ERFAER. To simulate the effects of the IMO regulations on global ERFAER, 190 

we create two alternative time series, where values of +0.1 W m−2 and +0.15 W m−2 are added to this baseline trajectory, as 

immediate step-forcing adjustments starting in January 2020. We refer to these three scenarios as Reference, IMO−0.1, and 

IMO−0.15 and the increase in global ERF due to IMO2020 as ΔERFIMO. We use the SSP2−4.5 scenario as the baseline for 

ERFAER, similar to Gettelman et al. (2024) and Jordan and Henry (2024), because this SSP scenario is the one that is most 

consistent with recent trends in anthropogenic emissions of GHGs and aerosols (Meinshausen et al., 2024). The values of +0.1 195 

W m−2 and +0.15 W m−2 for ΔERFIMO were chosen based on recently published estimates of the increase in global radiative 

forcing due to the introduction of the IMO regulations (Table A1 in Jordan and Henry (2024)).  

2.2.3 El-Niño Southern Oscillation, Indian Ocean Dipole and Pacific Decadal Oscillation 

We use Version 2 of the Multivariate ENSO Index (MEI.v2) (Wolter and Timlin, 1993; Zhang et al., 2019a) to 

characterize the influence of ENSO on GMST. This index starts in 1979 and extends to the end of 2024. Between 1850 and 200 

1978, a historical extension based on Wolter and Timlin (2011) and the HadSST3 dataset (Kennedy et al., 2011) is used, 

following Sect. 2.2.6 of McBride et al., (2021).  

Following the definition of Saji et al. (1999), we compute the IOD index as the difference in Sea Surface Temperatures 

(SSTs) between the western equatorial Indian Ocean (50−70⁰ E and 10⁰ S – 10⁰ N) and southeastern equatorial Indian Ocean 

(90−110⁰ E and 10⁰ S − 0⁰ N), using the 1⁰ x 1⁰ SSTs from the Centennial in situ Observation-Based Estimate (COBE2) 205 

(Hirahara et al., 2014), available for the entire time period of our analysis (1850 to 2024). Our findings regarding the 

contribution of the IOD to the anomalously high GMST in 2023 is insensitive to the use of the NOAA Dipole Mode Index 

(DMI) (Saji and Yamagata, 2003) for IOD, which is based on the HadISST1.1 SST dataset (Rayner et al., 2003). 

The PDO input for EM−GC is based on a time series provided by NOAA at https://psl.noaa.gov/pdo/ (Mantua et al., 

1997; Newman et al., 2016). NOAA provides multiple PDO indices, based on the HadISST1.1, COBE2, and ERSST V5 SST 210 

datasets, respectively, as well as an index constructed from the combination of these three SST datasets, which we will refer 

to as the NOAA Ensemble PDO Index. The individual PDO indices provided by NOAA differ in their first year of data 

availability. We use the NOAA Ensemble PDO index, which covers 1870 to December 2024, appended to the NOAA COBE2 
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PDO index for 1850 to 1870. We chose the COBE2-based index for this purpose, as this was the only PDO index from NOAA 

that provides data as early as 1850.  215 

2.2.4 Total Solar Irradiance and Volcanic Activity 

The 11-year solar cycle has a small, but noticeable influence on simulated GMST (McBride et al., 2021). In this paper, 

we use the NOAA Climate Data Record (CDR) composite observational TSI record (Coddington et al., 2024), which provides 

daily observed TSI data starting in late 1978. We use this time series between 1979 and the end of 2024 to create a time series 

of monthly average TSI, which we append to the CMIP6 TSI input time series from Matthes et al., (2017), that covers 1850 to 220 

1978. The resulting TSI time series, which covers the 1850 to 2024 period, is then converted to anomalies by subtracting the 

long-term average from the time series of absolute TSI (McBride et al., 2021).  

Next, we describe the construction of our SAOD input that corresponds to volcanic eruptions, and the inclusion of the 

eruption of Hunga in our simulations. We use the time series of SAOD at 550 nm, obtained from the Global Space-based 

Stratospheric Aerosol Climatology (GloSSAC v2.0) (Thomason et al., 2018) between 1979 and the end of 2023, to compute a 225 

globally averaged time series of SAOD, using cosine-latitude weighting from 80⁰ S to 80⁰ N. The decay of SAOD between 

July 2022 and December 2023 is near-linear (Fig. S6); we extend this linear trend to compute values of SAOD for the year 

2024, where GloSSAC observations are not yet available. To obtain a time series of SAOD between 1850 to 1978, we use the 

550 nm extinction coefficients from 80⁰ S to 80⁰ N from the Volcanic Forcing Dataset (Arfeuille et al., 2014) made for CMIP6 

GCM runs. The 550 nm extinction coefficients are integrated from the tropopause to 39.5 km, then weighted by the cosine of 230 

latitude from 80⁰ S to 80⁰ N to obtain a time series of globally averaged SAOD from 1850 to 1978. This time series is then 

combined with the GloSSAC-based time series of SAOD, which covers the 1979 to 2024 period, to obtain the model input 

time series for SAOD between 1850 and 2024.  

The eruption of Hunga in January 2022 injected a large amount of water vapor into the stratosphere (Millán et al., 2022; 

Vömel et al., 2022; Evan et al., 2023; Randel et al., 2024), raising questions about whether the warming effect due to the 235 

injection of stratospheric water vapor is greater than the cooling effect from SAOD. Studies differ in their conclusions as to 

whether the net effect of the Hunga eruption was a warming (Millán et al., 2022; Jenkins et al., 2023) or cooling (Schoeberl et 

al., 2023; Schoeberl et al., 2024; Gupta et al., 2025; Stenchikov et al., 2025) of the climate. However, studies generally agree 

that the magnitude of the change in GMST due to the eruption of the Hunga volcano is on the scale of 10−2 ⁰C (Jenkins et al., 

2023; Schoeberl et al., 2023; Stenchikov et al., 2025). EM−GC simulations do not explicitly account for the injection of water 240 

vapor to the stratosphere from volcanic eruptions. Given that the net effect of the eruption of Hunga on GMST is small, we 

chose to use SAOD as a proxy for the impact of the Hunga volcano on GMST, while neglecting the additional radiative forcing 

from the injection of stratospheric water vapor. This representation, while simplified, results in a cooling of −0.020 ⁰C and 

−0.023 ⁰C due to SAOD in the years of 2022 and 2023, respectively (see Sect. 3.2 for additional details). Consequently, our 

SAOD-based proxy for the eruption of Hunga produces a small net cooling effect, similar to the estimates presented in 245 

Schoeberl et al., (2023) and Stenchikov et al., (2025).  
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2.2.5 Atlantic Multidecadal Variability 

The variations in SSTs in the North Atlantic due to the Atlantic Multidecadal Variability (AMV) have a well-documented 

influence on the GMST (e.g. Schlesinger and Ramankutty (1994), Canty et al., (2013) and Sect. 4.6 of Zhang et al., (2019b)). 

We use the term AMV, rather than Atlantic Multidecadal Oscillation (AMO), as the term AMV is believed to be more 250 

appropriate when describing the multidecadal fluctuations in the Atlantic (Sect. 1 of Zhang et al., (2019b)). How internal 

processes and external radiative forcing affect AMV is a topic of extensive debate (Zhang et al., 2019b; Qin et al., 2020; Deser 

and Phillips, 2021). AMV is believed to be driven by a combination of internal processes, such as the Atlantic Meridional 

Overturning Circulation (AMOC) (Zhang et al., 2019b), and external forcings, such as from tropospheric aerosols (Booth et 

al., 2012). 255 

AMV indices are traditionally obtained by the detrending and subsequent low-pass filtering of the spatially averaged 

North Atlantic SST anomalies. Several detrending methods have been proposed (Zhang et al., 2019b). Most commonly, the 

detrending is done using the time series of global-mean SSTs (Trenberth and Shea, 2006) or a linear function (Enfield et al., 

2001), though both methods carry certain disadvantages (e.g. Sect. 3.2.3 of Canty et al. (2013)). Therefore, following Canty 

et al., (2013), we detrend the area-weighted monthly mean North Atlantic SSTs between the equator and 60 ⁰N, which are 260 

based on the HadSST4 dataset (Kennedy et al., 2019), using the magnitude of global anthropogenic radiative forcing. We treat 

the resulting index as our AMV input, and use this input for the simulations presented in Sect. 3.2. We also create an alternative 

AMV index, where the high-frequency component of our original AMV index is removed using a Fourier-filter, which restricts 

frequencies higher than 1/9 yr−1 (Canty et al., 2013). We will refer to this second AMV dataset as our Fourier-filtered AMV 

input, and present simulations that use this input dataset in Sect. 3.3. 265 

2.2.6 Ocean Heat Content 

EM−GC simulations quantitatively account for the export of heat to Earth’s oceans, and the ability of ensemble members 

to reproduce the observed rise in OHC is one of the observational constraints within the model (Sect. 2.1.2). In this paper, we 

use a composite OHC time series, which covers the 1955 to 2024 period, created using an average of five different OHC 

anomaly records (Levitus et al., 2012; Balmaseda et al., 2013; Ishii et al., 2017; Carton et al., 2018; Cheng et al., 2024). The 270 

time series for the uncertainty in the observed OHC is based on the 1σ uncertainty computed from the five datasets. The 

individual OHC time series, the average of the five datasets, and the corresponding uncertainty time series are shown in Fig. 

