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Abstract

Streamflow simulations produced by different hydrological models exhibit distinct
characteristics and can provide valuable information when ensembled. However, few studies
have focused on ensembling simulations from models with significant structural differences
and evaluating them under both temporal and spatial tests. Here we systematically evaluated
and utilized the simulations from two highly different models with great performances: a purely
data-driven long short-term memory (LSTM) network and a physics-informed machine
learning (“differentiable”) HBV (Hydrologiska Byrans Vattenbalansavdelning) model (SBHBV).
To effectively display the features of the two models, multiple forcing datasets are employed.
The results show that the simulations of LSTM and 6HBV have distinct features and
complement each other well, leading to better Nash-Sutcliffe model efficiency coefficients
(NSE) and improved high-flow and low-flow metrics across all spatiotemporal tests, compared
to within-class ensembles. Ensembling models trained on a single forcing outperformed a
single model using fused forcings, challenging the paradigm of feeding all available data into
a single data-driven model. Most notably, SHBYV significantly enhanced spatial interpolation

when incorporated into LSTM, and provided even more prominent benefits for spatial
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extrapolation where the LSTM-only ensembles degraded significantly, attesting to the value of
the structural constraints in 3HBV. These advances set new benchmark records on the well-
known CAMELS (Catchment Attributes and Meteorology for Large-sample Studies)
hydrological dataset, reaching median NSE values of ~0.83 for the temporal test (densely
trained scenario), ~0.79 for the ungauged basin test (PUB, Prediction in Ungauged Basins),
and ~0.70 for the ungauged region test (PUR, Prediction in Ungauged Regions). This study
advances our understanding of how various model types, each with distinct mechanisms, can

be effectively leveraged alongside multi-source datasets across diverse scenarios.
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Highlights

e Combining LSTM and 8HBV with diverse forcings sets new accuracy benchmarks

e Ensembling models with one forcing outperforms merging forcings as an input

e OHBV and LSTM together always increase NSEs, especially spatial generalization

e OHBYV provides valuable spatial constraints in the deterministic ensemble simulations

e OHBV and LSTM have different error characteristics that can be offset in an ensemble

Keywords
Streamflow simulation, differentiable model, deep learning, hybrid modeling, multi-source

fusion

1. Introduction

Streamflow, a critical component of the global hydrosphere, profoundly influences both
human society and natural ecosystems (Lins and Slack, 1999). Accurate simulation and
prediction of streamflow yield numerous benefits, including improved flood prevention
strategies (Brunner et al., 2021). Hydrological models serve as indispensable tools for
achieving this objective and can be traditionally categorized into two types: data-driven models
(Feng et al., 2020; Kratzert et al., 2018; Liu et al., 2024; Nearing et al., 2024) and process-
based (or physically-based) models (Newman et al., 2017; Paul et al., 2021). Data-driven
models, exemplified by long short-term memory (LSTM) (Feng et al., 2020; Kratzert et al.,
2018) and transformer (Liu et al., 2024) networks, excel in learning patterns from multi-source
data (Li et al., 2023b, 2024; Liu et al., 2022; Nearing et al., 2024) and generally achieve high
performance. However, they often lack interpretability and may not resolve extreme values

very well (Li et al., 2020a; Song et al., 2025b). Conversely, process-based models, derived
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deductively from physical laws or conceptualized views of natural systems, offer insights into
internal hydrological processes but may exhibit weaker performance due to structural
inadequacies (Li et al., 2020a, 2022; Zhang et al., 2019).

To combine the benefits and counteract the weaknesses of these two kinds of models,
many efforts have been made to incorporate physical constraints and structures into data-driven
models to align with fundamental physical principles, such as mass and water balances (Bandai
and Ghezzehei, 2021; Wang et al., 2020; Xie et al., 2021). The most seamless integration uses
neural networks to provide parameterizations or missing process representations for process-
based models (Aboelyazeed et al., 2023; Bindas et al., 2024; Feng et al., 2022; Jiang et al.,
2020; Kraft et al., 2022; Rahmani et al., 2023; Song et al., 2024b; Tsai et al., 2021). These
differentiable models (Shen et al., 2023) connect (flexible amounts of) prior physical
knowledge to neural networks, and have displayed many advantages, including improved
computational efficiency and prediction of untrained variables (Tsai et al., 2021), spatial
generalization (Feng et al., 2023b), and representation of extremes (Song et al., 2025b).
However, it is also unclear whether current differentiable models, e.g., SHBV, the
Hydrologiska Byrans Vattenbalansavdelning (HBV) model implemented within a
differentiable framework (Feng et al., 2023b; Ji et al., 2025; Shen et al., 2023; Song et al.,
2025b), have unique bias characteristics that are associated with the process-based parts of their
structures that cannot be reduced once the equations are prescribed.

