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Abstract 10 

Streamflow simulations produced by different hydrological models exhibit distinct 11 

characteristics and can provide valuable information when ensembled. However, few studies 12 

have focused on ensembling simulations from models with significant structural differences 13 

and evaluating them under both temporal and spatial tests. Here we systematically evaluated 14 

and utilized the simulations from two highly different models with great performances: a purely 15 

data-driven long short-term memory (LSTM) network and a physics-informed machine 16 

learning (“differentiable”) HBV (Hydrologiska Byråns Vattenbalansavdelning) model (δHBV). 17 

To effectively display the features of the two models, multiple forcing datasets are employed. 18 

The results show that the simulations of LSTM and δHBV have distinct features and 19 

complement each other well, leading to better Nash-Sutcliffe model efficiency coefficients 20 

(NSE) and improved high-flow and low-flow metrics across all spatiotemporal tests, compared 21 

to within-class ensembles. Ensembling models trained on a single forcing outperformed a 22 

single model using fused forcings, challenging the paradigm of feeding all available data into 23 

a single data-driven model. Most notably, δHBV significantly enhanced spatial interpolation 24 

when incorporated into LSTM, and provided even more prominent benefits for spatial 25 
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extrapolation where the LSTM-only ensembles degraded significantly, attesting to the value of 26 

the structural constraints in δHBV. These advances set new benchmark records on the well-27 

known CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) 28 

hydrological dataset, reaching median NSE values of ~0.83 for the temporal test (densely 29 

trained scenario), ~0.79 for the ungauged basin test (PUB, Prediction in Ungauged Basins), 30 

and ~0.70 for the ungauged region test (PUR, Prediction in Ungauged Regions). This study 31 

advances our understanding of how various model types, each with distinct mechanisms, can 32 

be effectively leveraged alongside multi-source datasets across diverse scenarios. 33 
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 34 

Highlights 35 

● Combining LSTM and δHBV with diverse forcings sets new accuracy benchmarks 36 

● Ensembling models with one forcing outperforms merging forcings as an input 37 

● δHBV and LSTM together always increase NSEs, especially spatial generalization 38 

● δHBV provides valuable spatial constraints in the deterministic ensemble simulations 39 

● δHBV and LSTM have different error characteristics that can be offset in an ensemble 40 

 41 
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1. Introduction 46 

Streamflow, a critical component of the global hydrosphere, profoundly influences both 47 

human society and natural ecosystems (Lins and Slack, 1999). Accurate simulation and 48 

prediction of streamflow yield numerous benefits, including improved flood prevention 49 

strategies (Brunner et al., 2021). Hydrological models serve as indispensable tools for 50 

achieving this objective and can be traditionally categorized into two types: data-driven models 51 

(Feng et al., 2020; Kratzert et al., 2018; Liu et al., 2024; Nearing et al., 2024) and process-52 

based (or physically-based) models (Newman et al., 2017; Paul et al., 2021). Data-driven 53 

models, exemplified by long short-term memory (LSTM) (Feng et al., 2020; Kratzert et al., 54 

2018) and transformer (Liu et al., 2024) networks, excel in learning patterns from multi-source 55 

data (Li et al., 2023b, 2024; Liu et al., 2022; Nearing et al., 2024) and generally achieve high 56 

performance. However, they often lack interpretability and may not resolve extreme values 57 

very well (Li et al., 2020a; Song et al., 2025b). Conversely, process-based models, derived 58 
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deductively from physical laws or conceptualized views of natural systems, offer insights into 59 

internal hydrological processes but may exhibit weaker performance due to structural 60 

inadequacies (Li et al., 2020a, 2022; Zhang et al., 2019). 61 

To combine the benefits and counteract the weaknesses of these two kinds of models, 62 

many efforts have been made to incorporate physical constraints and structures into data-driven 63 

models to align with fundamental physical principles, such as mass and water balances (Bandai 64 

and Ghezzehei, 2021; Wang et al., 2020; Xie et al., 2021). The most seamless integration uses 65 

neural networks to provide parameterizations or missing process representations for process-66 

based models (Aboelyazeed et al., 2023; Bindas et al., 2024; Feng et al., 2022; Jiang et al., 67 

2020; Kraft et al., 2022; Rahmani et al., 2023; Song et al., 2024b; Tsai et al., 2021). These 68 

differentiable models (Shen et al., 2023) connect (flexible amounts of) prior physical 69 

knowledge to neural networks, and have displayed many advantages, including improved 70 

computational efficiency and prediction of untrained variables (Tsai et al., 2021), spatial 71 

generalization (Feng et al., 2023b), and representation of extremes (Song et al., 2025b). 72 

However, it is also unclear whether current differentiable models, e.g., δHBV, the 73 

Hydrologiska Byråns Vattenbalansavdelning (HBV) model implemented within a 74 

differentiable framework (Feng et al., 2023b; Ji et al., 2025; Shen et al., 2023; Song et al., 75 

2025b), have unique bias characteristics that are associated with the process-based parts of their 76 

structures that cannot be reduced once the equations are prescribed. 77 

Orthogonal to such efforts are ensemble simulations (Yu et al., 2024), which combine 78 

many members with different biases and uncertainties to mitigate their respective biases in 79 

deterministic predictions. Many previous studies have tried ensemble methods to improve 80 

streamflow (Clark et al., 2016; Zounemat-Kermani et al., 2021) based on many factors, like 81 

initial conditions (e.g., initial weights and biases in LSTM (Kratzert et al., 2018)), data used 82 

for parameterization (Feng et al., 2021), and objective functions (Lin et al., 2024). These 83 
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studies generally use one model to generate the differences among the ensemble members. 84 

Furthermore, some studies (Dion et al., 2021; Solanki et al., 2025) have utilized simulations 85 

from multiple different models but are limited to process-based models, resulting in ensemble 86 

simulations that are better than each individual member. Thus far, however, most studies have 87 

focused on simulations from only similar models or model types, and little work has tested an 88 

ensemble across the boundary of model types, particularly between data-driven, process-based, 89 

and hybrid models, especially on a large number of samples. Presumably, if each model has its 90 

own unique bias, data-driven and process-based models are likely to exhibit greater differences 91 

due to their inherently distinct characteristics. It remains unclear whether ensembling across 92 

model types should bring benefits to deterministic predictions. Furthermore, grounded in the 93 

process-based model, the differentiable process-based hydrological model, such as δHBV, 94 

significantly enhances performance compared to traditional process-based models, while on 95 

the other hand introducing greater uncertainty regarding its potential benefits when ensembled. 96 

Moreover, previous studies have primarily focused on evaluating ensemble simulations for 97 

temporal predictions. However, streamflow simulation under spatial extrapolation scenarios 98 

presents greater challenges, and findings from temporal tests may not be directly applicable in 99 

this context. 100 

It is known that the performance of any type of hydrologic model heavily depends on the 101 

quality of input data, particularly meteorological forcing data (Bell and Moore, 2000; Yao et 102 

al., 2020), and other inputs, like the uncertainties of initial conditions, can be mitigated via 103 

warming up (Yu et al., 2019). While independent forcing datasets excel in certain aspects, they 104 

each carry different error characteristics (Beck et al., 2017; Behnke et al., 2016; Newman et al., 105 

2019) and accordingly affect the hydrological models in different ways. In order to fully display 106 

the different features between LSTM and δHBV, multiple forcing datasets could be considered. 107 

Given the utilization of multiple forcing datasets, one could choose to use data fusion to 108 
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combine them into a single coherent model input (Kratzert et al., 2021; Sawadekar et al., 2025), 109 

or to pass each forcing dataset through a model and then afterwards combine the multiple 110 

outputs in an ensemble. It is not clear which approach is more beneficial. 111 

Considering the knowledge gaps discussed above, we sought to answer several research 112 

questions: 113 

1. Will a cross-model-type ensemble of LSTM and δHBV improve deterministic 114 

streamflow prediction more than a within-class ensemble? 115 

2. Is it better to use multiple forcings in one model or to ensemble multiple models, each 116 

with a different forcing input? 117 

3. Do process-based equations bring unique value to an ensemble, especially in terms of 118 

spatial generalizability? 119 

The remainder of this paper is structured as follows: Sect. 2 outlines the hydrological data 120 

and models used in this study, as well as the experimental design. Results and discussions are 121 

presented in Sect. 3, with conclusions provided in Sect. 4. 122 

 123 

2. Materials and methods 124 

2.1. CAMELS hydrologic dataset 125 

The Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) dataset 126 

(Addor et al., 2017) is widely employed for hydrological model evaluation and community 127 

benchmarking. The CAMELS dataset encompasses 671 basins distributed across the 128 

conterminous United States, with basin sizes ranging from 1 to 25,800 km² (median: 335 km²). 129 

This standardized and publicly available dataset serves as a benchmark for evaluating various 130 

hydrological models, with LSTM models trained on this dataset often serving as a reference 131 

point for comparing other models (Kratzert et al., 2021). CAMELS provides basin-scale data, 132 

including streamflow observations and static basin attributes, as well as forcing datasets from 133 
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three independent sources: Daymet (Thornton et al., 1997), North American Land Data 134 

Assimilation System (NLDAS) (Xia et al., 2012), and Maurer (Maurer et al., 2002). Each of 135 

the three meteorological forcing datasets operates at a daily temporal resolution, encompassing 136 

precipitation, temperature, vapor pressure, and surface radiation variables, with daily 137 

temperature extrema of NLDAS and Maurer supplemented from Kratzert et al. (2021). These 138 

three meteorological forcing datasets have methodological distinctions in spatial resolution, 139 

data generation approaches, and temporal processing (Behnke et al., 2016; Kratzert et al., 2021). 140 

Exemplary plots illustrating the differences among the three meteorological forcing datasets 141 

are provided in Appendix B. These features can lead to dataset-specific error characteristics 142 

and make them valuable for displaying the distinct features of different model types. All model 143 

inputs used in this study are detailed in Table C1. 144 

 145 

2.2. Long short-term memory 146 

As one kind of deep learning algorithm, long short-term memory (LSTM) (Hochreiter and 147 

Schmidhuber, 1997) has unique structures like hidden states and gates activated by the tanh 148 

and sigmoid functions (Li et al., 2023a), respectively. These features enable LSTM to excel in 149 

streamflow simulation tasks (Feng et al., 2020; Kratzert et al., 2018; Nearing et al., 2024). In 150 

the current benchmark framework, LSTM models are trained using dynamic atmospheric 151 

forcings and static basin attributes as inputs, with streamflow as the target output, making it 152 

perform well in both temporal and spatial tests (Figure 1a). In this work, for cross-group 153 

comparability, we used the LSTM model and its hyperparameters as reported in Kratzert et al. 154 

