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Section S1

Section 2.1 states that “The IOD term is not lagged, since the GMST anomaly found from a regression that removes the
contribution of all other natural and anthropogenic factors exhibits strongest correlation with the IOD index at zero lag time”.
We use the 50th percentile modelled GMST from a model simulation where IOD was removed as a regressor, which we
subtract from the observed GMST to obtain a time series of residuals. The square of the correlation coefficient (R?) between
these residuals and the lagged COBE2 IOD index used in our study (Sect. 2.2.3) is shown in Fig. S1, over 1851-2019 (Fig.
Sla) and 1940-2019 (Fig. S1b). The former time period matches the one that is used for the computation of y?atm (Sect. 2.1.2),
except for the year 1850, while the latter time period matches the timeframe that is used for the computation of y’recenT.

Section 2.2.6 states that “the time series for the uncertainty in the observed OHC is based on the 16 uncertainty computed
from the five datasets”. Using five OHC anomaly records (Levitus et al., 2012; Balmaseda et al., 2013; Ishii et al., 2017; Carton
et al., 2018; Cheng et al., 2024), we compute an annual average OHC anomaly time series for the 1955 — 2024 period, which
we then normalize to 1989. The year 1989 was chosen for this purpose, as this is the midway point of the 1955 to 2024 period.
To obtain an uncertainty time series for our average OHC dataset, we use the 1o standard deviation, computed from the five
OHC datasets, at a given time, or the value of the average standard deviation across the 1955 — 2024 time period, whichever
the greater. The average standard deviation between 1955 — 2024 is computed from the time series of the lo standard
deviations. From this average, we exclude the years 1988 to 1990, as these years have low values of standard deviation due to
the OHC anomalies having been normalized to 1989. The use of the long-term mean uncertainty to construct the OHC
uncertainty time series eliminates the low values of uncertainty in the late 1980s and early 1990s, which are an artifact of the
datasets having been normalized to 1989. Figure S2 shows the five OHC datasets (colors) used to construct our composite
OHC dataset (black), and the corresponding uncertainty time series (gray shading). Further information regarding our
formulation of OHC, and the use of the reduced y? metric for OHC, is given in Hope et al., (2020) and McBride et al., (2021).

As described in Sect. 2.1.2, we scale the time series of ERFagr by a constant multiplicative factor (s in Eq. (5)) to obtain
an ensemble of ERFagr trajectories. The ERF adjustment from IMO2020 is added to each time series for ERF4gr after this
scaling occurs.

Figure S3 shows the values of Effective Climate Sensitivity (EffCS) as the function of climate feedback and ERFagr.
Figure S3 is similar to Fig. 2 in the main paper, which shows computed values of AAWR in the same coordinate system.
Colored regions correspond to ensemble members that satisfy all three reduced > observational constraints, with the colors
corresponding to values of EffCS as indicated by the color bars to the right. The model setup used for the simulations in the
main paper corresponds to an EffCS of 2.63 °C [1.77 to 3.55 °C, 5-95% range]. These values are generally consistent with,
albeit slightly higher than the estimate of 2.29 °C [1.54 to 3.11 °C] obtained with an earlier version of EM—GC in Farago et

al., (2025), which was found to be well-aligned with recent estimates of EffCS from literature.
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Figures S4 and S5 show the EM—GC model output for the nine benchmark simulations that were used to test the
sensitivity of the two-layer EBM to the heat capacities of the upper and lower layers (Appendix A). Panels differ in the
equivalent depth of the upper (h,) and lower (hg) layers used for a given simulation. Figure S4 and S5 show values of EffCS
and the parameter y for the nine simulations, respectively, while the values of AAWR for the nine benchmark simulations are
shown in Fig. A1. The model setup used for the simulations in the main paper are shown in Figs. S4e and S5e.

Figure S6 shows the global SAOD from the GloSSAC dataset (Sect. 2.2.4) in black. To provide an estimate of SAOD
for 2024, we use a linear regression to the GloSSAC SAOD between July 2022 and December 2023 (dashed red line), which
is extrapolated to cover the year 2024 (solid red line).

