
We thank the anonymous reviewer for their though4ul, detailed review of the manuscript, as it 
will improve the quality of the manuscript.  Our response to each comment is provided below. 

 

Is it possible that the NN is training on other factors and crea4ng a water vapor 
simula4on, because water vapor in the stratosphere is highly influenced by dynamics 
which is part of the NN training data. To truly demonstrate that the NN is retrieving 
water I suggest an experiment: fix the water vapor concentra4on to climatology. Then 
run the NN using the radiance varia4ons in the other bands also inpuAng temperature 
and pressure. I suspect you will get the results shown in Fig 6 up to Hunga even though 
water vapor is not varying. 

I would also like to see a regression plot where the varia4on in the water vapor at the 
different levels is regressed against the various bands. This is a kind of standard step in 
feature engineering for machine learning. I suspect you will find the highest correla4on 
between temperature and pressure and the other bands are contribu4ng liGle. This 
should tell us if the NN is actually using water band varia4ons. 

1. Channel Selec4on and Feature Engineering 

Figure 1 appears to demonstrate this, but it lacks a legend explaining the color code for 
the weigh4ng func4ons. It looks like the weigh4ng func4ons (dln(I)/Dln(H2O) are near 
zero before Hunga so it isn’t surprising that the factor increase will be large. 

Given the poten4al for varying sensi4vity, why not perform feature selec4on or 
regression analysis to iden4fy the most informa4ve channels? Why is it necessary to use 
12 OMPS channels as inputs? What happens if you fix the temperature and pressure? 

We have updated Figure 1 to include the legend and adjusted the colors of each line to 
hopefully allow this to be beAer differenCated. 

While a regression analysis is typical for feature engineering, it assumes that there is a linear 
relaConship between the (possibly transformed) input-output pairs, but this is oGen insufficient 
for more complex problems, specifically problems that have complex non-linear relaConships or 
highly correlated features, which is the case for this problem.  Past work to use regression to 
determine a relaConship between LP radiances and co-located H2O profiles was unsuccessful, 
indicaCng the relaConship between LP radiances and H2O is more complex than can be captured 
by a simple regression analysis. 

It is not strictly necessary to use 12 OMPS channels as inputs.  In earlier stages, we also used 
~50 channels, and while the results were similar, they were slightly worse than when we limited 
the number of channels.  With straylight affecCng LP’s longer wavelengths, it’s possible that the 



addiConal wavelengths complicated the relaConship and inhibited the NN from learning to 
properly account for that, but this is a minor effect considering the similarity in results.  The 
important aspect is that a wide range of wavelengths is used to capture the spectral behaviors 
of different aerosol and scene reflecCvity condiCons, which enables the NN to differenCate 
these effects from H2O. 

However, we have performed several tests that seek to answer the feature importance quesCon 
through other means. 

Our iniCal model setup allowed for a simple test of perturbaCons in the temperature/pressure 
profiles.  In March 2025, there was a switch in the LP ancillary product from using the GEOS FP-
IT data to the new GEOS-IT product, which exhibited a disconCnuity in the temperature data on 
the order of a few degrees Kelvin.  If the temperature/pressure data were primarily driving the 
H2O predicCons, then it would be expected to see differences between the model trained on 
the GEOS FP-IT temperature data but applied to the GEOS-IT temperature data, vs. a model 
trained exclusively on GEOS-IT data.  We reapplied our methodology using the new GEOS-IT 
product throughout training and find our results for water vapor predicCons in 2025 unchanged, 
indicaCng that the NNs are robust to small perturbaCons in temperature data. 