(2021). 155 

 156 

2.3. Differentiable HBV model (δHBV) 157 

The Hydrologiska Byråns Vattenbalansavdelning (HBV) model is a parsimonious bucket-158 
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type hydrologic model that simulates various hydrological variables, including snow water 159 

equivalent, soil water, groundwater storage, evapotranspiration, quick flow, baseflow, and total 160 

streamflow (Aghakouchak and Habib, 2010; Beck et al., 2020; Bergström, 1976, 1992). 161 

Recently demonstrated differentiable HBV (δHBV) model (Feng et al., 2023b; Ji et al., 2025; 162 

Shen et al., 2023; Song et al., 2024b) incorporates deep neural networks for both regionalized 163 

parameterization and missing process representations within a differentiable programming 164 

framework that supports “end-to-end” training (Figure 1b). This innovation enables δHBV to 165 

effectively learn from data while obeying physical laws, resulting in high-level performance 166 

for streamflow simulations. From the perspective of process-based modeling, LSTM is a 167 

regionalized parameter provider that leverages the autocorrelated nature of its inputs to impose 168 

an implicit spatial constraint on the generated parameters. 169 

In this study, we used δHBV1.1p (Song et al., 2024b, 2025b), which is an updated version 170 

of δHBV1.0 (Feng et al., 2022, 2023b). The main improvement is the addition of a capillary 171 

rise module, which enhances the characterization of low flows. Three additional modifications 172 

are included to address high-flow simulation challenges: the use of three dynamic parameters 173 

(γ, β, 𝑘଴) (Song et al., 2025b); the removal of log-transform normalization for precipitation; 174 

and the adoption of the normalized squared-error loss function (Table C2) (Frame et al., 2022; 175 

Kratzert et al., 2021; Song et al., 2025a, b; Wilbrand et al., 2023). We also maintain dynamic 176 

parameters during warm-up periods. Although this provides only marginal benefits and 177 

increases computational costs, it yields a more realistic representation and reduces uncertainties 178 

associated with initial conditions. The basic equations in δHBV are as follows: 179 

 𝜃 ൌ 𝐿𝑆𝑇𝑀௪ሺ𝑥,𝐴௔௧௧௥ሻ (1) 

 𝑄 ൌ 𝐻𝐵𝑉ሺ𝑥,𝜃ሻ (2) 

 𝑊௢௣௧ ൌ 𝑎𝑟𝑔𝑚𝑖𝑛௪ሺ𝐿ሺ𝑄,𝑄∗ሻሻ (3) 

where θ are the dynamic or static physical parameters, w denotes the weights and biases of 180 
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LSTM, x includes the basin-averaged meteorological forcings, such as precipitation, mean 181 

temperature, and potential evapotranspiration, with 𝑥 representing their normalized versions. 182 

Similarly, 𝐴௔௧௧௥  consists of normalized observable basin-averaged attributes, encompassing 183 

basin area, topography, climate, soil texture, land cover, and geology (Table C1). Precipitation 184 

and mean temperature are from CAMELS, while potential evapotranspiration is calculated 185 

using the Hargreaves (1994) method based on maximum and minimum temperatures along 186 

with basin latitudes, all from data described in sect. 2.1. Q and 𝑄∗  are the streamflow 187 

simulations (model outputs) and observations (as provided in CAMELS), respectively. HBV 188 

is implemented on PyTorch so it is programmatically differentiable: all steps store information 189 

related to gradient calculations during backpropagation, allowing this model to be trained 190 

together with neural networks in an end-to-end fashion. More details about differentiable HBV 191 

can be found in previous studies (Feng et al., 2022; Song et al., 2024b). The details of some 192 

particularly relevant HBV processes are described in Appendix A. 193 

 194 

2.4. Experimental design 195 

In this study, we trained the two models of very different types (LSTM and δHBV), each 196 

with one of three meteorological forcing datasets (Daymet, NLDAS, and Maurer), resulting in 197 

six corresponding streamflow simulations (Figure 1c) for each different test scenario (see sect. 198 

2.5 for additional information). The training processes of LSTM and δHBV followed Kratzert 199 

et al. (2021) and Feng et al. (2023b), respectively. Test results and performance metrics for all 200 

models are reported for the 531-basin subset that excludes those with areas larger than 2,000 201 

km² or with more than a 10% discrepancy between different basin area calculation methods 202 

(Newman et al., 2017). 203 

To generate ensembles, we tested various weighting strategies and ultimately employed 204 

averaging to combine the six single-forcing, single-model-type simulations, as it yielded the 205 
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best performance. To better describe various combinations including cross-model ensembles, 206 

these simulations were categorized into six groups (Table 1). A shorthand notation is used 207 

throughout the remainder of this work to describe the forcing datasets and ensembles. Daymet, 208 

NLDAS, and Maurer are abbreviated as superscripts 1, 2, and 3, respectively. The + symbol is 209 

used to group model types being ensembled, while superscript clustering (e.g., 12 or 123) is used 210 

to group the meteorological forcing types being ensembled, with parentheses indicating that 211 

the superscripts apply to all model types within. For example, ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻଵଶଷ could be 212 

explicitly written as 𝐿𝑆𝑇𝑀ଵ ൅ 𝐿𝑆𝑇𝑀ଶ ൅ 𝐿𝑆𝑇𝑀ଷ ൅ 𝛿𝐻𝐵𝑉ଵ ൅ 𝛿𝐻𝐵𝑉ଶ ൅ 𝛿𝐻𝐵𝑉ଷ. To compare 213 

two different strategies to utilize the multiple meteorological forcing datasets and to benchmark 214 

against the previously highest performance, we additionally trained a single LSTM model using 215 

all three forcing datasets as simultaneous inputs as done by Kratzert et al. (2021), referred to 216 

as LSTMmulti (the last row in Table 1). 217 
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 218 

Figure 1. (a) The LSTM structure, (b) the 𝛿HBV structure, and (c) the framework to generate 219 

the six individual ensemble members of the streamflow simulations, in which different colors 220 

of arrow lines denote the different meteorological forcing datasets (also denoted as 1, 2, 3), 221 

respectively. 222 
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Table 1. (a) The six groups of streamflow simulations, and (b) the streamflow simulation via 223 

LSTM based on a different strategy, in which three meteorological forcing datasets were 224 

combined as a single set of inputs (Kratzert et al., 2021). Superscripts 1, 2, and 3 denote 225 

Daymet, NLDAS, and Maurer, respectively. The ensemble across forcings (“ef”) superscript 226 

indicates an ensemble of model simulations, each of which uses a different single 227 

meteorological forcing, e.g., LSTM12 means the average of LSTM1 and LSTM2. 228 

(a) Six Groups of Streamflow Simulations 

Group Name Group Members 

LSTM LSTM1, LSTM2, LSTM3 

δHBV δHBV1, δHBV2, δHBV3 

LSTM+δHBV (LSTM+δHBV)1, (LSTM+δHBV)2, (LSTM+δHBV)3 

LSTMef LSTM12, LSTM13, LSTM23, LSTM123 

δHBVef δHBV12, δHBV13, δHBV23, δHBV123, 

(LSTM+δHBV)ef (LSTM+δHBV)12, (LSTM+δHBV)13, (LSTM+δHBV)23, 

(LSTM+δHBV)123 

(b) Using forcing datasets as simultaneous inputs to an LSTM 

Streamflow 
Simulation 

Model Type Meteorological Forcing Dataset 

LSTMmulti LSTM Daymet, NLDAS, Maurer 

 229 

  230 
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2.5. Evaluation scenarios and criteria 231 

The above cases were comprehensively evaluated for performance in temporal 232 

extrapolation (Feng et al., 2022; Kratzert et al., 2018), as well as two types of spatial 233 

generalization: prediction in ungauged basins (PUB) (Feng et al., 2023b; Kratzert et al., 2019), 234 

and prediction in ungauged regions (PUR) (Feng et al., 2021, 2023b): 235 

● Temporal Test: Models were trained using data from all basins and tested across 236 

different periods. 237 

● PUB Test: Models were trained on randomly selected subsets from all basins and 238 

tested on the remaining basins during the same time period. 239 

● PUR Test: Different from the PUB test, basins were grouped into continuous regions, 240 

one of which was selected to comprise the group of testing basins while the others 241 

were used for training. 242 

Temporal generalization is generally considered to be the easiest of these tests. In terms 243 

of spatial generalization, which approximates data-sparse scenarios, the PUB test is an example 244 

of spatial interpolation, whereas the PUR test involves spatial extrapolation. The PUR test is 245 

widely regarded as the most challenging and may therefore produce findings that differ 246 

significantly from those in other scenarios. In this study, all basins were divided into 10 247 

spatially stratified groups for the PUB test and 7 fully disjoint regional groups for the PUR test 248 

(Table 2) in the same way as Feng et al. (2023b). The spatial extent of the 7 regions for the 249 

PUR test is also shown in Figure 3(c1-c2). Therefore, we conducted 10 rounds for the PUB test 250 

and 7 rounds for the PUR test, with a different group held out for testing in each round. Model 251 

performance was evaluated after concatenating the test results for all basins. 252 

  253 
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Table 2. Differences of temporal, PUB, and PUR tests. 254 

Test 

Scenario 

Training Testing 

Basin Time Basin Time 

Temporal Alla 1980-1995b All 1995-2010 

PUB Random nine-tenths 1980-1999 Holdoutc 1995-1999 

PUR Random six of seven regions 1980-1999 Holdout 1995-1999 

aδHBV training followed Feng et al. (2023b) using all 671 CAMELS basins, while LSTM 255 

training followed Kratzert et al (2021) using the selected 531-basin subset. Test results and 256 

performance metrics for all models are reported for the 531 basins. 257 

bEach hydrological year spans from October 1st to September 30th of the following year. 258 

cIn the PUB and PUR tests, models are run for 10 and 7 rounds, respectively, with the group 259 

held out for testing changed in each round. The simulation performance was evaluated after 260 

concatenating the test results for all basins. 261 

 262 

We repeated all the simulations with three different random seeds. Therefore, all the 263 

simulations come from a total of (2×3+1)×(1+10+7)×3 trained models. The first factor 264 

represents the models: two model types (LSTM and δHBV) trained separately with each of the 265 

three forcing datasets, along with 𝐿𝑆𝑇𝑀௠௨௟௧௜, a single model instance trained using all three 266 

forcing datasets simultaneously. The second factor accounts for the three types of tests 267 

(temporal, PUB, and PUR tests), and the last for the three random seeds. With respect to 268 

random seeds, we present two variations in the results, which are visually depicted in Figure 269 

C1. The results without “seed” as a subscript represent the average metric values from multiple 270 

streamflow simulations, each generated from a single model implementation, along with the 271 

corresponding uncertainties, visualized using error bars. The results marked with “seed” as a 272 

subscript are based on the average of multiple streamflow simulations conducted with different 273 

random seeds. In terms of computational cost, training LSTM (30 epochs) and δHBV (50 274 

epochs) for temporal testing under a single meteorological forcing dataset takes approximately 275 
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5 and 21 hours, respectively, using a single NVIDIA Tesla V100 GPU. 276 

