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Abstract. High-resolution sea surface temperature (SST) products are critical for understanding ocean dynamics at subme-

soscales (less than tens of kilometers) and their influence on upper ocean physics. While modern infrared (IR) radiometers

measure SST at high (∼ 1 km) resolution, they cannot image through clouds, resulting in large gaps in remotely sensed SST.

In this study, we address the challenge of reconstructing gap-free high-resolution SST by fusing complementary observations

across sensors and time using machine learning (ML). We present the Multi-satellite U-Net for SST Estimation (MUSE), a5

residual U-Net fuses two days (eight 6-hourly snapshots) of multi-satellite IR and microwave (MW) data into cloud-free SST,

and further mosaicked into global SST fields. The MUSE model is trained on 9 months of simulated cloudy SST from the

MITgcm LLC4320 1/48° SST product, and evaluated on 2 months of held-out LLC4320 data and out-of-distribution Level

3 satellite data. MUSE outperforms single-time and single-satellite baselines across error, correlation and coherence metrics,

achieving a global reconstruction error of 0.035°C on the simulated dataset. On the satellite dataset, MUSE produces results10

comparable to the state-of-the-art Level 4 MUR 0.01° product. Our results demonstrate the power of ML in synthesizing diverse

satellite measurements, each with inherent limitations, into a submesoscale-resolving dataset that enables critical insights into

ocean dynamics. Both our data fusion strategy and simulation-to-satellite paradigm can be generalized to other geophysical

variables to produce high-resolution, observation-based Earth system fields.

1 Introduction15

Sea surface temperature (SST) is an important variable for studying ocean-atmosphere interactions, marine ecosystems, and

climatology (O’Carroll et al., 2019). Infrared (IR) radiometers measure SST at high spatial resolutions—as fine as 0.75 km

(NOAA/NESDIS/STAR, 2023)— allowing the study of submesoscale processes that impact ocean dynamics (Liu et al., 2017).

However, IR radiometers have a major limitation: IR signals cannot penetrate clouds, resulting in gaps in satellite imagery.

Since ocean cloud cover can reach up to 68% (Eastman et al., 2011), filling gaps in satellite SST is a critical step in preparing20

operational high-resolution data products.

Contending with cloud gaps in satellite imagery is a longstanding research problem. Cloud gaps are typically filled by inter-

polating over temporal data, which leverages the transience of clouds, or multi-satellite data, which leverages the capabilities

of different radiometers. Microwave (MW) radiometers are particularly useful because unlike IR devices, they are unaffected
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by clouds but have coarser resolution (tens of kilometers), capabilities which are the opposite of IR radiometers. Traditional25

gap-filling methods include kriging (Holdaway, 1996) and Optimal Interpolation (OI) (Reynolds and Smith, 1994; Chin et al.,

2017), both of which are statistical methods, and Data INterpolating Empirical Orthogonal Functions (DINEOF) (Alvera-

Azcárate et al., 2009), which uses matrix factorization. Although effective and widely used, these methods produce smoothed

reconstructions that lack small-scale structures due to a number of factors, including assumptions of linearity and in the case

of DINEOF, truncation errors (Barth et al., 2022).30

Recent works have used machine learning (ML) to overcome the limitations of traditional methods. Gap-filling of satellite

images is fundamentally an image reconstruction task and in computer vision, machine learning models have demonstrated

exceptional performance on image reconstruction tasks such as denoising, inpainting, and super-resolution (Archana and Jee-

varaj, 2024). Researchers have applied machine learning to fill gaps in SST (Goh et al., 2024; Barth et al., 2022) and other

oceanographic variables such as sea surface height (SSH) (Beauchamp et al., 2023; Martin et al., 2023), sea surface salinity35

(Tian et al., 2022), and Chlorophyll-a (Mehdipour et al., 2025). Machine learning outperforms traditional gap-filling methods

because the models can approximate complex nonlinear functions, giving them the capacity to learn complex image priors

(Ulyanov et al., 2020), and in the domain of oceanography, complex ocean dynamics.

We provide a review of ML-based methods for SST reconstruction. One of the seminal works in ML-based SST gap-filling

is Data INterpolating Convolutional Auto-Encoder (DINCAE) (Barth et al., 2022), which can be interpreted as a generalization40

of DINEOF. Instead of using matrix factorization as done in DINEOF, DINCAE uses a deep network that can be more com-

prehensively optimized. The DINCAE model is a U-Net architecture (Ronneberger et al., 2015) that fills gaps using 3 daily

snapshots of cloudy IR SST. SST reconstruction has been further improved using vision transformers (ViTs) that enable the

integration of mask tokens, making them conducive for gap-filling. One type of ViT is the masked autoencoder (MAE) (He

et al., 2022a), which masks random patches of the input to encourage the model to learn descriptive features. The Masked45

Autoencoder for Sea Surface Temperature Reconstruction under Occlusion (MAESSTRO) model adapts MAE for single-time

IR SST gap-filling, and achieves low error for high cloud cover cases (Goh et al., 2024). Zupančič Muc et al. (2025) build on

MAESSTRO by using 3 daily IR SST snapshots for their Coarse Reconstruction with ITerative Refinement (CRITER) network

that uses a MAE in the coarse reconstruction stage. Other works have foregone IR SST, and instead super resolve cloud-free

low-resolution MW data to obtain high-resolution SST. Ducournau and Fablet (2016) use the Super Resolving Convolutional50

Neural Network (SR-CNN) (Dong et al., 2016) from computer vision to reconstruct high-resolution SST from MW data.

