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Abstract. Stratospheric water vapor (SWV) plays an important role in atmospheric chemistry, dynamics, and radiative forcing.

Satellite measurements by the Aura Microwave Limb Sounder (MLS), SciSat-1 Atmospheric Chemistry Experiment (ACE),

and Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station have provided key constraints

on SWV for the past decades. MLS provides the best geographical coverage among these instruments, but it approaches the

end of its life cycle in the coming years, which will result in a data desert for satellite-based SWV measurements given that5

ACE and SAGE III only measure at a few dozen geolocations per day. The Ozone Mapping and Profiler Suite Limb Profiler

(OMPS LP) is flying aboard the Suomi National Polar-orbiting Partnership (SNPP) and NOAA-21 satellites and is planned

for additional platforms in the coming years. While not designed to measure SWV, it shows weak sensitivity to it, particularly

in the wake of the Hunga eruption’s significant injection of water vapor into the stratosphere. By utilizing the frequent co-

locations between OMPS LP and MLS measurements, we developed a neural network-based approach to retrieve SWV from10

SNPP OMPS LP radiances between 11.5–40.5 km. We find that the LP SWV profiles typically agree with MLS within 5%, and

agreement with ACE and SAGE III is typically within 10%. We show that the SNPP-trained model is applicable to NOAA-21

OMPS LP without retraining, though minor differences in radiances between the instruments results in a∼5% bias under most

conditions. Our results suggest that OMPS LP can continue the global water vapor record in the lower stratosphere into the

2030s, though continued independent measurements by satellite and balloon-borne instruments will be key to verifying the15

stability of our approach for quantifying decadal-scale SWV variability.

1 Introduction

Stratospheric water vapor (SWV) influences atmospheric dynamics, chemistry, and radiative forcing (e.g., Ramanathan and

Inamdar, 2006; Charlesworth et al., 2023; Niemeier et al., 2023; Fleming et al., 2024). While SWV is typically 3–6 parts

per million by volume (ppmv), water vapor concentrations in the upper troposphere can reach up to 1000 ppmv (Read et al.,20

2022). Deep convective systems and tropical upwelling via the Brewer-Dobson circulation can transport tropospheric air into

the lower stratosphere, which comprises an important contribution to SWV (e.g., Fueglistaler et al., 2009; Khaykin et al., 2009;

Randel and Jensen, 2013; Dauhut et al., 2016). Rising atmospheric temperature due to climate change increases the amount of

water vapor held in tropospheric air, which in turn increases the amount of water vapor transported into the stratosphere (Yue

1

https://doi.org/10.5194/egusphere-2025-4845
Preprint. Discussion started: 7 October 2025
c© Author(s) 2025. CC BY 4.0 License.



et al., 2019; Nowack et al., 2023). Long-term satellite measurements of SWV provide key constraints on the SWV budget and25

serve as important sources for data assimilation and validation of reanalysis frameworks (e.g., Davis et al., 2017; Hersbach

et al., 2020; Wargan et al., 2023; Knowland et al., 2025).

Presently, satellite retrievals of SWV profiles are performed by the Aura Microwave Limb Sounder (MLS; Livesey et al.,

2021), SciSat-1 Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS; Boone et al., 2023), Strato-

spheric Aerosol and Gas Experiment III (SAGE III) aboard the International Space Station (Davis et al., 2021; Park et al.,30

2021), and the Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite’s Sounding of the Atmosphere

using Broadband Emission Radiometry (SABER; Rong et al., 2019) instruments. These instruments provide well validated

H2O products that agree among each other as well as with ground-based and in-situ measurements (e.g., Carleer et al., 2008;

Hurst et al., 2014; Rong et al., 2019; Davis et al., 2021; De Los Ríos et al., 2024). Since May 2024, the MLS receiver used for

the H2O retrievals now only operates 6 days per month due to power constraints and will continue to do so until the end of the35

Aura mission, which significantly limits the spatiotemporal coverage of the MLS H2O product. Following the decommissioning

of Aura, ACE-FTS and SAGE III will continue to provide their H2O products, but their geographical coverage is limited given

they are solar occultation instruments. SABER takes around 1400 scans per day and, depending on time of year, views between

52°S–83°N or 83°S–52°N, but the local times of the measurements change by up to 12 hours over TIMED’s two-month yaw

cycle. The Canadian High-altitude Aerosols, Water vapour, and Clouds mission (HAWC; Langille et al., 2025) is planned to40

launch early next decade, presenting a gap in global geographical coverage of SWV between Aura’s decommissioning and

HAWC’s launch (Salawitch et al., 2025).

The Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) is currently flying aboard the Suomi National Polar-

orbiting Partnership (SNPP; launched October 28, 2011) and NOAA-21 (launched November 10, 2022) satellites, and it is

planned for the Joint Polar Satellite System (JPSS) 4 and 3 satellites, which are estimated to launch in 2027 and 2032, respec-45

tively. Using 3 slits, the instrument measures limb-scattered radiances between 290–1000 nm with a 1 km vertical sampling.

Each satellite completes 14–15 Sun-synchronous orbits per day. SNPP’s OMPS LP takes measurements every ∼1° latitude,

while NOAA-21’s LP takes measurements every ∼0.4° latitude, resulting in around 7000 and 17,500 measured radiance pro-

files per day, respectively. However, OMPS LP is only weakly sensitive to H2O, which has challenged the application of

traditional radiative transfer-based retrieval methods.50

Our solution to retrieve water vapor profiles from OMPS LP measurements is deep learning (Goodfellow et al., 2016).

Neural networks (NNs) learn to model complex, nonlinear processes in a data-driven manner. Given a set of corresponding

inputs and outputs, the NN weights are tuned to approximate the underlying process, without explicit knowledge about it.

Given OMPS LP’s weak sensitivity to H2O and the well validated MLS H2O product, NNs could learn to accurately predict

H2O profiles from OMPS LP measurements at altitudes with sufficient sensitivity by using co-located MLS H2O profiles as55

the target outputs. This would result in an MLS-like H2O product, thereby continuing the MLS global SWV record following

the end of the Aura mission.

Here we present an OMPS LP water vapor product between 11.5–40.5 km produced by a NN trained on co-located LP-MLS

measurements. In Section 2 we investigate the sensitivity of LP to water vapor under conditions before and after the Hunga
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eruption. In Section 3 we discuss our methodology to train the NN as well as validate its predictions using other instruments.60

We present and discuss our results in Section 4, including the limitations of our approach. Finally, we present our conclusions

in Section 5.

2 OMPS LP sensitivity to H2O

We investigate OMPS LP’s H2O sensitivity using the Gauss-Seidel limb scattering radiative transfer model (RTM) of Lough-

man et al. (2004). To calculate H2O cross sections, we use the HITRAN 2020 database (Gordon et al., 2022) via the HITRAN65

Application Programming Interface (Kochanov et al., 2016). We then convolve those high-resolution cross sections with the

OMPS LP bandpasses such that RTM calculations at a given wavelength will be more consistent with what LP would measure

for the assumed conditions. Using two selected co-located MLS H2O profiles from before and after the Hunga eruption, we

simulate radiances between 550–1025 nm in 5 nm intervals at altitudes of 3.5–50.5 km in 1 km intervals. For the two RTM

simulations, all parameters are kept the same except for the H2O profile to ensure that any differences in the Jacobians are due70

solely to differences in H2O.

Based on the Jacobians output by the RTM, we select 12 wavelengths measured by OMPS LP (554, 596, 654, 720, 728,

824, 917, 929, 943, 956, 970, and 983 nm) that show the highest sensitivity to H2O in their spectral region. Figure 1 shows an

example of these Jacobians at 945 nm for the selected H2O profile after the Hunga eruption. The H2O enhancement between

20–30 km attributable to the Hunga eruption results in as much as a four times increase in LP’s sensitivity to H2O. However,75

LP is very weakly sensitive to H2O, and the sensitivity becomes negligible above 30 km.

3 Deep learning methods

3.1 Data curation

Since there is currently no water vapor product derived from OMPS LP measurements, we instead use the MLS version 5 water

vapor product as our ground truth. To prioritize times where SNPP and Aura have closely aligned orbits, we select dates that80

have

– at least one orbit with 60 consecutive co-locations that are within 30 minutes and within 100 km, and

– at least 250 total co-locations on that day that satisfy the above co-location criteria.

These criteria are satisfied every couple days due to their similar equatorial crossing times around 1:30 in the afternoon. On

dates between February 2014 and December 2024 that satisfy the above criteria, we co-locate OMPS LP and MLS measure-85

ments within 6 hours and 100 km to build a data set of OMPS LP radiances and the corresponding MLS water vapor profiles.

This results in 2,074,101 co-locations, with almost half occurring at high latitudes. For context, SNPP OMPS LP collects over

2.5 million measurements per year.
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Figure 1. Example of OMPS LP’s sensitivity to H2O at 945 nm in the tropics. Jacobians for selected MLS H2O profiles (a) before and (b)

after the Hunga eruption peak in the upper troposphere due to the increased water vapor content. Panel (c) shows the selected water vapor

profiles, which show an enhancement in water vapor around 24 km attributable to the Hunga eruption. Panel (d) shows the ratio of (b) to (a).