Orthogonal to such efforts are ensemble simulations (Yu et al., 2024), which combine
many members with different biases and uncertainties to mitigate their respective biases in
deterministic predictions. Many previous studies have tried ensemble methods to improve
streamflow (Clark et al., 2016; Zounemat-Kermani et al., 2021) based on many factors, like
initial conditions (e.g., initial weights and biases in LSTM (Kratzert et al., 2018)), data used

for parameterization (Feng et al., 2021), and objective functions (Lin et al., 2024). These
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studies generally use one model to generate the differences among the ensemble members.
Furthermore, some studies (Dion et al., 2021; Solanki et al., 2025) have utilized simulations
from multiple different models but are limited to process-based models, resulting in ensemble
simulations that are better than each individual member. Thus far, however, most studies have
focused on simulations from only similar models or model types, and little work has tested an
ensemble across the boundary of model types, particularly between data-driven, process-based,
and hybrid models, especially on a large number of samples. Presumably, if each model has its
own unique bias, data-driven and process-based models are likely to exhibit greater differences
due to their inherently distinct characteristics. It remains unclear whether ensembling across
model types should bring benefits to deterministic predictions. Furthermore, grounded in the
process-based model, the differentiable process-based hydrological model, such as dHBV,
significantly enhances performance compared to traditional process-based models, while on
the other hand introducing greater uncertainty regarding its potential benefits when ensembled.
Moreover, previous studies have primarily focused on evaluating ensemble simulations for
temporal predictions. However, streamflow simulation under spatial extrapolation scenarios
presents greater challenges, and findings from temporal tests may not be directly applicable in
this context.

It is known that the performance of any type of hydrologic model heavily depends on the
quality of input data, particularly meteorological forcing data (Bell and Moore, 2000; Yao et
al., 2020), and other inputs, like the uncertainties of initial conditions, can be mitigated via
warming up (Yu et al., 2019). While independent forcing datasets excel in certain aspects, they
each carry different error characteristics (Beck et al., 2017; Behnke et al., 2016; Newman et al.,
2019) and accordingly affect the hydrological models in different ways. In order to fully display
the different features between LSTM and SHBV, multiple forcing datasets could be considered.

Given the utilization of multiple forcing datasets, one could choose to use data fusion to
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combine them into a single coherent model input (Kratzert et al., 2021; Sawadekar et al., 2025),
or to pass each forcing dataset through a model and then afterwards combine the multiple
outputs in an ensemble. It is not clear which approach is more beneficial.
Considering the knowledge gaps discussed above, we sought to answer several research
questions:
1. Will a cross-model-type ensemble of LSTM and SHBV improve deterministic
streamflow prediction more than a within-class ensemble?
2. s it better to use multiple forcings in one model or to ensemble multiple models, each
with a different forcing input?
3. Do process-based equations bring unique value to an ensemble, especially in terms of

spatial generalizability?

The remainder of this paper is structured as follows: Sect. 2 outlines the hydrological data
and models used in this study, as well as the experimental design. Results and discussions are

presented in Sect. 3, with conclusions provided in Sect. 4.