Section 3.4 states that “Here, we perform a simple correlation analysis between the surface air temperatures and 10D to
provide a qualitative illustration of the effects of the 2023 ExpIOD on regional temperatures”. The results from our correlation
analysis are shown in Figs. S7—S9, and are described below. Figure S7a shows the correlation between the annual mean surface
air temperature from the ERAS reanalysis (Hersbach et al., 2020) and the COBE2 IOD index used in our simulations, over
1980—2024. This time period is generally consistent with the one used for the analysis of recent ExplOD events by Xie et al.
(2025). We use the 1980—2024 time period for the entirety of our correlation analysis. We also tested the correlations between
the ERAS surface air temperatures and a second IOD index, which was derived from the HadISST SST dataset (Rayner et al.,
2003) (Fig. S7b). Finally, we also performed the same correlation analysis using the surface air temperatures from the
MERRA2 reanalysis (Gelaro et al., 2017). Correlations from that analysis are highly similar to the ERA5-based results, and
we will hereafter focus on the ERAS-based correlation analysis. Figure S9 shows the correlation between the ERAS surface
air temperatures and the Nino 3.4 index derived from HadISST SSTs. Four key geographical locations are highlighted across
Figs. S7—S9, which correspond to regions where the correlation between surface air temperatures and ENSO is limited (Fig.
S9), but correlation with IOD is high (Figs. S7a—b and S8a—b). The four highlighted regions in South America, Europe, Asia
and South Australia are labelled SA, EU, AS and AU, respectively. We show the difference between the 2023 and 2022 annual
mean surface temperatures in Fig. S7c, while the difference between the 2024 and 2023 annual means are shown in Fig. S7d.
All four highlighted regions experienced a considerable rise in surface temperatures in 2023 relative to 2022, with the most
prominent rise being in the SA and AU regions. The positive IOD in 2023 progressively decayed into a neutral state by the
summer of 2024 (Fig. 3p—r). Surface temperatures declined in 2024, relative to 2023, in the SA region (Fig. S7d), while no
significant cooling is noticeable in the other three regions. Importantly, however, the annual mean surface temperatures shown
in Fig. S7c—d are influenced by positive IOD in early 2024 (Fig. 3p—r), before the decay of IOD to a neutral state. Therefore,
to better examine the effects of IOD on the surface temperatures in these four regions, we performed the same analysis for the
ASO season (Fig. S8), which corresponds to the largest 3-month mean contribution to GMST from IOD in 2023 (Fig. 3p—r).
In 2024, this three-month period corresponds to an IOD-neutral state. Over the ASO season, all four highlighted regions
experienced a considerable rise in surface temperatures in 2023 relative to 2022 (Fig. S8c). Furthermore, a clear decline in

surface temperatures is noticeable in all four regions in 2024, compared to 2023 (Fig. S8d).
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The figures for the above correlation analyses were generated using the Climate Reanalyzer tool hosted by the University

of Maine at https://climatereanalyzer.org/ (Climate Reanalyzer, 2025), with its content available under the Creative Commons

Attribution 4.0 International License.
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Figure S1: The square of the correlation coefficient (R?) between the lagged IOD index and the time series of residuals, which was
obtained by subtracting the 50th percentile modelled GMST from the HadCRUTS observations. The IOD was removed as a
regressor from the model simulation used for this purpose. (a) Values of R? over the 1851-2019 period. (b) Values of R? over

1940-2019.
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shading, respectively.
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(c).
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Figure S4: Values of EffCS as the function of climate feedback and ERFagr,2019 (Sect. 2.1.2), for nine different combinations of the
equivalent depth of the upper (hu) and lower (ha) layers of the two-layer EBM. The S50th percentile and the 5—95% range of EffCS
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Figure S5: Values of the parameter y as the function of climate feedback and ERFgr,2019 (Sect. 2.1.2), for nine different combinations
of the equivalent depth of the upper (hu) and lower (hq) layers of the two-layer EBM. The 50th percentile and the 5—95% range of
the parameter y from the weighted ensemble are also given on each panel.
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SAOD between July 2022 and December 2023.
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Figure S7: (a) Correlation between the COBE2 10D index and the annual mean surface temperatures from the ERAS reanalysis
105 over 1980-2024. Correlations are plotted at a 90% confidence interval. (b) As in (a), but using an IOD index computed from
HadISST SSTs. (¢) Annual mean surface air temperatures from the ERAS reanalysis in 2023, relative to 2022. (d) As in (c), but with
the difference between the 2024 and 2023 annual mean surface temperatures being shown. Black boxes correspond to four
highlighted geographical regions (see text). All plots generated using the Climate Reanalyzer tool hosted by the University of Maine

at https://climatereanalyzer.org/ (Climate Reanalyzer, 2025).
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Figure S8: As in Fig. S7, but for the ASO season (see text). All plots generated using the Climate Reanalyzer tool hosted by the
University of Maine at https://climatereanalyzer.org/ (Climate Reanalyzer, 2025).
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Figure S9: Correlation between the Nino 3.4 index derived from HadISST SSTs, and the annual mean surface temperatures from
the ERAS reanalysis over 1980—2024. As in Fig. S7a, but for the Nino 3.4 index. All plots generated using the Climate Reanalyzer
tool hosted by the University of Maine at https://climatereanalyzer.org/ (Climate Reanalyzer, 2025).
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