The increased water vapor concentration between 21–27 km due to Hunga results in LP’s sensitivity increasing by up to 4× in this altitude

range.
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We limit the MLS water vapor profiles to ≤261 hPa, as the 316 hPa pressure level can be affected by the a priori profiles

used in the MLS retrievals. We log-linearly interpolate the water vapor profiles from the MLS pressure grid to OMPS LP’s90

geometric height (11.5–40.5 km in 1 km steps) using the NASA Global Earth Observing System Forward Processing for

Instrument Teams (GEOS FP-IT; Lucchesi, 2015) pressures. We limit the altitude range to 11.5–40.5 km because 10.5 km can

exceed 261 hPa and the H2O sensitivity of OMPS LP becomes ∼0 above 40.5 km.

We also consider a similar methodology but for ACE and SAGE III data using co-location criteria of within 1 day, within 2°

latitude, and within 1113 km longitude (equal to 10° longitude at the equator), consistent with the criteria used in Davis et al.95

(2021). These data sets are used to investigate whether it is viable to train exclusively on ACE or SAGE III data and whether

training on a combination of MLS, ACE, and/or SAGE III data offers benefits over only training on MLS data.

3.2 Neural network methods

For each co-located measurement, we construct an input–output pair to be used during NN training. The inputs are comprised

of100

– LP radiances at 554, 596, 654, 720, 728, 824, 917, 929, 943, 956, 970, and 983 nm,

– FP-IT pressures and temperatures, and

– the solar zenith angle of the LP measurement.

These inputs are formatted as 2-D “images” (wavelength × altitude) with four channels (radiance, pressure, temperature,

solar zenith angle), similar to a standard RGBA image. The radiances vary at each point in the 2-D image, the pressures and105

temperatures vary only with respect to altitude, and the solar zenith angle is constant throughout. For each input image, the

corresponding outputs are the co-located MLS H2O profile that has been interpolated to the LP altitude grid.

To address the latitudinal sampling bias inherent in the co-located data set, we first select a subset of the data such that

there are roughly the same number of samples in each 5° latitudinal bin, resulting in 1,137,100 input–output pairs. We ensure

that extrema for each latitudinal bin are included in this subset. We then split these data into training (used to update NN110

weights), validation (monitors for overfitting during training), and testing (tests model generality on unseen data after training

is complete) sets in a proportion of roughly 75%, 15%, and 10%, respectively.

For data pre-processing and NN training, we utilize the open-source Python package MARGE (Himes et al., 2022), which

uses TensorFlow (Abadi et al., 2016) via the Keras API. We pre-process the data by taking the base-10 logarithm of the OMPS

LP radiances, GEOS FP-IT pressures, and MLS H2O profiles, then scale each input and output parameter to be within the115

closed interval [-1, 1] based on their training set extrema at each altitude.

To determine a neural network architecture well suited to solving this problem, we perform a Bayesian hyperparameter

optimization (Akiba et al., 2019). The selected architecture is similar to the landmark AlexNet architecture (Krizhevsky et al.,

2012); for details on our optimization procedure, the selected architecture, and the training details, see Appendix A. Using the

chosen architecture, we train an ensemble of 10 neural networks using a mean-squared-error loss function. The ensemble’s120
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mean prediction provides the retrieved H2O profile, while the standard deviation among the ensemble provides an uncertainty

estimate. The ensemble size was determined by adding ensemble members until the mean and standard deviation of the en-

semble’s predictions did not significantly change.

Additionally, we apply these methods to permutations of the co-located MLS, ACE, and/or SAGE III data sets. When

combining more than one data set, we consider two approaches, one where we use the data as is, and another where we bias125

correct the ACE and SAGE III data such that they have a global median difference of 0% at all altitudes with respect to MLS.

3.3 Evaluation and validation

To evaluate the NN’s typical accuracy and how well it generalizes to unseen data, we calculate the root mean square error

(RMSE) and coefficient of determination (R2) for the validation and test sets. We validate our LP water vapor product by

comparing with satellite measurements, balloon-borne measurements, and an assimilation/reanalysis product.130

For satellite measurements, we consider the MLS version 5 (Livesey et al., 2021), SAGE III version 6 (NASA/LARC/S-

D/ASDC, 2025), and ACE version 5.3 (Boone et al., 2023) products. For MLS, we consider co-locations within 6 hours, while

for SAGE and ACE we consider co-locations within 24 hours. For all three, we only consider the co-location if it is separated

by less than 1000 km and within 2° latitude. When multiple co-locations satisfy these criteria, we use the co-location with the

shortest distance. For each of these instruments, we compute both a global median percent difference as well as zonal median135

percent differences in 5° latitude bins. We found anomalous values in the SAGE and ACE data sets that differ by a factor of up

to 10,000 compared with the layers above and below it, even after applying each product’s recommended screening criteria. To

screen out the most extreme of these unrealistic values, we apply a very conservative 20σ median rejection routine to the data

set of percent differences.