S2. Additional details on the construction of the composite OHC dataset are provided in our Supplement.  
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3. Results 

3.1 Long-term warming trends 275 

The primary purpose of our paper is to analyze why the years 2023 and 2024 experienced much higher GMST anomalies 

relative to prior years, such as 2021 or 2022. However, the long-term warming impact of rising GHG emissions serves as an 

important backdrop. Therefore, we begin by analyzing the long-term warming of global temperatures due to anthropogenic 

activity. To quantify the rise in GMST due to anthropogenic activity in recent decades, we use the quantity AAWR, which is 

computed as the slope of a linear fit to the anthropogenic component of the modelled GMST (Sect. 2.1) between 1975 and 280 

2014. Figure 2b−c show AAWR as the function of climate feedback (vertical axis) and the magnitude of ERFAER (horizontal 

axis). Colors correspond to values of AAWR, as indicated by the color bars to the right, and are shown only for combinations 

of ERFAER and λΣ for which the reconstructed GMST and OHC satisfy the three reduced χ2 observational constraints over the 

training period (1850 to 2019). Panels (b) and (c) differ in that, for the simulation shown in Fig. 2b, the high frequency 

component of the AMV input time series, that is frequencies greater than 1/9 yr−1, was removed using a Fourier-filter (Sect. 285 

2.2.5). Figure 2a shows the asymmetrical Gaussian function that is used to weight the ensemble (Sect. 2.1.2). The center point, 

as well as the 1σ and 2σ boundaries of this Gaussian function, are based on the best estimate (−1.1 W m−2) and likely range 

(−0.4 to −1.7 W m−2) for ERFAER in 2019 relative to 1750 provided by Chapter 7 of AR6 (Forster et al., 2021).  

 

 290 
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Figure 2: Aerosol weighting method, and computed values of AAWR for the EM−GC ensemble. (a): Asymmetrical Gaussian 
function used to weight the ensemble. The points marked on the Gaussian represent the center point, the 1σ and 2σ boundaries of 
the Gaussian (see Sect. 2.7 and Table S3 of Farago et al., (2025b)). (b) Values of AAWR as the function of λΣ and ERFAER,2019. Colors 
denote specific values of AAWR as indicated by the color bar on the right. AAWR is only shown for those combinations of λΣ and 
ERFAER,2019, where all three χ2 observational constraints are satisfied. The AMV input of the simulation used to produce this panel 295 
has been Fourier-filtered to remove frequencies greater than 1/9 yr−1 (see text). (c) As in (b), but without a Fourier-filter having been 
applied to the AMV input. The 50th percentile and the 5−95% range of AAWR from the weighted ensemble are also given on panels 
(b) and (c).  

The reconstruction of GMST and OHC over the training period is largely unaffected by the removal of the high-frequency 

component of the AMV input. As shown in Fig. 2b and 2c, the range of AAWR is similar between the two sets of simulations. 300 

The weighted central estimate and 5−95% range for AAWR is 0.19 ⁰C decade−1 [0.15 to 0.23 ⁰C decade−1], and 0.19 ⁰C decade−1 

[0.15 to 0.24 ⁰C decade−1] for the simulations where the AMV input was Fourier-filtered and unfiltered, respectively. Similarly, 

EffCS is also consistent between these two sets of simulations (Fig. S3). Our estimates of AAWR, based on the 1975 to 2014 

period, are generally consistent with Samset et al., (2023), who found the rate of warming to be 0.19 ⁰C decade−1 between 1971 

and 2020 using the HadCRUT5 dataset, with an acceleration in the rate of warming starting in 1990s. The values of AAWR 305 

shown here imply that a sizeable portion of the rise in GMST in the recent few years can be explained with the continued trend 

of anthropogenic GHG emissions. For example, the rate of 0.19 ⁰C decade−1 corresponds to an increase in GMST of about 0.1 

⁰C in 2024 relative to 2019. As a comparison, Gettelman et al., (2024) suggested that the IMO2020 regulations increase global 

temperatures by about 0.04 ⁰C and 0.08 ⁰C by 2023 and 2030, respectively, relative to 2020. Therefore, the change in GMST 

due to the IMO2020 regulations would correspond to only a few years of continued anthropogenic activity at the 1975 to 2014 310 

rates. A similar comparison can be drawn with Jordan and Henry (2024), who found that IMO2020 increases global surface 

temperature by 0.046 ⁰C in the 2020−29 period, and concluded that temperature impact of IMO2020 corresponds to about 2−3 

years’ worth of continued global warming. Importantly however, such a rise in GMST due to IMO2020 corresponds to a 

significant acceleration of human-induced warming in the recent few years, which we address in Sect. 3.4.  

3.2 Natural and anthropogenic contributions to recent temperature anomalies 315 

Next, we quantify the contribution of various natural and anthropogenic factors to the GMST over the past half-decade. 

Figure 3 shows the modelled GMST for the Reference (left), IMO−0.1 (middle) and IMO−0.15 (right) simulations. The top 

panels of each column show the observed GMST anomaly from the HadCRUT5 dataset (black) and the EM−GC simulated 

range. Colors denote the EM−GC simulated probability of the GMST being greater or equal than a given value at a time, as 

indicated by the color bar to the right. Panels (d−f) show the simulated rise in GMST due to IMO2020, based on global energy 320 

balance. Panels (g−r) show the simulated contributions of natural variability to the GMST, computed based on observed 

climate indices (Sect. 2.1 and 2.2). We will refer to these contributions shown in Fig. 3g−r as natural, with the understanding 

that some of these processes, and hence the corresponding climate indices, may have been influenced by external anthropogenic 

factors, including possibly even IMO2020.  
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 325 
Figure 3: Probabilistic simulation of GMST and the contributions of various factors to GMST for the Reference (left), IMO−0.1 
(middle) and IMO−0.15 (right) scenarios. Panels (a−c) show the EM−GC simulated GMST, with colors denoting the probability of 
the GMST being a given value, or greater, as indicated by the color bar on the right. The black line is the observed GMST from the 
HadCRUT5 dataset. All GMST anomalies are with respect to an 1850−1900 pre-industrial baseline. (d−f) Contribution of IMO2020 
to the GMST anomaly based on global energy balance. (g−r): Contribution of natural factors (see text) to GMST. On panels (d−r), 330 
the solid line is the EM−GC median estimate (which we define as the 50% probability), while the shading corresponds to the 5−95% 
uncertainty range. 

Table 1 summarizes our estimates of ΔTIMO in response to changes in the global radiative forcing due to IMO2020 

(ΔERFIMO), as well as values from recently published studies. We find that the IMO2020 regulations increased GMST by 

0.028 ⁰C [0.025 to 0.031 ⁰C, 5−95% range] and 0.043 ⁰C [0.038 to 0.046 ⁰C] by the end of 2024 for the IMO−0.1 and IMO−0.15 335 

scenarios, respectively. We refer to these quantities as ΔTIMO, and we term this computed warming as being due to global 

energy balance, since these values have been computed using the two-layer EBM component of our model. As noted above, 

additional localized effects from IMO2020 may be blended into the observed climate indices, upon which the contributions to 

changes in GMST shown in Fig. 3c−f are based. We briefly address this topic in Sect. 3.3.  

