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The authors sincerely thank the two anonymous reviewers for their constructive feedback, which has

significantly strengthened the manuscript. We have carefully revised the paper to address these comments.

The primary modifications include:

1.

Revised the Introduction to better situate our strategy within the “storyline approach”, elaborate
on the importance of IVT, and highlight the downscaled resolution of precipitation outcomes.

2. Added clustering comparisons to justify the selection of VAE over EOF for regime identification.

Improved Figure 3 to emphasize the physical interpretation of machine-learning-based regime
identification.

Included pattern correlation analysis between observed and simulated rainfall composites to
quantitatively validate simulation performance, with updates to Figure 6.

Clarified key concepts including “VAE approach”, “large-scale regime”, “dominant drivers”, and
resolved ambiguities regarding the downscaling strategy.

Ensured consistency between rain gauge data and the 1-km gridded observational rainfall.

Corrected typographical and grammatical errors throughout the manuscript.

Please find our point-by-point response to the reviewers’ comments below. Our responses are marked in
Yy

blue, and modifications to the main text and Supplementary Material are highlighted in bold. Page (P)

and line (L) numbers refer to the revised manuscript.

Referee #1

1. The objective of this study is to propose a downscaling method for Topographic Heavy Rainfalls over

the Asian—Australian Monsoon Region by leveraging multiscale moisture dynamical control.

However, the manuscript provides little information regarding the resulting downscaled resolution

and its accuracy relative to topographic rainfall. This omission makes it difficult for readers to assess

how the proposed method performs compared with existing GCM-based downscaling approaches.

We appreciate the Reviewer for highlighting this critical point.

First, we use TaiwanVVM to render the local rainfall outcomes at 500 m spatial resolution, which is
the final step of this downscaling strategy. We added this point in the Abstract (P1, L12) and
Introduction (P2, L52-55) to highlight it, and on the latter, we added that the resolution is much
finer than typical RCM-based dynamical downscaling results of O(10km). We also revised P,14

L.337-340 to note that the proposed strategy is particularly promising for regions with high-

resolution models resolving critical terrain-related processes.



Second, we agree that some form of metrics will provide more direct assessments of our precipitation
simulation results. Since the downscaling strategy aims at providing interpretable projections for the
two distinct rainfall types (local-circulation/upstream-inflow dominant), we added pattern
correlation between the composite patterns of observation and TaiwanVVM simulation of the
chosen ~30 cases (modified Figure 6). The correlation is calculated by sampling the rainfall values
from TaiwanVVM simulation on grids closest to the rain gauge positions. The correlation values
exceed 0.6 and 0.7 for the simulated local-circulation and upstream-inflow dominant cases,
respectively, and remain high when compositing all samples within the rainfall types (0.55 and 0.68),
which suggests qualitative pattern agreement. We revised P13, L3217-328 to provide more
thorough assessments of the similarities and discrepancies between the observed and simulated
rainfall patterns.

. Regarding Figure S1, it is unclear why the spatial differences between IMERG and CWA appear so
large. Previous studies using gridded CWB datasets show more consistent spatial patterns between
IMERG and CWB.

Reference: https://www.sciencedirect.com/science/article/pii/S0169809518304666

We thank the Reviewer for pointing out this reference (Huang et al., 2018, hereafter H18). HI18 is

cited in our submitted manuscript, describing the difficulty of IMERG data in representing the
precipitation around the southern mountains of Taiwan. Below, we reproduced our Fig. S1 using
identical color scales with H18’s Fig. 2 to ensure consistency (Fig. R1). We additionally added a
version using gridded rainfall dataset from Taiwan Climate Change Projection Information and
Adaptation Knowledge Platform (TCCIP) at 1 km resolution for reference. We note that our Fig. S1
shows the average through Apr—Sep in 2001-2019, while H18’s Fig. 2 shows 3-month averages in
2014-2017. We thus compared the rainfall pattern in our Fig. S1 to the combined pattern of MAM
and JJA in H18’s Fig. 2.