Given the reported instrumental drift in version 5 of the MLS water vapor product (Livesey et al., 2021), we investigate140

whether our product shows similar properties as the MLS product by performing a multiple linear regression (MLR) on monthly

means for a 5°×5° grid, with proxies for a linear trend, seasonal cycle, quasi-biennial oscillation (QBO), and El Niño Southern

Oscillation (ENSO), as these terms explain the majority of stratospheric H2O variability. For the seasonal cycle term, we

also include a phase offset term for lag in months, given that it takes time for the effects to propagate upwards through the

stratosphere. For the ENSO term, we regress using the sea surface temperature anomaly with a fitted lag in months, as previous145

work showed this is necessary to maximize correlation (e.g., Garcia et al., 2007; Calvo et al., 2010; Yu et al., 2022). For the

QBO term, we use coefficients for the two leading empirical orthogonal functions for the QBO wind time series between

January 1956–February 2025.

To compare with balloon-borne measurements, we consider NOAA Frost Point Hygrometer (Hurst et al., 2011) and Cryo-

genic Frost point Hygrometer (Vömel et al., 2007a, b) soundings from Boulder, USA; Hilo, USA; Lauder, New Zealand; San150

José, Costa Rica; Lindenburg, Germany; and Biak, Indonesia. For each sounding, we co-locate satellite measurements within

24 hours, 2° latitude, and 1113 km longitude (equal to 10° at the equator). If multiple co-locations meet these criteria, we select

the profile that minimizes the distance from the sounding. We calculate the median absolute difference and percent difference

over the data set of co-locations between each satellite instrument and the frost point measurements.
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We additionally compare with the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2)155

Stratospheric Composition Reanalysis of Aura MLS (M2-SCREAM) reanalysis product (Wargan et al., 2023), which assim-

ilates MLS products including H2O, as this guarantees a co-location for all OMPS LP measurements. To assess whether our

methodology blindly memorizes the days it sees during training (where co-locations with MLS are frequent) or if it learns

to generalize to days it does not see during training (where co-locations with MLS are less frequent), we compute the mean

differences and standard deviation of the differences between the LP product and M2-SCREAM for two subsets of 2021 data:160

one that contains the days where training data were drawn from, and another that contains the days where no data were used

during training.

Finally, given that OMPS LP is onboard the NOAA-21 satellite and planned to launch onboard two additional satellites in

the coming years, we apply our SNPP-trained model to NOAA-21 OMPS LP measurements to determine whether our model

can generalize to future iterations of the same instrument, as Himes et al. (2025b) found this to be the case for OMPS LP165

aerosol retrievals.

4 Results and Discussion

4.1 Training on MLS data

Figure 2 shows the mean and standard deviation of the R2 and RMSE metrics for the NN ensemble when applied to the test

set of data not seen during training. R2 is >0.7 except between 15.5–18.5 km. These altitudes probe the upper troposphere or170

lower stratosphere depending on latitude, and the LP product shows greater errors when compared to MLS in the troposphere.

The 15.5–16.5 km altitudes, which are consistently within the troposphere in the tropics, feature the lowest R2 values, while

17.5–18.5 km, which are typically not within the troposphere in the tropics, yield an R2 just below 0.7. When considering only

events outside the tropics, R2 for 15.5–16.5 km increases to ∼0.7, while considering only events within the tropics results in

R2 reducing to ∼0.55 for these altitudes. In the stratosphere, the RMSE is <10% of the H2O VMR. Errors increase below 18.5175

km as measurements increasingly occur in the troposphere where water vapor VMR increases substantially. The discontinuity

in RMSE at 32.5 km is related to the discontinuity in MLS v5 a priori profiles (Millán et al., 2024).

We find that omitting specific years during training can be important for certain situations. When omitting 2015–2016, we

find that the model is generally unaffected and still performs well during those years. However, when omitting 2024–present,

we find that the model begins producing severely inaccurate predictions by March 2024. This behavior is likely explained180

by the difference between these considered periods: while 2015–2016 were ordinary years in terms of SWV, the continued

presence of elevated SWV from the Hunga eruption into 2024 is atypical and not represented by the data available during

training. By including a small fraction of 2024 data during training, we find that the model continues performing accurately up

to the present time of writing this manuscript. As the stratosphere returns to pre-Hunga conditions, we expect that the NNs will

continue producing accurate retrievals of H2O, but continued comparisons with other instruments designed to measure water185

vapor, such as ACE, will be critical to ensuring that accuracy.
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Figure 2. Performance summary for the ensemble of neural networks when applied to the test set. Error bars denote the standard deviation

among the NNs’ performances.