Our estimates of ΔTIMO under the IMO−0.1 and IMO−0.15 scenarios are consistent with values ΔTIMO obtained both 340 

from EBMs (Gettelman et al., 2024) and ESMs (Jordan and Henry, 2024; Yoshioka et al., 2024; Watson-Parris et al., 2024) 

(Table 1). Studies provide estimates of ΔTIMO over different time periods, as specified in Table 1. While the EBM-based 

estimates of Gettelman et al., (2024) were obtained using an EBM calibrated on CMIP6 model output, our results are based 

on an EBM trained on observational datasets. There are three studies that provide values of ΔTIMO considerably larger than 

our estimates. Quaglia and Visioni (2024) estimate ΔTIMO to be about 0.08 ⁰C, a factor of 2 greater than our IMO−0.15 value 345 

of 0.043 ⁰C [0.038 to 0.046 ⁰C]. They also found significant warming in the North Atlantic, highlighting that localized effects 

of IMO2020 may be substantial. As noted above, a portion of the localized effects may be blended into the observational 

datasets that are used as our inputs. Consequently, the contributions of these localized effects to GMST, particularly for the 

North Atlantic, are not attributed to IMO2020 in the simulations presented in Fig. 3 and summarized in Table 1. Yuan et al. 

(2024) report a value of 0.16 ⁰C for ΔTIMO, a factor of two larger than the Quaglia and Visioni (2024) estimate. As highlighted 350 

by Watson-Parris et al., (2024), the estimate of ΔTIMO provided in Yuan et al., (2024) is found using a global climate feedback 

https://doi.org/10.5194/egusphere-2025-4865
Preprint. Discussion started: 6 November 2025
c© Author(s) 2025. CC BY 4.0 License.



13 
 

parameter applied to an ERF perturbation over only the oceans. Consequently, Watson-Parris et al. (2024) suggest that the 

global value of ΔERFIMO and ΔTIMO should be lower than those presented in Yuan et al., (2024). Therefore, Table 1 includes 

the original values presented in Yuan et al., (2024) as well as the adjusted estimates provided by Watson-Parris et al., (2024). 

The adjusted value of 0.06 to 0.10 ⁰C, in response to a ΔERFIMO of 0.14 W m−2, is among the higher estimates for ΔTIMO. 355 

Finally, a recent study by Hansen et al., (2025) suggests a much higher value of ΔERFIMO based on observations of absorbed 

solar radiation. Accordingly, their estimate of ΔTIMO = 0.2 ⁰C is much higher than that reported in other studies, including ours, 

primarily due to their higher estimate of ΔERFIMO. In our analysis, we focus on simulations with ΔERFIMO being equal to 0.1 

W m−2 and 0.15 W m−2, as the majority of the estimates for ΔERFIMO currently available in literature are close to these values. 
Table 1: Estimates of the change in global radiative forcing due to IMO2020 (ΔERFIMO), and the corresponding change in global 360 
surface temperature (ΔTIMO). For Yuan et al., (2024), we present the non-global values as published in their paper, as well as the 
globally scaled values (italic) suggested by Watson-Parris et al., (2024).  

 Method Model ΔERFIMO (W m−2) Timeframe ΔTIMO (⁰C) 

Quaglia and Visioni (2024) 

ESM 

CESM2 0.14 2030 0.08 

Yoshioka et al., (2024) HadGEM3-GC3.1-LL 0.13 2020−49 0.04 

Watson-Parris et al., (2024) CESM2 0.11 2020−40 0.03 

Jordan and Henry (2024) UKESM1 0.14 2020−29 0.046 

Hansen et al., (2025) GISS-E2.1 0.5 2023 0.2 

Yuan et al., (2024) 

Yuan et al., (2024), adjusted 

EBM 

One-layer EBM 
0.2 

0.14 
7 years 

0.16 

0.06 to 0.10 

Gettelman et al., (2024) FAIR v2.1.0 0.12 2023 0.04 

This Study: IMO−0.1 
EM−GC 

0.1 2024 0.028 

This Study: IMO−0.15 0.15 2024 0.043 

 

Next, we quantify the contributions of various natural factors to GMST. We show the modelled contribution of ENSO to 

the GMST between 2019 and the end of 2024 in Fig. 3j−l. We find that the annual mean GMST in 2023 and 2024 increased 365 

by about 0.092 ⁰C [0.049 to 0.120 ⁰C, 5−95% range] and 0.124 ⁰C [0.079 to 0.150 ⁰C] respectively, relative to 2022, as a 

consequence of a shift from La Niña to El Niño (Fig. 3j−l). The difference between the annual mean GMST anomaly in 2022 

and 2023 is about 0.3 ⁰C in the HadCRUT5 dataset. Therefore, about one third of the difference in GMST between 2022 and 

2023 can be explained with the shift from La Niña to El Niño. Our results align well with the estimates of Goessling et al., 

(2025), who found that the onset of El Niño contributed about 0.07 ⁰C to the temperature anomaly in 2023. Estimates for the 370 

contribution of ENSO to the 2023 and 2024 temperature anomalies were also provided by the State of the Global Climate 2024 

report of the World Meteorological Organization (WMO) (WMO, 2025), hereafter WMO24. Using linear regression to the 

February/March Niño 3.4 index, WMO24 found that annual temperatures rose by about 0.08 ⁰C in 2023 relative to 2022 due 

to ENSO (see their Datasets and methods section), which aligns quite well with our estimate of 0.092 ⁰C for this period. 
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However, WMO24 suggests that an additional increase of 0.12 ⁰C in the annual global mean temperature between 2023 and 375 

2024 can also be attributed to ENSO. We find the increase of GMST due to ENSO between 2023 and 2024 to be only 0.032 

⁰C, which is much lower than the WMO24 estimate. Raghuraman et al. (2024) suggested that prolonged La Niña events may 

lead to sudden changes in the GMST of 0.25 ⁰C or greater during the subsequent El Niño event, based on the analysis of several 

CMIP models. Conversely, our results do not indicate the occurrence of an ENSO-driven spike in GMST of the magnitude 

suggested in Raghuraman et al., (2024). 380 

Starting in January 2023, a positive IOD event was also found to have influenced GMST (Fig. 3p−r). This IOD event  

contributed to a rise in GMST of 0.075 ⁰C [0.036 to 0.096 ⁰C] in 2023, relative to 2022. This positive IOD event persisted into 

early 2024, and gradually shifted to a negative phase by the end of 2024. In 2024, GMST was found to be 0.053 ⁰C [0.019 to 

0.074 ⁰C] higher due to IOD, relative to 2022. Xie et al. (2025) suggested that while the co-occurrence Extreme Positive IOD 

(EXpIOD) events, such as the one observed in 2023, may be coincidental with the onset of El Niño, co-occurring El Niño and 385 

positive IOD events result in the amplification of the intensity of IOD. Our computation of the increase in GMST of 0.075 ⁰C 

from 2022 to 2023 due to IOD is comparable in magnitude to ENSO’s impact on the GMST between these two years (0.092 

⁰C). Further discussion of the impact of IOD on GMST is given in Sect. 3.4. 

Increased TSI due to the 11-year solar cycle also contributed to the observed rise in GMST in 2023 and 2024, relative to 

2022 (Fig. 3g−i). The increase in TSI is found to have contributed to a rise in the annual mean GMST of 0.025 ⁰C [−0.009 to 390 

0.051 ⁰C, 5−95% range] and 0.029 ⁰C [−0.008 ⁰C to 0.056 ⁰C] in 2023 and 2024, respectively, relative to 2022. Our central 

estimate of the contribution of TSI to GMST (0.025 ⁰C) in 2023 aligns exceptionally well with the estimate of 0.027 ⁰C found 

by Goessling et al., (2025), though we find a wider range of uncertainty at [−0.009 to 0.051 ⁰C, 5−95% range] in contrast to 

their range of [0.022 to 0.032 ⁰C, 90% confidence]. Our estimates for the impact of TSI on GMST are generally consistent 

with, albeit on the lower end of those of WMO24, who found the contribution of the changes in the solar cycle to GMST to be 395 

about 0.04 ⁰C [0.015 to 0.065 ⁰C, 95% confidence] and 0.07 ⁰C [0.045 to 0.095 ⁰C] in 2023 and 2024, respectively. A similar 

analysis to that of WMO24 is given by Sect. S7 of Forster et al., (2025), hereafter F25, who suggested contributions from TSI 

to the GMST anomaly to be 0.03 ⁰C [0.01 to 0.05 ⁰C] and 0.04 ⁰C [0.02 to 0.07 ⁰C] in 2023 and 2024, respectively. Our 

estimates of the impact of TSI on GMST for these two years are in good agreement with the F25 values, both in terms of the 

central value and the range of uncertainty.  400 

The contributions of SAOD and PDO to the GMST anomalies in 2023 and 2024 are found to be small relative to ENSO 

and IOD (Fig. 3g−i and Fig. 3p−r). The median estimates of the contribution of PDO to the modelled GMST are −0.008 ⁰C, 

