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Abstract. Snow in the high-altitude and high-latitude regions is essential for water resources and
climate regulation. However, studies on snow mass balance components in alpine areas like the Tibetan
and Pamir Plateaus (TPP) are limited. To fill the gap, a novel snow simulation framework was
developed, combining in-situ snow depth, satellite snow cover, and point- and grid-scale modelling,
supported by sensitivity analysis, automatic calibration, and deep learning. Key snow components—
snowfall, snow water equivalent (SWE), refrozen snow, sublimation, evaporation, and snowmelt—were
simulated across the TPP from 1962 to 2019 with reliable accuracy. Regionally averaged annual
snowfall and refrozen snow—together representing snow pack input—were 70.67 +17.32 mm and
16.56 +3.85 mm, respectively. On average, 38% of this input is converted into SWE and snowmelt that
contributes 12—19% of total river discharge over the TPP, while the remaining 62% is lost to the
atmosphere through sublimation and evaporation. Snow contributes less to water resources than to
atmospheric moisture over the TPP on annual average. Seasonal snow patterns vary by region: in the
Pamirs snow accumulates throughout the winter, making March—April SWE a key water resource
indicator; while in the Tibetan Plateau, limited snow accumulation means total annual snowmelt better

representing snow water resources. Significant regional declines have been simulated for key snow
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components though the trends vary spatially, potentially greatly influencing weather and climate both
locally and remotely. Precipitation drives SWE changes in the north and west of the TPP, while

temperature and wind speed play greater roles in the center and south.

1 Introduction

Snow is a vital component of the cryosphere, water cycle, climate system, and economy in the high-
altitude and high-latitude (HAL) region. In the Northern Hemisphere, monthly snow cover spans from
3—47x10°¢ km?, covering 2—-36% of global land (Estilow et al., 2015). Snow water equivalent (SWE) and
snowmelt are crucial water resources for water supply, hydropower, irrigation, navigation, and urban
use (Barnett et al., 2005; Hamlet et al., 2005; Fang et al., 2022). Snow also contributes to atmospheric
water vapor through sublimation and evaporation. In Asia, snowmelt from the Tibetan and Pamir
Plateaus (TPP) contributes to streamflow in the headwaters of Asia’s major rivers (Immerzeel et al.,
2020; Cuo et al., 2014). TPP snow cover also influences weather and climate both locally and remotely
(Turner et al., 2011). Additionally, snow-based sports and recreation, such as the Winter Olympics, are
significant economic and social activities.

Significant progress has been made in studying snow in the past few decades around the globe (Chen et
al., 2014; Li et al., 2023; Shao et al., 2022), leading to findings in snow metamorphism, phenology,
cover, depth, snow mass balance, snow contribution to streamflow, as well as their responses to climate
change (Hamlet et al., 2005; Pomeroy et al., 2000; King et al., 2001; Bowling et al., 2004; Qin et al.,
2006; You et al., 2011; Li et al., 2018; Smith et al., 2018; Bormann et al., 2018; Kirkham et al., 2019;
Kraaijenbrink et al., 2021; Chen et al., 2021; Jin et al., 2022; Gao et al., 2023; Liu et al., 2023b; Ma et
al., 2023; Lundquist et al., 2024; Hou et al., 2025). Composed of air and three phases of water, snow has
unique characters such as high albedo and emissivity, low thermal conductivity and roughness length,
and temporally varied density. Due to high albedo and emissivity, snow reflects a great amount of
incoming solar radiation back to the atmosphere while suppresses outgoing longwave radiation
compared to non-snow surface, resulting in low surface temperature and reduced sensible heat flux
between the atmosphere and snow surface (Groisman et al., 1994). Due to low thermal conductivity,

relatively thick snow functions as an insulator and decouples soil from the atmosphere, resulting in
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higher soil temperature than air temperature in snow season (Li et al., 2024). Snow phenology also
dictates that high latent heat flux is produced at the expense of sensible heat flux during melting season.
Reduced snow/ice due to global warming has exerted a positive albedo feedback effect that has resulted
in the Arctic amplification (Screen et al., 2010; Cohen et al., 2020). The sensitivity of SWE to the
changes of individual climate factors varies with climate regime, with relatively warm (cold) alpine
regions being more (less) sensitive to temperature increase (Hamlet et al., 2005). This gives rises to
strong reduction of SWE in sensitive regions, but small or little reduction or even increased SWE
depending on precipitation changes in the other regions (Hamlet et al., 2005; Li et al., 2018). For the
TPP, with its vast area and extensive snow cover but with diverse climates within the TPP, how snow
mass balance components behave temporally and spatially responding to climate change has been less
well studied and clearly warrants further investigation.

Snow mass balance components include snowfall (SF), refrozen snow (SRF), snowmelt (SM), standstill
snowpack and blowing snow sublimation and evaporation, and SWE. SWE in late March or early April
is usually used to represent snow water resource in a hydrological year over regions where winter snow
accumulates. Among snow mass balance terms, only SWE is often measured, which is the case for the
TPP as well.

Snow sublimation including standstill snowpack surface sublimation and blowing snow sublimation
(BSS) occurs when snow directly transforms from solid to vapor. Evaporation could also occur from
melt water in snowpack. Sublimation and evaporation directly contribute to atmospheric water vapor
and are losses from the water resource perspective. Sublimation requires higher energy (2838 J/g at 0 °C
and standard pressure) that can be obtained from local net radiation and wind advected energy, than that
for snow evaporation (2501 J/g) and melt (334 J/g). Snow sublimation can happen under low air
temperature, high vapor pressure deficit and windy weather conditions according to the bulk
aerodynamic theory (King et al., 2001; Stigter et al., 2018). Standstill snowpack surface sublimation and
evaporation (SSSS) can be directly obtained through a snow lysimeter and eddy covariance, and can
also be calculated using vapor pressure, wind speed and radiation.

BSS is one of the most uncertain components in snow mass balance terms (Screen et al., 2010;

Gonzalez-Herrero, 2025). Blowing snow is composed of wind-driven suspended snow particles which
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can be calculated and measured by blowing snow sensors. Probability of the occurrence of blowing
snow can be represented by cumulative normal probability distribution that depends on snow age, wind
speed, vegetation roughness and air temperature. The blowing snow process has already been
incorporated into snow and land surface models (Pomeroy and Li, 2000; Bowling et al., 2004; Liston et
al., 2007), some of which use Laplace distribution to represent the variation of wind speed in sub-grid
cells. However, few large-scale models simulate blowing snow sublimation (Lundquist et al., 2024).
Sublimation is one of the major sources of uncertainty in land surface models (Chen et al., 2014).
Studies have shown that snow sublimation could remove 10-15% of precipitation in the Arctic (King et
al., 2001), 21% of annual snowfall and 17% of SWE in Langtang basin in Nepalese Himalaya
Mountains (Stigter et al., 2018; Saloranta et al., 2019), and 15-41% of annual snowfall in Canadian
prairies (Pomeroy and Gray, 1995). Thus, any omission of snow sublimation in snow mass balance
calculation over the HAL could severely underestimate snow losses while overestimate snowmelt
contribution to water resources.

Snowmelt is an important contributor to soil moisture and streamflow in the HAL, and is another key
source of uncertainty in land surface models (Chen et al., 2014) due to limited measurement and studies
in tracking snowmelt contribution to streamflow (Liu et al., 2023b). Under warming climate, the general
change patterns in nival or nival-pluvial mixed watersheds are advanced spring peak flow, reduced
summer flow, increased evapotranspiration and reduced soil moisture which are also predicted to
continue in the future in some cases due to advanced snowmelt season (Barnett et al., 2005; Qin et al.,
2022). Such shifts in hydrological regime pose risks in water resources management and utilization in
the HAL. Clearly, understanding snow mass components and their changes could contribute to the
mitigation of such risks in alpine regions.