Since the input radiances are at wavelengths affected by aerosols, we analyze the model errors as a function of aerosol

extinction reported in the OMPS LP aerosol product. We note that a weak anti-correlation exists between the predicted H2O

VMR and the aerosol extinction at 675 nm in the lower stratosphere, though this is a real phenomenon rather than an artifact

of our model. Stratospheric aerosol extinction generally peaks immediately above the tropopause and decreases over the few190

kilometers above it, while stratospheric H2O VMR typically is at a minimum immediately above the tropopause due to the cold

trap and increases over the few kilometers above it. We find that the NNs’ percentage error as a function of aerosol extinction

at 675 nm is uncorrelated, indicating that the success of our approach is not dependent on aerosol conditions.

In general, the error with respect to MLS is independent of the presence of tropospheric clouds. However, events affected by

polar stratospheric clouds (PSCs) show a median bias around -2% at most altitudes. When considering the error as a function195

of distance below the PSC, the median bias can exceed -20% at 17 km below the PSC, which only occurs for PSCs at ≥28.5

km. However, the standard deviation of these errors can be substantial, where it averages around 33% between 15.5–22.5 km,
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with a maximum of 66% at 22.5 km. Given this behavior, we recommend that events contaminated by PSCs should not be used

for scientific studies; the data product includes quality flags for these events.

4.2 Training on ACE and SAGE III data200

We also considered training on co-located ACE and/or SAGE III data as an alternative to the co-located MLS data set. Results

for these experiments were negative.

When training exclusively on ACE or SAGE III data, we find that the resulting NN models do not properly generalize

to unseen data, indicating that these data sets are not sufficient to solve this problem. Part of this may be explained by the

typically significant measurement time differences between LP and the other instruments; LP measures in the early afternoon,205

while ACE and SAGE measure at sunrise/sunset, and these times only coincide for select geolocations depending on the time

of year. However, the number of co-locations seems to be a more limiting factor. When restricting the MLS data set to similar

sizes as the ACE and SAGE data sets, we find that the resulting performance is poor. Given the success when using the MLS-LP

data set of ∼1 million co-locations but the failure when considering tens of thousands of co-locations, these results emphasize

that our methodology relies on a large data set of co-located profiles.210

Additionally, when including ACE and/or SAGE III data alongside the MLS data, we find significantly degraded perfor-

mance, regardless of whether or not the ACE and SAGE data were de-biased with respect to MLS. This is likely attributable to

the variances between MLS, ACE, and SAGE being on the order of the natural variability of water vapor, which inhibits NN

learning.

Despite our negative results when training on ACE and/or SAGE data, we cannot rule out that alternative ML approaches215

not considered here could utilize ACE and/or SAGE data to derive water vapor profiles from LP radiances.

4.3 Comparisons with satellite measurements

Figure 3 summarizes the global median percent differences between LP stratospheric H2O profiles and co-located MLS, ACE,

and SAGE profiles. For this comparison, we filter all LP tropospheric measurements by using the nearest co-located tropopause

altitude reported in the GEOS FP-IT product. The error bars show the standard error of the median, which is generally negligible220

except at low altitudes for ACE and at high altitudes for SAGE. Where LP detects a cloud, we exclude any measurements at or

below the cloud top, though we find that this criterion does not significantly alter the results. Note that for the MLS comparisons

we include all co-located data, including those used during training; this choice does not bias the results, as discussed later in

Section 4.5.

Differences with respect to MLS are less than 2% at all altitudes≥14.5 km, with a maximum difference of 4.1% at 11.5 km.225

When considering only 2025 data, the most extreme difference is 7.7% at 13.5 km, with a typical difference of ∼5% below

22 km and <2% above 25 km. Given that we trained on MLS data, this close agreement is expected and shows the model has

learned a good approximation to retrieve MLS-like water vapor profiles.

When comparing with ACE, we find agreement within 10% except between 11.5–13.5 km, where differences can reach up

to 19.3%. In general, the differences increase with altitude from -19.3% at 11.5 km up to 8.8% at 40.5 km. This behavior is230
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Figure 3. Summary of global median percent differences between the LP stratospheric H2O profiles and co-located (a) MLS, (b) ACE, and

(c) SAGE profiles. Horizontal uncertainty bars indicate the standard error of the median.

generally consistent with earlier studies, such as Davis et al. (2021) which shows a similar pattern of increasing differences

between 15–40 km when comparing SAGE and ACE.

LP’s differences with respect to SAGE are generally around 6% or less. Between 11.5–13.5 km, differences can reach up to

16.9%. Given that a similar increase in differences at these altitudes is seen when comparing with both ACE and SAGE but not

with MLS, this suggests that either ACE and SAGE are biased high in this regime, or MLS is biased low in this regime and our235

LP product has inherited this bias.