Similarly, Fanelli et al. (2024) super-resolve MW SST using a deep network titled dilated Adaptive Deep Residual Network

for Super Resolution (dADRSR), which uses channel attention and dilated convolution to further improve the reconstruction

quality. Both super-resolution works use single-time SST. A separate group of works have used physics-informed priors to re-

construct SST using ML. Young et al. (2024) reconstruct gap-free IR SST using a temporal-spatial radial basis function neural55

network (TS-RBFNN) with a Gaussian kernel to emulate the fundamental solution to the heat equation. Despite the integration

of physics into the ML model, this method still relies on handcrafted physical priors. Table 1 summarizes the discussed works

and provides additional information about the data products used in the studies.
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Model Input SST Target resolution Data product(s) Study area(s) RMSE (°C)

DINCAE 3 days IR 0.05° L3 AVHRR Mediterranean Sea 0.38

CRITER 3 days IR 0.05°, 0.0625° L3 AVHRR, L3S CNR

MED, L3S ODYSSEA

Adriatic Sea, Atlantic

Sea, Mediterranean Sea

0.130, 0.391,

0.127

dADRSR 1 day MW 0.01° L3S CNR MED Mediterranean Sea 0.31

MAESSTRO 1 day IR 0.02° LLC4320, LLC2160, L2P

VIIRS

Global, Pacific Ocean 0.023, 0.358

MUSE (ours) 2 days (8-time)

MW-IR

0.02° LLC4320, L3S GHRSST

NOAA

Global, Mediterranean

Sea, Pacific Ocean

0.035, 0.15

Table 1. A summary of machine learning (ML) models for SST reconstruction and their corresponding performance in terms of root mean

squared error (RMSE). Our model, Multi-satellite U-net for SST Estimation (MUSE), is distinct for its use of global training and evaluation

data, and shows competitive performance on real satellite inputs despite being trained solely on high-resolution simulated SST.

Currently there is a lack of studies that (1) use multi-time and multi-satellite SST for gap-filling, and (2) evaluate their

models on global SST fields. We fill these research gaps with our Multi-satellite U-net for SST Estimation (MUSE) model60

that uses multi-time multi-satellite data to reconstruct cloud-free high-resolution (nominally 0.02°) SST. For this study, multi-

satellite SST refers to multi-resolution SST captured by IR and MW radiometers. We perform an ablation study on 15 model

variants with different inputs (number of time steps, inclusion of MW data) and choose a model that ingests 2 days (eight

6-hourly timesteps) of MW-IR SST as the final configuration for MUSE. Our dataset contains 4 snapshots of SST per day,

so we refer to the model using 2 days of MW-IR data as the 8-time MW-IR model. We show that our MUSE model produces65

accurate foundation SST, and resolves submesoscale structures. Unlike prior methods, we train and evaluate on global SST

and conduct a comprehensive evaluation of the model performance in terms of error, correlation and coherence metrics. We

also present a preliminary study evaluating our model on real satellite SST that is statistically out-of-distribution (OOD) from

the synthetic data used in model training. We compare our satellite SST results to the state-of-the-art Level 4 (L4) MUR 0.01°

product (NASA/JPL, 2015) and show that even without model fine-tuning, the MUSE model can overcome the sim-to-real gap70

(Kadian et al., 2020) and produce reconstructions with RMSEs comparable to prior works. Our approach enables the study of

submesoscale processes critical for understanding ocean physics.

2 Datasets

We use a 1/48° global ocean simulation to train our ML model and apply real cloud masks to the simulated SST to emulate

realistic satellite data. Our ML model reconstructs SST under the cloud mask, and is trained in a supervised framework using75

the ground truth (unmasked) SST. SST data near the poles (60-90° S, N) are removed to ignore sea ice and non-uniform

gridding effects. In this section, we introduce the data products for model training and evaluation.
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2.1 Training dataset

We train our model using the SST fields from a MITgcm global ocean simulation, which is referred to as LLC4320 (Menemenlis

et al., 2021). Since its inception in 2016, the simulation has been heavily used for studying submesocale ocean dynamics using80

machine learning (Su et al., 2018; Goh et al., 2024; Martin et al., 2023). The simulated SST has 1/48° nominal horizontal

resolution, and 90 vertical layers on a Lat-Lon-Cap (LLC) grid. Its forcing fields are derived from ERA5 6-hourly winds, air-

temperature and pressure, and humidity data. Barotropic tidal forcing was simulated using an equivalent air pressure instead

of body force (Arbic et al., 2012). 14-months (September 2011 - November 2012) of hourly snapshots were saved, and sub-

sampled to 6-hourly snapshots for this work.85

Synthetic gappy IR SST is produced by applying real cloud masks to the ocean simulation output (LLC4320). We derive

real cloud masks from the GHRSST NOAA/STAR Level 3 super-collated (L3S) 0.02° dataset (Jonasson et al., 2024), which

provides per-pixel quality levels ranging from 1 to 5 where 5 is the best quality, and levels 4-5 denote analysis ready SST. We

set pixels with quality level less than 4 as clouds. The daytime and nighttime L3S products are combined to create a dataset

with 4 snapshots per day, corresponding to approximately 6-hourly snapshots to match the LLC4320 temporal resolution. We90

downsample the high-resolution LLC4320 SST by a factor of 12 to simulate MW data at a 0.25° resolution, which corresponds

to that of satellite MW SST products. In summary, our training dataset contains cloud-free and cloudy high-resolution (0.02°)

IR SST, and cloud-free low-resolution (0.25°) MW SST, all of which are 6-hourly snapshots.

Figure 1. The 14-month LLC4320 simulation (15 September 2011 – 14 November 2012) is split by date into a 9½-month training period

(1 February – 14 November 2012), a 2½-month validation period (15 September – 30 November 2011), and a 2-month testing period (1

December 2011 – 31 January 2012). Validation data are used during development to tune hyperparameters and select model checkpoints,

whereas the test data—completely held out until final evaluation—provide an unbiased assessment of generalization. The test period delib-

erately covers the unseen December–January window to assess the model’s ability to handle previously unseen seasonal conditions.

