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Abstract. Spotting, the process by which burning firebrands are lifted by convection and transported downwind igniting
secondary fires. Spotting can become a critical driver of rapid wildfire spread and presents major challenges for prediction and
suppression. Coupled fire—atmosphere models, which simulate the two-way interaction between fire behaviour and local
atmospheric dynamics, offer a promising avenue to capture such complex processes. In this study, we introduce a
computationally efficient Eulerian formulation for firebrand transport and spotting, implemented within the coupled MesoNH—
ForeFire modelling framework. Two case studies were analysed: an idealized scenario over flat and hilly terrain to assess wind
influence, and a realistic simulation of the 2016 Mt Bolton wildfire in southeastern Australia. The model captured key spotting
dynamics and fire spread patterns, producing realistic downwind distances with spot fire timing that slightly preceded
observations. A full 8-hour forecast, including spotting, simulates in just less than 3 hours, without optimization. Results
demonstrate that this simplified approach provides a credible and time-efficient spotting forecast, supporting its potential for

operational wildfire modelling and decision-making.
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1 Introduction

During a wildfire, bark fragments, needles, and branches can ignite and detach from trees, creating firebrands or embers. These
firebrands can be lifted by the plume and transported, travelling beyond the main fire, and igniting new fires. This process,
known as spotting, complicates fire control, especially with medium and long-range spotting (Koo et al., 2010). Following the
definition from Cruz et al. (2015), medium range spotting refers to spot fires located at distances between 750 m and 5,000 m,
and long-range spotting refers to spot fires located at distances greater than 5,000 m. In both cases, it refers to spot fires that
are not overrun by the main fire front. The challenge of predicting the final distance and direction over which firebrands might
land and ignite the fuel bed has been the focus of many experimental and numerical studies (Albini, 1979; Albini et al., 2012;
Kepert et al., 2024).

Firebrand transport has been investigated through three principal modelling frameworks: Lagrangian firebrand
modelling, mathematical analogue models (similar to the classification offered by (Sullivan, 2009)), and Eulerian approaches.
Lagrangian models calculate the trajectories of individual firebrands to estimate parameters regarding the maximum travelled
distance, horizontal displacement, and ground landing densities. Early models from (Albini, 1979, 1983, 1981; McArthur,
1967; Noble et al., 1980) offer an estimation of the maximum spotting distance under specified fuel and weather conditions.
More complex simulations, however, require accurate wind flow characterization, often prescribed using semi-empirical
relationships such as the logarithmic wind profile (Bhutia et al., 2010; Himoto and Tanaka, 2005; Oliveira et al., 2014; Sardoy
et al., 2007, 2008). More advanced Computational Fluid Dynamics (CFD) and Large Eddy Simulations (LES) have also been
used to calculate realistic wildfire plumes in order to compute firebrand trajectories (Alonso-Pinar et al., 2025a; Cervantes,
2023; Thomas et al., 2020; Thurston et al., 2017). These models have provided insights on the spotting distance, the impact of
turbulence, and the implications of physical and numerical models to describe the firebrand trajectories. However, they are
numerically expensive due to the requirement of a relatively small timestep, and a large number of firebrands to obtain
statistically robust outcomes. To address this, Frediani et al. (2025) proposed a parametrization approach to model individual
firebrands advected by the wind flow. Their results show that accounting for spotting increased the overall accuracy of wildfire
behaviour simulations.

Spotting parametrizations have also been developed using mathematical analogue models, such as cellular automata
models (Lopez-De-Castro et al., 2024). The parametrizations are often informed by firebrand distributions fitted on Lagrangian
simulations (Sardoy et al., 2008). For example, the spotting model proposed by Trucchia et al., 2019 also made use of a log-
normal distribution to generate spot fires. In doing so, they developed a stochastic formulation intended for operational wildfire
simulators. More recently, Kepert et al., 2024 have provided a novel parametrization of a firebrand transport model based on
simulations of Lagrangian particles within high-resolution LES simulations of wildfire plumes. These models are
computationally efficient, but they do not represent all physical phenomena due to the differences in terms of spatial and

temporal scales.
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High-fidelity modelling approaches that resolve all six degrees of freedom may be appropriate for small-scale
simulations like (Anand et al., 2018; Wadhwani et al., 2021) or analyses of individual firebrand trajectories linked to specific
spot fires (Lareau, 2025). However, such complexity and computational cost is generally impractical for coupled Fire-
Atmosphere models intended for real-time or faster-than-real time wildfire forecasting (Alonso-Pinar et al., 2025a; Oliveira et
al., 2014). To overcome this limitation, the Eulerian approach that transports a firebrand concentration field on a grid by using
a diffusion-advection equation can be used. To the knowledge of the authors, this approach has been used in a wildfire context
only by (Qin and Trouvé, 2025) to transport firebrands in a bidimensional landscape using a stochastic approach to derive the
ember flight distance. The Eulerian approach has the advantage of being simpler to implement numerically and faster to
calculate, as it can be computed simultaneously with the coupled fire-atmosphere simulation. This method also allows the
inclusion of physical processes, such as the firebrand combustion and associated reduction in firebrand mass, or the mixing of
firebrands from different sources. Similar methodologies have been successfully employed in the transport of relatively heavy
particles, such as pollen (Dupont et al., 2006) or volcanic ashes (Costa et al., 2006).

Coupled fire—atmosphere models have been designed to enhance the understanding of large-scale wildfire behaviour
and to inform operational fire-management strategies (Filippi et al., 2018; Kochanski et al., 2021, 2016, 2011). These models
have demonstrated applicability across a broad spectrum of spatial scales, spanning from grassland fires (Filippi et al., 2013;
Kochanski et al., 2011) to very large wildfires (Filippi et al., 2018; Kochanski et al., 2013; Peace et al., 2023, 2022, 2016).
Moreover, they have effectively captured specific terrain influences on fire spread (Simpson et al., 2014, 2013), complex
dynamic fire behaviours (Thomas et al., 2017), and the formation of highly convective plumes (Couto et al., 2024). Despite
these advances, current implementations do not yet incorporate parametrizations for firebrand transport or the broader spotting
phenomenon.