We addiConally invesCgated this quesCon by training NNs without LP radiances or solar zenith 
angles, training NNs using climatological temperature/pressure profiles, and training on only LP 
radiances and solar zenith angles.  When omi^ng LP radiance and solar zenith angles from 
training, we find that the model performs significantly worse, with larger root mean square 
errors and smaller R2 values when applied to the test set (see Figure R1.1 below).  The resulCng 
tape recorder plot has worse agreement with the MLS tape recorder than what is presented in 
the manuscript, especially in the first weeks aGer the Hunga erupCon as well as in 2025 (see 
Figure R1.2 below).  Conversely, when using climatological temperature/pressure profiles, we 
find that the RMSE and R2 values over the test set agree with those presented in the 
manuscript.  AddiConally, training on only the LP radiances also achieves similar RMSE and R2 
metrics as those presented in the manuscript.  These results indicate that while the 
temperature/pressure data are useful, they are less important than the radiances when solving 
this problem. 



 

Figure R1.1.  Like Figure 2 in the manuscript, except addiConally showing the 
performance metrics for a NN trained on only temperature and pressure data 
(dashed lines).  The degraded performance in the stratosphere above 15-17 km 
suggests that the LP radiances provide important informaCon that enables the 
determinaCon of a beAer soluCon for retrieving stratospheric water vapor. 



  

Figure R1.2.  Like Figure 6 in the manuscript, except panel (a) shows results for 
the model trained only on temperature and pressure data.   

 

2. Model Evalua4on by La4tude 

I recommend including performance metrics (e.g., RMSE, bias) as a func4on of la4tude, 
which may also capture dependence on solar zenith angle, given its inclusion in the input 
dataset. 

The percent bias between LP water vapor predicCons and MLS per laCtude is provided in the 
original manuscript; see Figure 4a. 

We have added an addiConal panel to Figure 2 to show the relaCve RMSE and R2 as a funcCon 
of laCtude as recommended. We find that the RMSE throughout the vast majority of the 
stratosphere is ~1/10 of the mean VMR.  Below the tropopause, the RMSE is on the order of or 
larger than the mean VMR.  For convenience, we provide that new panel below as Figure R1.3: 

(a) OMPS LP (b) MLS

Date

(a) Without LP radiances 



 

Figure R1.3.  Plots of (a) relaCve RMSE and (b) R2 as a funcCon of laCtude.  The 
relaCve RMSE is shown on a logarithmic scale to beAer differenCate the 
transiCon in performance near the tropopause as well as minor variaCons in the 
stratosphere. 

 

3. Ensemble Model Clarifica4on 

You men4on determining ensemble size based on predic4on stability. Is the ensemble 
size consistent across all profiles, or determined dynamically? 

What differen4ates each ensemble member, like architecture, ini4aliza4on, or 
hyperparameters? 

The ensemble size is constant across all profiles.  As menConed on lines 119-120, the 
architectures are idenCcal among all ensemble members.  Members are only differenCated by 
their random iniCalizaCon.  We have added addiConal text to beAer clarify this: 



“Using the chosen architecture, we train an ensemble of 10 neural networks 
using a mean-squared-error loss funcCon; members are only differen:ated by 
their random ini:aliza:on.  The size of the ensemble is held constant for all 
retrievals.” 

 

4. Normaliza4on and RMSE Interpreta4on 

What are the units in Figure 2? Does Figure 2 use absolute RMSE? Variables are 
normalized in each al4tude, an absolute value may misrepresent performance. Consider 
ploAng rela4ve RMSE (e.g., RMSE divided by median water vapor at each al4tude) to 
beGer contextualize errors, especially at lower al4tudes (<15 km) where water vapor 
concentra4ons are naturally higher. This would also help clarify if the elevated RMSE 
near the surface is a true error or a reflec4on of larger absolute values. 

Yes, Figure 2 shows the absolute RMSE, as indicated by the “VMR” units provided in the figure.  
However, it is a good point that this obfuscates how these RMSEs compare to the typical H2O 
VMRs at each alCtude, and using a relaCve metric would beAer contextualize these errors.  We 
have updated Fig. 2 to show the absolute RMSE divided by the training data set’s average H2O 
VMR at each alCtude, as suggested.  We use the average rather than the median as the staCsCc 
had been previously calculated by the NN code. 