Our Fig. S1 is very similar to H18’s Fig. 2 when using identical color scales, which shows the largest
discrepancy near the mountain ranges from the mid-section towards southwestern. In constrast,
IMERG data is challenged to capture rainfall larger than 12 mm/day. Based on the consistency, the
higher rainfall levels (20 and 25 mm/day) in our original Fig. S1 further highlight the underestimation
over the mountains. Due to our desired emphasis on the challenges posed by complex terrain, we

decided to retain the original version in the Supplementary.


https://www.sciencedirect.com/science/article/pii/S0169809518304666
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column shows higher color scales to emphasize the rainfall discrepancy over the mountain ranges.

The introduction should elaborate on why Integrated Vapor Transport (IVT) is important in the
downscaling process.

We thank the Reviewer for highlighting this critical revision. We modified the entire second
paragraph of Introduction to elaborate on our reasoning for choosing IVT and the importance
of founding the downscaling strategy on multi-scale moisture dynamics (P2, L31-43).

Although the VAE-based method shows improved correlation and reduced RMSE, the differences
compared with EOF appear relatively modest (Figure S5). Have you considered comparing the
clustering results between VAE and EOF?

Yes, we revised the Supplementary to focus the comparison between VAE and EOF in Fig. S2—
4. The PCA is fitted with the training subset and used to transform the entire dataset. The input data
is identical to those used in VAE (individually-normalized daily IVT intensity fields).

The overall clustering results between VAE and EOF appears relatively similar (Fig. S3), since EOF
mostly captures larger structures. The main differences appear in the regional details that shape the
prominent cross-scale interaction within the AAM circulation patterns, as we originally used Fig. S4
to demonstrate (now moved to Fig. S2b). EOF is especially challenged to represent (1) the monsoon
pattern with extended IVT into the Western North Pacific, and (2) the TC-related patterns. We added
Fig. S3 and S4 to highlight that this leads to less ideal classification of regimes. Since these
detailed regional flow structures are critical to topographic heavy rainfalls, we chose VAE over EOF
for regime identification. We modified P5, L.119-124, accordingly.

The organization of figures in both the main text and the supplementary material is at times confusing.
Several figures are referenced repeatedly across the Methods and Results sections, making it difficult
for readers to follow—particularly in Section 2.2 (Methods) and Section 3.1(Results). In addition,
referring to certain figures in both the Results/Discussion and the Methods (e.g., line 141) does not
enhance clarity and forces readers to jump back and forth.

We appreciate this constructive comment. We have edited out repetitive figure references



throughout the main text, especially in Section 2.2. We also rearranged the figures in the

Supplementary to ensure a smoother flow.

Data availability: The 1 km gridded precipitation data are available from the Taiwan Climate Change
Projection Information and Adaptation Knowledge Platform (TCCIP, https://tccip.ncdr.nat.gov.tw).

Referee #2

1.

Incorrect calculation of IVT.
I am a little concerned by the authors’ definition of IVT. IVT is a vector field but it is written as if it
is a scalar field. The written equation (Eq 1, pg 4) is incorrect. The scalar IVT should be the

magnitude of IVT. Le.
700
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Where IVTx and IVTy are the x and y components of the (vector) IVT field, u and v are the x and y
components of the velocity field, q is the specific heat, g is the acceleration due to gravity and P is
the pressure.

We appreciate the Reviewer for emphasizing the correct formulation of IVT, which is exactly how
we calculated it. We used the notation similar to Rutz et al. (2014) (added this citation in P2, 1.38)
and realized that absent vector annotation on the left-hand side can cause confusion. Accordingly,

we revised Eq. (1) as

IVT = (IVT, IVT,) = —= [/0,4* D dP, (1)

and added Eq. (2) to indicate the calculation of IVT intensity:

|IvT| = /IVT,% + IVT2. 2)

These modifications are in P3, L.83-86.
To further address the Reviewer’s concern, we restate our use of IVT in this study as follows: The

large-scale patterns are identified via VAE using only the IVT magnitude (i.e., |ﬁ/7|) fields, which

we refer to as “IVT intensity” in the main text. The upstream analyses are based on the IVT vector
(i.e., Tﬁ), which we discuss both the direction and the intensity. The reason why we only use |I—I77|
to identify large-scale patterns is to constrain the number of identified regimes, and the direction
information is explicitly investigated during upstream flow analyses. We revised P5, L132-134 and
P7, 176-179 to state this more clearly. We also added notations of |I VT| and IVT in many
places throughout the main text to remind the readers.