Despite advancement in snow physics and hydrological studies, snow measurement in alpine regions
continuous to face challenges (Chen et al., 2014). In-situ measurements are mostly in low-elevation
valleys and are unable to represent high-mountain snow conditions, while passive microwave remote
sensing has difficulties in resolving snow depth and SWE in complex terrain (Dozier et al., 2016). This

measurement gap limits our understanding of snow mass in the alpine where vast snow storage feeds
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rivers, leading to high uncertainties in the quantification of global and regional snow water storage and
water resources (Smith and Bookhagen, 2018; Pulliainen et al., 2020).

As Asia’s water tower with the largest cryospheric components outside the poles, the alpine TPP faces
even greater challenges in snow mass study due to not only scarce but also sometimes low-quality data.
There are several studies on SWE, snowmelt and snow sublimation in the TPP (Gao et al., 2023; Stigter
et al., 2018; Ueno et al., 2007; Zhang et al., 2013; Li et al., 2019; Sahadeep, 2019), but many of them
suffer from either data quality issues or limited spatial or temporal coverage. Current Earth System
Models significantly underestimate the number of freezing days while systematically overestimating
SWE when simulating snow variability over the TPP (Chai et al., 2025). Bian et al. (2019) found that 14
SWE datasets from satellites, reanalysis, and modelling products captured SWE seasonal and
interannual variations but overestimated SWE by an order of magnitude on the TPP. Li et al. (2023)
reported poor snow depth representation in the Sentinel-1, ERAS5-Land, ERAS, and MERRA-2 datasets.
Some recent snow mass modelling studies on the TPP consider sublimation but these studies focus
either on winter only (Zhang et al., 2015) or lack a blowing snow sublimation component (Yang et al.,
2021; Yang et al., 2022). Additionally, global SWE products like GlobSnow (Bormann et al., 2018) and
RRM SWE (Shao et al., 2022) exclude mountainous areas such as the TPP to avoid poor data quality.
On the other hand, given the importance of mountain snow, the World Meteorological Organization
(WMO) Global Cryosphere Watch has designated snow studies as a long-term priority (Smith and
Bookhagen, 2018; Bormann et al., 2018; Kirkham et al., 2019; Pulliainen et al., 2020; Yang et al., 2021).
Clearly, a novel and comprehensive analysis framework that combines modelling and measurement is
needed to create reliable datasets for credible snow mass component studies over the entire TPP.

This study aims to develop such a framework through combining measurement and physically based
hydrological models assisted with deep learning, and to use this framework to address the knowledge
gap in snow mass components on the alpine TPP. Specifically, we strive to 1) produce high quality
spatiotemporally continuous SWE datasets given that SWE is widely used to represent snow water
resource; 2) investigate the spatiotemporal characteristics of snow mass balance components; 3)

understand the importance of snow to water resources and atmosphere in the TPP; and 4) examine the
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relationships between the changes in SWE and climate factors. The study will improve the

understanding of snow mass components and snow water resources in Asian alpine regions.

2 Methodology
2.1 Study area

The TPP, located in 65°E—105°E and 27°N—40°N, is composed of the expansive Tibetan Plateau (TP)
in the east and the smaller Pamir Plateau in the west (Fig. 1a). It has an average elevation and an area of
about 4000 m and 3.13x10° km?, respectively. Several massive mountain ranges such as the Himalayas,
Gangdese, Nyenchen Tangla, Tanggula, East Kunluns and Qilian surround or transect the TPP from the
south to the north. Large plains and valleys such as the Qiangtang, Hoh-xil and Qaidam lie between the
mountain ranges. The Hindu Kush and Karakoram lie in the Pamirs from which the West Kunlun
extends toward northeast and enters the Tibetan Plateau. In the southeast and northwest, the Hengduan
Mountains and Altyn Mountains are situated, respectively. Numerous smaller mountains also spread in
the interior TPP. These large and small mountains are the headwaters of major Asian rivers, including
the Yellow, Yangtze, Mekong, Salween, Brahmaputra, Ganges, Indus, and Amu Darya. Based on
seasonal precipitation distribution, basins on the TPP can be divided into westerly circulation dominated
and monsoon dominated basins. Westerly dominated basins include Amu Darya and Indus where
precipitation falls primarily during winter and spring; the rest are monsoon dominated basins where

precipitation occurs mainly in May-October.
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Figure 1: Study area. (a) elevation (m) and locations of the measurement sites, and (b) relief roughness at 30 arc sec
resolution on the Tibetan and Pamirs Plateaus (TPP). In (a), the blue dots represent snow pressure measurement sites and the
two red dots (Gangjiala station near the south boundary and Lindi station between Basins 5 and 4) denote continuous SWE
measurement sites. Numerical numbers in both (a) and (b) represent river basins: 1) upper Yellow River, 2) upper Yangtze
River, 3) upper Mekong River, 4) upper Salween River, 5) Brahmaputra, 6) upper Ganges River, 7) upper Indus River, 8)
upper Amu Darya, 9) upper Tarim River, 10) Inner Tibetan Plateau, 11) Qaidam Basin, and 12) Qilian Mountain Basin.

Using 90-m and 1-km resolution elevation maps, we produced 1-km relief roughness map according to
Korner et al. (2011) by first subtracting minimum elevation from maximum elevation in the 90-m cells

enclosed within a 1-km grid cell and then dividing by half of the 1-km cell’s resolution. The areas with
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relief roughness greater than 0.077 account for more than 70% of the TPP (Fig. 1b), indicating that
more than 70% of the domain is occupied by mountains based on the definition by Korner et al. (2011).
The rugged terrain complicates both in-situ and remote sensing snow mass measurements, presenting
challenges for snow mass studies and leading to a widely debated question: how much snow actually

contributes to rivers on the TPP.

2.2 Data

Since we used both point- and grid-scale models and a deep learning method to model and study snow,
data used include model forcings, spatial inputs, and measurements for evaluation. For the Variable
Infiltration Capacity (VIC) hydrological model (Liang et al., 1994, 1996) running at grid scale covering
the TPP, daily maximum and minimum air temperature, precipitation and wind speed in 0.25°%0.25°
resolution during 1957-2020 were the forcings. This gridded dataset (LC forcing) was generated
following Cuo et al. (2013a; 2017). In total, 966 precipitation, 466 maximum and 435 minimum air
temperature, and 427 wind speed stations (Fig. S1, see Supplementary Material) from the China
Meteorological ~ Administration (CMA, https://data.cma.cn/) and NOAA-daily collection
(https://www.ncei.noaa.gov) were used to create the gridded forcing data. In addition, 15 stations from
other sources (see Table S1 in Supplementary Material) were used to independently evaluate the
gridded forcing. The evaluation results presented in Table S2 show that air temperature has quite good
correlation coefficients (CC) between observations and gridded values at cells that cover the stations;
precipitation and wind speed also exhibit acceptable correlation (CC>0.4) at 10 (for precipitation) and
11 (for wind speed) stations indicating that the observed daily variations in meteorological forcings are
satisfactorily represented by the gridded data. However, relative biases and RMSEs vary considerably
from station to station due to the scale mismatch between a 0.25°x0.25° cell and the corresponding
station, especially when terrain is complex.

Spatial inputs in the VIC include land cover, soil and elevation. For land cover maps, the European
Space Agency CCI-LC (300-m, https://www.esa-landcover-cci.org/), GLASS-GLC (5-km,
https://doi.pangaea.de/10.1594/PANGAEA.913496) and GLC_FCS30-2020 (30-m,

https://data.casearth.cn) datasets were initially collected and evaluated using ground truths of land cover
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types obtained during summer field trips and from previous studies (Tables S3, S4). CCI-LC 2020 land
cover maps exhibit the best quality in resolving grassland, the dominant land cover type on the TPP. To
represent land cover changes over a sequence of 10-year periods, CCI-LC in 1992, 2000, 2010 and 2020
were selected. CCI-LC does not provide land cover map prior to 1992. Areal fractions of all land cover
types in each 0.25°x0.25° grid cell were calculated and used as model input. The VIC model was run
for four continuous periods in consistence with the land cover maps: 1957-1992, 1993-2000, 2001-2010
and 2011-2020 using land cover 1992, 2000, 2010 and 2020, respectively. Model outputs were
subsequently combined to form the full period (1957-2020) simulations. 1957-1961 was the model
warming-up period, and 1962-2019 was the analysis period. Soil class and parameters were from the
Harmonized World Soil Database (https://www.fao.org). Elevation was from the NASA SRTM (Shuttle
Radar Topography Mission, https://srtm.csi.cgiar.org/srtmdata/). VIC simulated SWE was evaluated
using station-based SWE.