−0.009 ⁰C and −0.009 ⁰C for the years 2022, 2023 and 2024, respectively. SAOD is found to be responsible for a slight cooling 

effect of −0.020 ⁰C, −0.023 ⁰C and −0.015 ⁰C in 2022, 2023 and 2024, respectively. As described in Sect. 2.2.4, for the 

simulations presented in this paper, we neglected the injection of water vapor into the stratosphere from the eruption of Hunga. 405 

Nevertheless, our SAOD-based proxy for volcanic activity leads to an estimated −0.023 ⁰C cooling in 2023, in line with the 

values of −0.02 ⁰C [−0.01 to −0.03 ⁰C] presented in WMO24 and F25. Therefore, the neglect of the injection of water vapor 

from Hunga appears to have no major consequence on our results. 
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 3.3 North Atlantic warming 

We now discuss the contribution of AMV and North Atlantic SST anomalies to the GMST in 2023 and 2024 (Fig. 3m−o). 410 

Multiple recent studies have highlighted the unusually high SST anomalies in the North Atlantic (Kuhlbrodt et al., 2024; 

Carton et al., 2025; England et al., 2025; Guinaldo et al., 2025; Dong et al., 2025), alongside reduced low-cloud cover in the 

region during 2023 (Goessling et al., 2025; Tselioudis et al., 2025). Gettelman et al., (2024) suggested that the resulting 

increase in local temperatures due to IMO2020 may be much greater than implied by the EBM-based global values, particularly 

in the Northern Hemisphere mid-latitude oceans. Similarly, Quaglia and Visioni (2024) found a considerable rise in the surface 415 

air temperature in the North Atlantic due to IMO2020. While a global EBM, such as our EM−GC cannot directly be used to 

study localized temperature anomalies, a few key conclusions can still be drawn, as described below.  

The variability in North Atlantic SSTs is represented by our AMV index, which we obtained by detrending the time series 

of area weighted North Atlantic SSTs using the magnitude of global anthropogenic ERF (Sect. 2.2.5). The contribution of 

AMV to GMST has shown a generally steady increase since 2019, with a particularly large contribution in the second half of 420 

2023 (Fig. 3m−o). AMV is found to have contributed 0.053 ⁰C [0.044 to 0.068 ⁰C, 5−95% range] and 0.052 ⁰C [0.045 to 0.065 

⁰C] to the annual mean GMST in 2023 and 2024, respectively. The modelled contribution of AMV to the GMST anomaly in 

2022 is slightly negative, at −0.017 ⁰C [−0.010 to −0.026 ⁰C]. Consequently, an increase in GMST of about 0.070 ⁰C from 

2022 to 2023 is attributed to AMV in our model framework, which is on the scale of the ENSO and IOD-related rise in GMST 

between the same two years. The impact of AMV on the GMST anomaly in 2024 relative to 2022 is about 0.069 ⁰C. 425 

The peak in our AMV index (and therefore, the contribution of this proxy to GMST in Fig. 3m−o) in mid-late 2023 is 

consistent with the record high observed North Atlantic SSTs in 2023 (Carton et al., 2025; Guinaldo et al., 2025). Samset et 

al., (2024) also found that conditions in the North Atlantic contribute strongly to the global temperatures in 2023, using a 

Green’s function-based method. They estimated that SSTs in the subtropical and tropical North Atlantic contributed about 

0.02 ⁰C and 0.04 ⁰C to the annual mean global surface temperature anomaly in 2023. These values are generally in line with 430 

our estimates derived from the AMV index noted in the prior paragraph.  

Next, we analyze whether the substantial contributions from AMV in our simulations originate from long-term trends, or 

short-term variability. We perform the same analysis that was shown in Sect. 3.2 with a second set of simulations, where the 

high-frequency component of the AMV index, that is, frequencies greater than 1/9 yr−1, is removed using a Fourier filter (Sect. 

2.2.5). The regression to the historical GMST and OHC during the model training period of 1850 to 2019 is largely unaffected 435 

by the choice of AMV input (Sect. 3.1). Figure 4 shows the EM−GC simulations that use a Fourier-filtered AMV input for the 

Reference, IMO−0.1 and IMO−0.15 scenarios in a manner similar to Fig. 3. The contributions of all factors to the GMST 

shown in Fig. 4g−r are highly similar to those in Fig. 3g−r, except for the contributions of AMV. The contribution of AMV to 

the annual mean GMST is found to be 0.008 ⁰C higher in 2023 relative to 2022, due to a slow rising trend in the AMV index 

(Fig. 4m−o). This value, however, is nine times smaller than that quantified from simulations where the AMV input was not 440 

Fourier-filtered. Further, the simulated GMST shown in Fig. 4a−c is lower than the observations in mid-late 2023 and late 
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2024. For both of these time periods, there is a substantial contribution to GMST from AMV when the AMV index has not 

been Fourier-filtered (Fig. 3m−o), which is absent in simulations that use Fourier-filtered AMV input (Fig. 4m−o). 

Consequently, our simulations imply that short-term variability in the North Atlantic SSTs was likely a strong contributor to 

the observed GMST anomalies in late 2023 and 2024.  445 

 
Figure 4: Probabilistic simulation of GMST and the contribution of various factors for the Reference (left), IMO−0.1 (middle) and 
IMO−0.15 (right) scenarios. As in Fig. (3), except that the input time series for AMV has been Fourier-filtered to remove frequencies 
greater than 1/9 yr−1 (see text).  

Establishing a connection between the high North Atlantic SSTs and the IMO2020 regulations remains challenging. In 450 

our model framework, we detrended the AMV index using the time series of global anthropogenic radiative forcing, following 

Sect. 3.2.3 of Canty et al. (2013). Local anomalies in ERF that exceed the global values would result in parts of the AMV 

index carrying an additional, localized anthropogenic component. Consequently, localized effects of IMO2020 may be blended 

into the AMV index, which would correspond to the impact of IMO2020 on GMST to be greater than implied solely by the 

global energy balance approach. If we assume that the short-term variability in North Atlantic SSTs described above is driven 455 

primarily by IMO2020, than an additional 0.06 ⁰C in the increase in GMST from 2022 to 2023 can be attributed to IMO2020, 

which result in estimates of ΔTIMO that align quite well with those of Quaglia and Visioni (2024) (Table 1).  

Watson-Parris et al., (2024) reported that IMO2020 produces a pattern of North Atlantic SSTs that is similar to those 

observed in 2023 in CESM2, but only after about 20 years, and no significant warming in this region is simulated between 

2020 and 2025. This result contradicts Quaglia and Visioni (2024), who found notable warming in the North Atlantic over the 460 

2021−23 period with the CESM2 model. As highlighted in Watson-Parris et al., (2024), different experimental setups account 

for some of the differences between ESM-based results that investigate the effects of IMO regulations. Jordan and Henry 

(2024) report lower cloud albedo in the North Atlantic due to IMO2020, which aligns with the observed albedo described in 

Goessling et al., (2025). Consequently, Jordan and Henry (2024) suggest that the increase in ERF due to IMO2020 is about 

2.5 times greater in the North Atlantic region than the value of the global mean. Meanwhile, Carton et al., (2025) attributed 465 

the record high SSTs to a combination of increased downwelling radiation, as well as reduced latent and sensible heat loss due 
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to lower trade wind speeds. Carton et al., (2025) and Guinaldo et al., (2025) also highlighted that a considerable preconditioning 

effect in the North Atlantic also played a significant role in the development of the SST anomalies observed in 2023. England 

et al., (2025) attributed the anomalously high SSTs in the region during the summer of 2023 primarily to low wind speeds and 

a record-low mixed layer depth (MLD), partly due to a steady decline in MLD in recent decades. England et al., (2025) thus 470 

found the IMO regulations to have been minor contributors to the high SST anomalies over this period. Similarly, Guinaldo et 

al., (2025) suggested that the high SST anomalies in the region are a result of a rare event of internal variability at the current 

levels of global warming. Overall, studies vary in their estimates of how much of the warming in the North Atlantic region is 

directly attributable to the IMO2020 regulations. Our results suggest that short-term variability in the North Atlantic SSTs was 

responsible for a portion of the observed rise in GMST between 2022 and 2023, but whether this variability was influenced 475 

substantially by the IMO2020 regulations remains unclear.  