We calculated several well-established performance metrics: Nash-Sutcliffe model 277 

efficiency coefficient (NSE) (Nash and Sutcliffe, 1970), Kling-Gupta model efficiency 278 

coefficient (KGE) (Kling et al., 2012), percent bias (PBIAS), and root-mean-square error 279 

(RMSE). We also considered RMSE values for high (top 2% “peak” flow, highRMSE), low 280 

(bottom 30% “low” flow, lowRMSE), and mid-range (the remaining flow, midRMSE) flow 281 

conditions (Yilmaz et al., 2008). These metrics were computed for each basin and aggregated 282 

into error bars and cumulative density functions (CDFs). For brevity, the main text primarily 283 

reports NSE values, and other metric values are provided in Appendices D and E. Furthermore, 284 

we use the spread values (Li et al., 2021; Reichle and Koster, 2003) to investigate ensemble 285 

variability and explore model complementarity. Detailed descriptions of these metrics and their 286 

calculations are available in Table C2. 287 

 288 

3. Results and discussion 289 

3.1. Temporal extrapolation 290 

For the temporal test, in which models were trained and tested on the same basins but in 291 

different time periods, we found that cross-model-type ensembles noticeably surpassed the 292 

within-class ensembles when other conditions were the same, with small uncertainties as shown 293 

by the error bars in Figure 2. With a single forcing dataset, the median NSE was elevated from 294 

~0.735 for LSTM to ~0.79 with δHBV added, though δHBV performance was similar to LSTM 295 

(~0.74 under Daymet). Even after LSTM achieved very high performance when its simulations, 296 

each derived separately from different meteorological forcing datasets, were ensembled (ef = 297 

123, ~0.808), adding δHBV still improved the results to ~0.818. This finding was robust for 298 

all different combinations of the tested meteorological forcing datasets. Conversely, adding 299 

LSTM also helped to improve δHBV ensembles. These results highlight the benefits of the 300 
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cross-model-type ensemble framework and indicate distinct simulation features for each model 301 

type. LSTM is a data-driven method that has low bias and large variance. Data errors (Li et al., 302 

2020b), different sampling strategies (Nai et al., 2024), or even different weight initializations 303 

(Narkhede et al., 2022) can lead to substantively different outcomes. Conversely, δHBV may 304 

have a smaller variance but a larger bias due to the fixed HBV formulation (Moges et al., 2016) 305 

for some scenarios like low flows (Feng et al., 2023b; Song et al., 2024b) or in basins with 306 

significant water uses (Song et al., 2024a). These errors with varying characteristics from 307 

different model classes can partially offset each other in an ensemble. On a side note, δHBV 308 

models seem more reliant on the quality of the forcing data, as shown in Figure 2. δHBV with 309 

the Maurer and NLDAS forcing datasets generally performs worse than it does with Daymet, 310 

which has lower biases. However, even in those cases, the combination of LSTM and δHBV 311 

was still better than LSTM alone, attesting to the robustness of these benefits.  312 

 313 

 314 
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 315 

Figure 2. Median NSE values for 531 CAMELS basins, indicating model and ensemble 316 

performances for (a) temporal, (b) prediction in ungauged basin (PUB), and (c) prediction in 317 

ungauged region (PUR) tests. Different simulations are represented by variously-shaped and 318 

-colored points, and are organized by ensemble group, listed along the x-axis: LSTM, δHBV, 319 

LSTM+δHBV, and their “ensemble forcing” counterparts, 𝐿𝑆𝑇𝑀௘௙, 𝛿𝐻𝐵𝑉௘௙, and ሺ𝐿𝑆𝑇𝑀 ൅320 

𝛿𝐻𝐵𝑉ሻ௘௙. 𝐿𝑆𝑇𝑀௠௨௟௧௜ is a single LSTM model trained directly on all three forcing datasets at 321 

once. The superscript “ef” denotes the forcing datasets involved in each ensemble (choices of 322 

1 for Daymet, 2 for NLDAS, and 3 for Maurer), while the “+” connects the model types used 323 

within an ensemble. The x-axis group and subscript “seed” indicate that simulation results 324 

were averaged based on three different random seeds (see Figure C1). Other points without 325 

“seed”, along with their corresponding error bars, are derived from the averages of metrics 326 

computed over repeated runs with three different random seeds. The error bar indicates one 327 

standard deviation above and below the average value for each simulation. 328 

 329 
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 330 

Figure 3. Scatter plots comparing the performance differences between hydrological models 331 

for the basins where LSTM outperformed δHBV (the basins where δHBV outperformed are not 332 

shown in this plot). The x-axis represents the NSE differences between 𝐿𝑆𝑇𝑀ଵ and 𝛿𝐻𝐵𝑉ଵ 333 

(𝐿𝑆𝑇𝑀ଵ - 𝛿𝐻𝐵𝑉ଵ), while the y-axis shows the NSE differences between 𝛿𝐻𝐵𝑉ଵଶଷ and 𝛿𝐻𝐵𝑉ଵ 334 

(𝛿𝐻𝐵𝑉ଵଶଷ- 𝛿𝐻𝐵𝑉ଵ). Points are color-coded according to the NSE values of 𝛿𝐻𝐵𝑉ଵ . The 335 

correlation coefficient (CORR) and p values between the x-axis values and the y-axis values, 336 

along with the median NSE value of 𝛿𝐻𝐵𝑉ଵ (𝑁𝑆𝐸௠௘ௗ ) on these basins, are also noted. We 337 

note that NSE is not additive and should generally not be subtracted. Here the purpose is only 338 

to confirm that basins where LSTM outperforms δHBV also tend to be those that benefit from 339 

the ensemble of forcings.  340 

 341 

In the lower-performing basins where LSTM1 had advantages over δHBV1, the ensemble 342 

of meteorological forcings δHBV123 also tended to be higher than δHBV1 (Figure 3), 343 

suggesting that forcing quality was a significant reason behind the underperformance of δHBV1 344 

in these basins. Similar patterns were also observed when analyzing δHBV2 and δHBV3 values 345 

(Figure D1 and Figure D2). These basins previously contributed to LSTM’s cumulative 346 

distribution function of NSE diverging from that of δHBV1 at the low end (Feng et al., 2022). 347 

Forcing errors can exist in the form of systematic timing errors, low or high bias for larger 348 

events, etc., which can be difficult for the mass-balanced conceptual HBV1 structure to adapt 349 

to these errors. Because the ensemble of forcings tends to suppress the errors in each forcing 350 

source, part of the advantages of δHBV123 over δHBV1 can be attributed to reducing forcing 351 

bias or timing errors. Since the advantages of LSTM1 over δHBV1 also tend to occur with these 352 
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same basins, this also explains how LSTM1 surpasses δHBV1 in some basins with poorer-353 

quality forcings. In contrast to δHBV, LSTM has the innate ability to shift information in time 354 

and moderately adjust the input scale. Moving from temporal validation to PUB to PUR 355 

scenarios, the advantages of diverse forcing datasets appear to diminish, as evidenced by the 356 

decreasing ratio of points above versus below the diagonal line, since the forcing error patterns 357 

remembered by LSTM may not generalize well in space (discussed in more detail in sect. 3.2). 358 

 359 

Ensembling streamflow simulations from different meteorological forcing datasets 360 

demonstrates certain advantages over the previous approach of simultaneously sending 361 

multiple forcings into a data-driven model like LSTM (Kratzert et al., 2021). Ensembling 362 

LSTM simulations each using a single forcing dataset (𝐿𝑆𝑇𝑀ଵଶଷ) resulted in an NSE value of 363 

0.8082, higher than that of 0.7974 from feeding multiple forcing datasets into a single LSTM 364 

(𝐿𝑆𝑇𝑀௠௨௟௧௜). This difference was more pronounced in the cross-model-type ensemble, after 365 

including δHBV, compared to the previous within-class ensemble, and particularly notable for 366 

the spatial generalization tests (to be discussed in more detail in Sect. 3.2). The corresponding 367 

specific performance metrics are summarized in Tables D1–D5, with seasonal evaluations 368 

provided in Figure D3. These results indicate that the trained LSTM in 𝐿𝑆𝑇𝑀௠௨௟௧௜ may be 369 

overfit to the significant redundant information in these three forcing datasets, and that LSTM 370 

models alone cannot fully exploit the information hidden in the multiple forcing datasets. 371 

Training separate ensemble members via different nonlinear hydrological processes, on the 372 

other hand, seems to allow different bias features to emerge with separate forcing datasets, 373 

accordingly mitigating them during the subsequent ensembling process. 374 

 375 
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 376 

Figure 4. Spatial distributions of NSE values over 531 basins. Subplots are arranged in rows, 377 

indicating (a) temporal, (b) PUB, and (c) PUR test results, and columns, denoting (1) NSE 378 

values from ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻ௦௘௘ௗ
ଵଶଷ  and (2) the differences between these NSE values and those 379 

of 𝐿𝑆𝑇𝑀ଵ (models using only forcing 1, Daymet). For 𝐿𝑆𝑇𝑀ଵ, each NSE value reported was 380 

the average of three NSE values from three simulations using three different random seeds. 381 

The seven continuous regions used to divide up basins for the PUR test are outlined and 382 

numbered in the PUR test maps. 383 

 384 

Our most diverse ensemble, ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻ௦௘௘ௗ
ଵଶଷ ൅ 𝐿𝑆𝑇𝑀௦௘௘ௗ

௠௨௟௧௜, achieved a median NSE 385 

value of ~0.83, surpassing the ~0.82 benchmark set by 𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜  (Table D4). This 386 

advancement was achieved through random seed variation and cross-model-type ensembling. 387 

The performance of ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻଵଶଷ ensemble proved more robust than 𝐿𝑆𝑇𝑀௠௨௟௧௜, with 388 

only a slight boost when we incorporated random seeds, i.e., ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻ௦௘௘ௗ
ଵଶଷ . Notably, 389 

the derived ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻ௦௘௘ௗ
ଵଶଷ  ensemble outperformed 𝐿𝑆𝑇𝑀ଵ  across almost all basins 390 
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(Figure 4). Further incorporation of 𝐿𝑆𝑇𝑀௠௨௟௧௜ into this framework, especially when using 391 

multiple random seeds, ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻ௦௘௘ௗ
ଵଶଷ ൅ 𝐿𝑆𝑇𝑀௦௘௘ௗ

௠௨௟௧௜ , yielded the best overall 392 

performance. Here, the margin over the previous benchmark was small in the temporal test. 393 

