The impact of CO on secondary organic aerosols formed from the mixture of α -pinene and n-dodecane: Supplementary

Guangzhao Xie¹, Aristeidis Voliotis^{1,2}, Thomas J. Bannan¹, Yunqi Shao¹, Huihui Wu^{1*}, Dawei Hu^{1,2}, and Gordon McFiggans¹

¹Centre for Atmospheric Science, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester, M13 9PL, UK

²National Centre for Atmospheric Science (NCAS), University of Manchester, Manchester, M13 9PL, UK

Correspondence to: Gordon McFiggans (g.mcfiggans@manchester.ac.uk) and Aristeidis Voliotis (aristeidis.voliotis@manchester.ac.uk)

^{*}Now at: Univ Paris Est Créteil and Université Paris Cité, CNRS, LISA, 94010 Créteil, France

Table S1. Instrument availability for each experiment.

Experiment Type	Experiment No.	FIGAERO-CIMS	C-ToF-AMS	PTR-ToF-MS	Gas analysers
α-pinene	1	×	√	√	√
α-pinene	2	√	\checkmark	\checkmark	\checkmark
α-pinene + CO	3	√ (2 cycles)	\checkmark	\checkmark	√
n-dodecane	4	×	\checkmark	×	\checkmark
n-dodecane	5	√	\checkmark	\checkmark	√
n-dodecane + CO	6	√	\checkmark	\checkmark	\checkmark
n-dodecane + CO	7	√	\checkmark	\checkmark	√
mixture	8	√	\checkmark	×	\checkmark
mixture	9	√	\checkmark	\checkmark	\checkmark
mixture + CO	10	√	\checkmark	\checkmark	√
mixture + CO	11	×	\checkmark	\checkmark	\checkmark

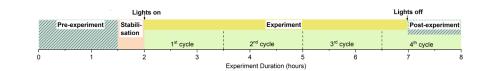


Figure S1: Schematic of the experimental timeline.

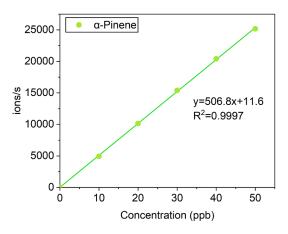


Figure S2: Calibration curve for α -pinene using Vocus PTR-ToF-MS (Experiment 3).

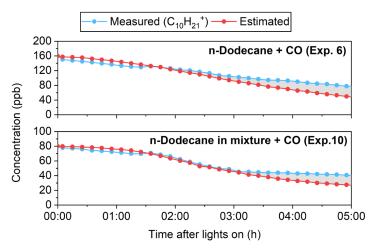


Figure S3: Comparison of n-dodecane concentrations estimated from OH concentrations (derived from CO decay) with those measured directly from the $C_{10}H_{21}^+$ fragment ion using Vocus PTR-ToF-MS. Note: During the first three hours of the reaction, the differences between the measured and estimated values were small. However, as the reaction progressed, the $C_{10}H_{21}^+$ signal may have been interfered with by other oxidation products, leading to an overestimation of the measured concentrations (grey shaded area). As a result, the SOA particle mass yields of n-dodecane and mixture may have been overestimated by up to ~30 % in this study. Nevertheless, the observed effects of CO on the overall trends and relative differences in yields remain reliable.

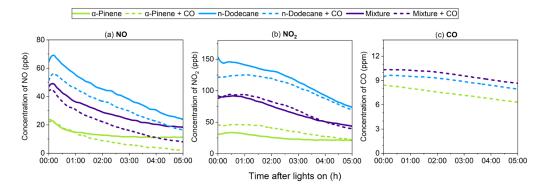


Figure S4: Time series of NO, NO₂, and CO in α -pinene, n-dodecane, and mixture experiments conducted in the absence (solid lines) and presence (dashed lines) of CO.

Figure S5: Estimated OH concentrations derived from the decay of precursors or CO. Fitting curves are shown as a visual guide. Data are from representative experiments.

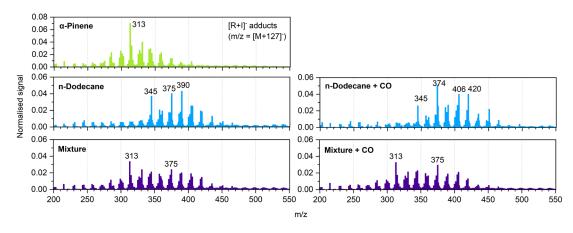


Figure S6: Unit mass resolution (UMR) spectra of SOA particles from α -pinene, n-dodecane and mixture experiments conducted in the absence and presence of CO (last FIGAERO cycle). Signal intensities are normalised to 1.