3.4 Indian Ocean Dipole 

We conclude with some additional comments on the contributions of the IOD to the anomalously high value of GMST 

observed in 2023. During the positive phase of IOD (pIOD) warm surface air conditions are observed in parts of Australia, 

Africa, Asia, South America and Europe (Saji and Yamagata, 2003; Saji et al., 2005; IPCC, 2021a; Andrian et al., 2024). 480 

Furthermore, IOD exhibits a positive skewness: that is, positive IOD events tend to have a stronger amplitude than negative 

events (Hong et al., 2008; Cai et al., 2012; Ogata et al., 2013; Cai and Qiu, 2013; Ng and Cai, 2016; An et al., 2023). In our 

model framework, we find a significant contribution of IOD to the high GMST anomaly in 2019 (Fig. 3p−r). The strong pIOD 

event in 2019 has been associated with the unusually hot and dry conditions in Southeastern Australia, that led to devastating 

wildfires in late 2019 (Wang and Cai, 2020).  485 

El Niño and pIOD events often co-occur (e.g. Sun et al., (2022)), such as in 2019 and 2023, and isolating the effects of 

IOD events from ENSO is challenging (Saji and Yamagata, 2003; Andrian et al., 2024). Here, we perform a simple correlation 

analysis between the surface air temperatures and IOD to provide a qualitative illustration of the effects of the 2023 ExpIOD 

on regional temperatures (Figs. S7−S9). In this section, we focus on the main conclusions of this correlation analysis, and 

provide a more detailed description of this analysis in our Supplement. We examined the correlation between the annual mean 490 

surface air temperature from the ERA5 reanalysis (Hersbach et al., 2020) and the COBE2 IOD index used in our simulations 

(Fig. S7a) over 1980−2024. We highlight four geographic regions (black boxes on Figs. S7−S9), where the correlation between 

the surface air temperatures and ENSO is limited (Fig. S9), but the correlation with IOD is high (Fig. S7a−b). These four 

regions are generally consistent with locations of high IOD influence described in prior literature (Saji and Yamagata, 2003; 

Saji et al., 2005; IPCC, 2021a; Andrian et al., 2024). As shown in Fig. S7c, these four regions experienced a considerable rise 495 

in the annual mean surface temperature in 2023 (positive IOD) relative to 2022 (negative IOD). In 2024 (neutral IOD), these 

regions experienced cooler, or similar surface temperatures relative to 2023. We repeated this correlation analysis for the 

August−October (ASO) season (Fig. S8), which corresponds to the largest 3-month mean contribution to GMST from IOD in 

2023 (Fig. 3p−r). During the ASO season, all of the highlighted regions experienced a significant rise in surface temperatures 
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in 2023 relative to 2022, and a subsequent decline in 2024 (Fig. S8c−d). This simplified correlation analysis reinforces our 500 

suggestion that the ExpIOD event in 2023 provided a significant contribution to the unusually high temperatures experienced 

that year. Further evaluation of this conclusion will require Earth System modelling that accounts for the various climatological 

impacts of strongly positive IOD events (e.g. Swapna et al., (2025)).  
Table 2: Modelled 50th percentile contributions of various anthropogenic and natural factors to the rise in annual mean GMST in 
2023 and 2024 relative to 2022, for the IMO−0.15 scenario. The columns labelled “Without IOD” correspond to simulations where 505 
the IOD was removed as a regressor from the model simulations.  

 ΔT relative to 2022 (50th percentile), ⁰C 

With IOD Without IOD 

Year 2023 2024 2023 2024 

IMO Regulations (IMO−0.15) 0.006 0.013 0.008 0.015 

Non-IMO anthropogenic 0.023 0.044 0.022 0.044 

ENSO 0.092 0.124 0.091 0.123 

TSI 0.025 0.029 0.025 0.029 

SAOD −0.003 0.005 −0.003 0.004 

PDO −0.001 −0.001 0.000 −0.001 

AMV 0.070 0.069 0.070 0.069 

IOD 0.075 0.053 0.000 0.000 

Total 0.287 0.336 0.213 0.283 

Observed (HadCRUT5) 0.308 0.367 0.308 0.367 

Residual 0.021 0.031 0.095 0.084 
 

We conclude our analysis by providing a summary of the contributing factors to the GMST anomalies observed in 2023 

and 2024. Table 2 shows the 50th percentile contributions of natural and anthropogenic factors to the rise in the annual mean 

GMST in 2023 and 2024 relative to the year 2022, for the IMO−0.15 scenario. We also show results from a second set of 510 

simulations, labeled “Without IOD” in Table 2, where IOD was removed as a regressor from the model. The removal of IOD 

as a regressor has virtually no impact on the contributions of the other factors, but results in an underrepresentation of the 

GMST during ExpIOD events, such as in 2023, as shown by the residuals given in Table 2. Other recent analyses of the factors 

that led to the record warmth in 2023 and 2024, such as WMO24 and F25, did not consider possible contributions from IOD. 

A reconstruction of the 2023 GMST anomaly given by WMO24 and F25 falls short of the observed anomaly by about 0.09 515 

⁰C. In contrast, their reconstructions of the 2024 GMST anomaly are in much better agreement with the observations. The 

impact of IOD highlighted in Table 2 may reconcile the gap between the estimated and observed GMST for 2023 reported by 

WMO24 and F25.  
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Finally, the human-induced rate of rise in GMST between 2022 and 2024 (without the effects of the IMO regulations) 

was found to be about 0.022 ⁰C yr−1, which corresponds to a decadal rate of 0.22 ⁰C decade−1 (Table 2). In contrast, the 520 

anthropogenic warming rate over 1975−2014 was found to be 0.19 ⁰C decade−1 (Sect. 3.1). The difference between these two 

rates is consistent with the acceleration of human-induced warming in this century (e.g. Samset et al., (2023) and Samset et 

al., (2025)). Importantly, the IMO−0.15 case corresponds to an additional acceleration of human-induced warming by about 

0.006 ⁰C yr−1 over 2023−2024. This value is about 30% of the GHG-driven anthropogenic rate, suggesting that the IMO2020 

regulations may be responsible for a considerable rise in the rate of human-induced warming since 2020.  525 

4. Conclusions 

Several factors may have contributed to the observed temperatures exceeding expectations in 2023 and 2024. In this 

paper, we use a multiple linear regression energy balance model (EM−GC) to quantify the influence of various natural and 

anthropogenic factors on the GMST in these years, including the reduction of sulfate emissions from international shipping 

starting in 2020. Our model is trained on 170 years of historical GMST data and 65 years of OHC measurements, and uses 530 

observed climate indices to simulate the impact of internal variability on GMST, thereby providing a quantification of warming 

due to various natural and anthropogenic factors. Therefore, our simulations provide observation-driven projections of the 

GMST anomaly in 2023 and 2024, and serve as a complementary modelling effort to simulations performed with ESMs, as 

well as EBMs calibrated using CMIP model output.  

We find that the IMO2020 regulations are responsible for an increase in GMST (ΔTIMO) of 0.028 ⁰C [0.025 to 0.031 ⁰C, 535 

5−95% range] and 0.043 ⁰C [0.038 to 0.046 ⁰C] from the start of 2020 to the end of 2024, for increases in ERF due to IMO2020 

of +0.1 and +0.15 W m−2, respectively. These values of ΔTIMO are in line with several other recent estimates (Jordan and 

Henry, 2024; Yoshioka et al., 2024; Watson-Parris et al., 2024; Gettelman et al., 2024). While the rise in GMST attributable 

to the IMO regulations likely corresponds to only a few years of global warming based on recent trends, this factor is found to 

have increased the rate of human-induced warming by up to 30% since 2020.  540 

We also find that GMST increased by about 0.092 ⁰C from 2022 to 2023 due to the shift from La Niña to El Niño 

conditions, which explains about one third of the observed rise in GMST between these two years. About 0.070 ⁰C [0.054 to 

0.094 ⁰C] of the rise in GMST from 2022 to 2023 is attributed to AMV; this value is considerably lower, only 0.008 ⁰C [−0.002 

to 0.018 ⁰C], when the high-frequency component of the AMV index is removed. We find that the removal of the high-

frequency component of the AMV index leads to an underrepresentation of GMST in mid-late 2023 and late 2024, which 545 

suggests that short-term variability in the North Atlantic SSTs may have been a significant factor that influenced the GMST 

anomalies observed in 2023 and 2024. Whether these changes in North Atlantic SSTs are a direct result of the introduction of 

the IMO2020 regulations remains unclear; better understanding of the internal and external drivers of North Atlantic SSTs is 

required to make a definitive attribution. Finally, our analysis suggests an additional contribution to the annual mean GMST 

anomalies in 2023 and 2024 (both relative to 2022) of 0.075 ⁰C [0.036 to 0.096 ⁰C] and 0.053 ⁰C [0.019 to 0.074 ⁰C], 550 
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respectively, due to a strong positive Indian Ocean Dipole event. Our study is the first to suggest a significant contribution 

from the Indian Ocean Dipole to the anomalously high values of GMST observed in 2023 and 2024.  