In the present study, we aim to introduce a simple Eulerian model that describes the spotting phenomena. The main
goal is to introduce and verify the model using both idealized and realistic case studies. The Eulerian model is first verified
using idealized wildfire simulations. It is then validated against the Mt Bolton wildfire in southeastern Australia, described in
detail by McCarthy et al. (2018). The fire was chosen for its unique extensive observational dataset, which allowed for thorough
model verification and evaluation. The paper is organized as follows. Section 2 introduces the modelling framework and the
simulation setup. Section 3 presents the results obtained for both the idealized and real simulations. Finally, the results from

the idealised simulations and the Mt Bolton fire are discussed in section 4.
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2 Methods

2.1 Coupled Fire-Atmosphere framework

The atmospheric simulations in this study were performed using the coupled Fire-Atmosphere model MesoNH-
ForeFire (Filippi et al., 2011; Lac et al., 2018), version 5-7-2. Meso-NH is an anelastic and non-hydrostatic meso-scale
model (Lafore et al., 1998) that can be used in a large set of spatial scales, resolving weather phenomena ranging from
characteristic lengths of 10 m to 10,000 m. Meso-NH is used in a Large Eddy Simulation (LES) configuration, resolving the
large structures from the wind flow perturbed by the surface fire. Wind velocities are transported by a 4th order centered
scheme, and the other variables (potential temperature, TKE, mixing ratios) by the PPM scheme (Piecewise Parabolic
Method from (Colella and Woodward, 1984)). Temporal derivatives are computed following a 4th order Runge-Kutta
centered scheme. Finally, the turbulence parameterization is based on a 1.5-order closure with a prognostic equation for the

3D Turbulent Kinetic Energy (Lac et al., 2018).

ForeFire is a fire spread model that calculates the temporal evolution of a fire front using Lagrangian markers. The
model takes into account terrain slope, fuel spatial arrangement and fuel combustion parameters, and surface winds coming
from Meso-NH (Filippi et al., 2009). At each atmospheric timestep, ForeFire outputs heat and vapor fluxes to the
atmospheric model. The rate of spread is calculated using the Rothermel model (Rothermel, 1972). We acknowledge that the
Rothermel model was developed for, and is typically applied to, Northern Hemisphere coniferous forests, but our analysis

focuses on ForeFire’s performance in spotting transport rather than firebrand generation or forward rate of spread.

2.2 Firebrand modelling

The following paragraphs describe how spotting is modelled within MesoNH-Forefire.

2.2.1 Firebrand transport

In the Eulerian model, firebrands are considered as a continuous concentration field. Its spatiotemporal evolution is
described by a diffusion-advection conservation equation (1). Where p,..r is the reference air density, C_i is the concentration
of the i-th firebrand class, U is the wind flow and Si is the source and sink terms (corresponding to the injection and deposition
of firebrands). The equation is written for a general number of firebrands (index i), as the modelling options could include

multiple types of firebrand densities, or different firebrand states (burning and non-burning firebrands, for instance).

A(prerCi
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The advection of the firebrand concentration field is calculated using the piecewise parabolic method (PPM).
Specifically, the PPM scheme used here incorporates the flux limiter (Skamarock, 2006). When using this scheme in Meso-
NH, numerical diffusion of the scalar field is not activated to prevent damping of well resolved extrema (Lac et al., 2018). The
source term includes the turbulent diffusion.

Firebrand concentration and air parcel relative velocity is represented by the addition of a vertical terminal velocity
to the wind flow (Tarifa et al., 1967, 1965; Thomas et al., 2017). In this study, the Eulerian model accounts for a single
firebrand species with a mean vertical terminal velocity given by equation 2. Using g=9.81 m.s%, py= 350 kg.m?, pypm= 1.2
kg.m?3, and an adjustment factor lambda 0.0023, the resulting terminal velocity was 3.2 m.s"!. Rotational impacts and

aerodynamic lift are neglected.

A 2)

2.2.2 Firebrand injection

Firebrand generation is a complex phenomenon that has been modelled only for twigs and branches (Barr and
Ezekoye, 2013). Empirical data on firebrand generation remains sparse, with limited experimental or field observations
available (Filkov et al., 2017). In the present study, firebrand injection into the atmosphere is prescribed as a firebrand mass
flux (in kg.m2.s!), originating from the bottom ground level of the atmospheric model. Injection is assumed to occur over a
fixed duration of 60 seconds, during which firebrand mass flux is held constant at 1 kg.m™.s™!. Finally, a time lag is introduced
between the fire front reaching a given grid cell and the initiation of the firebrand injection. The delay time is set to 30 seconds,
based on Fig. 7 from (Filkov et al., 2017), where firebrand detection follows an increase in the mean wind value, representative
of the fire front arrival.

The numerical implementation relies on ForeFire (Filippi et al., 2013) and is designed to remain flexible for future
extensions. For instance, variables such as fire intensity or local turbulent kinetic energy could be incorporated to control the
firebrand mass flux, along with fuel type, injection duration, and time delay. These relationships could be derived from
laboratory studies (Ju et al., 2023), field observations (Filkov et al., 2017), or inverse analysis using CFD simulations
(Wickramasinghe et al., 2022).

2.3 Simulation setup

An idealized simulation was first conducted using Meso-NH - ForeFire. The objective was to investigate the results of the
Eulerian model on two different idealized topographies: a flat and a hill terrain. Fire progression is fixed, and the feedback
from the atmosphere into the fire is not accounted for. The fuel bed was assumed homogeneous with a nominal heat flux of 80

kW.m™. Open boundary conditions were selected for all configurations. Atmospheric conditions were spun-up using a
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simulated atmospheric profile, specifying wind speeds and dry potential temperatures at two distinct heights: 100 meters and
150 meters. The wind is assumed to be purely horizontal, with the 100-meter wind (10 m.s™! in this study) serving as the
reference. The computational domain is 28.8 km by 14.4 km by 15.8 km with a horizontal resolution of 80 m (Baggio et al.,
2022). More details regarding the model configuration and numerical settings can be found in (Alonso-Pinar et al., 2025b,
2025a).