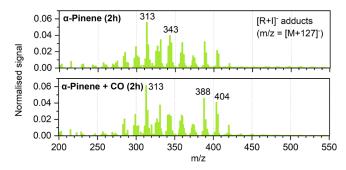


Figure S7: Unit mass resolution (UMR) spectra of SOA particles from α -pinene experiments conducted in the absence and presence of CO (second FIGAERO cycle). Signal intensities are normalised to 1.

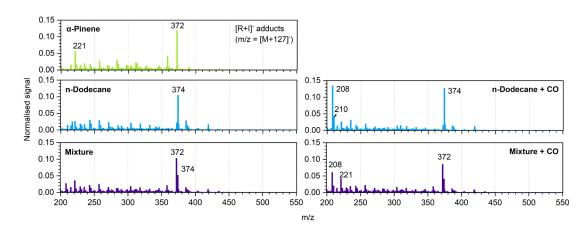


Figure S8: Unit mass resolution (UMR) spectra of gas-phase products from α -pinene, n-dodecane and mixture experiments conducted in the absence and presence of CO (last FIGAERO cycle). Signal intensities are normalised to 1.

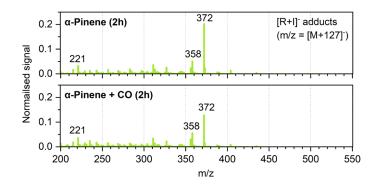


Figure S9: Unit mass resolution (UMR) spectra of gas-phase products from α -pinene experiments conducted in the absence and presence of CO (second FIGAERO cycle). Signal intensities are normalised to 1.

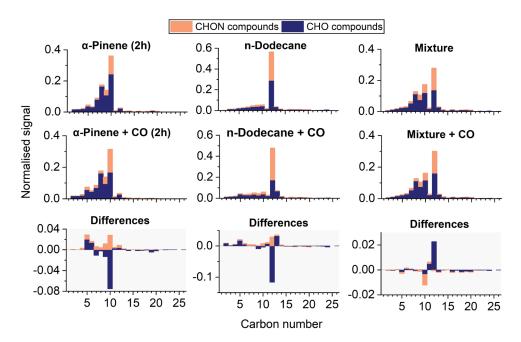


Figure S10: Carbon number distributions of particle-phase SOA compounds from α -pinene, n-dodecane, and their mixture, in the absence and presence of CO. The bottom panels show the differences between the CO-present and CO-absent experiments.

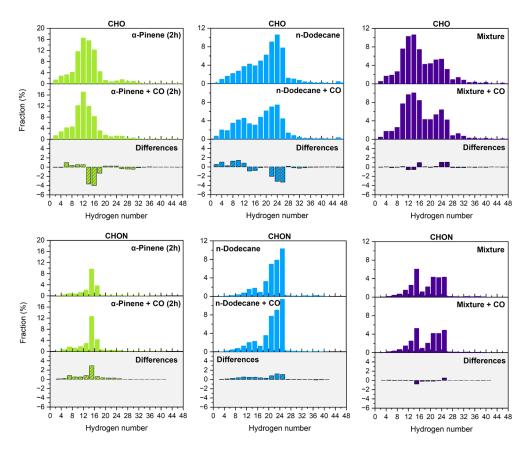


Figure S11: Hydrogen number distributions of particle-phase CHO and CHON compounds from α -pinene, n-dodecane, and their mixture, in the absence and presence of CO. The bottom panels show the differences between the CO-present and CO-absent experiments.

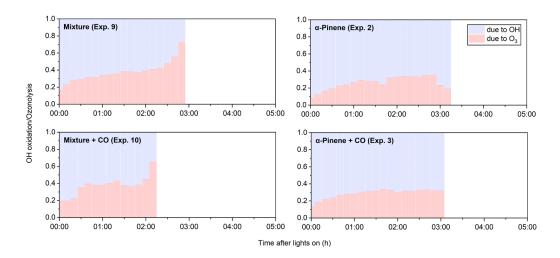


Figure S12: Relative contributions of OH and O_3 to α -pinene oxidation. The contributions of OH radicals and O_3 to α -pinene decay were estimated based on their concentrations and reaction rate coefficients. Data are from representative experiments.