However, as we will show in sect. 3.2, the previous benchmark, 𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜, lacked robustness, 394 

exhibited greater deficiencies in spatial generalization, and negatively impacted ensemble 395 

simulations.  396 

When we changed the number of random seeds from 3 to 10, we found that although all 397 

model and ensemble performances slightly improved, the gaps between them did not change 398 

much (Figure 5; Table D5 for 10 seeds, Table D4 for 3 seeds). In particular, the gap between 399 

ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻ௦௘௘ௗ
ଵଶଷ ൅ 𝐿𝑆𝑇𝑀௦௘௘ௗ

௠௨௟௧௜  and ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻ௦௘௘ௗ
ଵଶଷ  or 𝐿𝑆𝑇𝑀௦௘௘ௗ

௠௨௟௧௜  remained 400 

unchanged. This indicates that the benefits from more random seeds rapidly become marginal, 401 

and our results based on 3 random seeds were sufficiently robust. For LSTMs alone, different 402 

random seeds displayed higher variation, and ensembling them led to greater improvement than 403 

ensembling ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻଵଶଷ with additional random seeds. It was noteworthy that while the 404 

ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻଵଶଷ  ensemble generally showed the lowest RMSE values, it did not always 405 

show the best high flow performance, as indicated by highRMSE (Tables D1-D4). After 406 

incorporating the 𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜ variant intoሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻ௦௘௘ௗ

ଵଶଷ ൅ 𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜, overall RMSE 407 

and highRMSE both improved. Nevertheless, this ensemble did not always obtain the best 408 

values in other metrics like low flow (lowRMSE) and requires further improvement. 409 

 410 
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 411 

Figure 5. Cumulative distribution function (CDF) curves based on temporal test results for 412 

𝐿𝑆𝑇𝑀௠௨௟௧௜, ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻଵଶଷ, and ሾሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻଵଶଷ ൅ 𝐿𝑆𝑇𝑀௠௨௟௧௜ሿ . The solid lines 413 

(with “seed”) denote the results with 10 random seeds while the corresponding dashed and 414 

translucent lines denote the performances of their individual members each based on one 415 

random seed. The median NSE values computed with 3 random seeds are also indicated by 416 

vertical dashed and translucent lines in the corresponding colors. 417 

 418 

3.2. Spatial generalization 419 

It is clear that cross-model-type ensembling and the incorporation of δHBV significantly 420 

improved prediction in ungauged basins (PUB) or regions (PUR), mitigating the difficulty of 421 

spatial generalization (Figure 2b - 2c). In particular, the previous record-holder for temporal 422 

test performance, 𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜ , incurred large drops in the PUB and PUR tests, once again 423 

reminding us of the limitations of LSTM in spatial generalization. Given the same forcings, 424 

δHBV-only individual simulations or ensembles consistently outperformed LSTM-only 425 

counterparts in the PUR test. Furthermore, adding δHBV to the same-model-type LSTM 426 

ensembles improved median NSE by 0.02-0.03 for PUB. The role of δHBV became even more 427 
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prominent in the harder PUR tests, with an increased gap (0.04-0.07), e.g., LSTM123 (median 428 

NSE ~0.656) and ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻଵଶଷ (median NSE ~0.701). The increased significance of 429 

δHBV is also illustrated by the optimized weights shown in Figure E1, which were estimated 430 

using a genetic algorithm with streamflow observations from the test periods. These weights 431 

are presented solely to illustrate the relative contributions of the different ensemble components. 432 

The significantly different spatial distribution patterns of these weights among different test 433 

scenarios also indicate the differences among temporal, PUB, and PUR tests (Figures E2-E3). 434 

The performance of ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻଵଶଷ  improved compared to 𝐿𝑆𝑇𝑀௠௨௟௧௜  regardless of 435 

whether multiple random seeds were employed to form an ensemble. As such, we can conclude 436 

that the inclusion of a differentiable process-based model like δHBV in an ensemble is a 437 

systematic way to reduce the risks of failed generalizations of LSTM.  438 

Utilizing a cross-model-type ensemble led to widespread improvements over LSTM-only 439 

ensembles, with the exception of a few scattered basins for each temporal (Figure 4-a2), PUB 440 

(Figure 4-b2), and PUR (Figure 4-c2) test. The most significant improvements due to the 441 

ensemble were concentrated on the center of the Great Plains along with the midwestern US, 442 

while the eastern US was moderately improved, suggesting data uncertainty is a larger issue in 443 

the central and midwestern US. The Great Plains have historically had poor performance for 444 

all kinds of models (Mai et al., 2022) and even the ensemble model had NSE values of only 445 

0.3-0.4 for many of the basins there, although this still marked significant improvements over 446 

LSTM1 (Figure 4-a2, -b2, -c2). Some western basin NSE values were elevated by more than 447 

0.15 for the temporal test (Figure 4-a2) and even more for PUB and PUR. Meteorological 448 

stations are generally sparse on the Great Plains, and an ensemble seems to be an effective way 449 

to leverage the different forcing datasets that are available. The poor performances in some 450 

basins highlight some remaining deficiencies in current models, which clearly cannot fully 451 

consider the heterogeneities of different basins; thus, multiscale formulations that resolve such 452 
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heterogeneities may have advantages (Song et al., 2024a). 453 

To investigate why ensembles outperformed single-model, single-forcing approaches, we 454 

compared their temporal, PUB, and PUR test simulation time series against observations for 455 

531 basins (Figure 6). Analysis of averaged hydrological year data revealed that while 456 

individual ensemble members using single-source forcing datasets performed similarly for 457 

easily simulated periods, they showed significant divergence during challenging periods, 458 

particularly peak flows. This divergence stems from distinct systematic errors inherent to 459 

different model types and forcing datasets. Notably, LSTM-based simulations alone proved 460 

insufficient in generating adequate spread to capture these divergent points. By averaging 461 

individual model outputs and stabilizing uncertainties, ensemble simulations achieved effective 462 

and robust performance across all conditions, which can be shown via the metric highRMSE 463 

and lowRMSE values in Tables D1-D4. This highlights the critical importance of 464 

comprehensive training for each ensemble member, including diverse forcing inputs, full-465 

period model calibration, and rigorous hyperparameter tuning, to ensure that each member 466 

develops distinct simulation behaviors. These differences allow the ensemble to better 467 

represent a range of hydrological responses, particularly under extreme or uncertain conditions. 468 

By capturing complementary strengths and compensating for individual weaknesses, such 469 

well-trained ensemble members collectively enhance the robustness and accuracy of 470 

streamflow simulations. 471 
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 472 
Figure 6. Comparisons between multi-basin-averaged streamflow observations and 473 

simulations across 531 basins. The time series points are displayed at four-day intervals for 474 

clarity and conciseness. Ensemble members based on the same model (LSTM or δHBV) but 475 

driven by different forcing datasets are shown in the same color to highlight the differences 476 

between models more clearly. 477 

 478 

3.3 Ensemble variability and robustness analysis  479 

Although δHBV (median spread 0.61) exhibits lower spreads than LSTM (mean spread 480 

0.72), their combination increases the ensemble spreads, thereby enhancing diversity (Figure 481 

7). This pattern holds across the temporal, PUB, and PUR tests. Ensemble effectiveness 482 

depends on the diversity of model behaviors and their distinct error characteristics. 483 

Consequently, larger spreads are generally associated with greater ensemble benefits. Figure 484 

D4 further demonstrates that δHBV+LSTM exhibits larger spreads than LSTM in most basins. 485 
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 486 
Figure 7. Spread values (Table C2) of each model for LSTM, δHBV, and LSTM + δHBV due 487 

to different meteorological forcings and random seeds across temporal, PUB, and PUR tests. 488 

 489 

As the warming signal is already clear across most basins under any forcing across the 490 

periods of simulation (Figure D5), the models’ strong performance in the temporal test suggests 491 

decent extrapolation capability under warming scenarios. It is often questioned whether data-492 

driven models like LSTM lose accuracy under stronger climate drift, but no substantially 493 

warmed dataset is available to test this. Benchmarks suggest LSTM captures 15-year trends 494 

well in temporal tests, but less so in data-sparse scenarios (Feng et al., 2023b). Introducing a 495 

10% precipitation perturbation (multiplying precipitation by 1.1) slightly reduced performance 496 

for both models as expected (Figures D6a and D6b), but ensemble benefits remained robust 497 

across models despite the perturbation.  498 

Training sample size, dynamic parameter choices, and lookback windows exert only a 499 

limited impact on our conclusions. δHBV shows limited sensitivity to sample size, with similar 500 

results when trained on 531 versus 671 basins (Figure D6c). Regarding parameter uncertainties, 501 

fixing one δHBV parameter (𝑘଴) as static increased structural errors and reduced performance 502 

(Figure D6d), yet ensemble benefits remained robust. For LSTM, alternative window sizes of 503 

182 and 730 days were tested, with the default 365-day window yielding optimal performance 504 



27 

(Figure D6e). Importantly, variations in the lookback window had only minor effects on model 505 

performance, underscoring the robustness of ensemble benefits. 506 

 507 

3.4. Further discussion 508 

Based on our results, we identified several avenues for future research. First, while we 509 

have explored various weighting strategies and found that averaging yields the best 510 

performance yet, we believe that dynamic or adaptive weighting schemes could further enhance 511 

performance in future studies. It is also demonstrated by Table E1 that estimated uneven 512 

weights can significantly improve simulation performance. Moreover, within specific basins, 513 

the estimated weights of different components are often highly imbalanced, as evidenced by 514 

the spatial distribution of optimized weights (Figures E2-E3). Some potential feasible ways 515 

include using the simulations from these individually-trained models as inputs of a data-driven 516 

model (Solanki et al., 2025), and making the weight estimation and the ensemble member 517 

training simultaneously.  518 

Both LSTM and δHBV models exhibit limitations in regions with significant 519 

anthropogenic impacts, such as dam presence, as well as arid climatic and highly heterogeneous 520 

geological conditions. These regions are mainly located in the midwestern and western 521 

CONUS, where high evaporation conditions (Heidari et al., 2020) and numerous dams 522 

(Bellmore et al., 2017) coincide with complex water use processes (Wada et al., 2016) that 523 

current models cannot simulate well. Together, these factors suggest that anthropogenic 524 

influence is likely an important driver of poor model performance. Further improvements may 525 

include incorporating additional data that capture these factors like capacity-to-runoff ratio 526 

(Ouyang et al., 2021) or integrating specialized modules, such as reservoirs (Hanazaki et al., 527 

2022; West et al., 2025). Compared with LSTM, δHBV is more sensitive to precipitation biases. 528 