2.2 Test dataset

Our MUSE model, trained on simulated cloudy SST, is evaluated on both simulated and real satellite SST datasets to assess its95

performance and generalization capabilities.
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2.2.1 Simulated test data

The primary evaluation is performed on a held-out portion of the simulated LLC4320 dataset. The full 14-month simulation is

split by date:

– Training: 1 February 2012 - 14 November 2012100

– Validation: 15 September 2011 - 30 November 2011

– Testing: 1 December 2011 - 31 January 2012

This partitioning ensures the test set months are entirely unseen during training and validation, allowing for an unbiased

assessment of the model’s ability to handle different seasonal conditions. The partitioning of the dataset is illustrated in Figure 1.

2.2.2 Real satellite test data105

To evaluate performance in a real-world scenario, we additionally test the model on actual satellite observations from the same

testing period.

– High-resolution infrared (IR) data: We use the cloudy SST fields from the GHRSST NOAA/STAR L3S 0.02◦ gridded

product (hereafter L3S) as inputs to the model.

– Low-resolution Microwave (MW) data: We use the gap-free daily L4 Multi-scale Ultra-high-resolution (MUR) 0.25◦110

gridded SST (NASA/JPL, 2019) as our MW input.

It is important to note that while L3S cloud masks were used to create the training data, here we use the actual L3S SST values

for testing. The strict separation of dates between the training and test sets ensures there is no data leakage.

2.2.3 Preprocessing for sim-to-real transfer

Unlike the clean, simulated data, real satellite SST contains instrument and collation noise, creating an OOD challenge known115

as the sim-to-real gap (Kadian et al., 2020; Hu et al., 2024). To mitigate this, the satellite data undergoes targeted preprocessing:

1. L4 MUR 0.25◦ upsampling: the satellite MW data is bi-linearly upsampled across time to match the 6-hourly temporal

resolution of the L3S data.

2. L3S denoising: Extreme outliers (outside 4 standard deviations of the mean) are removed from the L3S data. A 2× 2

pixel median filter is then applied to reduce measurement noise, which coarsens the effective resolution from 0.02◦ to120

0.04◦.

3. Bias correction: An additive bias between the upsampled MUR data and the L3S data, caused by the temporal interpo-

lation, is calculated and removed from the MW data.

These preprocessing steps proved sufficient for this initial investigation of the sim-to-real gap.
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Figure 2. Cloudy SST is divided into tiles that are input to our machine learning model, and the reconstructed tiles are combined to create

gap-free global SST. In this example, the tile size is 4× 128× 128 and the tile stride is 1× 64× 64. (a) A 4-time input is divided into tiles,

and tiles with too much land or cloud are excluded from reconstruction. (b) The model reconstructs the middle time (t = 0) of the input,

and spatially overlapping tiles are aggregated by calculating the mean and standard deviation. White regions indicate areas where no model

prediction is made (e.g., too cloudy or too much land).

3 MUSE methodology125

3.1 Machine learning model inputs

The global SST fields are divided into smaller tiles before being passed to the model. This windowing process is parametrized

by the tile size and the stride between tiles, as shown in Figure 2(a). We choose the spatial tile size to be 128× 128 pixels, and

the temporal size is one of [1, 4, 8, 12]. The ground truth SST (T), cloudy infrared SST (Tc), and cloud-free microwave SST

(Tµ) are all tiled in the same manner.130

For a given tile, the domain is segmented into binary masks representing land (Ml), visible ocean (Mvis) and cloudy ocean

(Mc) areas. Based on these masks, the cloud ratio, rc, and land ratio, rl, are defined as:

rc =
||Mc||0

||Mvis +Mc||0
, (1)

rl =
||Ml||0

||Mvis +Mc +Ml||0
, (2)
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Variable Description

T Ground truth high-resolution SST

T̂ Estimated cloud-free high-resolution SST

Tc Cloudy high-resolution (IR) SST

Tµ Cloud-free low-resolution (microwave) SST

|∇xyT| Magnitude of spatial SST gradient

|∇tT| Magnitude of temporal SST gradient

Mc Cloud mask

Ml Land mask

Mvis Visible/ clear mask

Table 2. Summary of notation used for the SST and cloud mask variables.

where || · ||0 is the ℓ0-pseudo norm (the count of non-zero elements). Tiles with excessive land or cloud cover (rc > 0.75,135

rl > 0.1) are removed from the dataset, and no prediction is made for these tiles. Examples of valid and removed tiles are

shown in Figure 2(a). Our best model uses 2 days of SST as input, resulting in a tile size of 8× 128× 128, and the stride is

chosen to be 4× 128× 128. The raw training dataset contains 1.8 million tiles with 624,569 usable tiles after selection based

on rc and rl. The dataset tiles are normalized by the training SST mean (21.59°C) and standard deviation (2.94°C).

After normalization, the cloud and land regions of each tile are initialized. For a tile with cloudy IR SST, Tc, and land, cloud140

and visible masks, Ml, Mc, Mvis, the model input is:

−2.5 ·Ml +C⊙Mc +Tc⊙Mvis, (3)

where ⊙ is the Hadamard product, and C is the pixel-wise cloud fill value. The land initialization value, -2.5, is constant, and

is chosen to be different than valid SST. Since the SST is normalized to be zero-mean and unit-standard deviation, the value

-2.5 is at the tail end of the training SST data, and is therefore distinct from most valid SST. We test two choices of the cloud145

fill value, C. We use the mean of the visible SST, T̄vis, as a per-tile constant fill value:

T̄vis =
1

||Mvis||0
∑

Tc⊙Mvis, (4)

where the summation is over all values. When available, we use the microwave SST (Tµ) as the cloud fill value. In summary,

the cloud fill values depend on the satellite data used:

C =





T̄vis, single-satellite

Tµ, multi-satellite.
(5)150

Based on the dataset tiling parameters (stride, size), the reconstructed tiles may overlap. In those cases, we aggregate the

predictions by calculating the mean and standard deviation, which act as our prediction and uncertainty estimate. An example

of overlapping tile predictions is shown in Figure 2(b).
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Figure 3. The U-Net reconstruction model architecture. (a) The residual block takes in a tensor with cin input channels and outputs a

tensor with cout output channels. The conv2d(cin, cout) operator has cin input channels and cout output channels, and performs a 2D spatial

convolution with a 3× 3 kernel. (b) The U-Net model takes in nin timesteps of cloudy SST and outputs a cloud-free estimate of the middle

timestep. The architecture contains residual blocks (blue), encoding layers (purple) and decoding layers (green). The numbers for each layer

indicate the input and output channel dimensions.