5. Data and Code Availability 

All data used as inputs of EM−GC are available from online resources. We have provided links to these datasets below. The 

compiled input files are also provided on Zenodo.org at 10.5281/zenodo.17228105 (Farago et al., 2025a). The EM−GC output 555 

files are also provided in this Zenodo repository.  

• Historical and SSP Radiative forcing: https://doi.org/10.5281/zenodo.5705391 

• NOAA GML GHG Concentrations: https://gml.noaa.gov/ccgg/trends/global.html, 

https://gml.noaa.gov/ccgg/trends_ch4/ and https://gml.noaa.gov/ccgg/trends_n2o/  

• TSI: https://www.ncei.noaa.gov/data/total-solar-irradiance/access/ancillary-data/tsi-ssi_v03r00_observed-tsi-560 

composite_s19780101_e20241231_c20250221.txt 

• GloSSAC SAOD: https://asdc.larc.nasa.gov/project/GloSSAC  

• NOAA PDO: https://psl.noaa.gov/pdo/  

• MEIv2 and MEI.ext ENSO: https://psl.noaa.gov/enso/mei/ and https://psl.noaa.gov/enso/mei.ext/  

• NOAA DMI: https://psl.noaa.gov/data/timeseries/month/DS/DMI/  565 

• COBE2 SST: https://psl.noaa.gov/data/gridded/data.cobe2.html  

• HadSST4: https://www.metoffice.gov.uk/hadobs/hadsst4/data/download.html  

• OHC Records: 

o Balmaseda: https://www.cgd.ucar.edu/cas/catalog/ocean/oras4.html  

o Carton: https://www2.atmos.umd.edu/~ocean/soda3_readme.htm  570 

o Cheng: http://www.ocean.iap.ac.cn/pages/dataService/dataService.html?navAnchor=dataService on 

11/13/2024  

o Levitus: 

https://www.ncei.noaa.gov/data/oceans/woa/DATA_ANALYSIS/3M_HEAT_CONTENT/DATA/basin/ye

arly/h22-w0-700m.dat  575 

o Ishii: https://www.data.jma.go.jp/gmd/kaiyou/english/ohc/ohc_global_en.html  

6. Author contribution 

EF updated the EM−GC model, performed the model simulations, conducted the data analysis and wrote the first draft of the 

manuscript. BB led the compilation of the SAOD dataset, assisted in the compilation of the IOD datasets, and participated in 

https://doi.org/10.5194/egusphere-2025-4865
Preprint. Discussion started: 6 November 2025
c© Author(s) 2025. CC BY 4.0 License.



21 
 

the review and editing of the manuscript. LM, AH and TC developed earlier versions of the EM−GC model and assisted in the 580 

review and editing of the manuscript. RS supervised the project and participated in the review and editing of the manuscript. 

7. Competing interests 

The authors declare that they have no conflict of interest. 

8. Acknowledgements 

We appreciate the financial support of the NASA Climate Indicators and Data Products for Future National Climate 585 

Assessments program during the early phase of this research effort. We thank Daniele Visioni for providing helpful comments 

on our preliminary results. 

9. Financial Support 

This research was supported by the National Aeronautics and Space Administration (grant no. NNX16AG34G).  

Appendix A: Two Layer Energy Balance Module  590 

In this Appendix, we describe the technical implementation of EBM−1 (Held et al., 2010; Geoffroy et al., 2013b) into 

the EM−GC model, the calibration of the EBM using observed time series of GMST and OHC, and the results of our 

benchmark simulations performed using the updated EBM component of our model. 

One weakness of the representation of Ocean Heat Export (OHE) used in earlier versions of EM−GC (Canty et al., 2013; 

Hope et al., 2020; McBride et al., 2021; Farago et al., 2025b) is that the temperature response to an abrupt change in ERF leads 595 

to an immediate response of GMST, similar to the “deep-layer model” formulation described in Gregory et al., (2015). The 

updated ocean module presented here provides a more realistic short-term temperature response to sudden changes in ERF, 

relative to previous versions of the EM−GC model, which were primarily used to quantify the long-term response of GMST 

to changes in ERF under various Representative Concentration Pathway (RCP) (Canty et al., 2013; Mascioli et al., 2012; Hope 

et al., 2020) and Shared Socioeconomic Pathway (SSP) scenarios (McBride et al., 2021; Farago et al., 2025b). 600 

A1 Implementation of EBM−1 in EM−GC 

The two-layer approximation separates the climate system into two layers, an upper layer of small heat capacity, 

representing the well-mixed layer of oceans, as well as the land and the atmosphere, and the lower layer, which corresponds 

to the deeper layers of Earth’s oceans. The atmosphere and the land are assumed to have a negligible heat capacity relative to 

that of the oceans, and therefore, the states of the upper and lower layers are described by Eqs. (A1) and (A2), respectively 605 
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(Geoffroy et al., 2013a; Geoffroy et al., 2013b). The exact mathematical formulation that describes the states of the two layers 

in the two-layer EBM differs between studies. Here and throughout, our formulation is based on  Eqs. (1) and (2) of Geoffroy 

et al., (2013a) and Eq. (7.SM.2.1) of Smith et al., (2021a). 

 

𝐶𝐶𝑢𝑢
𝑑𝑑𝑇𝑇𝑢𝑢
𝑑𝑑𝑑𝑑

= 𝐹𝐹 − 𝛼𝛼𝑇𝑇𝑢𝑢 − 𝛾𝛾𝛾𝛾(𝑇𝑇𝑢𝑢 − 𝑇𝑇𝑑𝑑)        (A1) 610 

𝐶𝐶𝑑𝑑
𝑑𝑑𝑇𝑇𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾(𝑇𝑇𝑢𝑢 − 𝑇𝑇𝑑𝑑)          (A2) 

 

In Eqs. (A1) and (A2), Tu and Td (units of K) represent the temperature anomalies of the upper, and the lower layer, 

respectively, relative to pre-industrial conditions. The quantities Cu and Cd are the effective heat capacities of the upper and 

lower layers per unit area (in units of J m−2 K−1), respectively. The quantity F is the effective radiative forcing of the climate 615 

(units of W m−2) relative to pre-industrial conditions, while α is the climate feedback parameter (in W m−2 K−1). The quantity 

γ is the heat transport coefficient between the two layers of the ocean (in W m−2 K−1). The dimensionless parameter ε represents 

the efficacy of the deep ocean heat uptake (Geoffroy et al., 2013a; Geoffroy et al., 2013b). The two-layer EBM described by 

Eqs. (A1) and (A2) is commonly termed EBM−ε.  

The EBM−ε representation can be simplified using the assumption that ε = 1 (Geoffroy et al., 2013b). This simplification 620 

leads to the formulation commonly referred to as EBM−1. As shown in Geoffroy et al., (2013b), the EBM−1 representation 

provides a highly similar temperature response to EBM−ε on the timescale of our simulations, but requires the calibration of 

one less parameter. Therefore, we implemented the EBM−1 representation into EM−GC and have assumed that ε = 1 

throughout this paper. Equations (A1) and (A2) are converted to a monthly time grid to match the temporal resolution of 

EM−GC as described below, and are then used to express the temperature anomalies of the upper (Tu) and lower ocean layers 625 

(Td). We consider the time series of the temperature anomaly of the upper layer (Tu) to be equal to ΔTANTH in Eq. (1). This 

treatment of OHE is consistent with earlier versions of the EM−GC model, which also assumed that the warming of the climate 

and the oceans are primarily driven by anthropogenic activity. 