Added value of machine learning approach is not clear.

The title of the paper claims that ‘multiscale moisture dynamical control’ is leveraged providing a



‘promising downscaling strategy’ for topographic heavy rainfall. However, despite the VAE
approach, the downscaling ultimately boils down to two pre-known drivers (local-circulation vs.
upstream-inflow; Sec. 3.2-3.3; Fig. 4-6). The upstream in-flow regime is well documented, as the
authors state. The spatial structure of IVT could be found simply by compositing IVT during days
dominated by upstream-inflow. The VAE methodology seems unnecessary here and ultimately
identifies only one relevant large-scale regime (upstream inflow). The difference between the EOF
method and the VAE method on the test data in S5, does not look significant.

To address all the concerns mentioned in this comment, we will clarify (1) the confusion between
large-scale regimes and dominant drivers, (2) the purpose of using VAE, and (3) the added value of
using VAE.

First, we clarify that the “large-scale regimes” refer to the weather system configurations over the
Asian-Australian monsoon region (Fig. la), whereas the “dominant drivers” refer to the local-
circulation/upstream-inflow (using southwestern Taiwan as the focused example), indicated by
upstream IVT conditions (Fig. 1b). In this study, we establish daily large-scale IVT regimes to
identify heavy-rainfall-promoting large-scale patterns (Fig. 4a—b), constrain the regional circulation
state for building storylines, and evaluate the simulation of GCMs (Fig. 7). Dominant drivers are
indicated by the upstream IVT, which guides the choice of the representative environmental profile
for the LES. In Section 3.2, we identify six relevant large-scale regimes for promoting heavy rainfalls
over southwestern Taiwan (Fig. 4a—b). Under these large-scale weather patterns, heavy rainfalls are

predominantly driven by upstream inflow when the upstream VT corresponds to 200° <
direction < 280°and intensity > 250% and by local circulation otherwise (Fig. 4c—d). Both

local circulation and upstream inflow are relevant drivers that can induce daily rainfall over steep
topography more than 100 mm/day in distinct patterns (Fig. 5). We revised P11, L268-270 to
highlight this point.

Second, we restate that the purpose of using VAE is to objectively extract daily large-scale IVT
regimes from daily patterns. Our proposed downscaling strategy aims to provide interpretable future
projections following the storyline approach, which projects plausible futures conditioned on distinct
large-scale states and thereby constrain the uncertainties from the uncertain response of regional
circulation. The Introduction is revised to make this point clearer (P1, L19-43). Even when
building plausible storylines for the rainfall type dominated by upstream inflow, it is critical to
identify what large-scale state modulates the strong upstream inflow. For example, stronger upstream
inflow for southwestern Taiwan can be induced by either the monsoon circulation variability or a
nearby TC east off Taiwan. These two scenarios represent different large-scale states, and hence,
different storylines, for topographical rainfall over southwestern Taiwan, despite that their upstream
IVT can be similar. Compositing IVT during days dominated by upstream-inflow, as the Reviewer
suggested, is likely to merge these different scenarios of large-scale patterns, hampering the chance
to delineate their respective contribution to current and future rainfall in southwestern Taiwan. We
revised P11, L.284-289 to highlight this point.

Third, the added value of VAE, especially compared to EOF, mainly lies in regional details that shape



the prominent cross-scale interaction within the AAM circulation patterns, as we originally used Fig.
S4 to demonstrate (now moved to Fig. S2b). EOF is especially challenged to represent (1) the
monsoon pattern with extended IVT into the Western North Pacific, and (2) the TC-related patterns.
We added Fig. S3 and S4 to highlight that this leads to less ideal classification of regimes. We
rearranged Fig. S2—S4 for comparing VAE and EOF’s performance and summarized these
points in PS5, L119-124.

Lack of validation of LES.

LES evaluation uses ~30 cases per type (Fig. 6, page 15 and 11 303, page 13). It is claimed that there
is a qualitative pattern agreement but from examining Fig 6, it looks like the results from LES don’t
agree well with the observations. Both 6b and 6e (observed) look different compared to 6¢ and 6f
(LES model). No formal skill metrics (e.g. spatial correlation) are provided..