 

5. The statement "errors increase below 18.5 km..." needs clarifica4on. Do you mean 
that measurement density is higher in the troposphere, or that variability increases? 
Does the sample size vary significantly with al4tude? 

Yes, yes, and no, respecCvely.   

The H2O VMR is significantly higher in the troposphere, and absolute errors are also larger in 
this region.   

When considering percent differences between the LP predicCons and co-located MLS profiles, 
the variability of these differences is larger in the troposphere; the differences are typically 
within 10% in the stratosphere with extreme differences of ~20%, while in the troposphere they 
can exceed 50%.  We believe this may be due to a saturaCon effect, as the increased scaAering 
in the upper troposphere likely limits the accuracy and precision of our measurements in this 
regime. 

In Figure 2, the sample size is idenCcal at all alCtudes. 

 



6. Concerns About Temporal Coverage and Generaliza4on 

For the year dependence, Sec4on 4.1 lacks clarity. You men4on omiAng 2024–present 
(Line 179), but training data is stated to cover 2014–2024 (Line 85). Did you use 2025 
data? What is the exact 4me period excluded, and how does this affect inference quality? 

Your explana4on for 2024 being "special" is unconvincing – also see comment about 
Ruang above. The Hunga Tonga erup4on occurred in early 2022, and the water vapor 
peaked shortly aier. This does not jus4fy 2024 as a cri4cal component for training unless 
further supported by data. 

Lines 178-180, where we discuss omi^ng data from 2024-present, describes a separate 
experiment conducted.  The text has been updated to clarify this point: 

“We carried out addi:onal experiments where certain years were omiFed from 
training and found that this can be important for certain situaCons.  When 
omi^ng 2015-2016, …” 

For the model we presented in the manuscript (the model that is currently producing the LP 
H2O products), training data covers 2014-2024 as described on line 85.  Thus, the only 
difference between our presented model and the model from the separate experiment is the 
inclusion of 2024 data during training.  2025 data are not used in training at any point. 

As discussed in the manuscript, the exclusion of 2024 data impacts inference quality when 
applied to data from March 2024 and onward.  Note that this performance degradaCon is 
unrelated to Ruang, as Ruang did not erupt unCl mid-April 2024.  The explanaCon for this poor 
performance is shown in Figure 6: in the first half of 2024, the MLS tape recorder shows 
significantly elevated H2O above 30 km compared to the pre-Hunga period.  These condiCons 
are not well represented in a 2014-2023 training data set (where 30+ km H2O enhancements 
are accompanied by different condiCons than in 2024 and beyond), which leads to poor model 
generalizaCon.  By including some of these data in training, model performance significantly 
improves in this regime, and it generalizes into 2025 where MLS also shows elevated H2O above 
30 km.   

 

7. Feature Design and Model Limita4ons 

In your study, the year is not treated as an input feature. If year-to-year varia4on affects 
model performance, this could point to missing explanatory variables or insufficient 
feature engineering. You may consider a data imbalance or out-of-distribu4on (OOD) 
problem in your training. 



Year is not treated as an input feature because year-to-year variability is implicitly contained 
within the LP radiances and, to a lesser extent, temperature/pressure data.  Data imbalance was 
handled by subsampling the co-located data as discussed in lines 108-110, and the same lines 
also discuss a step taken to minimize the chances of an OOD problem.  Despite that, it’s possible 
that there is an OOD problem as the dimensionality of the problem (421 unique inputs) makes it 
difficult to truly determine this. 

 

8. In addi4on, given the rela4vely small number of input features except the 12 channels 
and model may be overfiAng. I would like to see your support materials to make sure 
your model is not overfit. 

Please consider revisi4ng the input space, especially if training struggles to generalize 
beyond 2024. 