For the VIC running at station scale, observed hourly precipitation, air temperature, wind speed,
incoming shortwave and longwave radiation, air pressure and vapor pressure from the CMA were used
to drive the model. Land cover, soil and elevation data for the station-scale VIC were from the same
sources as described above. During snow season, precipitation undercatch affects snow simulation and
needs to be corrected (Miao et al., 2024). The WMO recommended equations (Kochendorfer et al.,
2022) and related wind speed calculated at various heights for Chinese stations (Zheng et al., 2018)
were used to calculate catch efficiency (CE) following Eq. (1) and Eq. (2) for correcting precipitation

undercatch at 66 SWE simulation stations:

CE = ¢~0-063x0.71127451 XU(h)x(1~[tan™"(1.22XT4;7) +0.66]) (1)
_ lin(h/zo)]
U = finta gy < VD) @

where U(h) is wind speed at precipitation gauge height h, Tair is air temperature at 2 m, H is
anemometer height and its corresponding wind speed is U(h), z, is roughness length (0.01 in cold

seasons and 0.03 in warm seasons). The corrected precipitation in the snow season increases noticeably
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in the eastern TPP compared to the original values, more so in the southern and northeastern peripheries

(Fig. S2).

On the TPP, only snow depth is measured routinely, and no other snow mass measurements are
available. SWE is not directly measured at meteorological stations in China but is computed using snow
depth and snow pressure measurements (see Supplementary Material). Such SWE is not temporally
continuous. We collected about 400 stations from the CMA and Meteorological Agency in Tajikistan,
and after quality control and observation period check, SWE at 66 stations in 1980-2009 was used.
Temporally continuous SWE observations at Ganjia La (28.1545°N, 85.5625°E, 4962 m, gravel/rock)
during 2016-2018 (Kirkham et al., 2019) and at Lindi village in the Tibetan Autonomous Region
(30.9243°N, 92.6513°E, 4853 m, grass, our own observation site) during 2022 were also collected (Fig.
la).

Two passive microwave remote sensing SWE datasets, 500-m resolution NASA-HMA (High Mountain
Asia) product for June 2002 — September 2011
(https://www.sciengine.com/CSD/doi/10.11922/csdata.2018.0064.zh) and 25-km resolution FY3
(FengYun-3 satellite) product for January 2015 — November 2019 (http://www.nsmc.org.cn/) were also

used for comparison and evaluation. These two SWE products were not evaluated by Bian et al. (2019).

To regionalize the calibrated and validated VIC sensitive snow parameters at 66 stations, spatially
continuous MODIS 500-m resolution snow cover products, MODO9GA and MYDO09GA
(https://data.tpdc.ac.cn/en/) in 2000-2009, were used to train and evaluate a machine learning scheme.
Snow on the glacier surface accumulates through the years and eventually becomes ice, thus snow in the
117 cells with glacier area greater than 60% of the cell area was not considered during the analysis.
Glacier area was from the RGI 6.0 (Randolph Glacier Inventory, https://nsidc.org/data/nsidc-
0770/versions/6).

10
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2.3 Models

ASNOW model (Winkler et al., 2021), a free R package that semi-empirically calculates snow density at
point scale, was used to reconstruct temporally continuous SWE at 66 SWE stations (Fig. 1a). In
ASNOW, snow compaction is determined by the Newtonian viscosity theory; overburden due to new
snow is treated as unsteady compaction; and snowmelt is distributed stepwise from top to bottom. The
input of the model is snow depth measured at stations. Evaluation statistics (Fig. S3) shows that
ASNOW simulated SWE is superior at 66 CMA and Ganjia La stations compared to SWE calculated
from snow depth using fixed snow density of 0.18 g/cm® and SWE estimated using the logistics-5 curve
developed from snow scale observations at Lindi station. It should be noted that the fixed density
approach is widely used in passive microwave remote sensing to derive SWE from snow depth around
the globe which obviously is one of the reasons why SWE estimation from satellite measurements has
issues. The reconstructed temporally continuous daily SWE was used to evaluate the station-scale VIC

simulated SWE at the 66 locations.

Macro-scale hydrological model VIC 4.2 was used to simulate snow hydrological process both at point
(66 stations) and grid (0.25° xX0.25° resolution) scales over the TPP. The VIC has been widely used
around the globe to study hydrological processes. In this version, the blowing snow sublimation (BSS)
algorithm by Bowling et al. (2004) was activated. This algorithm accounts for the variability of wind
speed, snow transport, and the sublimation related to complex terrain and land cover types in sub-grids.
This algorithm requires the specification of standard deviation of terrain slope, mean wind fetch, and

lag-1 autocorrelation of terrain gradients in sub-grids.

The VIC snow module includes snow interception by vegetation canopy and snow variation in sub-grid
terrain through elevation-based snow bands. Here, we used a flexible number of snow bands at an
elevation interval of 100 m. Depending on the terrain features in sub-grids, the number of snow bands
varied from 1 to 69 in the 0.25° X0.25° grid cells, high in the rugged periphery and low in the flat
interior plains, consistent with the relief roughness (Figs. 1b, S4). Changes in temperature and

precipitation with elevation for sub-grid snow bands were determined for each river basin based on

11
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climate station locations and sub-grid elevation (Fig. S4). As a result, temperature lapse rate and
precipitation gradient with elevation remain constants within individual snow bands of each river basin.
This way, the effect of terrain variability on snow in sub-grids can be reasonably well accounted for in
individual basins by the model. Snow density calculation in the VIC considers new snow compaction
and overburden by aging snow. Snow albedo decays with time since the last snowfall and is represented
by two sets of parameters for accumulation and melting seasons, respectively. Snowfall and rainfall are
partitioned by using thresholds of daily temperature maxima and minima, respectively. Mixed snowfall
and rainfall correspond to temperature falling between the two thresholds. There are 10 parameters

related to snow simulation in the VIC (Table S5).

2.4 Analyses

Fig. 2 shows the modelling and analysis framework. Briefly, ASNOW simulated continuous SWE was
evaluated using in-situ data. Sensitivity of snow parameters in the VIC was investigated using the Sobol’
method at Ganjia La. The sensitive snow parameters were then calibrated automatically and validated
against ASNOW simulated SWE at randomly selected 56 CMA stations. The calibrated and validated
snow parameters at the CMA stations were subsequently extrapolated to the 0.25° xX0.25° grid cells
using 1-dimension Convolutional Neural Network (1D-CNN) deep learning approach and MODIS snow
cover. Using extrapolated sensitive parameter values and gridded forcings, VIC simulated SWE in
0.25° x0.25° was further evaluated against ASNOW SWE at the 10 remaining CMA sites and from
previous studies. Limited previous TPP snowmelt, sublimation and evaporation studies were collected
and used to assess gridded VIC simulations. Statistics matrices including linear correlation coefficient
(CC), root mean square error (RMSE), Nash-Sutcliffe Efficiency (NSE), relative bias in means (Pbias),
and Kling-Gupta Efficiency (KGE) were used for simulation evaluation. The key steps are described in

greater detail below.