A second simulation was conducted to reproduce the Mt Bolton fire (McCarthy et al., 2018). The vertical grid consists
of 50 levels, gradually stretching from 30 m at the bottom, to 900 m at the topmost grid cell, following previous studies from
(Couto et al., 2024; Baggio et al., 2022). The simulation was performed with three nested grids using a two-way coupling.
Boundary conditions of the large domain were initialized with ERAS dataset every hour (Hersbach et al., 2023). The simulation
spin-up was done from 08:00 to 13:00, leaving enough time to initialize the smallest domain. The large domain is of size 120
by 120 cells and a horizontal resolution of 2000 m. The second domain is of size 150 by 150 cells and resolution of 400 m,
and the third domain containing the wildfire is of size 150 by 150 cells and resolution of 80 m. Model outputs were saved
every 20 seconds for the small domain, every 120 seconds for the medium domain and 300 seconds for the large domain. The
smallest domain is centered on the point of coordinates (-37.413, 143.746) and contains the whole fire burnt perimeter on its
north west quadrant, providing enough space to capture the details of the fire generated plume. The wildfire was coupled
exclusively to the innermost domain, however, scalar fields representing fire-induced fields (firebrand mass concentration or
plume smoke) were advected across all domains. In the large domain, the numerical timestep is set to 10 seconds, and the one-
dimensional sub-grid turbulence parametrization follows the length-scale formulation of (Bougeault and Lacarrere, 1989). For
the two smaller domains, the three-dimensional sub-grid turbulence parametrization is given by the Deardorff mixing length
(Cuxart et al., 2000).

Fuel description is derived from the EU Land Cover at a 10 m spatial resolution (Copernicus Land Monitoring Service
and Copernicus Land Monitoring Service Helpdesk, 2020). Four main fuel classes were identified: grassland, forest, artificial
surfaces and constructions, and water bodies. Although a refined fuel description is necessary for detailed fire-progression
simulations, this was considered beyond the scope of a study aimed primarily at demonstrating the Eulerian formulation. In
Meso-NH - ForeFire, the fire model continues to burn as long as there is available fuel in its propagation direction. Suppression
actions during the Mt Bolton fire, which aimed to limit fire progression, were not included in the simulations presented here,
even though they could be modelled. Consequently, the available combustible fuel was limited to the burn area of the observed
fire: all fuels outside this perimeter were classified as “artificial surfaces” to stop the fire progression such that the spotting
transport process could be evaluated in isolation.

Flame residence time was fixed to 250 seconds with a nominal heat flux of 60 kw.m™. The nominal vapor flux was
set to 0.005 kg.m2.s”', resulting in a total mass to be vaporized of 1.25 kg.m™. The firebrand injection flux was set to 1.0 kg.m"
25! for the forest fuel class and to 0.0 kg.m?.s™! for the grassland fuel class. The fire was initialized as a point ignition at
coordinates (-37.37148, 143.70531) and at 23 February 2016 13:15 AEDT local time (23 February 2016 02:15:00 UTC time).

Fire propagation was governed by local winds and topography, but the fuel map was constrained to the extent of the final burn

6
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perimeter. A separate simulation was performed without fire propagation, to analyse the impact of fire on the atmospheric

circulations.

The Mt Bolton namefiles are published accompanying the MesoNH-ForeFire repository as an open-source dataset.

The simulation setup is summarized in Table 1.

Table 1 — Parameters used to configure Meso-NH

Simulation parameter Value
Large domain - Number of grid 120 x 120 x 50
points DX =DY=2000 m
Medium domain - Number of grid 150 x 150 x 50
points DX =DY=400 m
Small domain - Number of grid 150 x 150 x 50
points DX =DY=80 m
Time step 10 seconds for large domain

2.5 seconds for medium domain

0.625 seconds for small domain

Boundary conditions Open for all 4 lateral surfaces.
Initialization using ERA-5
reanalysis.

Turbulence configuration 1D for the large domain. Turbulence
parametrization comes from

(Bougeau and Lacarrere, 1989).
3D where the turbulent mixing length
is equal to the cubic root of the grid

volume. Turbulence parametrization

comes from (Cuxart et al., 2000).

2.4 Mt Bolton fire overview and observational data
A short overview of the fire behaviour and dynamics is given below. A more complete and detailed description can be found

in the study of (McCarthy et al., 2018). The Mt Bolton fire was first reported at 13:45 LT (Local Time) and burnt 126-ha
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during the first 30 minutes. The fire initially propagated fast through heterogeneous patches of mixed stubble, grass, and
eucalypt woodland areas within the 14:15 LT perimeter (see Figure 3). Later, winds shifted from north-westerly to westerly,
changing the fire direction and redirecting it through a more continuous eucalypt woodland fuel (with dominant Eucalyptus
obliqua and sub-dominated Eucalyptus rubida) mixed with small pine forest blocks within the 14:33 LT perimeter (see Figure
3). During this phase, the fuel supported intense short range (less than 1 km) spotting and increased the fire rate of spread to 7
ha/min. Between 14:33 and 15:30 LT, the fire rate of spread reduced to 4 ha.min™'. Fire spread accelerated again between 15:30
and 16:30 LT, reaching 5 ha.min"!, with reported spotting activity likely originating from the top of the hill. Post field surveys
identified eight distinct long distance spot fires that occurred outside of the final burn perimeter, with the most distant spotfires
located 6 km from the fire front.

The fire perimeter was estimated by the Country Fire Authority (CFA) ground observer teams at 14:15 and 15:30 LT.
Aerial observations recorded the fire perimeter at 14:33, followed by multispectral line scans at 16:30 and 18:30. The resulting
fire progression is shown in Figure 3.

Detailed measurements of the fire plume were done with a mobile dual-polarized Doppler X-band radar, referred to
as UQ-XPOL (Soderholm et al., 2016). UQ-XPOL was deployed to the Mt Bolton fire at 13:45 LT, approximately 5 km to the
west of the fire location (see Figure 3a for the scan bearing line). UQ-XPOL was set to conduct scans in Range Height Indicator
(RHI) mode, capturing vertical cross sections of the plume along a given azimuth. Data starting at 15:15 until 16:15 LT were
used here as the radar azimuth was perfectly aligned along the wildfire plume azimuthal axis. Within the scope of this study,
radar echoes are used to assess the simulated convective plume, and the segmentation of polarimetric radar data (Guyot et al.,
2023) is used to assess the plume contents, distinguishing hydro- and pyro-meteors as presented in (McCarthy et al., 2020).
Wind flow velocities were also derived by comparing two successive frames of the measured reflectivity over the scan duration.

Although the final burnt perimeter of the Mt Bolton fire was relatively small, the event exhibited several
characteristics of extreme fire behaviour (Peace et al., 2022; Werth et al., 2011), making it a valuable case for verification
studies. During certain periods, the wildfire demonstrated intense crown fire activity, which produced convective plumes and

generated multiple spot fires.