Figure 4 and Figure 5 show the median percent differences and standard error of the median, respectively, in 5° latitudinal

bins for the comparisons with MLS, ACE, and SAGE. The results are generally consistent with those shown in Figure 3. The

notable exceptions occur at the lowest altitudes. For the comparisons with MLS, differences can reach up to 8% between 11.5

- 13.5 km just outside of the tropics. For ACE, the deviations at these altitudes can exceed 21%, but notably the standard240

error of the median is typically ∼11% in this region, suggesting that this low bias may not be as substantial as it appears.

However, comparisons with SAGE also show this low bias at these altitudes, where the standard error is negligible. Together,

this suggests that the LP product has a slight systematic low bias at 11.5–13.5 km just outside the tropics, but at latitudes
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Figure 4. Summary of median percent differences between the LP stratospheric H2O profiles and co-located (a) MLS, (b) ACE, and (c)

SAGE profiles in 5° latitudinal bins. The pink line indicates the median tropopause altitude for a given latitudinal bin. Gray stippling

indicates where there are no data, whether due to lack of statistical significance (high latitudes) or due to being in the troposphere (below the

tropopause).

≥45°, the agreement with MLS suggests the biases when comparing with ACE and SAGE are related to statistical differences

between those products and MLS.245

Figure 6 shows the “tape recorder” of alternating positive and negative anomalies in H2O VMR, primarily attributable to

seasonal changes in H2O. For this plot, we subtract the pre-Hunga mean profile from each daily zonal mean to produce the

daily anomaly. Before 2025, the OMPS LP and MLS tape recorders show excellent agreement throughout the stratosphere,

with OMPS LP correctly capturing the increase in H2O due to the Hunga eruption. Beginning in early 2025, OMPS LP shows

a positive bias >1 ppm above 30 km that is not seen in the corresponding MLS data. This bias is likely due to the weak H2O250

sensitivity at these altitudes, which inhibit the NNs’ ability to reliably infer the H2O VMR at these altitudes. Since the NNs

correctly infer the H2O at these altitudes before 2025, it suggests that the pre-2025 data were successfully predicted based on

the shape of profiles at the lower altitudes that have sensitivity. With an absence of 2025 data in training, they guess based on

similar profiles from the training set, which are evidently those influenced by the elevated H2O from Hunga. In 2025, the NNs

perform reasonably well below 30 km, indicating that there is sufficient sensitivity for the determined approximation to remain255

accurate when applied to unseen data, though there is a slight overestimation (∼0.25 ppm) in mid-2025 between 25–30 km.

We therefore advise that users exercise caution when using the OMPS LP H2O product above 30 km.
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Figure 5. Like Figure 4, but for the standard error of the median.

(a) OMPS LP (b) MLS

Date

Figure 6. Parts-per-million anomaly in H2O VMRs for the daily zonal means within 2.5° of the Equator for the (a) OMPS LP and (b) MLS

water vapor products. The anomaly is determined by subtracting the pre-Hunga mean profile from each daily zonal mean profile. Beginning

in May 2024, the MLS data become more sparse due to only taking measurements 6 days each month.
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4.4 Multiple linear regression analysis

In general, the results of our MLR analysis show similar behavior between the LP and MLS products, but the fitted coefficients

for the LP data tend to be less than the corresponding MLS coefficients. The main exception to this is the seasonal phase offset,260

where both products closely agree. Figure 7 shows an example of the fitted coefficients for the seasonal amplitude at 14.5

km. The South Asian monsoon stands out clearly in both panels, though the LP product’s fitted amplitudes for this region are

around 1 ppm less than the corresponding fits for MLS.

Regarding water vapor trends, the LP product generally shows greater trends in the troposphere and weaker trends in the

stratosphere when compared with MLS. Where both products show a trend of increasing H2O, LP tends to show a lesser trend265

than MLS (Figure 8). As MLS v5 is known to still contain some statistically significant drifts in the lower stratosphere when

compared with balloon measurements (Livesey et al., 2021), our results suggest that the NN methodology reduces these drifts.

4.5 Comparisons with M2-SCREAM

Figure 9 compares the OMPS LP and M2-SCREAM H2O products for the year 2021. Note that M2-SCREAM assimilates

MLS v4.2, which is biased high for water vapor, while LP is trained on MLS v5, resulting in a persistent ∼0.5 ppmv bias270

between the products. Days in which data were (Fig. 9a) or were not (Fig. 9b) included during training are shown separately

but look almost identical, highlighting that the NNs’ predictions are equally accurate whether or not they saw data from that day

during training. Additionally, the standard deviation of the differences between OMPS LP and M2-SCREAM are consistently

less than the standard deviation among OMPS LP or M2-SCREAM profiles, indicating that the OMPS LP product is more

accurate than the natural variability of H2O. Overall, our results suggest that the NN predictions are in good agreement with275

M2-SCREAM for data not seen during training.