Sobol” method (Sobol’ 1993; Houle et al., 2017), hourly meteorological data and continuous SWE
observations during May 1, 2016 — May 31, 2018 at Ganjia La station were used to identify sensitive

snow parameters of the VIC. Sobol’ method varies all parameters and identifies the amount that each

12
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parameter contributes to the variance of the objective functions (the five statistics matrices mentioned
above). In total, 576 simulations were conducted to generate the Sobol’ ensemble at Ganjia La.
Maximum temperature when snow falls (Tmax), minimum temperature when rain falls (Tmin), snow
liquid water holding capacity (LWHC), new snow albedo (NSA), albedo decay during accumulation

and melting seasons (expAl, expA2), and snow roughness length (SR) were identified to be sensitive.

Next, the Adaptive Surrogate Modeling based Optimization algorithm (ASMO, Wang et al., 2014) was
used to auto-calibrate the sensitive snow parameters by comparing simulated SWE to ASNOW
reconstructed SWE time series at randomly selected 56 stations (Fig. S5). Calibration and validation
period was 1980-1994 and 1995-2009, respectively. The ASMO builds a surrogate model to represent
the response of the VIC to parameter variation. It involves initial sampling, regression and adaptive
sampling. The coupling of the ASMO and VIC was realized using Python. The interface of the coupled
model includes the names of sensitive snow parameters, their locations in the VIC model and their value
ranges, number of iteration steps, and objective functions. The optimal sets of parameter values and the

corresponding objective functions were recorded for final selection.

13
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Figure 2: Schematic diagram and flowchart of the snow simulation framework developed and applied on the TPP in
310 this study.

Using the VIC-ASMO framework, 500 runs were conducted at 56 stations to obtain the optimum
parameter sets which resulted in the averaged CC of 0.8, RMSE of 1.6 mm, NSE of 0.6, Pbias of -10%,
and KGE of 0.7 during the calibration period; and averaged CC, RMSE, NSE, Pbias and KGE of 0.8,
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1.5 mm, 0.5, -6%, and 0.6, respectively, during the validation period (Fig. S6a). As an example, at
Cuona station where snow amount was greater than the other stations during the calibration period, CC,

RMSE, NSE, Pbias and KGE were 0.9, 5 mm, 0.8, 10%, and 0.8, respectively (Fig. S6b).

ID-CNN (Kiranyaz et al., 2021) was used to regionalize calibrated sensitive parameter values at
stations to the entire TPP represented by 0.25°x0.25° grids. This is essentially a step of transferring
parameter values from gauged sites to vast ungauged grid cells by using deep learning. CNN fuses the
feature extraction and classification into a single learning body and optimizes the features in the training
phase directly from raw data, and builds a relationship between input and output. CNN has three layers:
input, hidden and output. The hidden layer consists of convolutional layer, pooling layer and fully
connected layer. ID-CNN has low computation requirement and is efficient when input data are scarce
and has been applied to study outgoing longwave radiation, soil texture and drought (Zhu et al, 2022;
Kiranyaz et al, 2021; Mokhtar et al, 2021).

56 stations were utilized to train 1D-CNN and the remaining 10 stations were used to test 1D-CNN (see
Fig. S5 for the locations of training and test sites). Values of seven sensitive parameters were targets,
and 500-m daily snow cover from MODIS at 56 stations were input for building seven 1D-CNN
learning models to regionalize parameter values. In this study, the size of filter kernel was 3 and
convolutional layers were 10. The number of each filter kernel was set to
256/256/128/128/64/64/32/32/16/16, respectively. 1D-CNN-based models were trained using the Adam
optimization algorithm. The initial weight and learning rate were set to 0.001. The mean square error
(MSE) between the learning model output and the target value served as the loss function (or cost
function). In fully connected layer, ReLU and Sin activation functions were used to ensure a reasonable
output range for each parameter. L1 regularization was added to the weight parameter to normalize the

rationality of the model parameters and improve the efficiency of small sample learning.

To test the seven built 1D-CNN models, first snow cover time series at the remaining 10 sites were
input to the seven models and then the output snow parameter values were used in the VIC to simulate

SWE at the 10 test sites, which were evaluated using reconstructed SWE. Averaged CC, RMSE, NSE,
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Pbias and KGE at the 10 sites were 0.7, 2.1 mm, 0.4, -13%, and 0.6, respectively (Fig. S6a). Although
simulated SWE at the test sites were inferior to that at the training sites, the simulation was still
reasonable given the relatively high CC and KGE and lower RMSE and Pbias. The spatial patterns of
the values of five objective functions at the training and test stations are shown in Fig. S7. Stations in
the north, west and east display better results than those in the south. Fig. S8 reveals that the values of
the seven sensitive snow parameters at 66 stations are spatially heterogeneous. Tmax ranges in -5 — 5 °C,

Tmin -10 - 5 °C, NSA 0.80 - 0.90, LWHC 0.02 - 0.15, and SR 0.0 — 0.03 m.

Further, using 1D-CNN learning models, sensitive snow parameter values calibrated and validated at
stations were regionalized in order to simulate snow mass components for the entire TPP. At this step,
because of the already large number of 0.25°x0.25° resolution grid cells (4787) covering the domain
and considering the computation capability, 500-m MODIS snow cover time series was resampled to
0.25°%0.25° snow cover first and then was input to the 1D-CNN learning model to obtain VIC sensitive
snow parameter values for each 0.25°x0.25° grid cell of the entire domain. It appears that the
deterioration of input snow cover resolution did not affect the optimization results as parameter values

at the calibrated sites are similar to those in grid cells that cover the sites (Fig.S9).

Other snow mass balance terms such as snowmelt and refrozen snow were not evaluated rigorously due
to few previous studies and lack of measurements. However, given undercatch correction of snow
season precipitation, adequate snow band setting, rigorous sensitive snow parameters calibration and
validation, and thorough evaluation of key snow mass components in the VIC model, simulations of

snowmelt and refrozen snow were considered reasonable.

Next, we analyzed the spatiotemporal patterns of VIC-simulated SWE and snow mass balance terms
across the entire domain and in individual watersheds, the basic water resource management units. SWE
relationships with temperature, precipitation, and wind speed were examined using multiple linear
correlation. Trends were assessed with Mann-Kendall and Sen’s slope, a nonparametric approach, with
statistical significance level at p<0.05. Uncertainty in long-term mean was represented by two standard

deviations of the time series. The snow year runs from August 1 in previous year to July 31 in next year,
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aligning with annual snow phenology. Since the spatial resolution is 0.25° X0.25°, the redistribution of

snow between grids due to blowing snow is not considered in the model.

3 Results

Snow remains thin and patchy since about 70% of annual precipitation falls in the warm season (May—
September) at 95% of stations in the vast Tibetan Plateau due to monsoon climate (Qin et al., 2006; Ma
and Qin, 2012; Gao et al.,, 2023; Cuo and Zhang, 2017). Unlike North America where snow
accumulates and peaks around April 1 (Hamlet et al., 2005), snowfall on the vast Tibetan Plateau is
relatively limited and snow tends to melt or sublimate after each snowtfall event, which hinders the
buildup of maximum snowpack at the end of snow season. Hence, we use averaged SWE over snow-
covered areas in snow season for monthly and annual analyses. Other snow mass components are

represented by their accumulation in the entire TPP during snow season at monthly and annual steps.