3.2 SST reconstruction neural network

Our MUSE model is based on a modern U-Net architecture (Gupta and Brandstetter, 2022), which is a convolutional autoen-155

coder model that has been extensively used for image reconstruction tasks across many fields including remote sensing (Ibtehaz

and Rahman, 2020; He et al., 2022b; Hou et al., 2021).

The MUSE model is built from a series of residual blocks, and the residual block outputs the sum of two paths. The first path

performs the following sequence of operations twice: group normalization (with a group size of 32), sigmoid linear unit (SiLU)

activation, and 2D convolution (with kernel size of 3× 3). The second path is a residual connection that prevents vanishing160

gradients during optimization (He et al., 2016). Figure 3(a) summarizes the operations in a residual block. The layers in the

U-Net model consist of residual blocks. Each encoding and decoding layer contains 2 residual blocks with input channel size,

cin, and output channel size, cout. The encoding layers are followed by 2× downsampling using a learned convolution, and

analogously, the decoding layers are followed by 2× upsampling using a learned transposed convolution. The overall U-Net

structure is shown in Figure 3(b), and our final U-Net model, which uses an 8-time MW-IR input, has 23.6 million parameters.165

The model takes in n timesteps of cloudy SST, and reconstructs the middle timestep. It is trained to minimize the difference

between the model estimate (T̂) and the ground truth gap-free SST (T). The difference is evaluated using the mean squared

error (MSE) between T̂ and T. MSE-trained models are known to produce smoothed results because outliers are amplified

through the squaring operation (Zhao et al., 2017), and we mitigate this by adding a loss term using the spatial gradient
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magnitude to penalize inaccurate small-scale reconstructions. The spatial gradient magnitude of an input T is:170

|∇xyT|=
√
∇xT2 +∇yT2. (6)

The full training loss is an affine combination of the MSE and spatial gradient MSE, and γ1 and γ2 are weights for the two loss

components:

L(T,T̂) = γ1MSE(T,T̂) + γ2MSE(|∇xyT|, |∇xyT̂|). (7)

We set γ1 = 1 and γ2 = 5 so that the SST and SST gradient losses have similar magnitudes during training. SST input tiles are175

grouped into mini-batches of size 72 for training.

The model is trained using the AdamW optimizer (Loshchilov and Hutter, 2019) with β1 = 0.9 and β2 = 0.95. The learning

rate follows a one-cycle scheduler (Smith and Topin, 2019) and increases from 1e−5 to the maximum value of 5e−4 over

the first 18% of the total 200 training epochs. Our models were trained using 4 NVIDIA A100 GPUs, and took 36 hours to

converge.180

3.3 Evaluating model performance

We comprehensively evaluate our reconstructions using multiple metrics including the root mean squared errors (RMSEs) of

the SST itself (T), the spatial gradient magnitude (|∇xyT|), and the temporal gradient magnitude (|∇tT|) of the SST. We also

report the Pearson correlation coefficient, which is calculated over smaller regional domains and then averaged globally. This

ensures that the correlation is not dominated by the large range of global SST values. We report the correlation coefficients185

for SST and the small-scale SST, which are denoted r and rss respectively. Small-scale SST is derived by subtracting the

low-resolution MW data from the SST, resulting in a high-pass filtered SST anomaly.

We use coherence to measure model performance over a range of spatial scales. The coherence between the ground truth,

T, and reconstruction, T̂, is defined as:

c(k) =
|CSDT̂,T(k)|2

PSDT̂(k)PSDT(k)
, (8)190

where CSDT̂,T is the cross spectral density between T̂ and T, and PSDT̂ and PSDT are the power spectral densities of T̂

and T respectively. Coherence ranges from 0 to 1, and higher values are better. To compare our reconstructions to the cloudy

input, we define the temporally-averaged input cloud ratio:

1
n

n
2−1∑

i=−n
2

Mc(x,y, t = i), (9)

where n is the number of timesteps in the input, and t = 0 is the target timestep that is reconstructed by our MUSE model. The195

input cloud ratio shows how often each pixel is visible over the temporal domain of the input.
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Figure 4. Results from an ablation study on the LLC4320 validation set, evaluating how performance is affected by the number of input

timesteps (nin), output timesteps (nout), and the use of single-satellite (IR) versus multi-satellite (MW-IR) data. Models were assessed on

their global RMSE for (a) SST, (b) spatial gradient, and (c) temporal gradient. The best-performing model, which achieves low errors across

all three metrics, uses an 8-timestep MW-IR input to reconstruct a single frame (nin=8, nout=1; gray). Note that for nin=1, the nout=nincase

(blue) is equivalent to the nout=1 case (red).

4 Results and discussion

The MUSE model accurately reconstructs SST under clouds as measured by error, correlation and coherence metrics. We

demonstrate MUSE’s ability to reconstruct large-scale and submesoscale SST through a series of regional reconstructions. We

summarize the LLC4320 reconstruction performance through global metrics, and present an initial study on the reconstruction200

of OOD satellite SST.