4.6 Comparisons with balloon-borne measurements

Figure 10 shows the median differences between satellite instruments (MLS, SAGE, ACE, and OMPS LP) and the frost

point hygrometer soundings from the six stations considered (see Section 3.3). The LP product agrees with the frost point

measurements within 0.3 ppmv and within 10% between 16.5–27.5 km; this is in close agreement with the MLS results, which280

is expected given that we trained on MLS data. The only notable difference in agreement between MLS and LP is that the LP

product shows a slightly reduced bias between 16.5–21.5 km. Like in Davis et al. (2021), we find that the satellite instruments

show a dry bias in the upper troposphere compared to the frost point measurements, which may be due to spatiotemporal

variability between the co-located measurements and/or reduced data quality in this regime.

4.7 Application to NOAA-21 OMPS LP285

Paralleling the SNPP comparisons in Section 4.3, Figures 11 and 12 show respectively the global median percent differences

and the 5° zonal median percent differences between NOAA-21 OMPS LP and MLS, ACE, and SAGE III. For global compar-

isons, NOAA-21 OMPS LP shows a persistent∼5% offset with respect to the corresponding SNPP comparisons at all altitudes.
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Figure 7. Results for the seasonal amplitude at 14.5 km fitted via MLR for the (a) LP and (b) MLS water vapor products. The large amplitude

over South Asia is attributable to the annual monsoon’s strong seasonal impact on water vapor.
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Figure 8. Results for the linear trend in H2O at 18.5 km fitted via MLR for the (a) LP and (b) MLS water vapor products. In general, LP

shows a weaker trend of increasing H2O than MLS.
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(a) Days included during training (b) Days not included during training

Figure 9. Comparison between OMPS LP and M2-SCREAM for days in 2021 where (a) some data were included during training and (b) no

data were included during training. Note that for days in which data were included during training, only a small percentage (1–4%) of data

on those days were used in the training data set. For each panel, the left subpanel shows the probability density function of the differences

between OMPS LP and M2-SCREAM as horizontal colored bars, one standard deviation of the differences as the vertical marks, the mean

difference as plus signs, the mean difference ± the standard deviation of OMPS LP H2O as dashed lines, and the mean difference ± the

standard deviation of M2-SCREAM as dotted lines. The right subpanel shows the mean H2O profile for each product. Panels (a) and (b)

look nearly identical, indicating that the model is retrieving H2O from the information content embedded in LP radiances rather than blindly

memorizing the training data. The ∼0.5 ppmv offset between the products is due to differences in the MLS version used by each product.

A similar low bias is seen in the NOAA-21 OMPS LP aerosol data, suggesting that this bias is attributable to differences in

radiances between OMPS LP on SNPP and NOAA-21. Given our methodology, it is unclear whether the NNs have learned to290

implicitly account for a bias in the SNPP radiances or if the problem is related to the calibration of NOAA-21 radiances. How-

ever, this bias is not strictly a -5% shift for all conditions; the zonal comparisons show that the tropics exhibit a positive bias

not seen in the corresponding SNPP comparisons. Further investigation is necessary to understand the cause of these biases. If

the origin of these biases is not able to be determined, they could be addressed via a soft calibration approach.

5 Conclusions295

We presented a water vapor retrieval product derived from SNPP OMPS LP measurements via a neural network (NN) trained on

co-located MLS version 5 water vapor profiles. In general, the LP H2O product is consistent with other water vapor products

16

https://doi.org/10.5194/egusphere-2025-4845
Preprint. Discussion started: 7 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 10. Comparisons between satellite instruments and frost point balloon measurements. Panel (a) shows the median difference in ppmv

limited to altitudes where the mean water vapor is <10 ppmv, and panel (b) shows the median percent difference. In both panels, the shaded

regions show the median ± 2 standard errors of the mean.

considered here. We find that our method typically agrees with MLS within 5% at all altitudes considered. The results of

our multiple linear regression analysis show good correspondence between LP and MLS for seasonal water vapor variations,

including for the south Asian monsoon. LP’s tape recorder in the tropics also shows close agreement with MLS, capturing both300

the alternating positive and negative seasonal anomalies as well as the large water vapor injection from the Hunga eruption.

Agreement with SAGE III version 6 and ACE version 5.3 water vapor profiles is typically within 10% above 15 km and

within 20% below 15 km. When compared with frost point balloon measurements, OMPS LP generally agrees within 10%

in the stratosphere, closely mirroring comparisons between those frost point measurements and MLS. Comparisons with the

M2-SCREAM reanalysis product show similar behavior between days included in training and days omitted from training,305

indicating that our method is retrieving H2O from the LP radiances rather than memorizing the training data. Overall, we find

that the LP product performs comparably to MLS over the 11.5–40.5 km altitude range considered, enabling the continuation

of the MLS water vapor record for these altitudes.