For example, the differences between δHBV simulations under different forcing datasets were 529 

generally larger than those for LSTM, and δHBV using the Daymet forcing dataset showed 530 
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largely better performance than with the other two forcing datasets, which indicates that δHBV 531 

may not be able to fit different forcing datasets well. Therefore, many potential structural 532 

optimizations can be implemented to improve δHBV. Our analysis provided corroborating 533 

evidence that forcing error is an important reason why LSTM can outperform δHBV in the 534 

temporal test for some basins, although such patterns may not generalize well in space. A 535 

meteorological forcing data correction module can be developed in the future to account for 536 

timing and magnitude errors in precipitation. Ensemble simulations may face challenges when 537 

computational resources are constrained, particularly for large-scale or real-time applications. 538 

Nevertheless, we remain optimistic about overcoming these challenges due to several 539 

promising solutions. These include tailoring the hydrological model by simplifying less 540 

relevant components to specific simulation objectives (Clark et al., 2015; Kraft et al., 2022) 541 

and cloud-based computing infrastructures that offer scalable, on-demand resource allocation 542 

(He et al., 2024; Leube et al., 2013). Importantly, the majority of computational costs are 543 

incurred during model training. In practice, ensemble members are typically pre-trained by 544 

different research or application groups (Bodnar et al., 2025; Nearing et al., 2024; Song et al., 545 

2025a), enabling direct reuse of these well-trained models and significantly improving 546 

computational efficiency. 547 

For this work, we did not create a δHBVmulti model (in the same vein as LSTMmulti) using 548 

all forcings as an input to a single model, since a similar experiment has already been conducted 549 

by Sawadekar et al. (2025). We also did not examine “seed” combinations of a δHBVmulti as 550 

we believed they would not result in a significant performance boost (unlike that seen with 551 

LSTMmulti), because LSTM has high variability and low bias, while δHBV has lower variance 552 

and potentially higher bias. As a result, random seeds would likely not create large enough 553 

perturbations for δHBV and wouldn’t bring the benefits seen with 𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜. To achieve an 554 

equivalent perturbation level for δHBV, it may be necessary to incorporate multiple distinct 555 
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hydrological models, such as SAC-SMA, PRMS, and GR4J, similar to the approach 556 

implemented in the Framework for Understanding Structural Errors (FUSE) (Clark et al., 2008). 557 

Work is ongoing to create a combination of a series of differentiable process-based models, 558 

which is expected to produce a further improved ensemble with great interpretability. Given 559 

the success of cross-model-type ensembles shown in this work, we also encourage further 560 

exploration of ensemble simulations involving models with other distinct mechanisms.  561 

 562 

4. Summary and conclusions 563 

This study comprehensively analyzes ensemble combinations of two advanced model 564 

types (LSTM and δHBV), each with distinct mechanisms, for streamflow simulation across 565 

531 basins in the US. Three meteorological forcing datasets (Daymet, NLDAS, and Maurer) 566 

are employed to fully capture the characteristics of the two models. Their applications are also 567 

tested in two distinct ways: (1) by feeding all diverse forcing datasets simultaneously into a 568 

single LSTM model, and (2) by ensembling the outputs of multiple LSTM models, each trained 569 

separately using a single forcing dataset. The performance of ensemble simulations was 570 

evaluated under three distinct testing scenarios (temporal, PUB, and PUR tests), surpassing the 571 

previous highest performances. Our findings enhance the understanding of how to effectively 572 

utilize diverse model types and multi-source datasets to improve streamflow simulations. The 573 

principal conclusions are: 574 

(1) Cross-model-type ensembles (LSTM+δHBV) consistently outperformed single-575 

model approaches across all test scenarios, setting new performance benchmarks on 576 

the CAMELS dataset. These ensembles demonstrated the complementarity of data-577 

driven (LSTM) and physics-informed (δHBV) approaches in capturing diverse 578 

hydrological behaviors. 579 

(2) Ensembling models trained on different forcing datasets proved more effective than 580 
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using multiple forcing datasets as simultaneous inputs to a single model. This suggests 581 

that separate training allows each model to capture unique features contained in each 582 

forcing dataset, which can then be effectively leveraged in the ensemble. 583 

(3) δHBV provided significant benefits to ensemble simulations on spatial generalization. 584 

Ensembling LSTM with δHBV showed increasing benefits as generalization 585 

challenges increased, from temporal to spatial interpolation (PUB) to spatial 586 

extrapolation (PUR) tests. This underscores the value of physics-informed constraints 587 

in improving model transferability to ungauged basins and regions. 588 

(4) While ensemble methods significantly improved overall performance, they did not 589 

fully mitigate consistent deficiencies in certain challenging areas (e.g., regions with 590 

high dam density or heterogeneous hydrogeological conditions). This indicates areas 591 

for future model development. 592 

These findings have important implications for hydrological modeling and water 593 

resources management. The improved accuracy and spatial generalization of our ensemble 594 

approach can enhance streamflow predictions, benefiting water resources planning and 595 

management, particularly in data-scarce regions. Our results also suggest that future 596 

hydrological model development should focus on combining data-driven and physics-based 597 

approaches to improve model generalizability across diverse conditions. The superior 598 

performance of ensembling models with different forcing datasets over using merged forcings 599 

as a single input highlights the risk of indiscriminately feeding all available data into one data-600 

driven model. While computational demands certainly require consideration, the potential 601 

improvements in prediction accuracy offer significant value for both research and operational 602 

applications. Future work should focus on refining these ensemble techniques, addressing 603 

model limitations in challenging regions, and exploring ensemble implementation in 604 

operational settings.  605 
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Appendix A: Detailed processes of HBV employed in this study. 606 

The Hydrologiska Byråns Vattenbalansavdelning (HBV) model (Aghakouchak and Habib, 607 

2010; Beck et al., 2020; Bergström, 1976, 1992) is a simple yet effective bucket-type 608 

hydrologic model that simulates hydrologic components including snow water equivalent, soil 609 

moisture, groundwater storage, evapotranspiration, quick flow, baseflow, and total streamflow. 610 

In the following, we describe these processes in detail with their corresponding equations. 611 

Uppercase letters denote state variables, while lowercase letters denote parameters. The overall 612 

water balance is expressed as Equation (S1). 613 

𝐸𝑃 െ 𝐴𝐸 െ 𝑄௧ ൌ 𝑆𝑁 ൅ 𝑆𝑀 ൅ 𝑆𝑈𝑍 ൅ 𝑆𝐿𝑍 ൅ 𝐿𝐴𝐾𝐸 (S1)

where 𝐸𝑃  is effective precipitation, 𝐴𝐸  is actual evapotranspiration, 𝑄௧  is total simulated 614 

runoff, 𝑆𝑁 is snow storage, 𝑆𝑀 is soil moisture storage, SUZ and SLZ are the upper and lower 615 

groundwater storages, respectively, and 𝐿𝐴𝐾𝐸 represents lake storage (omitted in this study). 616 

First, effective precipitation (EP) is partitioned into rain (RN) and snow (SN) components 617 

based on the air temperature (T) relative to a threshold temperature (tt): 618 

𝑅𝑁 ൌ 𝐸𝑃 𝑖𝑓 𝑇 ൒ 𝑡𝑡 (S2)

𝑆𝑁 ൌ 𝐸𝑃 𝑖𝑓 𝑇 ൏ 𝑡𝑡 (S3)

Snow (SN) accumulates in the snowpack (SNP), while snowmelt (SNM) happens when T ≥ tt, 619 

which is calculated based on a melt factor (cfm) and the temperature difference (T - tt). The 620 

computed snowmelt (SNM) is constrained by the available snowpack (SNP). 621 

𝑆𝑁𝑀 ൌ 𝑚𝑖𝑛ሾmaxሺ𝑐𝑓𝑚 ⋅ ሺ𝑇 െ 𝑡𝑡ሻ, 0ሻ , 𝑆𝑁𝑃ሿ (S4)

The snowmelt (SNM) contributes to meltwater (MW), while the snowpack (SNP) is updated as: 622 

𝑀𝑊 ൌ 𝑀𝑊 ൅ 𝑆𝑁𝑀 (S5)

𝑆𝑁𝑃 ൌ 𝑆𝑁𝑃 ൅ 𝑆𝑁 െ 𝑆𝑁𝑀 (S6)

A portion of the meltwater (MW) may refreeze when T < tt, controlled by the refreezing 623 

parameter (cfr): 624 

𝑅𝐹𝑍 ൌ minሾmaxሺ𝑐𝑓𝑟 ⋅ 𝑐𝑓𝑚 ⋅ ሺ𝑡𝑡 െ 𝑇ሻ, 0ሻ ,𝑀𝑊ሿ (S7)

𝑆𝑁𝑃 ൌ 𝑆𝑁𝑃 ൅ 𝑅𝐹𝑍 (S8)

𝑀𝑊 ൌ 𝑀𝑊 െ𝑅𝐹𝑍 (S9)

The remaining meltwater (MW) exceeding the snowpack’s liquid water holding capacity (𝑐𝑤ℎ ⋅625 

𝑆𝑁𝑃) infiltrates into the soil (IF), with the remainder retained in MW: 626 

𝐼𝐹 ൌ 𝑚𝑎𝑥ሺ𝑀𝑊 െ 𝑐𝑤ℎ ⋅ 𝑆𝑁𝑃, 0ሻ (S10)

𝑀𝑊 ൌ 𝑀𝑊 െ 𝐼𝐹 (S11)
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The fraction of soil moisture (SM) relative to the field capacity (fc), raised to the power index 627 

β, modulates shallow seepage (SP) according to the available water (IF + RN): 628 

𝑆𝑃 ൌ ൬
𝑆𝑀
𝑓𝑐
൰
ఉ

ሺ𝐼𝐹 ൅ 𝑅𝑁ሻ (S12)

𝑆𝑀 ൌ 𝑆𝑀 ൅ 𝐼𝐹 ൅ 𝑅𝑁 െ 𝑆𝑃 (S13)

Excess soil water above the field capacity contributes to direct infiltration (𝐼𝐹ௗ௜௥): 629 

𝐼𝐹ௗ௜௥ ൌ maxሺ𝑆𝑀 െ 𝑓𝑐, 0ሻ (S14)

𝑆𝑀 ൌ 𝑆𝑀 െ 𝐼𝐹ௗ௜௥ (S15)

Actual evapotranspiration (AE) is estimated as the product of potential evapotranspiration (PE) 630 

and an evapotranspiration coefficient (PEC). The PEC depends on soil moisture storage (SM), 631 

field capacity (fc), a shape parameter (λ), and a threshold parameter (lp). 632 

𝑃𝐸𝐶 ൌ min ቈ1, maxቆ0, ൬
𝑆𝑀
𝑙𝑝 ∙ 𝑓𝑐

൰
ఒ

ቇ቉ (S16)

𝐴𝐸 ൌ minሺ𝑃𝐸 ⋅ 𝑃𝐸𝐶, 𝑆𝑀ሻ (S17)

𝑆𝑀 ൌ 𝑆𝑀 െ 𝐴𝐸 (S18)