3.1 SWE

Mean annual SWE is highest in the West Kunlun, Hindu Kush, Karakoram, and west Himalayas, with
smaller peaks in Nyenchen Tangla, Hengduan, eastern TP, and Qilian mountains (Fig. 3a). The vast
interior has little SWE, only a few millimeters at most. TPP-wide averaged annual SWE is 0.85+0.45
mm or 2.66+1.41 gigatonne equivalent of water (hereafter Gt). SWE peaks around 5000 m above sea
level, with a smaller peak near 2500m above sea level, located mainly in the TPP periphery and the
Pamirs (Fig. 3e). Annual SWE over the TPP shows a negligible trend of -0.01 mm/decade (1962—-2019,
Fig. 3¢). Spatially, SWE trends range from -4.0 to 6.0 mm/decade, with 69.25% (34.09%) of the TPP
showing negative (significantly negative) trends (Fig. 3b). The western and northern basins show
positive trends, but only 10.77% are significant. Among the basins (Table 1), the Amu Darya (2.54 mm)
and Indus (2.19 mm) in the west have the highest annual SWE, while the desert Qaidam Basin has the
lowest (0.07 mm). SWE increases in the Amu Darya, Indus, and Qaidam, but significant only in the
Indus. Significant declines in SWE are seen in the Ganges, Brahmaputra, Salween, Mekong, Yangtze,

and Qilian Mountain basins (Table 1).
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Figure 3: Spatiotemporal patterns of SWE. Mean annual SWE (a) and changes (b) during 1962-2019 over the TPP,
spatially averaged annual SWE (c) and mean monthly SWE (d) during 1962-2019, density scatter plot of annual mean SWE
as a function of elevation (e), and long-term mean monthly SWE for the westerly dominated and monsoon influenced
climate regions (f) on the TPP. Unit is mm in (a), (¢), (d), (e), (f) and mm/decade in (b). Note, blank cells in (a) and (b)

represent glacial cells, + in (b) represents significance level at a=5%, and the same notations are used hereafter in spatial
maps.

Using Israeli’s (2007) method (see Supplementary text 1), we analyzed the impact of snowy-day
precipitation, temperature, and wind speed on annual SWE via multiple linear regression. Precipitation
and temperature generally increase, while wind speed decreases over the TPP in 1962-2019 (Fig. S10a—
c). SWE changes are driven by precipitation in the north and west, and by temperature and wind speed
in the south and center (Fig. S10d). Precipitation, temperature, and wind speed changes account for
40.9%, 33.4%, and 25.7% of SWE changes in the entire TPP, respectively, mirroring Gao et al. (2023)
who conducted station analysis. Increasing SWE in the Pamirs results from increasing precipitation and

decreasing temperature (Fig. S10a—b, Fig. 3b).
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Table 1: Annual means (mm) and trends (mm/decade) of snow mass components in the 12 river

basins of the TPP.
SWE SF BSS SSSS SM SRF
Basins Mean  Trend Mean Trend Mean Trend Mean Trend Mean Trend Mean  Trend

Upper Yellow 0.26 -0.02 85.22 -6.18 5199 -3.16 2355 -2.27 2355 -1.39 1373 -0.69
Upper Yangtze 0.62 -0.08 89.93 =522 3958 -146 2149 -123 5739 -5.03 2832 -249
Upper Mekong 0.6 -0.06 78.25 -4.11 4508 -1.50 1586 -091 4939 -4.67 2848 -3.07
Upper Salween 1.19 -0.23 76.88 +3.73  46.22 2.39 14.2 0.26 51.77 -1.88 33.9 -2.56

Brahmaputra 0.87 -0.15 82.14 -6.27 3335 -1.88 16.15 -090 67.67 -550 3444 -2.57
Upper Ganges 0.87 -0.12 47.89 -1.15 19.90 0.41 17.27  -0.82 29.7 -1.72 1943  -1.08

Upper Indus 2.19 0.39 52.45 -2.69 30.17 -034 10.11 -1.40 3037 -1.48 17.2 -0.36

Upper Amu
2.54 0.18 105.75 0.98 83.53 2.43 1122 -1.56 25.19 4229 1455 +2.20
Darya
Upper Tarim 1.49 -0.04 78.55 -3.69 4753 -1.84 11 -1.25  27.86 0.31 732 +0.82
Inner TP 0.35 -0.02 52.63 -5.16 2544  -2.12 19.8 245  11.62 -0.39 3.93 +0.20
Qaidam 0.07 0.002 47.28 -3.14 2254 -0.65 20.84 -2.42 6.55 0.08 2.59  +0.14

Qilian Mountain 0.72 -0.04 108.64 -5.16 6456  -2.27 2675 -1.87 3265 -1.02 15.07 0.04

SWE: snow water equivalent; SF: snowfall; BSS: blowing snow sublimation; SSSS: standstill snowpack surface sublimation;

410 SM: snowmelt; and SRF: refrozen snow. A bold number represents a statistically significant trend.

Monthly SWE averaged over the TPP peaks in October (slightly less than 1.4 mm) and then declines
but remains relatively stable until March after which monthly SWE decreases rapidly and reaches a
minimum in August (Fig. 3d). However, a comparison of monthly SWE between westerly circulation
dominated basins (Amu Darya and Indus) and monsoon dominated basins (Yellow, Yangtze, Mekong,
415 Salween and Brahmaputra) reveals a major peak in both regions but with different timing and
magnitude (Fig. 3f). SWE peaks in October in monsoon dominated basins without much accumulation
in the snow season; whereas westerly basins experience snow accumulation that peaks in March, the

end of snow season. In contrast to westerly-dominated basins, snow in monsoon-dominated basins is
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both limited in amount and short in duration, supporting the earlier statement of thin and patchy snow

across the vast interior of the TPP.

3.2 Snowfall

Snowfall is a dominant input to snowpack and is calculated by partitioning precipitation using
temperature thresholds of Tmax and Tmin (Fig.S8, S9). There is no measured snowfall available on the
TPP, and also very few studies focus on snowfall on the TPP. One exception is Zhou et al. (2018) who
used CMA observed snow pressure to retrieve snowfall and showed that in the east TPP where most
stations are located snowfall ranged from 1 to 150 mm during 1961-2013, consistent with the VIC
simulations during 1962-2019 (Fig. 4a).

Across the TPP, annual snowfall varies from a few millimeters in the valleys to more than 400 mm in
the highlands and mountains (Fig. 4a). Mean annual snowfall is 70.67+£17.32 mm when averaged over
the TPP, about 221.19+54.21 Gt, which is around 12% of TPP’s annual total precipitation. Annual
snowfall exhibits a decrease trend during 1962-2019 and a drastic drop happened around 1997-1998
(Fig. 4b) when a major El Nifio event occurred. About 87.3% (66.7%) of the TPP shows decreasing
(significantly decreasing) annual snowfall (Fig. 4c). Spatially averaged snowfall peaks in May and
October, but less than 16 mm in magnitude (Fig. 4d). Spatial distributions of monthly accumulated
snowfall display heterogeneous patterns, and snowfall occurs primarily (little) in the periphery (vast
interior) of the TPP during January-March and November-December (Fig. S11). Snowfall peaks in May
and October in the majority of the interior TPP, with some areas receiving 45 mm or more in a month.
In the Pamirs, snowfall starts in October and lasts till next spring. In the interior Tibetan Plateau,
snowfall occurs from May through October (Fig. S11). The highest annual snowfall occurs in the Qilian
Mountain, followed by the upper Indus, and the lowest happens in the Qaidam and upper Ganges (Table
1). Except for the positive trends in the upper Salween and Amu Darya, all other basins display negative

trends, and most trends are statistically significant (Table 1).
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3.3 Snow sublimation

Mean annual BSS follows snowfall patterns, high in mountains but low in the interior (Fig. 4e). Upper
Yellow, Yangtze, Mekong, and Salween basins show high BSS. TPP-wide BSS peaked at 43.9 mm in
1997, then declined sharply (Fig. 4f). BSS variability mirrors that of snowfall (R* = 0.77, Fig. 4b).
Averaged annual BSS over the TPP is 36.55+8.37 mm or 114.40+26.20 Gt. Annual BSS declines across
77.3% of the TPP, with significant trends in 47.7% of the region, mainly in the western tip, Kunlun
Mountains, Qiangtang plain, and eastern TPP (Fig. 4g). The Pamirs and Nyenchen Tangla Mountains
show increasing trends. BSS peaks in October (>10 mm) and is lowest in July-August (Fig. 4h).