There are 421 unique input features (1440 input features when including redundant inputs for 
the image-based processing used) mapped to 30 output features.  This is not typically 
considered a small number of input features in the ML literature.  The model is not overfit as 
evidenced by various performance metrics being similar on both the validaCon (occasionally 
seen during training) and test (never seen during training) data.  See Figure R1.4 below, which is 
analogous to the manuscript’s Figure 2 except showing the metrics for the validaCon set in 
addiCon to the test set. The test and validaCon curves are nearly idenCcal, indicaCng that the 
model generalized to unseen data and did not overfit the training/validaCon data.   

AddiConally, we show below in Figure R1.5 the median differences between LP and MLS for 
various years.  Focusing in on 2025, we can see that the differences above 25 km are consistent 
with the years considered during training.  Below 25 km, the errors for 2025 are around -6-7%, 
whereas the years considered during training are typically within 2%.  However, it is important 
to note that there are significantly fewer LP-MLS co-locaCons in 2025 due to the MLS duty 
cycling that reduced MLS observaCons to ~6 days per month, which may be affecCng these 
comparisons.  Nevertheless, the errors in this regime are generally less than the LP-ACE 
comparisons shown in the manuscript’s Figure 3b and they are comparable to the LP-SAGE 
comparisons shown in the manuscript’s Figure 3c.  If the model were overfiAed, it would be 
expected that the 2025 errors would be significantly different than the years seen during 
training. 

 



 

Figure R1.4.  Like Figure 2 in the original manuscript, except also including the 
performance metrics for the validaCon data.  The lack of a performance gap 
between the validaCon and test set metrics indicates that the model has 
generalized well to unseen data. 

 



Figure R1.5.  Like the manuscript’s Figure 3a, but showing individual years as well 
as the pre- and post-Hunga periods. 

 

9. You state that model errors may not related to aerosol loading in Line 187. I am just 
curious like a 4me series of model errors alongside aerosol concentra4ons (e.g., before 
and aier the 2022 erup4on), do error paGerns increase during high aerosol periods? 

Figure R1.5 above shows that the post-Hunga period has a 1-2% difference compared to the 
pre-Hunga period.  Figure R1.6 below shows the requested Cme series plot.  Each verCcal line 
shows the average percentage difference between LP-MLS co-locaCons for each LP orbit (LP has 
14-15 orbits per day).  Near the top of the plot, three large erupCons are marked (Calbuco, 
Hunga, and Ruang).  While there are occasional orbits with larger errors than the average, they 
are not correlated with major erupCons, consistent with what was reported in the manuscript. 

 

Figure R1.6.  Time series plot of the average percentage difference between LP-
MLS co-locaCons per LP orbit.  Three major erupCons are denoted on the plot for 
context. 

 



10. Comparisons and Jus4fica4on of External Datasets 

While comparisons with SAGE, ACE, and MLS are common, their measurement 
techniques differ significantly from OMPS-LP as you stated in the manuscript. This limits 
the interpretability of these comparisons. Since your model is trained on MLS water 
vapor, it makes most sense to validate primarily against MLS. In other words, the result 
shows differences, but these may stem from discrepancies between MLS and other 
datasets – see the MLS data quality and descrip4on document (Livesey et al., 2022), not 
from your model. The same remark can be applied to comparisons with M2-SCREAM. 

Yes, we agree on this point.  The primary validaCons are with MLS, as that is what we trained 
on.  The purpose of including comparisons with addiConal instruments is to show that the 
model is more generally applicable, that is, it doesn’t only work where LP is co-located with 
MLS.  The differences between LP and the other instruments are indeed a product of the 
discrepancies between MLS and those other datasets, as our NN approach mimics the MLS 
product (e.g., line 235-236, “… or MLS is biased low in this regime and our LP product has 
inherited this bias.”), but it is an important element to show the generalizaCon of the approach. 

 

(NoCng that there is no comment #11) 

 

12. Figure 8 

The claim that the NN methodology reduces driis may be overstated. If the MLS data 
exhibits a decadal trend and your model was trained with shuffled input, it would be 
expected to replicate that trend. It does not make sense to me the model can do drii 
correc4on automa4cally. Please inves4gate and explain the reason for the difference 
before aGribu4ng it to NN drii correc4on. 