When applying the same methodology but using SAGE III and/or ACE data for training, we find significantly reduced

performance. We similarly find poor performance when limiting the MLS-LP data set to the same size as the SAGE and ACE310

data sets, which suggests that the success of our approach relies on a large training data set of co-located profiles. When

including SAGE III and/or ACE data alongside MLS data, we also find poor performance, regardless of whether or not the

17

https://doi.org/10.5194/egusphere-2025-4845
Preprint. Discussion started: 7 October 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 11. Like Figure 3, but for NOAA-21 OMPS LP.

SAGE III and ACE data are bias corrected to have a 0% median difference with MLS at all altitudes. This suggests that the

variances between the three satellite data products inhibit NN learning.

Despite insufficient co-located data to train a well generalized model specific for NOAA-21 OMPS LP, we find that the315

SNPP-trained NN is applicable to NOAA-21 OMPS LP measurements without retraining. For NOAA-21 data, we find a

persistent negative bias of ∼5% under most conditions when compared with the corresponding SNPP results; this pattern is

also seen in comparisons between the SNPP and NOAA-21 OMPS LP aerosol products, suggesting that it is due to differences

in the radiances rather than poor generalization of the SNPP-trained NN. However, the source of this bias is unclear at the time

of writing; future work should explore approaches to identify the origin of this bias, characterize it, and correct it, if possible.320

Assuming that the NN model continues performing well over the coming years, our results suggest that this SNPP-trained

model will be applicable to OMPS LP onboard JPSS-4 and 3, which are planned to launch in 2027 and 2032, respectively,

thereby extending the MLS water vapor record into the 2030s, albeit at a reduced altitude range. Continued satellite and

balloon-borne measurements from instruments with physics-based stratospheric H2O products, such as ACE, SAGE III, and

frost point hygrometer soundings, will be integral to ensuring that our NN-based retrievals continue to perform well in the325

coming years.
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Figure 12. Like Figure 4, but for NOAA-21 OMPS LP.

Code and data availability. The MARGE software is available on GitHub at https://github.com/exosports/MARGE (Himes, 2022). All data

and results related to the MARGE software for this work are publicly available under the Reproducible Research Software License at

https://doi.org/10.5281/zenodo.17237404 (Himes et al., 2025a). The SNPP OMPS LP version 1.0 H2O data product is available at https:

//doi.org/10.5067/C1BD8BLEBH04 (Himes, 2025a). The NOAA-21 OMPS LP version 1.0 H2O data product is available at https://doi.330

org/10.5067/XNK38X2VQGZ0 (Himes, 2025b). The SNPP OMPS LP version 2.6 L1G data product is available at https://doi.org/10.5067/

YVE3FSNJ59RQ (Jaross, 2023).

Appendix A: Neural network optimization, architecture, and training

To optimize the neural network architecture for this problem, we performed a Bayesian hyperparameter optimization over

the number and types of layers, number of nodes per layer, and activation functions. We considered fully connected NNs,335

convolutional NNs, and architectures that utilize both fully connected and convolutional layers. In addition to standard fully

connected layers, we also considered Concrete Dropout layers (Gal et al., 2017), which include a trainable parameter for the

layer’s dropout rate. For convolutional architectures, we considered architectures with and without pooling layers.

The selected architecture is similar to the landmark AlexNet architecture (Krizhevsky et al., 2012), with hidden layers

and activation functions consisting of Conv2D(32)–ReLU–MaxPool2D–Conv2D(64)–ReLU–MaxPool2D–CD(256)–ReLU–340

CD(256)–ReLU, where Conv2D(m) indicates a two-dimensional convolutional layer with m feature maps using a kernel

19

https://doi.org/10.5194/egusphere-2025-4845
Preprint. Discussion started: 7 October 2025
c© Author(s) 2025. CC BY 4.0 License.



size of 5, ReLU indicates the rectified linear unit activation function, MaxPool2D indicates a two-dimensional pooling layer

that selects the maximum value within a 2×2 window, and CD(n) indicates a Concrete Dropout layer with n nodes. This is

followed by a fully-connected output layer of 30 nodes, corresponding to the H2O VMR at the 30 altitudes spanning 11.5–40.5

km. Note that other architectures performed similarly to the selected architecture; we found that the training data set played a345

more significant role in model performance.

We optimized the learning rate policy according to the method described by Himes et al. (2025b) and trained each NN using

the mean-squared-error loss over the validation set until early stopping engaged after a patience of 60 epochs. On average,

models trained for 638 epochs, which required an average of almost 7 hours to train using an Nvidia V100 graphics processing

unit.350

On our processing system, running our retrieval algorithm using the central processing unit requires around 12 and 16

seconds to process one SNPP and N21 orbit, respectively; specialized graphics processing units would reduce this runtime.
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