Annually averaged SSSS is highest along the eastern Kunlun and Qilian mountains and eastern river
headwaters (Fig. 41), and 1s generally lower than BSS on the TPP. Spatially averaged annual SSSS is
17.8+6.52 mm or 55.71£20.41 Gt, about half of BSS. SSSS declined after the late 1970s, with a sharp
drop around 1997 due to reduced snowfall (Fig. 4j, 4b; R? of 0.81). About 92.0% (76.5%) of the TPP
exhibits decreasing (significantly decreasing) SSSS trends, with the steepest decline found in the eastern

Kunlun (Fig. 4k). SSSS peaks in May (>5 mm) and remains lower than BSS year-round (Figs.4l, 4h).

On an annual average, BSS is greater than SSSS in all basins (Table 1). The highest BSS is in the upper
Amu Darya and the lowest in the upper Ganges (Table 1). All basins see decreased BSS and SSSS
except for the upper Salween, Ganges and Amu Darya (Table 1).
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Figure 4: Spatiotemporal patterns of snowfall, sublimation and evaporation during 1962-2019 over the TPP. Annual
snowfall (SF) (a) and changes (c), spatially averaged annual SF (b) and mean monthly SF (d); annual blowing snow
sublimation (BSS) (e) and changes (g), spatially averaged annual BSS (f) and mean monthly BSS (h); annual standstill
snowpack surface sublimation (SSSS) (i) and changes (k), spatially averaged annual SSSS (j) and mean monthly SSSS (1).
Units are mm in (a), (b), (d), (e), (), (h), (i), (j), (1) and mm/decade in (c), (g), (k).

3.4 Snowmelt and refrozen snow

Refrozen snow (SRF) includes snow deposition and refrozen snowmelt. Annual snowmelt (SM) and
SRF display similar spatial patterns, high in the southeast while low in the interior, and SM is generally
larger than SRF, with SM approximately being double of SRF in magnitude (Fig. 5a, e). Regionally
averaged annual SM and SRF decrease significantly at 1.91 and 0.79 mm/decade, respectively (Fig. 5b,
f). Spatially, about 74.6% (46.8%) and 66.8% (40.9%) sees decreasing (significantly decreasing) SM
and SRF, respectively (Fig. 5c, g). The western TPP, however, experiences significant increase trends in
SM and SRF. SM and SRF monthly patterns are also very similar, showing low values in snow season
and high values in melting season especially in June to September (Fig. 5d, h). Annual mean SM and
SRF are the highest in Brahmaputra and lowest in Qaidam (Table 1). Most basins except for upper Amu
Darya exhibit significant decreasing trends of SM; whereas upper Amu Darya, upper Tarim, Inner

basins and Qaidam all experience significantly increasing SRF (Table 1).
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Figure 5: Spatiotemporal patterns of snowmelt and refrozen snow. Mean annual snowmelt (a) and changes (c) during
1962-2019 over the TPP, spatially averaged annual snowmelt (b) and monthly snowmelt (d); mean annual refrozen snow (e)
and changes (f) during 1962-2019 over the TPP, spatially averaged annual refrozen snow (g) and monthly refrozen snow (h).
Units are mm in (a), (b), (d), (e), (f) and (h) and mm/decade in (c) and (g).

3.5 Snow mass balance

The above variables constitute the main components of the snow mass balance given as Eq. (3):

SF + SRF = SM + BSS + SSSS + ‘”;tv £ 3)

where 6SWE/ &t is the change of SWE in one snow year, which is generally very small and can be
ignored on the TPP.

As shown above, averaged over the TPP, VIC simulated annual snowfall is 70.67£17.32 mm or
221.19+£54.21 Gt, and annual refrozen snow is 16.56+3.85 mm or 51.83+12.05 Gt. Total snow water
resource or input of the snow pack (left terms in Eq. (3)) on the TPP is the sum of refrozen snow and
snowfall, which is 273.02+66.26 Gt. Annual snowmelt on the TPP is 32.88+8.01mm or 102.91+25.07
Gt. The available annual snow water resource is the sum of snowmelt and SWE, which is 105.57+26.48

Gt or 105.57+26.48 billion m?, about 38.7+0.2% of snow input (Fig. 6).
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Figure 6: The amount and proportions of snow mass balance terms on the TPP. SF: snowfall; BSS: blowing snow
sublimation; SSSS: standstill snowpack surface sublimation; SRF: refrozen snow; SM: snowmelt; and SWE: snow water
equivalent.

500 Assuming that all available annual snow water resources contribute to annual discharge of all river
basins on the TPP as a potential, and using the total river discharge of 65623 billion m® in 2018 from
Wang et al. (2021) and long-term average annual total discharge of ~550 billion m? at the outlets in the
periphery of the TPP over the past decades from Zhang et al. (2013), Poudel et al. (2022), Cuo et al.
(2014), and Hou et al. (2023) as approximations, the potential snow contribution to the total stream

505 discharge of all rivers is estimated to be around 12-19% annually, on average. However, the
contribution can be high in specific locations and months. For example, more than 45% of annual
discharge in sub-basins of Brahmaputra and Tarim is from snow (Cuo et al., 2014). Snow water

contribution to annual streamflow in Amu Darya sub-basins in the west TPP varies in 15-50% (Hou et
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al., 2023). Streamflow in April and May is also significantly and positively correlated with early winter

and spring snow depth in sub-basins of upper Brahmaputra (Cuo et al., 2019).

Annual snow sublimation and evaporation, a loss from the perspective of water resource, is the sum of
BSS (114.40+26.20 Gt) and SSSS (55.71+20.41 Gt), which is 170.01+46.61 Gt. This is greater than
available water resource of 105.57+26.48 Gt and equals to 62.3+£1.6% of annual snow input (Fig. 6),
even higher than the reported percentage of 15-41% in the Canadian prairies (Pomeroy and Gray, 1995).
Hence, annually averaged over the TPP, snow contribution to atmospheric water vapor is much higher
than that to available water resources over the TPP. Therefore, snow sublimation and evaporation must
be considered in snow water resource estimation to avoid overestimation of snow contribution to stream
discharge on the TPP. Further questions to ask include how snow’s contribution to atmospheric water
vapor compares with that from other local land cover types, such as vegetation and bare land, as well as

moisture transported from outside the TPP—an issue that deserves future research.

4 Discussion
4.1 Climate effects of snow change

On the TPP, snow not only contributes more to atmospheric water vapor than to available water
resource but also acts as an important modulator of climate system and weather. Pu and Xu (2009)
reported that during 1979-2014 snow cover on the TPP is highly heterogenous spatially and snow cover
occurs year-round in about 10% of the TPP. Li et al. (2018) reported that high snow cover variability in
snow season on the TPP is related to East Asian upper-level westerly jet variability at 3-8 days later
which subsequently affects weather on the TPP and its surroundings. Moreover, snow cover reduces
diurnal fluctuations of soil temperature, hence diurnal soil freeze-thaw cycles, due to albedo effect and
low thermal conductivity of snow (Li et al., 2024). Li et al. (2018), Chen et al. (2021), and Ma et al.
(2023) found that the TPP in general experiences decreasing snow cover. Li et al. (2018) reported that
snow cover decreasing rates (-0.33— -0.13 %/year) in January-May are greater than those in the other
months. Given positive albedo feedback effect, reduced snow cover in cold season could enhance
warming in winter which is already happening on the TPP (Yang et al., 2010). Cuo et al. (2021) found
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that maximum and minimum air temperature in December-January-February warmed at 0.04 and 0.06
°Clyear during 1957-2019, respectively, the greatest among the four seasons. As there is essentially no
vegetation canopy on the vast TPP in winter, snow cover reduction is the dominant factor for the winter
warming amplification on the TPP, similar to the Arctic Amplification (Screen and Simmonds, 2010;
Cohen et al., 2020). Snow cover reduction will not only affect local climate conditions but also have
far-reaching effects on the Indian, eastern and southern China monsoon rainfall. Widespread thin snow
cover impacts weather and climate locally and remotely through the Blanford’s mechanism whereby the
combined snow albedo effect, reduced sensible heat flux and longwave flux cool the troposphere and
modulate the atmospheric circulations. Wu and Kirtman (2007) found that spring snow cover on the
TPP displays moderate positive correlation with spring rainfall in south China during the ENSO (EI
Nifio — Southern Oscillation) events. Observations and simulations all show that snow cover anomaly in
fall-winter-spring on the TPP leads to rainfall anomaly in east China (Wang et al., 2018). Also, winter
snow cover on the TPP exhibits a strong negative relationship with Indian summer monsoon rainfall in

the absence of ENSO because of the Blanford’s mechanism (Turner and Slingo, 2011).