2-5 Verification of the model

The transport model was verified on a set of idealized experiments with a fire forcing the atmosphere in two different idealized
topographies: a flat terrain and a hill terrain. The Eulerian model is compared against a Lagrangian model that contains a
description of the firebrand aerodynamic and combustion behaviour (Alonso-Pinar et al., 2025a). To describe the acrodynamics
effect, the drag model from (Haider and Levenspiel, 1989) is chosen. The combustion model from (Oliveira et al., 2014) was
chosen to calculate the size reduction of the firebrand. To perform the comparison, longitudinal and horizontal travelled
distances are compared between the two models and the Fraction Skill Score, a measure of the spatial and intensity accuracy

of a model, is used to conclude (Roberts and Lean, 2008). In both cases, firebrands were injected from the same area
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(Lagrangian firebrands’ initial position was randomized following (Alonso-Pinar et al., 2025a)) and during the same time
interval (firebrands were injected from 18,000 seconds until 18,600 seconds since the beginning of the simulation).

225 The model is then verified based on the simulations of Mt Bolton wildfire. Firebrands were injected using the
parametrization explained in sections 2-2-2 and 2-3. A comparison is then performed between the actual spot fires produced
during the wildfire event and the ground landing densities of firebrand mass flux obtained as a cumulative function of time. A
choice was made to group values every 30 minutes. This choice results from striking a balance between the atmospheric and
firebrand transport dynamics and a time interval that can be useful in an operational context. All times reported are in Australian

230 Eastern Daylight Time (LT; UTC+11), which accounts for daylight saving.
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3 Results

3.1 Idealized cases

The firebrand accumulated and normalized mass ground landing distribution for the Eulerian and Lagrangian models is
presented in Figure 1. Fig. 1a shows the results for the flat terrain and Fig. 1b shows the results for the hilly terrain. For the
Eulerian model, values lower than 10 kg were set to 0 to simplify the figures and the corresponding analysis.

Results for the flat terrain show that the distribution shapes are similar, with most of the firebrands landing near the
injection point. From 5.0 km to 7.5 km, the distribution of firebrands follows a narrow column of constant width. After this,
firebrands land within a cone that expands laterally in the streamwise direction. Maximum longitudinal travelled distance is
14.8 km and 15.0 km, and the maximum lateral spread is 1.8 km and 2.0 km, respectively, for the Lagrangian and Eulerian
models.

Regarding the hilly terrain, the ground mass distribution shapes show some differences between 10.0 km and 15.0 km
with a wider spread for the Eulerian results. However, the longitudinal and lateral spread are similar between 15.0 km and 22.5
km and the general shape of the ground mass distribution are comparable for both models. Maximum longitudinal travelled
distance is 18.6 km and 18.4 km, and the maximum lateral spread is 1.7 km and 1.9 km, respectively, for the Lagrangian and
Eulerian model.

For both terrains, the shape corresponds to a bimodal distribution with a first peak located near the injection point
(located at approximately 4.8 km longitudinally) and a second peak located at approximately 7.5 km and 10 km longitudinally
for the Lagrangian and Eulerian models, respectively. Although the shape obtained with the hilly terrain is also bimodal, its
tail reaches greater distances longitudinally.

Regarding the computational cost, the Lagrangian approach requires to calculate the atmospheric wind flow
(approximately 60 minutes, with 280 processors) and then calculate the firebrand trajectories (approximately 10 hours), while
the Eulerian approach calculates both at the same time in an approximate computational time of 70 minutes with 280

processors.

10
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Figure 1 - Landing normalized mass densities of the Lagrangian (orange contours) and Eulerian (blackgrey lines) model for values
0.01, 0.1, 1, 10, 100 and histogram of longitudinal (top) and axial (right) landing densities, for the flat terrain (a) and for the hill
terrain (b).
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Figure 2 - Fraction Skill Score (FSS) as a function of the spatial scale (the number of neighbour cells) for different ranges of firebrand

cumulated mass on each cell (thresholds), for the flat terrain (a) and for the hill terrain (b).

The Fraction Skill Score (FSS) is presented in Figure 2. FSS provides a measure of the forecast skill (in this case the

Eulerian approach) against spatial scales for a given threshold intensity (Roberts and Lean, 2008). The score has a range

between 0 (zero skill forecast) and 1 (perfect skill forecast). In this study, in both cases, FSS is higher for higher threshold

values and decreases for lower values. Across all thresholds and spatial scales greater than 1, FSS values are above 0.7. At the

12
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highest threshold of 1, the FSS values are higher for the flat terrain compared to the hill terrain values. For the other intensity
thresholds, the FSS values are higher for the hill terrain compared to the flat terrain values. Overall, FSS values at scales of 3

or 5 cells, can be considered as satisfactory, implying that the Eulerian formulation matches the Lagrangian results at scales
of 240 to 400 m.

3.2 Mt Bolton wildfire

3.2.1 Fire progression

A comparison between the observed fire progression and the simulated fire perimeters from the coupled simulation is presented
in Figure 3. During the early stages of the event, corresponding to the 14:15 and 14:33 perimeters, the simulated fire
progression is slower than the observed fire progression and the burnt perimeter is smaller. Indeed, the observed fire has
already reached the limit of its mapped longitudinal spread (north-south axis) and has begun progressing towards the east. This
is not captured in the simulation, where the fire is still progressing towards the south. In the simulation, the wind shift starts at
approximately 15:02 and ends at 15:26. At the 15:30 perimeter, the observed fire progressed towards the east, and the
simulation also showed this behaviour. However, a discrepancy remains in terms of fire spread rate. The 15:30 simulated fire
perimeter is behind the actual 15:30 fire perimeter by an estimated distance of 0.5 km. At the 16:30 linescan, the observed fire
progression is close to its final burnt area. The simulation results still present a time delay, with fire perimeters behind the

actual fire progression.

13
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Figure 3 — Comparison of actual fire contours as provided by the CFA (in dashed lines) and the simulated fire progression through

Meso-NH - ForeFire (filled coloured contours).

3.2.3 Plume behaviour
This section presents the simulated plume evolution and its behaviour during the event. Model results are evaluated against
visual observations and radar measurements. Specifically, the atmospheric model computes the liquid mixing ratio within a
given atmospheric grid cell defined as the sum of the rain drops ratio and cloud droplets ratio as parametrized by the ICE3
microphysics scheme (Caniaux et al., 1994; Pinty et al., 2001). This provides an indication of liquid water content and can be
directly compared to radar measurements. In addition, simulated TKE contours are used to identify and locate the regions of
high turbulence within the plume.