Internally, EM−GC uses a time-invariant climate feedback parameter λΣ, which is the sum of all feedbacks (water vapor, 

lapse rate, clouds, etc.), except for the Planck-feedback (McBride et al., 2021; Farago et al., 2025b). The quantity λΣ relates to 630 

the climate feedback parameter α in Eq. (A1) such that α = λp−λΣ, where λp is the response of a black body to a perturbation in 

the absence of climate feedback (Bony et al., 2006), and has the value of λp = 3.2 W m−2 (McBride et al., 2021).  

To convert Eqs. (A1) and (A2) to a monthly timescale, we use the backward Euler method, which assumes that the change 

in the temperature anomalies between two timesteps (ΔTu and ΔTd for the upper and lower layers, respectively) are expressed 

as shown in Eq. (A3). We use the backward Euler method because this formulation is less sensitive to the size of the timestep 635 

and reduces numerical instability for stiff differential equations. 
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𝑑𝑑𝑇𝑇𝑢𝑢
𝑑𝑑𝑑𝑑

= Δ𝑇𝑇𝑢𝑢
Δ𝑡𝑡

= �𝑇𝑇𝑢𝑢,𝑖𝑖−𝑇𝑇𝑢𝑢,𝑖𝑖−1� 
Δ𝑡𝑡

𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑇𝑇𝑑𝑑
𝑑𝑑𝑑𝑑

= Δ𝑇𝑇𝑑𝑑
Δ𝑡𝑡

= �𝑇𝑇𝑑𝑑,𝑖𝑖−𝑇𝑇𝑑𝑑,𝑖𝑖−1�
Δ𝑡𝑡

    (A3) 

 

Consequently, Eqs. (A1) and (A2) are expressed on a monthly grid as shown in Eqs. (A4) and (A5), where i is the index of a 640 

given month, and Δt represents the length of each month, in units of seconds. 

 

𝐶𝐶𝑢𝑢(𝑇𝑇𝑢𝑢,𝑖𝑖 − 𝑇𝑇𝑢𝑢,𝑖𝑖−1) 1
Δ𝑡𝑡

= 𝐹𝐹𝑖𝑖 − 𝛼𝛼𝑇𝑇𝑢𝑢,𝑖𝑖 − 𝛾𝛾(𝑇𝑇𝑢𝑢,𝑖𝑖 − 𝑇𝑇𝑑𝑑,𝑖𝑖)      (A4) 

𝐶𝐶𝑑𝑑(𝑇𝑇𝑑𝑑,𝑖𝑖 − 𝑇𝑇𝑑𝑑,𝑖𝑖−1) 1
Δ𝑡𝑡

= 𝛾𝛾(𝑇𝑇𝑢𝑢,𝑖𝑖 − 𝑇𝑇𝑑𝑑,𝑖𝑖)        (A5) 

 645 

Rearranging Eqs. (A4) and (A5) to express the temperature anomalies of the upper and lower layers at a given time (Tu,i and 

Td,i, respectively) yields Eqs. (A6) and (A7): 

 

𝑇𝑇𝑢𝑢,𝑖𝑖 =
𝐹𝐹𝑖𝑖 + 𝛾𝛾𝑇𝑇𝑑𝑑,𝑖𝑖 + 𝐶𝐶𝑢𝑢Δ𝑡𝑡  𝑇𝑇𝑢𝑢,𝑖𝑖−1

(𝐶𝐶𝑢𝑢Δ𝑡𝑡  + (𝛼𝛼 + 𝛾𝛾))
         (A6) 

𝑇𝑇𝑑𝑑,𝑖𝑖 =
𝛾𝛾𝑇𝑇𝑢𝑢,𝑖𝑖 + 

𝐶𝐶𝑑𝑑
Δ𝑡𝑡  𝑇𝑇𝑑𝑑,𝑖𝑖−1

(
𝐶𝐶𝑑𝑑
Δ𝑡𝑡  + 𝛾𝛾)

          (A7) 650 

 

The expression of Tu,i in Eq. (A6) includes the value of Td,i; similarly, the Td,i in Eq. (A7) is a function of Tu,i. We define 

the values of Cu and Cd prior to the beginning of the simulation (see Sect. A3), while the time series of effective radiative 

forcing, F(t) and the climate feedback parameter α are considered using an ensemble method (Sect. 2.1.2). Consequently, for 

each ensemble member, a value of the parameter γ defines a pair of Tu−Td time series. This feature is highly similar to earlier 655 

versions of the EM−GC ocean module (Hope et al., 2020; McBride et al., 2021; Farago et al., 2025b), where a given value of 

the ocean heat transfer parameter defined the temperature anomaly time series of the upper layer of oceans for a given ensemble 

member. A key difference between the updated two-layer EBM component in comparison to previous versions of EM−GC, is 

that in earlier versions of EM−GC, the temperature of the upper layer was computed such that a fixed percentage of total OHC 

is retained in the upper layer of the oceans. Consequently, earlier versions of our model resulted in an immediate jump in 660 

modelled GMST when a step-forcing was applied, similar to the behavior of the “deep-layer model” formulation described in 

Gregory et al., (2015), thereby overestimating the short-term temperature response to sudden increases in ERF. The two-layer 

EBM component presented here improves the energy balance component of EM−GC to provide a more realistic short-term 

response to sudden changes in radiative forcing, while retaining the concept of the iterative loop used to quantify the ocean 

heat transfer parameter based on observations, that was used in earlier versions of the EM−GC model (Hope et al., 2020; 665 

https://doi.org/10.5194/egusphere-2025-4865
Preprint. Discussion started: 6 November 2025
c© Author(s) 2025. CC BY 4.0 License.



24 
 

McBride et al., 2021; Farago et al., 2025b). We present the observation-driven calibration of the ocean heat transfer parameter 

γ in Sect. A2.  

To compute Tu,i from Eqs. (A6) and (A7), we substitute Td,i from Eq. (A7) into Eq. (A6), which we then rearrange to 

express Tu,i as shown in Eq. (A8). 

 670 

𝑇𝑇𝑢𝑢,𝑖𝑖 =
𝐹𝐹𝑖𝑖+

𝐶𝐶𝑢𝑢
Δ𝑡𝑡𝑇𝑇𝑢𝑢,𝑖𝑖−1+

𝛾𝛾
𝐶𝐶𝑑𝑑
Δ𝑡𝑡𝑇𝑇𝑑𝑑,𝑖𝑖−1

(
𝐶𝐶𝑑𝑑
Δ𝑡𝑡+𝛾𝛾)

(𝐶𝐶𝑢𝑢Δ𝑡𝑡+(𝛼𝛼+𝛾𝛾)− 𝛾𝛾2

(
𝐶𝐶𝑑𝑑
Δ𝑡𝑡+𝛾𝛾)

)
        (A8) 

 

The expression of Tu,i shown in Eq. (A8) is only affected by various constants (γ,Cu,Cd,α and Δt), the value of radiative 

forcing in a given month (Fi), and the temperature anomalies of the upper and lower layers in the previous month (Tu,i−1 and 

Td,i−1, respectively). Using the initial conditions of Tu (t = 0) = Td (t = 0) = 0 K, and F (t = 0) = 0 W m−2, which correspond to 675 

the unperturbed state of the pre-industrial climate, the model computes the time series of Tu, which is then substituted into Eq. 

(A7) to obtain the time series of Td for a given value of the parameter γ.  

A2 Quantification of the ocean heat transfer parameter γ 

Here, we present the calibration of the ocean heat transfer parameter γ within the EBM−1 component of EM−GC, using 

the observed rise in GMST and OHC. Our calibration is different from the common method for the calibration of the two-layer 680 

EBM, which uses CMIP5/6 simulations, where the concentration of CO2 is abruptly quadrupled (hereafter termed abrupt4xCO2 

simulations) (Geoffroy et al., 2013a; Geoffroy et al., 2013b; Smith et al., 2021a). 

In earlier versions of the EM−GC model (Hope et al., 2020; McBride et al., 2021; Farago et al., 2025b), the ocean heat 

transfer parameter, which was termed κ in these papers, was quantified based on the observed rise in OHC, using an iterative 

cycle between the value of κ, and the temperature of the well-mixed layer of the ocean. The calibration of EBM−1 described 685 

here follows the same logic: the model runs an iterative cycle between the value of the parameter γ, and the pair of temperature 

anomaly time series Tu and Td. The heat capacities of the upper and lower layers (Cu and Cd, respectively) are pre-defined at 

the beginning of the simulation. We describe the setup of these two parameters in Sect. A3.  