4.1 Ablation study on LLC4320 validation set

Across 15 different model configurations, our best performing model is the one that uses an 8-time MW-IR input. In this

section, we present an ablation study of these 15 models, which vary in the choice of model input (nin) and output timesteps

(nout), and the incorporation of multi-satellite input data. The global LLC4320 validation dataset is used for this ablation study.205

The performance of these 15 models in terms of (a) SST, (b) spatial gradient, and (c) temporal gradient RMSE is shown in

Figure 4.

First, we consider the effect of nout. For varying nin, we compare single-satellite (IR) models where nout = nin (blue line) and

nout = 1 (red). nout = 1 models reconstruct only the middle timestep of the input. The middle timestep is maximally correlated

to all input timesteps, so reconstructing the middle timestep is easier than reconstructing all input timesteps. As such, for all210

values of nin, the nout = 1 models achieve a lower RMSE. All subsequent models in this section use nout = 1.

Next, we investigate the impact of incorporating low-resolution MW data by comparing the single-satellite (IR) model

against two multi-satellite (MW-IR) configurations. We test two methods for incorporating the MW data:

1. MW Channel: IR and MW data are stacked as separate input channels, and cloud gaps in IR data are filled using mean

visible temperature, T̄vis, defined in Equation (4).215
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2. MW Fill: MW data is used to fill cloud gaps in the IR input, as described in Equation (5).

The inclusion of MW data significantly reduces reconstruction RMSE compared to the IR-only, single-satellite model, as

shown by the red, green, and gray lines in Figure 4. The results also show that the MW fill method outperforms the MW

channel method across all metrics. While both multi-satellite inputs provide the same core information, the MW fill method

is more compact. This streamlined input representation likely makes it easier for the model to learn dependencies between the220

large-scale MW context and the fine-scale IR features, leading to better performance.

Finally, we consider the effect of nin. We vary nin from 1 to 12, which corresponds to single-time to 3 days. The RMSE

of the SST, spatial gradient and temporal gradient decreases as nin increases, but the performance plateaus at nin = 8. This is

true for both the single- and multi-satellite models. For the MW-IR fill model (gray line), the RMSE begins to rise when nin

is increased from 8 to 12, and this effect is most prominent for the spatial gradient RMSE. Models using long (nin ≥ 12) input225

time series appear prone to overfitting, especially for small-spatial scale features. Based on these results, our best model uses

nout = 1, nin = 8, and incorporates MW data using the MW fill method. In the following sections, we will show results from

both our best model (8-time MW-IR) and its single-satellite counterpart (8-time IR) to demonstrate the specific cases where

MW data improves reconstruction.

4.2 Regional LLC4320 analysis: Indian Ocean230

4.2.1 Multi-time model input leverages cloud transience

The multi-satellite model outperforms the single-satellite model in reconstructing a highly cloudy region of the Indian Ocean

(9.35-14.35° S, 107.25-112.25° E). The target reconstruction is 3 December 2011 at 12:00:00 UTC. The 8-time model input

is centered around the target time (t = 0), and includes SST from 2 December 12:00:00 UTC to 4 December 18:00:00 UTC,

and this 8-time MW-IR input is shown in Figure 5(a). The target time is highly cloudy (rc = 0.83), which makes a single-time235

reconstruction impossible. The multi-time input has a lower cloud ratio (rc = 0.52), but improves the spatial coverage of visible

SST by providing additional information over time as shown in Figure 5(b).

4.2.2 Multi-satellite model improves eddy reconstruction

We compare our reconstructions to the ground truth cloud-free SST at t = 0. Overall, both the IR and MW-IR models perform

well, achieving low RMSEs of 0.104°C and 0.039°C respectively. However, the MW-IR model performs better in certain240

regions. This is evident in Figure 5(c), which shows a comparison of the IR and MW-IR reconstructions in the top row and

the reconstruction errors (target - reconstruction) in the bottom row. The IR reconstruction has local regions of temperature

bias where the SST is consistently hotter or colder than the ground truth. Temperature bias appears in regions that remain

continuously cloudy over both space and time (i.e., white/lighter regions in the bottom half of Figure 5(b)), leaving few

reference points for model interpolation. This is evident in the north-western corner of the domain where the target SST contains245

a cold core eddy. Over the eddy, the cloud ratio is high (rc = 0.78) causing the IR model to overestimate the temperature by

0.5°C. Since the eddy is approximately 50 km wide, its structure is visible in the MW input, and as a result, the MW-IR
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Figure 5. Our 8-time IR and MW-IR models produce accurate reconstructions of a highly cloudy region (500×500 km) region of the Indian

Ocean (9.35-14.35° S, 107.25-112.25° E). (a) The model input is 8 timesteps of MW and IR SST, centered around the target reconstruction

time, t = 0. (b) Ground truth SST for t = 0 (top), and the the input cloud ratio over time (bottom). (c) The 8-time IR and MW-IR recon-

structions (top), and the reconstruction errors, T− T̂ (bottom). (d) Cross section of a cold core eddy from the target SST (black), MW input

(blue), IR reconstruction (red) and the MW-IR reconstruction (green).

reconstruction is highly accurate. In general the MW-IR reconstruction exhibits no temperature bias because the MW input

always provides large-scale SST structures.

The longitudinal cross-sections of the target (dark blue line), MW input (light blue), IR reconstruction (red), and MW-IR250

reconstruction (green) across the eddy are shown in Figure 5(d). This plot further verifies that the MW-IR model retains the

large-scale MW input structure, and further recovers small-scale details synthesized from the IR data. The cross-section also

shows a slight oscillating artifact in the IR reconstruction, which can be easily removed with Gaussian blurring. Although there

are limitations to the single-satellite model, it still produces a realistic result due to the use of 8-time input data, and may be

useful when MW data is unavailable.255

4.3 Regional LLC4320 analysis: Pacific Ocean

In this section, we show the temporal and spatial reconstruction quality of our MUSE model on a region of the Pacific Ocean

near California. The study area, which captures part of the California current, is delimited by 31-37° N, 123-129° W.
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Figure 6. The low temporal reconstruction error for our Pacific Ocean study area indicates that our models can generalize to months that

are unseen during training and that the incorporation of MW information consistently outperforms an IR-only scenario. On the left y-axis,

we show the cloud ratio (shaded blue area), and on the right y-axis, we show the RMSE for the 8-time IR (red) and MW-IR (green) models.