4.2 Quality of the snow simulation

The complex terrain in the sub-grid of the 0.25° X0.25° grid cells on the TPP was represented by 100-
m-interval snow bands. This treatment improved not only snow simulation in the complex terrain of the
TPP with high relief roughness (Fig. 1b) by using a relatively large number of snow bands, but also the
computational efficiency in the inner TPP with low relief roughness by using fewer snow bands (Fig.
S4). The quality of VIC simulated SWE was carefully ensured using observation data and advanced
techniques through a series of steps detailed in Analysis: 1) correcting precipitation undercatch in snow
season, 2) using temporally continuous SWE simulated by ASNOW forced by observed snow depth and
evaluated by observed SWE, 3) automatic calibration of VIC sensitive snow parameters using ASMO,
and 4) regionalization of calibrated sensitive VIC snow parameter values from stations to grid cells
using 1D-CNN and MODIS snow cover. The five statistic matrices related to SWE evaluation are

satisfactory according to the criterion set by Moriasi et al. (2007).
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Our study shows that snow mass is limited in the vast interior TPP which is also confirmed by previous
studies. Zhang et al. (2015) showed that accumulated SWE in December-January-February was less
than 3 mm for most years during 1979-2010 on the TPP and SWE dropped drastically around
1987/1988, similar to VIC simulations (Fig. 3c). Li et al. (2021) also showed an annual mean snow
depth of only 2-3 cm during 1982-2017 at 88 CMA stations on the TPP. Ma and Qin (2012) used
observed snow depth (cm) and snow pressure (g/cm?) from the CMA to calculate snow density (g/cm?)
and then estimated SWE for the entire China during 1957-2009. They noted mean annual SWE of 0.4
mm over the Tibetan Plateau, which is in the same order of magnitude as VIC simulated mean annual
SWE and falls within VIC simulated uncertainty range (0.85+0.45 mm). Slightly higher mean SWE
simulated by VIC stems from the differences in study area and period. The Pamirs and the Tibetan
Plateau have different climates. Under year-round westerly control, the majority of annual precipitation
falls in winter and spring in the Pamirs when snow can accumulate and melt during late spring and
summer (Figs.S11, 3f). Precipitation in the Tibetan Plateau is dominated by monsoons; while May—June
and September—October are snow seasons, snowfall is limited and tends to sublimate, evaporate or melt
after each snowfall event, preventing snow accumulation during snow season (Figs.S11, 4d, 4h, 41, 5d).
This is the reason why March or April SWE cannot represent annual snow water resource and SWE is

very low in the Tibetan Plateau.

Gao et al. (2023) estimated the annual snow water resource by using the accumulated maximum SWE
from each snow event, based on SWE derived from snow depth observations. For comparison, we used
their approach and obtained VIC simulated annual accumulated maximum SWE. As shown in Fig. S12,
high accumulated SWE maximum is located in the west, headwaters of the Salween and Mekong,
portions of the Yangtze and Yellow rivers, and the west Kunlun and Qilian. Since Gao et al. (2023)
used station data inside China, their spatial coverage is limited. But the spatial distributions of
accumulated SWE maximum in the eastern TPP is similar in both studies, with magnitude ranging in

20-100 mm (see their Fig. 5).

A few studies used energy balance, bulk aerodynamic theory and sophisticated snow models to

calculate snow sublimation on the TPP (Table 2). We compared the ratios of total snow sublimation
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(BSS+SSSS) to snowfall (SF) and BSS to total snow sublimation between current study and previous
studies at eleven sites located on the TPP (Table 2, Fig. S13). In general, VIC simulated
(BSS+SSSS)/SF  ratios are close to previous studies at the co-located sites. VIC simulated
BSS/(BSS+SSSS) also matches the values from previous studies at the co-located sites except for sites 4
and 11. VIC simulated December-January-February snow sublimation and evaporation on the TPP is

within 10 mm (Figs.4d, 4h, 41) which is also similar to what Zhang et al. (2015) reported for 1979-2010.

Table 2: Snow sublimation simulated by VIC in this study compared with previous studies on the
TPP.

This study Previous study
F1(%) F2(%) F1(%) F2(%) Methods Reference

1 55.3 66.3 50.0 - ARIMA and D-IUH model Paix et al., 2012
2 83.0 63.0 high - Energy balance method Zhang et al., 2013
3 56.7 52.7 474 50.7 CRHM model Zhou et al., 2014
4 72.8 82.2 68.8 41.5 Energy balance method Liet al., 2009; 2012
5 46.2 34.6 389 - GBEHM model Lietal., 2019
6 28.2 13.9 21.0 - Bulk-aerodynamic method Stigter et al., 2018
7 97.2 77.6 42.5-100.0 - Heat budget method Ueno et al., 2007
8 96.8 22.1 100.0 20.3
9 91.9 37.6 84.5 36.42

VIC model Sahadeep, 2019
10 322 16.8 31.25 15.94
11 89.6 80.6 62.92 1.52

F1=(BSS+SSSS)/SF; F2=BSS/(BSS+SSSS); “high” is used when no exact value is available; “-” means no reported values

from the other studies.

VIC-simulated and station-based snowfall (Zhou et al., 2018, their Fig. 2a) in the eastern TPP show
similar annual amount, ranging from 1 to 200 mm (Fig. 4a). Yang et al. (2022) reported annual
snowmelt of 115 Gt on the TPP, together with Ma and Qin (2012) who obtained 0.4 mm annual mean
SWE, the available water resource from previous studies falls within the range reported here. These

comparisons and analyses demonstrate that VIC simulated snow is credible in general.
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4.3 Uncertainty

All land surface modeling results contain uncertainties related to model physical processes, model
parameter values and meteorological forcing data. The uncertainty in model physical processes is
usually examined by using multiple schemes or models. For example, snow accumulation is sensitive to
processes like surface heat exchange, rain and snow partition, low boundary conditions of soil
temperature, and the first layer of snow or soil temperature scheme in the Noah-MP model (You et al,
2019). Marked differences in snow albedo parameterization schemes in the Noah, VIC, snow-
atmosphere-soil transfer model, Land Ecosystem-Atmosphere Feedback models, Noah-MP, and
Community Land Model (CLM) result in different SWE peak, timing, and duration in forest covered
complex terrain in Colorado headwaters of the USA (Chen et al, 2014). Since this study used only one
model, uncertainty in a single model simulation would be expected. However, in this study, snow
season precipitation, model parameters, and snow processes are rigorously evaluated which results in
credible model simulations. What is further reassuring is that the VIC has already been successfully
applied on the TPP and other cold regions with good performance (e.g., Zhang et al, 2015; Cuo et al,
2013b).

Brun et al. (2013) used the Crocus snowpack model to evaluate two meteorological forcing datasets: the
European Centre for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis (ERA-Interim)
and the Princeton University Global Forcing dataset (PGF) in northern Eurasia. They found that there
were significant differences in snow depth, snow water equivalent, snow season onset and end time, and
snow density between the two sets of simulations driven by two different forcings. Liu et al. (2023a)
found that meteorological forcing had the greatest impact on snow depth simulations in the CLM,
followed by the snow parameterization scheme. Below we focus on forcing related uncertainty in VIC’s

SWE simulations.