We thank the Reviewer for pointing out the need for formal skill metrics. As suggested, we modified
Figure 6 by adding the observational composites of those simulated cases (now Fig. 6¢c and 6g)
and their pattern correlations with the simulation. The correlation is calculated by sampling the
TaiwanVVM-simulated rainfall on grids closest to the rain gauge positions, as demonstrated below
(Fig. R2). The correlation values exceed 0.6 and 0.7 for the simulated local-circulation and upstream-
inflow dominant cases, respectively, and remain high when compositing all samples within the
rainfall types (0.55 and 0.68), which suggests qualitative pattern agreement. We revised P13, L317—
328 to assess more thoroughly the similarities and discrepancies between the observed and
simulated rainfall patterns.
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Figure R2: Calculate pattern correlation between composites by sampling TaiwanVVM-simulated rainfall at
grids closest to the rain gauges. In each panel title, the numbers in paratheses indicate the number of composite
cases, matching those of Figure 6.

Rainfall over complex topography is not investigated.

The manuscript cites complex topography as the motivation for the framework, yet later sections
refer only to ‘localised’ vs. ‘widespread’ rainfall without explicitly linking these patterns to terrain-
driven processes. LES simulations could have been used to quantify orographic lifting, slope
orientation effects, and land—sea breeze interactions. Indeed, rain gauges on complex terrain are less
reliable since they are difficult to access and are generally sparser. Analysis of this sort would be of
scientific interest. Without explicit topographic diagnostics (e.g., upslope vs. lee-side differences),
the study does not fulfil its stated goal of providing interpretable projections for complex terrain.
We absolutely agree with this comment about the potential of investigating more detailed terrain-
driven processes using LES. Indeed, the literature cited in our text (P6, 158—159) are previous
investigations dedicated to the terrain-related processes and the resultant intense convection using
VVM (idealized topography) and TaiwanVVM (realistic topography). These studies underly our
confidence in using TaiwanVVM for rendering local rainfall outcomes, knowing that explored
convective processes are reliable and further investigation is possible.

However, we emphasize that the full interpretability of rainfall projection through the proposed
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downscaling framework lies in the holistic understandings covering the large-scale moisture
dynamical environments, the choice of representative environmental profiles, and the explicit
representations of the terrain- and convection-related processes by the LES to produce rainfall
outcomes. It aligns with the storyline approach and is a contrast to downscaling unconditionally from
GCM ensembles with RCMs, which introduces mingled uncertainties and diminishes interpretability.
The Introduction is revised to strengthen this point (P1, L19-43).

As discussed in Section 4.3, we are very motivated to investigate the terrain-related processes under
local-circulation and upstream-inflow dominant weathers, but they are currently beyond the scope
of this study.

Incorrect or unclear calculation of rainfall metrics (R and A).

The study uses metrics R (ratio of ‘area summed’ rainfall over Taiwan compared to that of southwest
Taiwan) and A the area averaged rainfall over southwest Taiwan (Eq. 3 and Eq. 4, respectively, page
10). It is unclear what ‘area summed’ means in the calculation of R and A. Furthermore, it is unclear
what A is measuring. A (defined by Eq. 4) appears to estimate the regional rainfall intensity by
summing raw rain gauge totals and dividing by gauge count for averages. This is incorrect.
Furthermore, if R does faithfully provide a measure of how localised the rainfall is, Fig 4c seems to
show that there is no relationship between R and IVT intensity or direction.

The Reviewer expressed concerns about three points in this comment: [1] the meaning of area-
summed daily rainfall (S in Eq. 3, now Eq. 4 in the revised version) [2] incorrect definition of
regional average rainfall A with rain gauge data, and [3] no relationship between R and upstream
IVT. We respond to each point as follows.

[1] The area-summed daily rainfall (S) is defined for the purpose of estimating how much of the
rainfall over the Taiwan Island concentrates over southwestern Taiwan on a specific day (i.e. S
is an intermediate step for obtaining the metric “R”). For simplicity, S is calculated by summing
the daily rainfall amounts measured by all rain gauges within the specified area. This allows us to
straightforwardly compare the rainfall received by the southwestern area and the entire island by
taking their ratio. We revised P10, L240-249 to make this point clearer.