The simulation reveals three distinct periods of intense pyroconvective activity associated with plume development:
from 14:13 to 14:31; from 14:53 to 15:48; and from 16:06 to 16:25. These phases are characterized by the development of a
large convective plume above the fire perimeter. During the first convective period, the plume centreline ascends to
approximately 1.5 km above ground level (AGL) with the maximum plume height reaching 2.5 km. The second episode of
intensive convective plume activity starts shortly before the wind shift (starting at 15:02 in the simulation). During this period,

the plume centreline ranges from approximately 1.5 km at the beginning to 3.0 km at the end, with the plume height reaching
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5.0 km at its highest activity. Finally, the third period corresponds to a situation where the wind has already shifted to the west.
In this case, the plume centreline goes up to 2.0 km AGL, and the plume maximum height reaches 3.0 km. Figure 4 shows the
plume shape (represented by clipped values of a passive scalar tracer) at 15:30 with the wind in the Y direction, and Figure 5
310 shows a photo of the fire plume at 15:40. Large entrainment wind values are seen in the simulation, reaching values up to 15

m.s™.

315

Figure 5 — A picture of the plume at 15:40 LT captured by the CFA ground team (McCarthy et al., 2018).
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The UQ XPOL portable weather radar was deployed and able to capture cross sections of the plume centreline (RHI)
during this period (McCarthy et al., 2018). McCarthy et al. (2020) conducted a classification of the polarimetric radar echoes
within the fire plume using a Gaussian Mixture Model (GMM) approach that enabled the separation of hydro- and pyro-
meteors (McCarthy et al., 2020). The results of the segmentation are presented in Figure 6a (at 15:15) and 7a (at 15:42), where
GMM classes of values 7 and 8 represent the pyrometeors in an ascending or falling mode. Figures 6b and 7b present a side
view of the simulation with the same angle as the radar scan bearing line but located 1 km to the south. Figures do not
correspond to the same timestamps as the radar observations, but both are extracted at the same time delay of 29 minutes after
the radar observations. The spatial and temporal translation was done to overcome the differences of fire progression between
the observed and the simulated fire as presented in Figure 3.

In both Figure 6a and Figure 7a, suspended water is present. Based on the GMM classification, pyrometeors are lifted
at heights between 1 to 3 km AGL occupying the central region of the plume. Longitudinally, pyrometeors are transported up
to 5 km (from 5.0 km to 10.0 km), corresponding to the reported spot fire distances during the fire. Water content at high
altitudes shows that the plume developed into a pyrocumulus cloud (pyroCu). In Figure 6a, water content is detected at
distances between 10 and 15 km from the radar location, and falling rain is detected between 25 to 27 km from the radar, as
identified by the classes 1, 2 and 5. The plume is bent over and ascends to 4.0 km AGL. A small puff appears at a distance of
9.0 km, locally increasing the plume height up to 5.0 km AGL. Figure 6b shows a side view of the simulation scalar fields in
the atmosphere at 15:44, showing that significant values of instantaneous firebrand mass concentrations (greater than 10-%)
reach up to 5.0 km AGL. Liquid mixing ratio can be seen at a height of 4.5 km and at a distance of 13 to 15 km from the radar.

Later, at 15:42, in Figure 7a, rain is identified at 27 to 32 km from the radar location. The plume follows the same
initial shape as in Figure 6a but seems to be falling towards the ground and reaching longitudinal distances of 13.5 km from
the radar. Its height reaches up to 5.2 km AGL. Figure 7b shows the side view at 16:11. At this stage, firebrand mass
concentrations are mainly located in the lower part of the plume, reaching heights of 2.0 km AGL and are transported
longitudinally up to a distance of 9.0 km. Liquid mixing ratio is mainly identified at a distance of 26 to 28 km from the radar
and at a height of 4.0 to 5.0 km AGL.

An approximate description of the plume shape can be obtained by observing the Turbulent Kinetic Energy (TKE)
contours. In Figure 6b, TKE contours, equal to 1.0 m?.s2, show that the plume height reaches up to 5.0 km AGL, corresponding
to the radar observations (Figure 6a). Horizontally, the same contours show a longitudinal extension of the plume of
approximately 20 km from the radar position, similar to the radar observations (Figure 6a), where the plume reaches up to 18
km longitudinally. Within the plume, intense updrafts can be identified with closed TKE contours of 3.0 m?.s2. In Figure 7b,
the TKE contours of 1.0 m?.s show that the plume height reaches up to 4.0 km AGL in the second domain, but only 3.0 km
AGL in the inner domain. In this case, the simulation shows some differences with respect to the observed plume, where the
plume height reaches 5.0 km AGL at a distance of 10 km from the radar position. Tthe simulated plume appears at this point
to be more concentrated than the actual observed plume. The TKE contours of 1.0 m?.s? are seen at a distance of 12 to 13 km

from the radar, corresponding to the longitudinal extension of the observed plume in Figure 7a. The detached plume component
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that is seen at a distance of 20 km from the radar in Figure 6a, could be reproduced by the 1.0 m?.s TKE contours that can be

seen in Figure 7b.
Similar snapshots for the simulation performed without the fire can be seen in Figure 7. In this case, the atmospheric
355 model reproduces well the cloud coverage (see Figure 5) with liquid mixing ratio values close to 1.0 g.kg! at an altitude of 2.5
km AGL and at a distance of 13 km from the radar (Figure 8a). Similarly, liquid mixing ratio values close to 0.2 g.kg™! at an
altitude of 2.0 km AGL and at a distance of 27 km from the radar location can be seen in Figure 8b, reproducing the radar
observations of Figure 6a. The influence of the fire on the atmosphere can be seen when comparing Figure 8a and Figure 6b.
Figure 6b shows the presence of clouds at an altitude of 4.5 km AGL, whereas the simulation without fire does not show this.
360 TKE contours presented in Figure 8 show that the convective boundary layer (CBL) height is approximately 2.0 km AGL.
Whereas in Figures 6b and 7b, this turbulent mixing layer reaches up to 6.0 AGL, indicating the fire-induced overshoot of the

8 (a) 9
7 8
6 7
6
=t 2
EC. 4 E
5 P
=, o
3
2
1
= - - 0
20 25 30 35
Distance from radar (km)
b
. (b) ) 14
-5
7 Ti 12 —
-6 = T
=
L0 %
-7 % K
— g =
E = 08 o
= -8 7 =
':g E 06 2
-9 E 7
= g
2 04 —
-10 5 ';_1.
ES 02
~11

20

Distance from radar (km)
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3.2.3 Firebrand transport

Simulation results for the mass ground deposition are presented in Figure 9 from 13:15 until 18:15 with an
accumulation time of 30 minutes. Observed reported spot fires (individual red dots in the figure) that happened during that
same time interval are also included. In Figure 9, the firebrand mass deposited on the ground is categorized into 5 classes:
ranging from 0.01 kg up to 10.0 kg. These contours represent areas of potential spotting: spatial regions where the deposited
firebrand mass is significant.