Gaps in the RMSE correspond to days that are too cloudy, and no model prediction is made.

Figure 7. Model uncertainty can be measured using the standard deviation of predictions generated from the overlapping portions of each

tile. This is useful for assessing reconstruction quality when no ground truth SST is available. The prediction standard deviation is positively

correlated with RMSE for both the (a) 8-time IR and (b) 8-time MW-IR models.

4.3.1 Model generalization across time

The MUSE model is accurate in predicting temporal SST values, and exhibits no bias in reconstructing unseen months. For260

our study area, we reconstruct the SST from 1 December 2011 to 30 January 2012, and calculate the regional RMSE for each

timestep. Figure 6 shows the RMSE time series for the IR model (red line) and the MW-IR model (green line), as well as the

cloud ratio time series (shaded blue area). When the cloud ratio is too high, no model prediction is made and no RMSE is

reported (i.e. 12 December). The months reconstructed in this example do not appear in the training data. Our results show no

temporal bias, indicating that our model can generalize to unseen seasonal traits. While the RMSE does not exhibit a temporal265

trend, it does follow the cloud ratio. Since the cloud ratio is independent of the reconstruction, it can be used to quantify the

reconstruction quality and uncertainty when a ground truth reference is unavailable.
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4.3.2 Quantifying model uncertainty

Our reconstruction uncertainty can be quantified using values derived from the model input and output. In the previous section,

Figure 6 showed a correlation between RMSE and cloud ratio. Here, we quantify the relationship between RMSE and cloud270

ratio using the Spearman correlation coefficient (ρ), and introduce another variable for measuring model uncertainty. There is

high correlation between cloud ratio and RMSE: for the IR model, ρ = 0.703, and for the MW-IR model, ρ = 0.745. Reported

values are statistically significant (p≈ 0).

There is also positive correlation between the RMSE and prediction standard deviation. The standard deviation is calculated

over the ensembled tile predictions, which is discussed in Section 2. We plot the prediction standard deviation against the275

RMSE for the (a) IR and (b) MW-IR models in Figure 7. In the plots, each point represents a single timestep in our test set

date range. For both models, the standard deviation and RMSE are positively correlated according to ρ. The IR model has

a correlation of ρ = 0.437, and the MW-IR model has a correlation of ρ = 0.453. The positive correlation indicates that the

model prediction has more uncertainty when the prediction is inaccurate, which is the expected behavior. A combination of

the cloud ratio and prediction standard deviation can be used to estimate model uncertainty since both variables are positively280

correlated with error, and do not require a ground truth reference.

4.3.3 Multi-satellite model improves small-scale reconstruction

Our 8-time MW-IR model accurately reconstructs small-spatial scale SST, as demonstrated by the spatial gradient error and the

spectral coherence values. We focus on a single timestep of the test set on 9 January 2012 00:00:00 UTC. Figure 8(a) shows the

cloudy SST, cloud-free target, and the reconstruction from our MW-IR model. Figure 8(b) shows the spatial gradient, |∇xyT|,285

of these SST fields to demonstrate the model’s ability to reconstruct submesoscale structures. For brevity, we do not show the

IR model reconstruction. The SST at the target time is moderately cloudy (rc = 0.43), and the cloudy areas in the target are

visible at other times as shown by the input cloud ratio in Figure 8(c). The SST and SST gradient reconstructions are highly

accurate, and there is no discernible difference even in a closeup of a 200× 200 km region of the gradient field in Figure 8(b).

To elucidate the errors in our reconstruction, we show the gradient error field (reconstruction - ground truth) in Figure 8(d).290

The errors are small compared to the gradient magnitude, and the areas with poor gradient reconstruction correspond to highly

cloudy regions in the input. Over this study area, the SST RMSE is 0.037°C, and the gradient SST RMSE is 0.012 °C km-1,

indicating that our reconstruction captures large- and small-scale features under regions of contiguous clouds.

To assess model performance over a range of spatial scales, we show the spectral coherence, c(k), between the ground truth

and reconstruction. Two sub-regions—boxes i and ii are shown in Figure 9(a)—that have high cloud cover are chosen for anal-295

ysis. Box i has a cloud ratio of 0.63, and box ii has a cloud ratio of 0.96. For both sub-regions, we show the spectral coherence

averaged over the latitudinal and longitudinal directions in Figure 9(b). The coherence of the IR and MW-IR reconstructions

are shown in red and green, respectively. For reference, we indicate the resolution of the MW input data in gray. For both boxes,

the coherence is high for large-scale SST (small k), and around the MW resolution, the coherence begins to drop. For smaller
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Figure 8. SST and spatial gradient reconstruction for the Pacific Ocean study area on 9 January 2012. (a) Cloudy SST, cloud-free SST and

our 8-time MW-IR reconstruction. (b) Cloudy gradient SST, cloud-free gradient SST and our 8-time MW-IR gradient reconstruction. (c)

Cloudiness over the 8-time input. (d) Gradient reconstruction error.

scales (large k), the MW-IR coherence is broadly greater than the IR coherence. This demonstrates that the MW-IR model has300

a super-resolving ability because it improves reconstruction at wavelengths smaller than the input (i.e. sub-MW wavelengths).
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Figure 9. The spectral coherence of the 8-time IR and MW-IR model reconstructions for the Pacific Ocean study area on 9 January 2012

indicates that our MW-IR model outperforms the IR model in small-scale reconstruction. (a) We show the cloudy SST for the study area, and

two sub-regions (boxes i, ii) that are chosen for the coherence analysis. (b) Spectral coherence for box i (top) and box ii (bottom). The MW

data resolution (k = 0.04 km-1) is shown in gray, and the IR and MW-IR reconstruction coherence are shown in red and green respectively.