In this study, the averaged coefficient of determination (R?) of the multiple linear regression between all
meteorological forcings and annual SWE over the TPP is 0.64 (p<0.05), indicating that VIC simulated
SWE is highly correlated with model forcings. Further, the response of SWE to changes in each forcing

variable is investigated through the design of detrended scenarios over 1962-2019 (see Supplementary
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Material for the details; Schaake, 1990). Fig. 7a shows that, on average, SWE on the TPP increased due
to rising precipitation and declining wind speed during 1962-2019 (Fig. S15a, d), while increasing
maximum (T,,4,) and minimum (T,,;,) temperature (Fig. S15b, ¢) reduced SWE on the TPP. SWE
responses to changes in precipitation (ePre), temperature maxima (€T, 4, ), temperature minima (€T,,;,,)
and wind speed (eWind) are 6.21, -1.17, -1.38 and -0.76, respectively. This means that 10% increase
(decrease) in precipitation (wind speed) would increase SWE by 62.1% (7.6%) while 10% increase in
maximum (minimum) air temperature would reduce SWE by 11.7% (13.8%). In other words, 1°C
increase in Ty, 4, and Ty, would decrease SWE by 14.84% and 17.49%, respectively. Therefore, over
1962-2019 precipitation changes have exerted the greatest impact on annual SWE, followed by changes
in minimum and maximum air temperature over the TPP on average. Wind speed changes show the

least impact on SWE.
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Figure 7: The response of SWE to changes of climate factors. Time series of TPP averaged SWE changes in response to
changes in forcing (a), spatial distributions of SWE sensitivity to changes in precipitation (b), temperature maxima (c) and

temperature minima (d), and wind speed (e) during 1962-2019
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645 The responses of SWE to changes in forcings are found to be spatially diverse. Fig. 7b, c, d, e and Table
3 show that the upper Tarim and west Kunlun display the highest ePre, followed by the upper Salween,
Nyenchen Tangla, Qilian and east Kunlun Mountains and the eastern TPP. The Brahmaputra, Ganges
and lower Yangtze rivers show large €T,,,,. Except for the Brahmaputra, upper Ganges, lower Yangtze
and Amu Darya basins, SWE in most basins is more responsive to T,,;, than to T,,,,. eWind is

650 particularly high in the Qaidam Basin, northern inner TPP and southern TPP. Hence, uncertainties in
precipitation, Tp,ipn, Tmax and wind speed will propagate to SWE simulations in these sensitive locations
on the TPP. Nonetheless, the quality of the forcings was evaluated at independent stations widely spread

on the TPP and proved to be reliable (Table S1, S2).

Table 3. SWE sensitivity to changes in forcings in the 12 basins during 1962-2019.

SWE sensitivity

Basins
€Pre €Tnax €Tmin eWind

Upper Yellow 1.46 -0.62 -1.48 -0.35
Upper Yangtze 1.66 -1.27 -1.31 -0.36
Upper Mekong 1.49 -1.15 -1.38 -0.42
Upper Salween 2.42 -1.07 -2.03 -0.47
Brahmaputra 1.64 -2.28 -1.77 -1.07
Upper Ganges 1.28 -2.09 -1.15 -0.71
Upper Indus 1.15 -0.74 -0.85 -0.33
Upper Amu Darya 1.15 -1.12 -0.32 -0.18
Upper Tarim 3.77 -0.89 -0.90 -1.07
Inner Tibetan Plateaus 2.97 -0.64 -1.37 -1.08
Qaidam 1.89 -0.99 -0.86 -2.08
Qilian Mountain 3.29 -0.94 -1.56 -0.83

655 4.4 Evaluation of remote sensing SWE using VIC simulated SWE

As an example of the application of VIC simulated SWE, we evaluated the SWE products from FY3
and NASA-HMA, which were not evaluated by Bian et al. (2019). FY3 mean annual SWE is high in the
eastern TPP and the Pamirs (Fig. S14a), while NASA-HMA shows high values in the Nyenchen Tangla,
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Karakoram, western Himalayas and western Kunlun (Fig. S14b), indicating that FY3 and NASA-HMA
exhibit different mean annual SWE spatial patterns. Consistent with Bian et al. (2019), our results show
that the FY3 and NASA-HMA products significantly overestimate SWE across most of the TPP
compared to VIC simulations, with mean annual SWE values of 2.90 mm for FY3 and 6.95 mm for
NASA-HMA—one order of magnitude higher than VIC simulations (Fig. S14c, d). Such comparisons
illustrate that passive microwave remote sensing SWE products do need improvement for the TPP. The
overestimation may stem from several factors: (1) weak microwave emission signals and coarse spatial
resolution that mask sub-grid variability; (2) brightness temperature retrieval algorithms designed for
flat, homogeneous surfaces, which are not suitable for complex terrain; (3) omission of terrain-related
effects such as shadow, slope, and aspect that influence microwave emission over the TPP; and (4) pixel
saturation when snow depth exceeds 150-200 mm (Dozier et al., 2016). Additionally, a key limitation
not addressed by Dozier et al. (2016) is that many remote sensing products (e.g., GlobSnow) estimate

SWE using a fixed snow density.

5 Conclusions

In summary, a novel, effective and reliable snow simulation framework that incorporates in-situ and
satellite observations, point-based ASNOW, point- and grid-based VIC models, Sobol' sensitivity
analysis, ASMO automatic calibration, and 1D-CNN deep learning methods has been developed to
investigate snow mass components on the TPP. The unique features of the framework include
regionalization of sensitive snow parameter values calibrated from point locations to grid cells using
ID-CNN deep learning approach (see Supplementary Material), implementation of flexible 100-m
elevation interval snow bands in sub-grid cells, and incorporation of blowing snow and standstill
snowpack surface sublimation and evaporation schemes. This study produced two sets of good quality
daily snow data at two spatial scales. The first is ASNOW model simulated temporally continuous SWE
at 66 stations for 1980-2009. The second is VIC simulated spatiotemporally continuous snow mass
balance terms at 0.25° X0.25° resolution during 1962-2019 for the entire TPP. These datasets can be
used to study snow spatiotemporal characteristics and evaluate satellite, reanalysis and other model-
based datasets on the TPP.
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Over 1962-2019, mean annual snowfall is 70.67+17.32 mm, refrozen snow is 16.56+£3.85 mm,
snowmelt is 32.88+8.01 mm, blowing snow sublimation is 36.55+8.37 mm, standstill snowpack surface
sublimation and evaporation is 17.8+6.52 mm, and SWE is only 0.85+0.45 mm. Snow sublimation and
evaporation account for about 62% of snow pack input. Annual snow water resources (snowmelt +
SWE) represent ~38% of annual snow input, potentially contributing 12—19% to annual discharge at
basin outlets along the TPP edge. On an annual scale, snow plays a modest role in supplying water
resources across the TPP, but it contributes substantially more to atmospheric water vapor through

sublimation and evaporation.

From 1962 to 2019, the TPP experienced an overall decline in snow mass components, marked by
spatial variability, which will influence weather and climate patterns locally as well as remotely in
southern and eastern China and India. Regionally averaged monthly SWE shows a single peak in both
westerly and monsoon-dominated basins, though the timing and magnitude differ notably between the
two climatic zones. In the westerly-influenced Pamirs, snow accumulates throughout winter and spring,
with SWE peaking in March, making SWE a key indicator of snow water resources in this region. In
contrast, in the monsoon-dominated areas of the Tibetan Plateau, snow usually melts, sublimates, or
evaporates after each snowfall event, thus preventing sustained accumulation; as a result, snowmelt
rather than SWE serves as the primary form of snow water resource in these areas. SWE variations are
mainly driven by precipitation in the northern and western TPP, while temperature and wind speed are
the dominant factors in the central and southern areas. Overall, annual SWE is most sensitive to

precipitation changes and less responsive to variations in minimum and maximum temperatures.
Data availability: All raw data can be provided by the corresponding authors upon request.
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