For the first hour after the fire ignition (13:15), firebrands are deposited south of the fire, following the main wind
direction and the plume (Figure 9a and 9b). The areas of potential spotting increased as the fire progressed, reaching almost 7
km from the ignition point to the furthest point, where cumulated mass is greater than 0.01 kg (Figure 9c¢). At this stage, the
shift in the wind was evident in firebrands deposited towards the south-east. During the next time interval, from 15:45 to 15:15
(Figure 9d), the areas of potential spotting decreased, and the first spot fires were reported during this time interval. All spot

fires started within the areas of potential spotting within the previous time interval: from 15:15 to 15:45. Later, the areas of
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potential spotting shifted towards the east as the fire progressed in that direction. From 15:45 to 16:15 (Figure 9f), the wind
had completed its shift to the west, and the fire progressed towards the east. The areas of potential spotting decreased with
respect to the previous time interval. During this time interval, all new reported spot fires also started within the simulated
areas of potential spotting. From 16:15 to 16:45 (Figure 9g), fire propagation continues towards the east. Reported spot fires
also happened during this time interval and within the potential spotting area. From 16:45 to 17:15 (Figure Sh), the areas of
potential spotting were heavily reduced with respect to the previous time interval, and a large spot fire was reported at 6 km
from the main fire front, outside of the simulated potential spotting area. Finally, for the last time interval, Figures 9i and 9j

show a decrease in the potential spotting areas and no reported spot fires.
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Figure 9 — Mass ground densities forecasted by the model during a time interval of 30 minutes (areas of potential spotting). Red

dots represent the spot fires reported by the CFA ground teams. The dotted shape represents the observed fire progression.

Figure 10 presents the temporal evolution of plume top height, defined as the maximum cell height containing at least
0.01 g.kg! of smoke (a passive tracer injected at the fire location), together with the temporal evolution of the fraction of the
grid cell surface area containing at least 0.005 g of deposited firebrand mass relative to the total injection surface area. The
plume top height shows three distinct convective episodes, observed in the simulation, starting at approximately 14:15, 15:15
and 16:15 LT, each reaching heights exceeding 3,000 m AGL. The maximum plume is attained at approximately 15:30 with
an elevation of 5,600 m AGL. Simultaneously, the ratio of the surface area where significant firebrand mass is detected over
the injection surface area also shows three local maximums. The apparent increase at the end of the time series results from

the rapid decrease in the injection surface area.
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Figure 10 - 200-second time averaged, simulation results of the plume top height (red line), defined as the maximum cell height
containing at least 0.01 g/kg of smoke. The blue line shows the fraction of the grid cell surface area containing at least 0.005 g of

firebrand mass over the total injection surface area. The dashed lines correspond to end-times given by Figures 8c, 8e, 8g.

3.2.4 Computational performance

In the simulations presented in this study, no specific effort was made to optimize computational performance. A suite of
Python scripts was used to construct a coupled Meso-NH - ForeFire simulation based on a given ignition location and date.
The spatial extent and resolution of the simulation domains were kept at their default values as defined by the scripts, with no

manual modifications applied.
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The simulation workflow consists of two main stages. In the first stage, MesoNH is initialized to generate the
necessary topographic data, as well as the initial and boundary conditions required for atmospheric forcing. This step also
includes a spin-up period to stabilize the model dynamics and can take up to one hour to complete, depending on system

performance.

In the second stage, the actual fire-atmosphere coupled simulation is executed on a high-performance computing
(HPC) system (equipped with Xeon 6230R, 2.1GHz). The standard simulation was run using 150 CPUs, producing an 8-hour
fire forecast in approximately 172 minutes (2.87 hours) of wall-clock time. For comparison, an identical atmospheric
simulation, without the fire forcing the atmosphere and therefore without calculating the advection and coupling-feedback of
fire-related scalar fields, required approximately 143 minutes. Analysis of computational time showed that the fire-related
components of the simulation (fire spread and heat, mass and firebrand flux injection by ForeFire) accounted for 7.8% of the
total CPU time in the coupled run, in contrast to 1.2% in the no-fire atmospheric run. A separate run, using 225 CPUs, reduced

the total simulation time to 122 minutes.
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4 Discussion
A Eulerian formulation for spotting was implemented and verified against idealized and realistic wildfire scenarios. Simulation
results show good agreement with observed spot fires in terms of spatial and temporal dynamics. The following paragraphs

discuss the results obtained and the limitations of the modelling framework.

4.1 Spotting areas

Regarding the idealized cases, the Eulerian model led to similar mass ground landing densities compared to the Lagrangian
model. However, it can be seen in Figures la and 1b that the Eulerian model acted as filter with respect to the Lagrangian
results, resulting in a lack of fine details corresponding to individual firebrand landings. This is confirmed by the FSS values
from Figure 2, where the FSS values for lower threshold values (corresponding to low accumulated mass on a given cell), are
lower than for higher threshold values. This indicates that the Eulerian model performed worse at low thresholds or few
firebrand landings. As it can be seen in Figure 2, FSS values greater than 0.7 at spatial scales of 3 cell sizes indicate that the
Eulerian model reproduces well the Lagrangian results at distances of approximately 240 m. This was also valid across all
threshold values, indicating that the Eulerian model reproduces well the ground landing densities at normalized mass values
0f 0.001.

The two idealized cases also show that the topography plays an important role in the obtained mass ground landing
distributions. Although the hill terrain is an idealized representation of a hill with a relatively low height (maximum height of
318 m AGL), its influence on the atmospheric circulations and the final firebrand trajectories was clear. As a result, including
the topography in a spotting model would enhance its overall accuracy.