[2] As the Reviewer’s understanding, A measures the regional daily rainfall by dividing S with the
gauge counts. The estimation using rain gauge data is credible owing to the dense rain gauge
network over Taiwan, especially southwestern Taiwan. To address the Reviewer’s concern, we
reproduced Fig. 4 with the gridded observational rainfall data from Taiwan Climate Change
Projection Information and Adaptation Knowledge Platform (TCCIP) at 1 km resolution and
compared it with the original Fig. 4 (Fig. R3). The two versions appear very similar, especially
the southwestern average (i.e., the metric A), with only slightly higher southwestern rainfall ratio
(i.e., the metric R) when using the gridded TCCIP rainfall. This ensures consistency with our
original results. In addition to the agreement between both versions, the rain gauge data aligns
better with our focus on the high-resolution rainfall patterns over complex topography. In Fig. R4,
we further demonstrate how the rain gauge data can better capture the highly-localized rainfall
hotspots than the gridded dataset. We added this point in P4, L.96-97.

[3] Following point [1], we clarify that R does not measure how localized the rainfall is, but



measures whether rainfall concentrates over southwestern Taiwan on that day. It has to be
considered jointly with A, the area-average rainfall, to imply whether the rainfall pattern is more
likely to be localized (low A) or widespread (high A). As the Reviewer expected, which is also
exactly our point, high R does not show a specific structure respecting upstream IVT. This
suggests that rainfall concentrated over southwestern Taiwan can happen on days with weak or
strong incoming flow. In contrast, high A exhibits a clear structure clustered towards stronger

southwesterly IVT. Juxtaposing Fig. 4c and 4d thus reveals that when heavy rainfalls emerge

over southwestern Taiwan, the rainfall pattern is likely to be localized under weak incoming flow
and more widespread under strong incoming flow. We modified P10, L.246-249 and P11, L.263—
267 to strengthen this point.
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Figure R3: Comparison of Figure 4 using different rainfall datasets. The original version (left) is based on rain
gauge data, whereas the reproduced version (right) is based on the gridded rainfall data at 1 km resolution

from TCCIP.
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Figure R4: Comparison of local-circulation-dominant rainfall patterns between rain gauge data and gridded
rainfall data to demonstrate their representation of localized rainfall hotspots. The rain gauge panels are
identical to Figure 6b—c in the main text.
Over-reliance on IVT-only for regime definition.
The VAE is trained solely on IVT maps (Sec. 2.2), after daily min—max normalization and coarsening
(see point 8). Two environments with similar IVT can produce very different rainfall outcomes. This
use of IVT alone is not adequately justified.
We agree with the Reviewer that two environments with similar IVT (whether in the sense of large-
scale pattern or upstream condition) can produce very different rainfall outcomes, and this is exactly
why the semi-realistic LES component is essential to the downscaling strategy. When initializing the
TaiwanVVM LESs, the vertical profiles of temperature, specific humidity, and horizontal winds are
given to represent the environmental forcing (P6, L165-169). Therefore, even on days sharing
similar IVT environments, TaiwanVVM can simulate the detailed precipitation outcomes over
topography corresponding to the respective dynamic and thermodynamic environment. This point is
nicely demonstrated by the simulated rainfall variabilities for the two distinct rainfall types (Fig. 5).
We emphasize that this framework is not intended to infer local rainfall outcomes solely based on
the IVT environments. Instead, the IVT investigation helps us identify the representative
environment, and we use it with a model resolving the crucial processes to enhance interpretability
of the rendered rainfall outcomes. This point underlies Section 3.3, and we additionally revised
P2, LL53-55 to place this point upfront.
Heuristic classification of regimes.
Regime grouping (36 latent sub-cells divided into categories A, B and C) is based on visual
inspection rather than an objective clustering appraoch (Sec. 3.1; Fig. 3). This undermines
reproducibility and weakens claims of ‘interpretable ML’. No quantitative mapping is provided
between the latent coordinates and physically distinct processes beyond arbitrarily grouping different
patterns in the IVT field.
To first clarify, our regimes are objectively classified by objectively discretizing the latent space.
The three categories are then grouped based on visually inspecting all the classified daily IVT