Capillary rise (CP) from the lower zone (SLZ) replenishes SM, controlled by a coefficient (c) 633 

and constrained by the soil moisture deficit:  634 

𝐶𝑃 ൌ min ൤𝑐 ∙ 𝑆𝐿𝑍 ⋅ ൬1 െ
𝑆𝑀
𝑓𝑐
൰ , 𝑆𝐿𝑍൨ (S19)

𝑆𝑀 ൌ 𝑆𝑀 ൅ 𝐶𝑃 (S20)

𝑆𝐿𝑍 ൌ 𝑆𝐿𝑍 െ 𝐶𝑃 (S21)

Recharge from the soil, consisting of shallow seepage (SP) and direct infiltration (𝐼𝐹ௗ௜௥), enters 635 

the upper groundwater zone (SUZ). Water in the upper zone either percolates to the lower 636 

groundwater zone (SLZ) at a constant percolation rate (prc) or contributes to direct runoff (𝑄଴) 637 

when the upper zone (SUZ) exceeds a threshold (uzl). Flow from the upper and lower zones is 638 

computed using linear reservoir formulations, with parameters 𝑘଴ , 𝑘ଵ , 𝑘ଶ  controlling the 639 

respective runoff components 𝑄଴ , 𝑄ଵ , 𝑄ଶ . The total simulated streamflow (𝑄௧ ) is then 640 

computed as the sum of these components. 641 

𝑆𝑈𝑍 ൌ 𝑆𝑈𝑍 ൅ 𝑆𝑃 ൅ 𝐼𝐹ௗ௜௥ (S22)

𝑃𝐸𝑅𝐶 ൌ minሺ𝑝𝑟𝑐, 𝑆𝑈𝑍ሻ (S23)

𝑆𝑈𝑍 ൌ 𝑆𝑈𝑍 െ 𝑃𝐸𝑅𝐶 (S24)

𝑄଴ ൌ maxሾ𝑘଴ ∙ ሺ𝑆𝑈𝑍 െ 𝑢𝑧𝑙ሻ, 0ሿ (S25)
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𝑆𝑈𝑍 ൌ 𝑆𝑈𝑍 െ 𝑄଴ (S26)

𝑄ଵ ൌ 𝑆𝑈𝑍 ∙ 𝑘ଵ (S27)

𝑆𝑈𝑍 ൌ 𝑆𝑈𝑍 െ 𝑄ଵ (S28)

𝑆𝐿𝑍 ൌ 𝑆𝐿𝑍 ൅ 𝑃𝐸𝑅𝐶 (S29)

𝑄ଶ ൌ 𝑆𝐿𝑍 ∙ 𝑘ଶ (S30)

𝑆𝐿𝑍 ൌ 𝑆𝐿𝑍 െ 𝑄ଶ (S31)

𝑄௧ ൌ 𝑄଴ ൅ 𝑄ଵ ൅ 𝑄ଶ (S32)

 642 

Finally, a routing module (Feng et al., 2022) is used to process 𝑄௧  to produce the final 643 

streamflow output (𝑄௧∗). This module with two parameters (𝜃ఈ, 𝜃ఛ) assumes a gamma function 644 

for the unit hydrograph and convolves the unit hydrograph with the runoff as, 645 

 646 

𝑄௧∗ ൌ න 𝜉ሺ𝑠: 𝜃ఈ,𝜃ఛሻ
௧௠௔௫

଴
⋅ 𝑄ሺ𝑡 െ 𝑠ሻ𝑑𝑠 (S33)

𝜉ሺ𝑠: 𝜃ఈ,𝜃ఛሻ ൌ
1

𝛤ሺ𝜃ఈሻ𝜃ఛ
ఏഀ
𝑡ఏഀିଵ𝑒

ି ௧
ఏഓ (S34)

 647 

 648 

 649 
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Appendix B: Illustrated differences among the three meteorological forcing datasets 650 

 651 

Figure B1. Probability density distributions (top panel in logarithmic scale, bottom panel in 652 

linear scale) of precipitation and temperature across three meteorological forcing datasets. 653 

 654 

 655 
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 656 

Figure B2. Illustrated temporal variations of precipitation and temperature in a basin across 657 
three meteorological forcing datasets. 658 
  659 
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Appendix C: Details of model inputs, ensemble frameworks, and evaluations 660 

Table C1. Full names for the abbreviations of dynamic data (all but streamflow are “forcings”) 661 

and static basin attributes used as model inputs and outputs. All variables and their values are 662 

provided in the CAMELS dataset (Addor et al., 2017) except for the NLDAS and Maurer daily 663 

temperature extrema, which are from Kratzert et al. (2021). Potential evapotranspiration and 664 

normalized streamflow were calculated in this work, using CAMELS data. The number in 665 

parentheses specifies model usage: 1 denotes use in the LSTM model, and 2 denotes use in the 666 

𝛿HBV model. 667 

Type Abbreviation Full name Unit 

Dynamic 

data  

prcp (1,2) Precipitation mm/day 

pet (2) 

Potential evapotranspiration (calculated in 

this work using the Hargreaves equation 

and CAMELS data) 

mm/day 

tmean (2) Mean air temperature °C 

tmax (1) Maximum air temperature °C 

tmin (1) Minimum air temperature °C 

srad (1) Shortwave radiation W/m2 

vp (1) Water vapor pressure pa 

q_vol Volumetric streamflow ft3/s 

q (1,2) 
Streamflow normalized by basin area 

(q_vol / area_gages2) 
mm/day 

Static 

basin 

attributes 

p_mean (1,2) Mean daily precipitation mm/day 

pet_mean (1,2) Mean daily potential evapotranspiration mm/day 

p_seasonality (2) Seasonality and timing of precipitation - 

frac_snow (1,2) Fraction of precipitation falling as snow - 

aridity (1,2) 
Rate of mean values of potential 

evapotranspiration and precipitation 
- 

high_prec_freq (1,2) Frequency of high precipitation days days/year 

high_prec_dur (1,2) 
Average duration of high precipitation 

events 
days 

low_prec_freq (1,2) Frequency of dry days days/year 

low_prec_dur (1,2) Average duration of dry periods days 
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elev_mean (1,2) Catchment mean elevation m 

slope_mean (1,2) Catchment mean slope m/km 

area_gages2 (1,2) Catchment area (GAGES-II estimate) km2 

frac_forest (1,2) 
Fraction of catchment area having land 

cover identified as forest  
- 

lai_max (1,2) 
Maximum monthly mean of the leaf area 

index 
- 

lai_diff (1,2) 

Difference between the maximum and 

minimum monthly mean of the leaf area 

index 

- 

gvf_max (1,2) 
Maximum monthly mean of the green 

vegetation 
- 

gvf_diff (1,2) 

Difference between the maximum and 

minimum monthly mean of the green 

vegetation fraction 

- 

dom_land_cover_frac 

(2) 

Fraction of the catchment area associated 

with the dominant land cover 
- 

dom_land_cover (2) Dominant land cover type - 

root_depth_50 (2) 

Root depth at 50th percentile, extracted 

from a root depth distribution based on the 

International Geosphere‐Biosphere 

Programme (IGBP) land cover 

m 

soil_depth_pelletier 

(1,2) 
Depth to bedrock m 

soil_depth_statsgso 

(1,2) 
Soil depth m 

soil_porosity (1,2) Volumetric soil porosity  - 

soil_conductivity 

(1,2) 
Saturated hydraulic conductivity cm/hr 

max_water_content 

(1,2) 
Maximum water content m 

sand_frac (1,2) Fraction of soil which is sand - 
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silt_frac (1,2) Fraction of soil which is silt - 

clay_frac (1,2) Fraction of soil which is clay - 

geol_class_1st (2) 
Most common geologic class in the 

catchment basin 
- 

geol_class_1st_frac 

(2) 

Fraction of the catchment area associated 

with its most common geologic class 
- 

geol_class_2nd (2) 
Second most common geologic class in the 

catchment basin 
- 

geol_class_2nd_frac 

(2) 

Fraction of the catchment area associated 

with its 2nd most common geologic class 
- 

carbonate_rocks_frac 

(1,2) 

Fraction of the catchment area as carbonate 

sedimentary rocks 
- 

geol_porosity (2) Subsurface porosity - 

geol_permeability 

(1,2) 
Subsurface permeability m2 

 668 

  669 
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 670 

Figure C1. Ensemble frameworks to generate metrics for ensembles named without (solid 671 
arrows) and with (dashed arrows) “seed” as a subscript. 672 
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Table C2. Loss function and evaluation metrics. 673 

Statistic Equation* Range Optimal Value 

Loss 
1
𝑛
෍

ሺ𝑂௜ െ 𝑆௜ሻଶ

ሺ𝜎ை  ൅  𝜖ሻଶ

௡

௜ୀଵ

 0.0 to ∞ 0.0 

NSE 1 െ
∑ ሺ𝑂௜ െ 𝑆௜ሻଶ
௡
௜ୀଵ

∑ ሺ𝑂௜ െ 𝜇௢ሻଶ௡
௜ୀଵ

 -∞ to 1.0 1.0 

KGE 
1 െ ඥሺ𝑟 െ 1ሻଶ ൅ ሺ𝛽 െ 1ሻଶ ൅ ሺ𝛾 െ 1ሻଶ, 

 𝛽 ൌ ఓೄ
ఓೀ

, 𝛾 ൌ ஼௏ೄ
஼௏ೀ

ൌ ఙೄ/ఓೄ
ఙೀ/ఓೀ

 
-∞ to 1.0 1.0 

PBIAS 
∑ ሺ𝑂௜ െ 𝑆௜ሻ
௡
௜ୀଵ

∑ 𝑂௜௡
௜ୀଵ

ൈ 100 -∞ to ∞ 0.0 

RMSE ඩ
1
𝑛
෍ሺ𝑂௜ െ 𝑆௜ሻଶ
௡

௜ୀଵ

 0.0 to ∞ 0.0 

spread ඩ
1
𝑛

1
𝑒

 ෍෍ሺ𝑆௜,௝ െ 𝜇ௌ,௜ሻଶ
௘

௝ୀଵ

௡

௜ୀଵ

 0.0 to ∞ None 

* S is a streamflow simulation; O is the corresponding observation; n is the number of total S 674 

or O; ϵ is a numerical stabilizer, with a default value of 0.1; e is the number of ensemble members; 675 

r is the linear Pearson correlation between S and O; 𝛽 is the mean bias; and 𝛾 is the variability 676 

bias. The mean and standard deviation of simulations are denoted as 𝜇ௌ and 𝜎ௌ, respectively, 677 

and 𝜇ை and 𝜎ை are the mean and standard deviation of the observations. 678 
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Appendix D: Additional details on model performance 679 