Figures 9a, 9b and 9c show that a significant amount of firebrand mass has been deposited on the ground during the
first hour and a half since the fire ignition. The potential spotting area, arbitrarily defined here as greater than 0.01 kg, reached
a length of almost 13 km in the south-east direction (Figure 9c¢). No spot fires were observed or reported by the CFA ground
teams during this time interval. However, it is important to acknowledge that unreported extinguishments by landowners may
occur, and in some cases, spot fires may spread marginally and self-extinguish without detection. This presents a genuine
challenge for comprehensive fire tracking and comparison.

Figures 9d, 9e, and 9f illustrate an eastward shift in the burned area and the corresponding potential spotting zones.
In this scenario, ignitions occurred within the simulated spotting regions. As shown in Figure 9g, the locations of reported spot
fires largely coincide with the predicted spotting areas. Finally, Figure 9h highlights a long-range spot fire that was not captured
by the simulation during the same time interval (16:45 to 17:15) but is located within the predicted spotting area of the previous
time interval (see Figure 8g).

The results suggest that the current implementation of the model can describe the spatial and temporal dynamics of
potential spotting areas with reasonable accuracy but does not accurately determine the occurrence time of spot fires. In fact,
the simulation results are approximately 30 minutes ahead of the observed spot fires: for example, the simulated spotting area

in Figure 8c corresponds more closely to the observed spot fires shown in Figure 9d, and so on. This discrepancy could be due

24



470

475

480

485

490

495

500

https://doi.org/10.5194/egusphere-2025-4855
Preprint. Discussion started: 17 December 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

to a delay between the actual ignition of a spot fire and the time it was reported by ground teams, if reported at all. This delay
is uncertain and influenced by several factors, including reflaming of the firebrands, exposure of the firebrand to wind, and the
timing of detection by ground teams. It could also be due to a too large terminal velocity that does not accurately describe the
firebrand characteristics. Accurately determining the vertical terminal velocity is a key element in the success of the model.
The firebrand scalar field will settle at a given terminal velocity and follow a different path compared to the passive tracer,
particularly in the presence of a wind shear for example, influencing the deposition zones and the potential spotting areas.
Finally, the accuracy of the overall simulation, including fire progression and spot fires’ timing, is highly dependent on the
boundary conditions used to initialize the simulation.

It should be noted that the fire model is only coupled to MesoNH on the small domain. Accounting for ignitions at
distances greater than 15 km would require increasing the domain size, thus increasing computational times, something that
could be addressed by using GPU architectures (Escobar et al., 2025). However, the firebrand mass scalar field is still
transported within the medium and large domains and could be used to derive potential spotting areas.

Intense convective activity is usually linked to an increase in long-range spotting events and mass spotting events
(Castellnou et al., 2025). This seems to be the case during the Mt Bolton wildfire, with Figure 10 showing that the simulation
captures the link between enhanced convective activity and increased areas of potential spotting. Identifying the time periods
when convective activity is likely to intensify could therefore provide valuable support to operational teams responsible for

fire control and management.

4.2 Fire and plume behaviour
The observed and simulated fire progression shapes are relatively different at the early stages of the event, but the dynamic
behaviour of the simulated fire corresponds to the observed fire behaviour: a progression towards the south followed by a
progression towards the east. The fire acceleration during the wind shift is also captured by the simulation as the distance
between the fire isochrones decreased. Overall, the simulation seems to be delayed by 30 to 45 minutes with respect to the
actual fire progression. In this case, it is likely that the ERAS re-analysis has a time shift with respect to the actual wind
behaviour, leading to a time difference in terms of fire progression. Additionally, although the fire was officially reported to
the CFA at 13:45, the simulation was initialized at 13:15 to account for an estimate of the time the fire had been burning prior
to detection. This speculation, as the ignition time is unknown, could explain the observed time discrepancy between the
simulated fire progression and the observed fire contours. Finally, as it can be seen in Figure 9d, several spot fires happened
within the 14:33 perimeter, leading to an increase in the burnt area and an acceleration of the fire front. As a result, modelling
reignition could enhance the simulated fire spread dynamics.

The simulation showed a large plume development at three distinct periods: from 14:13 to 14:31; from 14:53 to 15:48;
and from 16:06 to 16:25. In the observations, two distinct episodes of intense convection were observed: from 14:33 to 15:15
and from 15:15 to 15:45. Temporally, these observed time intervals are coherent to the simulation results. The westerly wind

shift, which happened at approximately 15:02, had an important impact on the final burn area and the spot fire locations. These
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results confirm the conclusions of Peace et al. (2016), who emphasized the importance of including wind direction changes
into operational fire weather forecasts. Overall, the prediction of intense convection activity and the wind shift impact on the
fire progression highlight how coupled fire-atmosphere models could be suitable in an operational context to provide finer
details about the fire behaviour.

As it can be seen in Figures 5, 6 and 7, the timelapse photographs, radar plume cross section observations, and the
simulation are similar in terms of shape, structure and horizontal and vertical extent, showing that the simulation reproduces
accurately the convective dynamics of the fire. As it can be seen in Figure 6b, the water content was detected by the radar d at
the top of the plume (at a distance of 14 km from the radar and a height of 5 km), but it does not appear in the simulation
without fire (Figure 8a). This indicates that the model was also able to capture the pyroCu development triggered by the
pyroconvective activity.

Regarding the dynamics of the injected firebrand mass, the heights reached by the firebrand mass scalar field are also
similar with the observed pyrometeors by the radar. Figure 6b shows that a significant firebrand concentration occupied the
same space within the plume as the observations. It also shows that a relatively small concentration was found within the same
cells occupied by the pyroCu cloud, indicating that simulated firebrands would have passed through the pyroCu. Although it
is not possible to attribute specific spot fires to this cluster of firebrands due to the nature of the Eulerian modelling, the
observation is in agreement with the study from Lareau (2025), where the author indicated that pyro-meteors were likely to go

through the pyroCu/Cb.

4.3 Modelling challenges and future directions

A spotting model, similar to those developed for smoke dispersion (Goodrick et al., 2013), is fundamentally composed
of four components: firebrand injection, a plume or advection field description, firebrand transport and fuel bed ignition. In
the present study, the final ignition component was deliberately excluded, with the primary focus placed on integrating the
injection and transport processes within a coupled fire-atmosphere framework.