Table 3. The global performance of our 8-time IR and MW-IR models averaged over the LLC4320 test set. The RMSE of the SST (T) spatial

gradient, (|∇xyT|) and temporal gradient, (|∇tT|) are reported. Pearson correlation coefficient at all spatial scales (r) and at small-scales

(sub-25 km, rss) are reported. For RMSE, lower values (↓) are better, and for correlation, higher values (↑) are better.

RMSE (↓) Correlation (↑)

Model T (°C) |∇xyT| (°C km-1) |∇tT| (°C h-1) All scales (r) Small-scale (rss)

8-time IR 0.080 0.012 0.006 0.986 0.855

8-time MW-IR 0.035 0.010 0.003 0.996 0.950

4.4 Global LLC4320 SST reconstruction

We complete our discussion of the LLC4320 test set by reporting the global error and correlation of our model reconstructions.

We report the RMSE of the SST (T), spatial gradient magnitude (|∇xyT|), and temporal gradient magnitude (|∇tT|) for the

8-time IR and MW-IR models. These values are listed in Table 3. The MW-IR model achieves a remarkably low SST RMSE305

of 0.035°C, and across the three metrics, the MW-IR model achieves a lower error than the IR model. The smallest RMSE

reduction from the IR to MW-IR model occurs for the spatial gradient, |∇xyT|. The MW-IR model reduces the |∇xyT| RMSE

by 0.002 °C km-1, which is equivalent to a 20% reduction of the IR RMSE. The tempered reduction of the gradient RMSE

is expected because the MW data provides only large-scale (> 25 km) information, but it is notable that the use of MW data

improves the small-scale reconstruction at all.310

In addition to RMSE, we report the correlation between T and T̂ for all spatial scales and small (< 25 km) spatial scales in

Table 3. For the correlation at all spatial scales (r), both models achieve nearly perfect correlation (IR model r = 0.986, MW-IR
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Figure 10. Global small-scale correlation maps for our (a) 8-time IR and (b) MW-IR models. SST at high latitudes are excluded from our

dataset. The global cloud ratio across the test set dates is shown in (c).

model r = 0.996). The small-scale correlation provides a more interesting comparison. For the small-scale correlation (rss),

the MW-IR model has a high correlation of 0.950, while the IR model’s correlation drops to 0.855. The correlation is still high

for both models, but the MW-IR model clearly performs better than the IR model for small-scale SST. In our regional examples,315

we showed how the MW-IR model improved small-scale reconstruction, and the global RMSE and correlation values affirm

that this result holds in general.

To verify that there is no regional bias in model performance, we show the global small-scale correlation maps, averaged

over time, for the IR and MW-IR models in Figure 10(a) and (b) respectively. Areas with no valid data—near the poles where

sea ice is present—are indicated with white pixels. We additionally show the percent of time that a pixel is clear in Figure 10(c).320

Note that this is the opposite of the cloud ratio. The global maps show that the spatial correlation pattern follows that of the

cloudiness, and there is no other regional bias in correlation (i.e. elevated error near coastlines).
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Table 4. The performance of our 8-time MW-IR model on 2 regions of the L3S SST. The RMSE of the SST (T) spatial gradient, (|∇xyT|)
and temporal gradient, (|∇tT|) are reported. Pearson correlation coefficient at all spatial scales (r) and at small-scales (sub-25 km, rss) are

reported. For RMSE, lower values (↓) are better, and for correlation, higher values (↑) are better.

RMSE (↓) Correlation (↑)

Region T (°C) |∇xyT| (°C km-1) |∇tT| (°C h-1) All scales (r) Small-scale (rss)

Pacific Ocean 0.178 0.038 0.017 0.954 0.688

Mediterranean Sea 0.133 0.027 0.015 0.953 0.787

Mean 0.156 0.033 0.016 0.934 0.738

4.5 Preliminary study on L3S SST reconstruction

We perform a preliminary analysis of the MUSE model on real satellite data, and show that despite the sim-to-real gap, our

results are still competitive with prior works. We evaluate our best performing model, the 8-time MW-IR model, on two325

regions—the Northern Pacific Ocean (30-38° N, 120-130° W), and the Mediterranean Sea (36.5-44.5° N, 2-12° E). Our model

uses cloudy L3S 0.02° SST and cloud-free L4 MUR 0.25° SST as model inputs instead of simulated SST. The full dataset

details are in Section 2.

We quantitatively evaluate our model by masking visible regions of the L3S SST, providing us with ground truth cloud-free

SST. For each timestep, the expanded cloud mask is the union of the original and vertically flipped mask. We report the L3S330

dataset RMSE and correlation values for the Pacific Ocean and Mediterranean Sea in Table 4.

4.5.1 Measuring the sim-to-real gap

We compare the averaged regional L3S results in Table 4 to the global LLC4320 results in Table 3 to measure the sim-to-real

gap. This is a rough comparison because the LLC4320 results are global. Furthermore, roughly 12% more pixels are masked out

in the real data to obtain reconstructions over visible pixels that can be used to calculate RMSE, which makes the reconstruction335

problem more challenging. As expected, the performance for the L3S dataset is worse because it is out-of-distribution (OOD).