 680 

 681 

Figure D1. Scatter plots comparing the performance differences between hydrological models 682 

for the basins where LSTM outperformed δHBV (the basins where δHBV outperformed are not 683 

shown in this plot). The x-axis represents the NSE differences between 𝐿𝑆𝑇𝑀ଶ and 𝛿𝐻𝐵𝑉ଶ 684 

(𝐿𝑆𝑇𝑀ଶ - 𝛿𝐻𝐵𝑉ଶ), while the y-axis shows the NSE differences between 𝛿𝐻𝐵𝑉ଵଶଷ and 𝛿𝐻𝐵𝑉ଶ 685 

(𝛿𝐻𝐵𝑉ଵଶଷ- 𝛿𝐻𝐵𝑉ଶ). Points are color-coded according to the NSE values of 𝛿𝐻𝐵𝑉ଶ . The 686 

correlation coefficient (CORR) and p values between the x-axis values and the y-axis values, 687 

along with the median NSE value of 𝛿𝐻𝐵𝑉ଶ (𝑁𝑆𝐸௠௘ௗ ) on these basins, are also noted. 688 

 689 

 690 

Figure D2. Scatter plots comparing the performance differences between hydrological models 691 

for the basins where LSTM outperformed δHBV (the basins where δHBV outperformed are not 692 

shown in this plot). The x-axis represents the NSE differences between 𝐿𝑆𝑇𝑀ଷ and 𝛿𝐻𝐵𝑉ଷ 693 

(𝐿𝑆𝑇𝑀ଷ - 𝛿𝐻𝐵𝑉ଷ), while the y-axis shows the NSE differences between 𝛿𝐻𝐵𝑉ଵଶଷ and 𝛿𝐻𝐵𝑉ଷ 694 

(𝛿𝐻𝐵𝑉ଵଶଷ- 𝛿𝐻𝐵𝑉ଷ). Points are color-coded according to the NSE values of 𝛿𝐻𝐵𝑉ଷ . The 695 

correlation coefficient (CORR) and p values between the x-axis values and the y-axis values, 696 

along with the median NSE value of 𝛿𝐻𝐵𝑉ଷ (𝑁𝑆𝐸௠௘ௗ ) on these basins, are also noted. 697 
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 698 

 699 

Figure D3. Seasonal comparison of Nash–Sutcliffe efficiency (NSE) values for ሺ𝐿𝑆𝑇𝑀 ൅700 

𝛿𝐻𝐵𝑉ሻ௦௘௘ௗ
ଵଶଷ  (blue) and 𝐿𝑆𝑇𝑀௦௘௘ௗ

௠௨௟௧௜ (red) in (a) temporal, (b) PUB, and (c) PUR tests. Each box 701 

represents the distribution of NSE values across 531 basins for a given season (DJF: 702 

December–February, MAM: March–May, JJA: June–August, SON: September–November). 703 

Vertical dashed lines separate different seasons. ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻ௦௘௘ௗ
ଵଶଷ  performs better than 704 

𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜  in most cases, especially during MAM, likely due to differences in snowmelt 705 

representation. 706 

 707 

 708 
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 709 
Figure D4. Spatial distributions of model spread values increase from δHBV and LSTM to the 710 

LSTM+δHBV ensemble across temporal, PUB, and PUR tests. 711 

 712 

 713 

 714 

 715 
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 716 
Figure D5. Boxplot of relative temperature differences between the test and training periods, 717 

calculated as (Test − Training) / Training. Each box represents the distribution of normalized 718 

temperature changes across basins for a specific meteorological forcing dataset: Daymet, 719 

NLDAS, and Maurer. Positive values indicate warming in the test period relative to the training 720 

period. 721 

 722 

 723 

 724 

 725 
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 726 
Figure D6. Simulation performance (NSE) under the temporal test: (a) LSTM model with and 727 

without a 10% precipitation error (precipitation × 1.1); (b) δHBV model with and without a 728 

10% precipitation error; (c) δHBV model trained on 671 versus 531 basins; (d) δHBV model 729 

with 3 versus 2 dynamic parameters; (e) δHBV model using time steps of 365, 182, and 730 730 

days. Individual and ensemble groups are distinguished along the x-axis. Ensemble benefits 731 

are indicated by the gap between columns of the same color within each panel—columns 1–7 732 

correspond to individual LSTM or δHBV groups, and the last two columns correspond to 733 

LSTM+δHBV ensembles. 734 

 735 

  736 
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Table D1. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high 737 

(highRMSE), and middle (midRMSE) flows based on 531 basins under the temporal test. The 738 

values are the mean of three simulations run with different random seeds. 739 

Temporal Number Daymet NLDAS Maurer 

LSTM 

NSE 0.735639 0.736301 0.717337 

KGE 0.789375 0.782555 0.760575 

RMSE 1.21088 1.19847 1.27723 

PBIAS 4.04818 5.99486 1.58911 

lowRMSE 0.0596913 0.0602381 0.0545577 

highRMSE 2.70508 2.89684 2.97028 

midRMSE 0.196039 0.210022 0.219922 

δHBV 

NSE 0.739688 0.71903 0.727669 

KGE 0.77033 0.730753 0.762022 

RMSE 1.18752 1.26239 1.23193 

PBIAS 5.07898 -0.14449 3.65263 

lowRMSE 0.060906 0.063581 0.063466 

highRMSE 2.68479 3.13011 2.6845 

midRMSE 0.226595 0.245242 0.230125 

LSTM+δHBV NSE 0.787545 0.794053 0.790903 



47 

KGE 0.794412 0.78383 0.786854 

RMSE 1.0777 1.0716 1.07141 

PBIAS 4.59065 3.33053 3.45501 

lowRMSE 0.059955 0.059565 0.054838 

highRMSE 2.70216 2.88511 2.69633 

midRMSE 0.20394 0.214726 0.212514 

 740 

 741 

  742 
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Table D1 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low 743 

(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the 744 

temporal test. The values are the mean of three simulations run with different random seeds. 745 

Temporal Number Daymet+NLDAS Daymet+Maurer NLDAS+Maurer All 

LSTM 

NSE 0.781275 0.791158 0.792144 0.808176 

KGE 0.800955 0.795026 0.794441 0.803476 

RMSE 1.09103 1.06374 1.06701 1.01395 

PBIAS 5.17159 3.34362 4.5305 4.48263 

lowRMSE 0.0636155 0.0582563 0.0566306 0.0613625 

highRMSE 2.70218 2.71366 2.78962 2.67803 

midRMSE 0.194849 0.199809 0.206653 0.197469 

δHBV 

NSE 0.786562 0.77012 0.776938 0.794796 

KGE 0.773732 0.778557 0.768854 0.77834 

RMSE 1.08362 1.12584 1.10875 1.06118 

PBIAS 1.91507 4.28194 2.03584 2.71021 

lowRMSE 0.061667 0.060679 0.062765 0.061539 

highRMSE 2.93961 2.7394 2.88758 2.84994 

midRMSE 0.230576 0.220743 0.230272 0.228375 

LSTM+δHBV NSE 0.811825 0.809964 0.811316 0.818907 
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KGE 0.797564 0.797635 0.78735 0.794936 

RMSE 1.01938 1.01755 1.0314 1.00067 

PBIAS 4.14594 4.23333 3.19652 3.88096 

lowRMSE 0.0603 0.058022 0.057882 0.059221 

highRMSE 2.75275 2.67122 2.81393 2.70606 

midRMSE 0.207637 0.205965 0.213191 0.207905 

  746 
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Table D2. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high 747 

(highRMSE), and middle (midRMSE) flows based on 531 basins under the PUB test. The values 748 

are the mean of three simulations run with different random seeds. 749 

PUB Number Daymet NLDAS Maurer 

LSTM 

NSE 0.702636 0.695496 0.694156 

KGE 0.693998 0.677438 0.6909 

RMSE 1.31714 1.3394 1.34233 

PBIAS 0.669018 0.283106 0.936582 

lowRMSE 0.087648 0.088393 0.086873 

highRMSE 4.2852 4.49292 4.16042 

midRMSE 0.354458 0.364921 0.368124 

δHBV 

NSE 0.706809 0.670636 0.682998 

KGE 0.703137 0.66566 0.686912 

RMSE 1.35541 1.41185 1.37942 

PBIAS 1.49234 -2.43395 0.291966 

lowRMSE 0.0798196 0.0808967 0.0846775 

highRMSE 4.21648 4.49582 4.18003 

midRMSE 0.335159 0.351271 0.356903 

LSTM+δHBV NSE 0.74227 0.723778 0.72202 



51 

KGE 0.715931 0.690154 0.707292 

RMSE 1.24887 1.278 1.26697 

PBIAS 1.27863 -0.599778 0.903464 

lowRMSE 0.0816748 0.0795686 0.0825691 

highRMSE 4.08432 4.23483 3.94929 

midRMSE 0.327459 0.33851 0.347169 

 750 

 751 

  752 
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Table D2 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low 753 

(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the 754 

PUB test. The values are the mean of three simulations run with different random seeds. 755 

PUB Number Daymet+NLDAS Daymet+Maurer NLDAS+Maurer All 

LSTM 

NSE 0.757853 0.749151 0.753136 0.768181 

KGE 0.713319 0.720099 0.716497 0.727143 

RMSE 1.18251 1.22254 1.19718 1.15026 

PBIAS 0.320396 0.931656 0.766216 0.970047 

lowRMSE 0.0875191 0.0864129 0.0835341 0.0874717 

highRMSE 4.1296 4.06602 4.17217 4.0061 

midRMSE 0.334683 0.349856 0.342819 0.333534 

δHBV 

NSE 0.748916 0.734052 0.733955 0.757749 

KGE 0.699768 0.714323 0.69436 0.714048 

RMSE 1.26852 1.27637 1.27244 1.23229 

PBIAS 0.0446112 1.212 -1.04135 0.201809 

lowRMSE 0.0808293 0.0792486 0.0814476 0.0808359 

highRMSE 4.19575 3.97788 4.21623 4.07419 

midRMSE 0.311826 0.33668 0.339257 0.318165 

LSTM+δHBV NSE 0.780625 0.764866 0.767761 0.785833 
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KGE 0.719781 0.725373 0.715982 0.723972 

RMSE 1.14924 1.17659 1.16881 1.13591 

PBIAS 0.186062 0.881644 0.405548 0.565489 

lowRMSE 0.0805946 0.0814251 0.0817114 0.0826379 

highRMSE 3.97373 3.86834 3.88 3.91692 

midRMSE 0.313708 0.324777 0.324089 0.323671 

 756 

  757 
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Table D3. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high 758 