The firebrand injection component remains one of the most challenging to model with physical realism because of
the lack of experimental data and observations. Injection should capture the variability of firebrand size, shape and density, as
well as the firebrand production rates as functions of vegetation type, fire behaviour, and atmospheric conditions (Ju et al.,
2023; Wickramasinghe et al., 2022). In this work, a simplified injection scheme was employed using a constant firebrand mass
flux over a prescribed injection duration. While numerically efficient, this approach neglects possible dependencies of injected
mass on fire intensity, wind velocity, and fuel characteristics. Future experimental work is required to better characterize this
first component, increasing the realism of the simulations and improving the predictive skill of the model.

The representation of plume dynamics and overall fire-atmosphere interactions was modelled using a coupled Fire-
Atmosphere framework, which is a key strength of this study. Previous work has demonstrated the capability of such models
to resolve buoyancy-driven plume rise and turbulent entrainment (Baggio et al., 2022; Couto et al., 2024; Kochanski et al.,

2013; Peace et al., 2023, 2022, 2015). This simulation framework, following similar approach as Kepert et al. (2024), addresses
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the challenge highlighted by Storey et al. (2020b): existing spotting models are not adapted to extreme fires because they do
not account for “highly convective plumes or large aerodynamic firebrands’’. The comparison to Radar data shows that the
model reproduces well the plume height, the plume longitudinal extent and the local weather processes leading to the
generation of a PyroCu. This provides a physically consistent advection field in which to embed firebrand transport and is a
major advantage over models relying on prescribed wind fields or static plume shapes. The success of this component
highlights the value of integrating firebrand transport within dynamically evolving fire simulations (Thurston et al., 2017).
Further efforts should be dedicated to comparing wind fields from observational data.

The third component involves the transport of firebrands through the atmosphere, and the results presented here show
that this step could be done simultaneously with plume evolution. However, a key limitation lies in the scarcity of experimental
data on medium- to long-range spotting, complicating the validation process. Incorporating combustion-phase transitions
(flaming to smouldering) was outside of the scope of this work. Yet, including the combustion process as a mass reduction
dependent on environmental variables (wind, turbulent kinetic energy) could effectively reduce the overall mass transported
and decrease the potential spotting areas, increasing the predictive accuracy of the model. Including such a process would
enable finer control over where and when spotting can occur, particularly important when parametrizing the re-ignition process.

The Eulerian approach to firebrand transport, while computationally efficient, introduces a filtering effect that
smooths out finer features captured by Lagrangian particle-based models. It omits stochastic variability in particle motion,
especially relevant in regions of strong turbulence. The current implementation assumes a constant terminal velocity and
ignores size-dependent particle dynamics. A more physically realistic formulation of terminal velocity (Thomas et al., 2020),
would improve predictions of firebrand landing patterns. Likewise, the assumption of ground-level injection does not reflect
observed high-elevation firebrand releases during crowning events (Albini et al., 2012), which can increase potential transport
distances. Future models could benefit from distributed vertical injection profiles informed by flame height and fire structure.

Firebrand transport was modeled using a scalar advection-diffusion equation, with diffusivity assumed equal to that
of the air flow. This assumption may be overly conservative. Due to their inertia, large firebrands (denser than air) do not
follow the smallest turbulent eddies but rather respond to the larger turbulent structures. This suggests that the scalar diffusivity
for firebrands should be greater than that of a passive tracer. Following pollen dispersion studies (Dupont et al., 2006),
assigning a Schmidt number (Sc) less than unity (Sc = 0.6) would better capture this enhanced dispersion.

While subject to several assumptions and potential improvements, the results support the potential for operational
purposes of MesoNH-ForeFire. Obtaining an 8-hour forecast in approximately 3 hours can be of great interest to determine
fire progression and potential spotting areas. Regarding spotting, some possibilities of this kind of modelling include: providing
spatial information to monitor areas that could be ignited by firebrands, providing temporal information regarding the potential
spot fires occurrence, and early warning systems for wildland-urban interface fires to alert citizens.

This study also highlights the importance of high-resolution weather radar data for model evaluation and
interpretation, as frequency of observations (seconds to minute) and spatial resolution (tens of metres voxels) are comparable

to the coupled fire-atmosphere model outputs. At present, such high-resolution datasets are scarce, as dedicated portable
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weather radar has to be deployed near the fireground, minutes after the fire has been reported, and only a few research groups
in the US and Australia have that capacity. However, fire agencies are showing interest in deploying such tools within
operations, which would lead to a substantial increase of high-quality dataset for model evaluation in the future.
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5 Conclusion

This study presents a Eulerian modelling approach for simulating medium and long-distance spotting within a coupled
Fire-Atmosphere framework. The model was evaluated through both idealized and realistic case studies to assess its potential
applicability in an operational wildfire forecasting system. Results indicate that the proposed model can describe accurately
the spatiotemporal dynamics of spotting while maintaining a high degree of numerical efficiency.

In the idealized simulations, the Eulerian model produced ground firebrand deposition patterns comparable to those
obtained using a Lagrangian formulation, particularly at spatial resolutions on the order of 200 to 400 m. Key results showed
that the model was able to identify potential spotting areas with acceptable temporal accuracy offering useful insights for real-
time fire management. In the case of the Mt Bolton wildfire, the model reproduced the intensity and timing of observed spotting
events with good qualitative agreement, underscoring its potential in operational utilisation.

Some limitations of this study mainly include a simplified representation of the firebrand dynamics, specifically the
use of a single terminal settling velocity that does not account for the heterogeneous characteristics of firebrands (e.g., shape,
mass, combustion state). While this simplification enhances computational efficiency, it may limit the physical realism of the
model under diverse wildfire conditions.

Future research should focus on refining the Eulerian formulation by incorporating turbulence-driven dispersion
mechanisms into the mass scalar field, improving firebrand injection parameterizations based on experimental data or inverse
modelling techniques, and refining the fuel bed ignition model to better represent spot ignition processes. Additionally, the
model should be tested against a broader range of wildfire events, both within Australia and in other fire-prone regions, to
evaluate its robustness across different vegetation types, topographies and meteorological conditions.

Overall, the results confirm the viability of the Eulerian formulation in an operational context. This modelling

framework can improve fire spread models and enhance wildfire management strategies.
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