The observed rise in OHC over a given period can be approximated using the slope of a linear fit to the observed OHC 

record (Ocean Heat Export, OHE) following Canty et al., (2013). Similar to Cu and Cd, OHE is also expressed per unit area of 690 

the oceans, and has the dimension of W m−2. The iterative cycle finds the value of the parameter γ that corresponds to the best 

match between the modelled and observed rise in OHC over the period where OHC data is available, as shown in Eq. (A9). In 

Eq. (A9), start and finish correspond to the first and last months of OHC data availability during the training period (1850 to 

2019) of the model. In this paper, we use OHC data starting in 1955, and therefore, start and finish correspond to January 1955 

and December 2019, respectively. The quantity tspn is the difference in time between start and finish, in the units of seconds.  695 
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∫ (𝐶𝐶𝑢𝑢
𝑑𝑑𝑇𝑇𝑢𝑢
𝑑𝑑𝑑𝑑

+ 𝐶𝐶𝑑𝑑
𝑑𝑑𝑇𝑇𝑑𝑑
𝑑𝑑𝑑𝑑

)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑 = 𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡       (A9) 

 

By substituting Eq. (A2) into Eq. (A9), we obtain Eq. (A10), which is then rearranged and converted to a monthly timescale 

to yield the expression of γ shown in Eq. (A11).  700 

 

∫ (𝐶𝐶𝑢𝑢
𝑑𝑑𝑇𝑇𝑢𝑢
𝑑𝑑𝑑𝑑

+ 𝛾𝛾(𝑇𝑇𝑢𝑢 − 𝑇𝑇𝑑𝑑))𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑 = 𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡      (A10) 

𝛾𝛾 = 𝑂𝑂𝑂𝑂𝑂𝑂 ×𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐶𝐶𝑢𝑢 × ∑  (𝑇𝑇𝑢𝑢,𝑖𝑖 − 𝑇𝑇𝑢𝑢,𝑖𝑖−1)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

∑ (�𝑇𝑇𝑢𝑢,𝑖𝑖−𝑇𝑇𝑑𝑑,𝑖𝑖�× Δ𝑡𝑡)𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

       (A11)  

 

An initial value of γ is used to compute the pair of Tu – Td time series using Eqs. (A6) and (A7), which are then inserted 705 

into Eq. (A11) to obtain a new value of γ. This iterative loop continues until a convergence is reached, or until the model fails 

to find a value of γ that is consistent with observed rise in OHC. Equation (A11) serves as an extension of Eq. (5) from McBride 

et al., (2021), and allows the quantification of the ocean heat transfer parameter γ within the updated two-layer EBM module 

of EM−GC, based on the observed rise in OHC.  

EM−GC simulations are constrained by the model’s ability to reproduce the observed rise in OHC through the use of a 710 

reduced chi-square metric, termed χ2
OCEAN. We compute χ2

OCEAN by using the time series of modelled and observed OHC in 

the upper 700 m of oceans, shown by the red and black lines in Fig. 1g, respectively. Similarly to earlier versions of the 

EM−GC model (Hope et al., 2020; McBride et al., 2021; Farago et al., 2025b), the total modelled OHC (left side of Eq. (A10)) 

in EM−GC is scaled to 70% of its value to obtain the modelled OHC in the upper 700 m of oceans, using the assumption that 

the upper 700 m of oceans hold 70 % of the heat (IPCC, 2007). This ratio is broadly consistent with Table 2.7 of the IPCC 715 

AR6 report (Gulev et al., 2021), which estimated that about 66% of total OHC was held in the upper 700 m of oceans over the 

1901 to 2018 time period.  

A3 Calibration of heat capacities 

In this section, we describe the setup of the effective heat capacities of the upper and lower layers of the two-layer EBM, 

termed Cu and Cd, respectively. Cu and Cd are expressed per unit area of the ocean, and have the dimensions of J m−2 K−1. 720 

Geoffroy et al., (2013a) and Geoffroy et al., (2013b) calibrated the two-layer EBM using the output of abrupt4xCO2 

simulations from a set of CMIP5 models. Geoffroy et al., (2013b) found the values of Cu = 7.3 W yr m−2 K−1 and Cd = 106 W 

yr m−2 K−1 based on the CMIP5 multi-model mean, which correspond to equivalent depths of 77 and 1105 meters. For the 

simulations presented in this paper, we use the same equivalent depths for the two layers within our model.  
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An important consideration for the implementation of EBM−1 within the EM−GC is the model’s sensitivity to the heat 725 

capacities of the two layers. Therefore, we performed a set of simulations to test the sensitivity of our model output to the 

values of Cu and Cd. We tested three values of Cu, combined with three values of Cd, for a total of nine simulations. The 

equivalent depths that correspond to these heat capacities are 50, 77 and 100 m for the upper layer, and 552, 1105 and 3600 m 

for the lower layer. These values were picked to represent a wide range of heat capacities, and to include pairings where the 

ratio of Cu to Cd is similar to that inferred from CMIP5/6 simulations.  730 

Figure A1 shows the values of AAWR for the λΣ−ERFAER ensemble across the nine benchmark simulations, in a manner 

similar to Fig. 2. The nine panels in Fig. A1 correspond to the nine combinations of equivalent depths for the two layers, as 

indicated in the individual panels. Similarly to Fig. 2, the colored regions in Fig. A1 correspond to values of AAWR as 

indicated by the color bars to the right, for combinations of λΣ and ERFAER,2019 that satisfy all three reduced χ2 constraints. We 

also provide computed values of the effective climate sensitivity (EffCS) and the parameter γ for the nine benchmark 735 

simulations in a similar manner in Figs. S4 and S5, respectively.  

 
Fig. A1: Values of AAWR as the function of climate feedback and ERFAER,2019 (Sect. 2.1.2), for nine different combinations of the 
equivalent depth of the upper (hu) and lower (hd) layers of the two-layer EBM. The 50th percentile and the 5−95% range of AAWR 
from the weighted ensemble are also given on each panel.  740 

Across the nine simulations, we find that the values of EffCS are generally consistent, while the range of AAWR is 

virtually identical. Therefore, while the estimated range of γ changes considerably depending on the heat capacities of the 
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upper and the lower layers (Fig. S5), the regression to the historical GMST and OHC record is largely unaffected (Figs. A1 

and S4). Finally, we performed simulations of the IMO−0.1 scenario (Sect. 2.2.2) for all nine benchmark depth combinations. 

We find a negligible difference in the impact of IMO2020 on the modelled GMST across the nine depth combinations. 745 

Consequently, the results presented in this paper are largely unaffected by the specific values of Cu and Cd. 

 
Fig. A2: Modelled GMST during an abrupt4xCO2 simulation performed with the updated EBM module of EM−GC (red). The solid 
line and the shading correspond to the 50th percentile, and the 5−95% range, respectively. The black lines represent abrupt4xCO2 
simulations from an ensemble of 28 CMIP6 models as described in McBride et al., (2021).  750 

The abrupt4xCO2 experiment was performed with the EM−GC EBM module using the same equivalent depths for the 

two layers (77 m and 1105 m for the upper and lower layers, respectively) as for the simulations described in the main paper. 

Figure A2 shows the time evolution of the GMST under abrupt4xCO2 conditions projected by EM−GC (red), and by an 

ensemble of 28 CMIP6 models from McBride et al., (2021). McBride et al., (2021) found that eight members of this CMIP6 

ensemble produces EffCS and AAWR consistent with EM−GC estimates, using an earlier version of EM−GC. These eight 755 

CMIP6 models are listed in Fig. S17 of McBride et al., (2021). There are nine CMIP6 models in Fig. A2, which produce a 

temperature response that is are within the range simulated by EM−GC: GFDL−ESM4; GISS−E2−1−G; GISS−E2−2−G; 

INM−CM4−8; INM−CM5−0; MIROC6; MIROC−ES2L; NorESM2−LM; NorESM2−MM. Eight of these models are the same 

as the ones in Fig. S17 of McBride et al., (2021). In addition to these eight models, the temperature response of the 

GISS−E2−2−G model was also found to be consistent with EM−GC in Fig. A2. 760 
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