It is a good point raised here and by the other reviewer that the presented results do not 
support a conclusion of the NN model reduces MLS driGs, as we did not compare trends in 
water vapor derived from LP and MLS with more accurate frost point measurements.  We have 
revised the text to remove menCons of driG reducCon and instead focus on the presented 
trends: 

“Regarding water vapor trends, the LP product generally shows greater trends in 
the troposphere and weaker trends in the stratosphere when compared with 
MLS.  In some loca:ons (par:cularly south and southeast Asia, central Africa, 
and central America), the LP product shows greater trends in the upper 
troposphere.  Where both products show …” 



The NN is aAempCng to minimize the mean squared error across all training and validaCon 
cases, so the differences in trends are a product of that process.  Presumably, the difference in 
trends is related to differences in instrument performance over Cme between LP and MLS, that 
is, the sensors will not degrade in the same way, but it is beyond the scope of this work to 
definiCvely determine this. 

 

13. NOAA-21 Applica4on (Sec4on 4.7) 

While it’s reasonable to apply the trained model to NOAA-21, the manuscript doesn’t 
clearly jus4fy the value of this step. 

You acknowledge a bias/shii between SNPP and NOAA-21 radiances, which already 
limits comparability. The bias between two OMPS radiances obviously reflects in the 
inference. The statement in Line 290, sugges4ng the model may implicitly account for 
radiance bias, is likely overstated given the model’s simplicity and data. 

The jusCficaCon for this step is given at the end of SecCon 3.3: 

“Finally, given that OMPS LP is onboard the NOAA-21 satellite and planned to 
launch onboard two addiConal satellites in the coming years, we apply our SNPP-
trained model to NOAA-21 OMPS LP measurements to determine whether our 
model can generalize to future iteraCons of the same instrument …” 

We have revised the text to more clearly explain why this is important: 

“NOAA-21 OMPS LP has an insufficient period overlapping with MLS 
measurements (2023 – present, with MLS only taking measurements for ~6 days 
per month since May 2024), inhibiCng the use of NOAA-21 OMPS LP data for our 
NN training methodology. Given the imminent terminaCon of Aura MLS in two 
years and that the SNPP satellite will presumably cease operaCons before the 
end of NOAA-21 or the subsequent JPSS satellites, we test the applicaCon of our 
SNPP-trained model to NOAA-21 OMPS LP measurements to determine whether 
our model can generalize to future iteraCons of the same instrument …” 

 

14. Figures and Presenta4on 

Figure 1. Missing legend. Please indicate what each color represents. 

Done 

 



Figure 6. Consider adding a third panel showing the di^erence between Figures 6a and 
6b to beGer highlight anomalies or paGerns not captured by direct comparison. 

Done 

 

Figure 7. Since Figures 7a and 7b are expected to show similar results due to the 
consistent retrieval, they may be redundant. Consider removing 7a and 7b, and retain 7c, 
which provides more useful spa4al comparison. 

We appreciate the suggesCon, but we think that it is important to include both panels (a) and 
(b) to highlight the close agreement between LP and MLS. 

 

Line 180. The Ruang aerosols may have created problems in the April 2024 period 

As discussed above, Ruang erupted in mid-April 2024, but the issues emerged in March 2024, 
indicaCng they are unrelated to the Ruang erupCon. 

 

Line 207. Water vapor in the stratosphere doesn’t have a diurnal cycle so why would 
4me co-loca4on make any difference unless the NN is using other gases such as O3 or 
temperature? 

The NN does indeed rely on temperature in part, as shown above in comment #1.  In the lower 
stratosphere, dynamics drive changes in trace gas concentraCons; differences of several hours 
between measurements can lead to LP and MLS measuring different air masses with different 
concentraCons of H2O, which could limit the accuracy of the trained model.  However, even 
when isolaCng this variable, the number of co-locaCons is a main limiCng factor, as found by our 
experiment where we restrict the data set size for MLS co-locaCons (lines 208-210). 

 