patterns, the regime composites, and their agreements with the regime representatives. Defining the



three categories is intended to enhance interpretability of the machine-learning results, by linking
the objectively-identified regimes to our physical knowledge of domain weather patterns over the
monsoon region. The three categories, therefore, involves a certain degree of subject interpretation,
but it does not interfere the objective regimes. We modified P7, 189—195 and moved Fig. S7 to Fig.
3b to strengthen this point for interpretable machine learning. We note that our subsequent
analyses of embedded upstream IVT, local rainfall behaviors, and GCM evaluation are all based on
the objectively-identified regimes, not the categories. It therefore does not affect the reproducibility
of our results.

Assumption of Gaussian statistics and issues with min-max normalisation.

The VAE framework assumes IVT follows a Gaussian distribution (Sec. 2.2). IVT is non-Gaussian,
tends to be heavy tailed with extreme values occurring more often than predicted by a Gaussian
distribution. This assumption would underrepresent the extremes, which are the central process being
investigated in this study. Furthermore, I am concerned about the daily min—max normalisation of
IVT in Sec 2.2,Eq.2. This places low IVT days (that would have very little impact on the terrain
driven rainfall) on equal footing with high IVT days. The authors own analysis in S6 shows that the
normalisation is flawed. The normalisation should account for the variability in IVT intensity. The
normalisation used also makes tropical-cyclone cores appear weaker, as the authors acknowledge in
S6, this undermines the choice of defining category C as ‘tropical cyclone related’ (Sec. 3.1).

We appreciate this comment for us to clarify our methods.

First, the VAE framework does not assume IVT value follows a Gaussian distribution. The
multivariate Gaussian distribution is introduced through the KL-divergence term in the loss function
of VAE to regularize the training objective. It is meant to improve the dimension-reduction process
compared to conventional autoencoders and does not assume the physical properties of the input
samples. Imposing a multivariate Gaussian prior encourages meaningful distance in the latent space
and smooth latent representations. Given our inputs as IVT patterns, this lets similar IVT patterns be
clustered on the latent space more reasonably with smooth transition of circulation features. We
modified P4, L115-118 to make this point clearer. Furthermore, we once again clarify that the
heavy rainfalls focused in this study do not necessarily emerge under “extreme IVT” environments,
whether in the sense of extreme “large-scale IVT pattern” or extreme “upstream IVT value”. In fact,
Fig. 4 and Fig. 8 demonstrate that upstream-inflow-dominant heavy rainfalls in the AAM region can
emerge under common large-scale patterns and upstream IVT intensity starting from 250 kg/m/s.
Not to mention the local-circulation-dominant heavy rainfalls can be triggered under weak incoming
flow.

Second, the daily min—max normalization is performed to emphasize the daily structure of the large-
scale IVT patterns, especially the cross-scale interaction induced by the relative positions and
strengths between weather systems. Figure S6 shows that the weather system configuration on both
days is similar—the monsoon system present over the Indian subcontinent, a tropical cyclone at the
northeast of Luzon that is slightly stronger than the monsoon, and the enhanced flow induced by
TC—monsoon interaction in the South China Sea. VAE is intended to classify these similar structures

into the same regime, as they are expected to induce similar flow structures (over the South China



Sea in this example). This point is explained in P5, L139-140 and reminded in P7, 185-188. We
agree the variability in IVT intensity should be considered, which is exactly why we explicitly
investigate the upstream IVT intensity and direction in the local upstream next.

Third, Category C is determined as TC-related patterns through examining the daily IVT patterns in
these regimes and the positions of historical tropical cyclones (originally shown in Fig. S2b, now in
Fig. S4a), in addition to the reconstructed patterns. We find that almost all the days in Category C
feature TCs in the Western North Pacific. We clarify once again that the individual normalization
retains the daily structure of IVT patterns, including the structure of TCs. We revised P8, 1L.202-210
to clarify this point better.

Data availability: The 1 km gridded precipitation data are available from the Taiwan Climate Change
Projection Information and Adaptation Knowledge Platform (TCCIP, https://tccip.ncdr.nat.gov.tw).