(highRMSE), and middle (midRMSE) flows based on 531 basins under the PUR test. The values 759 

are the mean of three simulations run with different random seeds. 760 

PUR Number Daymet NLDAS Maurer 

LSTM 

NSE 0.578365 0.546217 0.56164 

KGE 0.557788 0.559986 0.567231 

RMSE 1.59111 1.63626 1.5833 

PBIAS -0.575328 -2.77709 -0.623183 

lowRMSE 0.124837 0.118971 0.118695 

highRMSE 5.42346 5.38886 5.05212 

midRMSE 0.498133 0.498442 0.471744 

δHBV 

NSE 0.622278 0.592306 0.59161 

KGE 0.638818 0.601338 0.620877 

RMSE 1.57189 1.61191 1.63628 

PBIAS 1.27223 -1.60075 1.62709 

lowRMSE 0.10142 0.102975 0.101075 

highRMSE 5.07706 5.16093 4.99602 

midRMSE 0.447879 0.474516 0.439697 

LSTM+δHBV NSE 0.644398 0.618255 0.635444 



55 

KGE 0.627481 0.605237 0.615883 

RMSE 1.46185 1.5153 1.48393 

PBIAS -0.269697 -0.719505 0.197859 

lowRMSE 0.105146 0.100944 0.106272 

highRMSE 4.95749 4.99478 4.78638 

midRMSE 0.431456 0.4575 0.426126 
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Table D3 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low 763 

(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the 764 

PUR test. The values are the mean of three simulations run with different random seeds. 765 

PUR Number Daymet+NLDAS Daymet+Maurer NLDAS+Maurer All 

LSTM 

NSE 0.634398 0.636369 0.626939 0.656228 

KGE 0.59844 0.600371 0.605007 0.612858 

RMSE 1.4434 1.43416 1.43009 1.38042 

PBIAS -0.547128 -0.687947 -0.865748 -0.543918 

lowRMSE 0.118989 0.120228 0.115004 0.117728 

highRMSE 5.03277 5.02434 4.84415 4.74281 

midRMSE 0.462923 0.455257 0.453912 0.449598 

δHBV 

NSE 0.672839 0.644732 0.661231 0.684685 

KGE 0.653841 0.65646 0.6515 0.66205 

RMSE 1.43224 1.50803 1.48604 1.43376 

PBIAS 0.564363 1.55134 -0.156553 0.956961 

lowRMSE 0.0975783 0.0984076 0.100773 0.100807 

highRMSE 4.83843 4.81176 4.72529 4.71255 

midRMSE 0.447828 0.431252 0.433688 0.432018 

LSTM+δHBV NSE 0.685032 0.680872 0.679321 0.700814 
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KGE 0.638788 0.647826 0.646782 0.649999 

RMSE 1.35303 1.3873 1.36795 1.3185 

PBIAS -0.0150729 0.406127 -0.135091 -0.0232668 

lowRMSE 0.103284 0.101814 0.104528 0.102916 

highRMSE 4.80178 4.72583 4.70024 4.70713 

midRMSE 0.426819 0.411727 0.41573 0.41081 
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Table D4. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high 768 

(highRMSE), and middle (midRMSE) flows based on 531 basins under the temporal, PUB, and 769 

PUR tests of 𝐿𝑆𝑇𝑀௠௨௟௧௜ , ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻଵଶଷ ൅ 𝐿𝑆𝑇𝑀௠௨௟௧௜ , their “seed” version, and 770 

ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻ௦௘௘ௗ
ଵଶଷ . 771 

Test Metric 𝐿𝑆𝑇𝑀௠௨௟௧௜  
ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻଵଶଷ

൅ 𝐿𝑆𝑇𝑀௠௨௟௧௜   

Temporal 

NSE 0.797448 0.82321 

KGE 0.811064 0.810248 

RMSE 1.05987 0.983168 

PBIAS 3.95241 4.08594 

lowRMSE 0.056221 0.05702 

highRMSE 2.7089 2.58881 

midRMSE 0.183526 0.192442 

PUB 

NSE 0.750605 0.782727 

KGE 0.71469 0.734731 

RMSE 1.20586 1.11509 

PBIAS 0.475674 0.706777 

lowRMSE 0.0861127 0.0836 

highRMSE 4.13615 3.83009 

midRMSE 0.347562 0.326814 
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PUR 

NSE 0.623755 0.68923 

KGE 0.593757 0.633971 

RMSE 1.47379 1.31221 

PBIAS -2.6737 -1.38119 

lowRMSE 0.112434 0.107646 

highRMSE 4.98202 4.59232 

midRMSE 0.501807 0.436811 
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Table D4 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low 773 

(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the 774 

temporal, PUB, and PUR tests of 𝐿𝑆𝑇𝑀௠௨௟௧௜, ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻଵଶଷ ൅ 𝐿𝑆𝑇𝑀௠௨௟௧௜ , their “seed” 775 

version, and ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻ௦௘௘ௗ
ଵଶଷ . 776 

Test Metric ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻ௦௘௘ௗ
ଵଶଷ  𝐿𝑆𝑇𝑀௦௘௘ௗ

௠௨௟௧௜
ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻ௦௘௘ௗ

ଵଶଷ

൅ 𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜   

Temporal 

NSE 0.821444 0.81992 0.829385 

KGE 0.795317 0.82078 0.812581 

RMSE 0.99455 1.00908 0.967779 

PBIAS 3.99009 4.09469 4.08882 

lowRMSE 0.059782 0.057346 0.057015 

highRMSE 2.7279 2.62815 2.58384 

midRMSE 0.209943 0.183656 0.195557 

PUB 

NSE 0.793673 0.781175 0.790921 

KGE 0.726188 0.736191 0.739284 

RMSE 1.12957 1.13079 1.09176 

PBIAS 0.370674 1.13671 0.869057 

lowRMSE 0.083423 0.084038 0.085728 

highRMSE 3.89363 3.93473 3.79505 

midRMSE 0.323045 0.329772 0.325627 
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PUR 

NSE 0.705154 0.665723 0.701504 

KGE 0.651538 0.614649 0.64373 

RMSE 1.30377 1.3727 1.2851 

PBIAS -0.283645 -2.74069 -1.39149 

lowRMSE 0.100525 0.111229 0.108121 

highRMSE 4.74889 4.88127 4.58344 

midRMSE 0.406797 0.473783 0.432447 
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Table D5. Median NSE values based on ten different random seeds during the temporal test. 778 

Each number (1 through 10) represents metric values calculated for an individual simulation 779 

based on only one random seed. “Seed” indicates metric values calculated by averages of these 780 

ten simulations based on different random seeds, while “mean” denotes the average of metrics 781 

from 1-10 individual simulations (visualized in Figure C1). 782 

Number 𝐿𝑆𝑇𝑀௠௨௟௧௜ ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻଵଶଷ ሺ𝐿𝑆𝑇𝑀 ൅ 𝛿𝐻𝐵𝑉ሻଵଶଷ ൅ 𝐿𝑆𝑇𝑀௠௨௟௧௜  

1 0.797742 0.818436 0.82315 

2 0.795312 0.820188 0.823559 

3 0.799291 0.818097 0.822922 

4 0.796388 0.818251 0.821791 

5 0.791192 0.818285 0.820132 

6 0.795691 0.81966 0.823268 

7 0.795912 0.821511 0.82352 

8 0.796625 0.81831 0.825204 

9 0.794062 0.804959 0.816497 

10 0.796066 0.817122 0.82169 

Seed 0.82425 0.822528 0.832197 

Mean 0.795828 0.817482 0.822173 
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Appendix E: Intuitive visualization of the relative contributions of ensemble members 784 

based on optimized weights 785 

 786 

Figure E1. Weights of six components across 531 basins, estimated basin-by-basin using a 787 

genetic algorithm based on streamflow observations during the test periods. The weights are 788 

normalized by the maximum weight within each ensemble group. These weights are used 789 

exclusively for qualitatively analyzing the relative contributions of different ensemble members, 790 

with higher values indicating larger relative contributions. 791 

 792 
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 793 

Figure E2. Spatial distributions of weights of the LSTM and δHBV models, estimated by a 794 

genetic algorithm based on streamflow observations during the test periods. The weights are 795 

normalized by the maximum weight within each ensemble group. These weights are used 796 

exclusively for qualitatively analyzing the relative contributions of different ensemble members, 797 

with higher values indicating larger relative contributions. 798 

 799 

 800 
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 801 

Figure E3. Spatial distributions of weights of the Daymet, NLDAS, and Maurer meteorological 802 

forcing datasets, estimated by a genetic algorithm based on streamflow observations during 803 

the test periods. The weights are normalized by the maximum weight within each ensemble 804 

group. These weights are used exclusively for qualitatively analyzing the relative contributions 805 

of different ensemble members, with higher values indicating larger relative contributions. 806 

 807 

 808 

  809 
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Table E1. Comparisons of metric values between averaged ensemble simulations and 810 

optimized weighted simulations, estimated using a genetic algorithm based on streamflow 811 

observations during the test periods. The results highlight the potential for further 812 

improvements in ensemble simulations. 813 

 814 

 Temporal Averaged Optimized weighted 

Temporal 

NSE 0.821444 0.844303212 

KGE 0.795317 0.829996445 

RMSE 0.99455 0.920954559 

PBIAS 3.99009 3.252278013 

lowRMSE 0.059782 0.057137161 

highRMSE 2.7279 2.451194907 

midRMSE 0.209943 0.183127162 

PUB 

NSE 0.793673 0.842396015 

KGE 0.726188 0.79571295 

RMSE 1.12957 0.987170488 

PBIAS 0.370674 1.023040859 

lowRMSE 0.0834234 0.079807878 

highRMSE 3.89363 3.030715903 

midRMSE 0.323045 0.285110115 

PUR 

NSE 0.705154 0.790796063 

KGE 0.651538 0.746396324 

RMSE 1.30377 1.13058149 
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PBIAS -0.283645 0.273698787 

lowRMSE 0.100525 0.093595304 

highRMSE 4.74889 3.665495069 

midRMSE 0.406797 0.351694421 
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Code and data availability 817 

The source codes and datasets utilized in this study are publicly accessible through the 818 

following repositories: The δHBV modeling framework, including all computational scripts 819 

and documentation, is hosted on Zenodo (https://doi.org/10.5281/zenodo.7091334) (Feng et al., 820 

2023a), with an updated version and comprehensive software release scheduled upon 821 

manuscript acceptance. The implementation of the LSTM architecture is accessible through 822 

Zenodo (https://doi.org/10.5281/zenodo.6326394) (Kratzert et al., 2022). The CAMELS 823 

hydrometeorological dataset, which provides the foundational basin characteristics and time 824 

series data used in our analysis, can be obtained via https://dx.doi.org/10.5065/D6MW2F4D 825 

(Addor et al., 2017; Newman and Clark, 2014). The streamflow simulations produced in this 826 

study can be downloaded at  https://doi.org/10.5281/zenodo.16895228 (Li et al., 2025). 827 
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