The LLC4320 RMSE is 0.035°C, while the L3S error is 0.155°C. For the SST, spatial gradient, and temporal gradient RMSEs,

the LLC4320 error is 4.4×, 3.2×, and 5.3× smaller than the L3S error. For the small-scale correlation, the LLC4320 value is

1.3× larger than the L3S value. The difference between the correlation at all scales is negligible because the values are very

high (> 0.95). In Section 2, we discussed how the L3S SST is OOD from the LLC4320 SST due to noise. Despite the existence340

of a sim-to-real gap, the results on L3S SST are promising because we only use preprocessing to mitigate the OOD effect. Our

model, which is trained on unprecedented volumes of high-resolution, global simulated SST can serve as a good function for

finetuning on real data where ground truth validation samples are sparse.
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Figure 11. Reconstruction of Mediterranean Sea (Sea of Sardinia) SST. (a) Cloudy L3S SST, (b) cloud-free L4 MUR 0.01° SST, and (c) our

ML-based cloud-free reconstruction. The inset shows region where our reconstruction is more detailed than the L4 MUR SST.

4.5.2 Comparison to prior works

We compare our L3S results to prior works, and show that our 8-time MW-IR model is competitive with the works listed in345

Table 1. This is a rough comparison because the prior works use different data products, and have varying target resolutions

(0.01-0.0625°). The DINCAE (Barth et al., 2022), dADRSR (Fanelli et al., 2024), and CRITER (Zupančič Muc et al., 2025)

models evaluate regions of the Mediterranean Sea, and achieve RMSEs of 0.38°C, 0.31°C, and 0.13°C respectively. Despite

being trained only on simulation data, our 8-time MW-IR model has an RMSE of 0.13°C for the Mediterranean Sea, which

is the same as CRITER. Our work focuses on optimizing the input data to the model, and out of all the discussed works, our350

inputs are the most comprehensive (8-time multi-satellite). Prior works focus on adapting new model architectures for SST

reconstruction, while our architecture is a relatively simple U-Net. By combining the strengths of our work and prior works, a

multi-time multi-satellite ML model can achieve unprecedented accuracy in reconstructing SST.

4.5.3 Comparison to L4 MUR 0.01° product

We compare our reconstructions to the L4 MUR 0.01° SST product (NASA/JPL, 2015). For brevity, we refer to the L4 MUR355

0.01° SST as L4 SST. In these examples, we do not expand the cloud masks as we did in the previous sections. We visually

compare our reconstruction to the L4 SST because even in the non-cloudy regions, the L4 SST does not match the L3S SST.

This is visible in Figure 11, where we show the cloudy L3S, L4, and our reconstructed SST over the Mediterranean Sea. At

42.5° N, 7° E, the L4 SST is hotter than the L3S SST, which is contrary to our work that considers L3S SST to be the ground

truth. In the cloudy regions, the L4 SST is blurred, while our reconstruction is not, and this is especially evident in the inset360

shown in Figure 11.
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Figure 12. Reconstruction of Pacific Ocean SST. (a) Cloudy L3S SST, (b) cloud-free L4 MUR 0.01° SST, and (c) our ML-based cloud-free

reconstruction. The inset shows region where our reconstruction is more detailed than the L4 MUR SST.

For the Pacific Ocean region shown in Figure 12, our gap-free SST appears more detailed than the L4 SST. In this example,

the clouds only affect the western region of the study area, but the L4 SST and our reconstruction still differ in the visible region

around 31° N, 122° W. The inset shows that the L4 SST and our reconstruction agree in the large-scale SST, but our model

reconstructs finer details. In the middle of the inset, a small region of SST does not appear realistic and may be from noise365

at other input timesteps. Since we lack ground truth SST, our comparisons to the L4 MUR 0.01° SST are strictly qualitative,

and only assess the existence and realism of the small-scale features. Section 4.5.1 provides quantitative measures of our

reconstruction quality. Our initial study on L3S data is promising because minimal steps are added to mitigate the sim-to-real

gap, but our results are still comparable to both prior works and L4 MUR 0.01° SST.

5 Conclusions370

High-resolution SST is important for the study of submesoscale ocean dynamics. While IR radiometers can measure at fine

resolutions, IR data contains cloud gaps, which severely limits its use. Traditional methods of gap-filling reduce the effective

resolution of the data, obscuring small-scale SST dynamics. In this work, we present a ML-based method for reconstructing

high-resolution gap-free SST from multi-time multi-satellite data. Our MUSE model performs well in both large- and small-

scale reconstructions, which we verify using RMSE, correlation and spectral coherence values. Our model is trained on a375

dataset of global SST, providing the model with a diverse set of ocean dynamics. This is possible because we use simulated

SST, allowing us to have ground truth cloud-free SST over the entire ocean. Despite training solely on simulated SST, MUSE

also performs well in reconstructing real satellite data.
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We evaluate our LLC4320-trained model on L3S SST, and use data preprocessing to mitigate the sim-to-real gap. Future

work can expand this study, and fine-tune the model weights on a smaller dataset of L3S SST pairs. The model architecture380

can also be improved by incorporating channel attention: this may be particularly impactful because our model uses a long

(8-timestep) temporal input. In our work, we assume that the microwave data is cloud-free. For this reason, we use a L4 MW

SST product that is already gap-filled for our satellite data evaluation. In future works, we can loosen our assumption and allow

MW data to contain gaps, so that we can use a L3 MW product, such as the L3U Advanced Scanning Microwave Radiometer

(AMSR) data, to avoid incurring errors from gap-filled inputs. If MW SST is assumed to have gaps, there may be some regions385

with no visible SST information. To combat this, geographical information (latitude, longitude) can be included in the model

input to ensure that every pixel has some information.

Multi-variable data can be used to further bolster the model input. High-resolution (∼ 1 km) sea surface height (SSH)

captured by the Surface Water and Ocean Topography (SWOT) mission can be used together with SST to produce dynamically

consistent high-resolution data products for monitoring and studying submesoscale upper ocean processes and their influence.390

This study has demonstrated the ability of machine learning models to synthesize multi-time multi-satellite SST into accurate

and detailed cloud-free SST. Our work shows that global gap-free high-resolution SST, which is integral for understanding the

Earth’s climate, is achievable using ML in the near future.
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