2. Materials and methods
2.1. CAMELS hydrologic dataset

The Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) dataset
(Addor et al., 2017) is widely employed for hydrological model evaluation and community
benchmarking. The CAMELS dataset encompasses 671 basins distributed across the
conterminous United States, with basin sizes ranging from 1 to 25,800 km? (median: 335 km?).
This standardized and publicly available dataset serves as a benchmark for evaluating various
hydrological models, with LSTM models trained on this dataset often serving as a reference
point for comparing other models (Kratzert et al., 2021). CAMELS provides basin-scale data,

including streamflow observations and static basin attributes, as well as forcing datasets from
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three independent sources: Daymet (Thornton et al., 1997), North American Land Data
Assimilation System (NLDAS) (Xia et al., 2012), and Maurer (Maurer et al., 2002). Each of
the three meteorological forcing datasets operates at a daily temporal resolution, encompassing
precipitation, temperature, vapor pressure, and surface radiation variables, with daily
temperature extrema of NLDAS and Maurer supplemented from Kratzert et al. (2021). These
three meteorological forcing datasets have methodological distinctions in spatial resolution,
data generation approaches, and temporal processing (Behnke et al., 2016; Kratzert et al., 2021).
Exemplary plots illustrating the differences among the three meteorological forcing datasets
are provided in Appendix B. These features can lead to dataset-specific error characteristics
and make them valuable for displaying the distinct features of different model types. All model

inputs used in this study are detailed in Table C1.

2.2. Long short-term memory

As one kind of deep learning algorithm, long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) has unique structures like hidden states and gates activated by the tanh
and sigmoid functions (Li et al., 2023a), respectively. These features enable LSTM to excel in
streamflow simulation tasks (Feng et al., 2020; Kratzert et al., 2018; Nearing et al., 2024). In
the current benchmark framework, LSTM models are trained using dynamic atmospheric
forcings and static basin attributes as inputs, with streamflow as the target output, making it
perform well in both temporal and spatial tests (Figure la). In this work, for cross-group
comparability, we used the LSTM model and its hyperparameters as reported in Kratzert et al.

(2021).

2.3. Differentiable HBV model (6HBV)

The Hydrologiska Byrans Vattenbalansavdelning (HBV) model is a parsimonious bucket-
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type hydrologic model that simulates various hydrological variables, including snow water
equivalent, soil water, groundwater storage, evapotranspiration, quick flow, baseflow, and total
streamflow (Aghakouchak and Habib, 2010; Beck et al., 2020; Bergstrom, 1976, 1992).
Recently demonstrated differentiable HBV (SHBV) model (Feng et al., 2023b; Ji et al., 2025;
Shen et al., 2023; Song et al., 2024b) incorporates deep neural networks for both regionalized
parameterization and missing process representations within a differentiable programming
framework that supports “end-to-end” training (Figure 1b). This innovation enables SHBV to
effectively learn from data while obeying physical laws, resulting in high-level performance
for streamflow simulations. From the perspective of process-based modeling, LSTM is a
regionalized parameter provider that leverages the autocorrelated nature of its inputs to impose
an implicit spatial constraint on the generated parameters.

In this study, we used SHBV1.1p (Song et al., 2024b, 2025b), which is an updated version
of OHBV1.0 (Feng et al., 2022, 2023b). The main improvement is the addition of a capillary
rise module, which enhances the characterization of low flows. Three additional modifications
are included to address high-flow simulation challenges: the use of three dynamic parameters
(y, B, ko) (Song et al., 2025b); the removal of log-transform normalization for precipitation;
and the adoption of the normalized squared-error loss function (Table C2) (Frame et al., 2022;
Kratzert et al., 2021; Song et al., 2025a, b; Wilbrand et al., 2023). We also maintain dynamic
parameters during warm-up periods. Although this provides only marginal benefits and
increases computational costs, it yields a more realistic representation and reduces uncertainties

associated with initial conditions. The basic equations in SHBV are as follows:

0 = LSTM,, (X, Ageer) M
Q = HBV(x,0) ()
Wopt = argmin,, (L(Q, Q")) 3)

where 6 are the dynamic or static physical parameters, w denotes the weights and biases of

8
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LSTM, x includes the basin-averaged meteorological forcings, such as precipitation, mean

temperature, and potential evapotranspiration, with x representing their normalized versions.

Similarly, Age consists of normalized observable basin-averaged attributes, encompassing
basin area, topography, climate, soil texture, land cover, and geology (Table C1). Precipitation
and mean temperature are from CAMELS, while potential evapotranspiration is calculated
using the Hargreaves (1994) method based on maximum and minimum temperatures along
with basin latitudes, all from data described in sect. 2.1. QO and Q* are the streamflow
simulations (model outputs) and observations (as provided in CAMELS), respectively. HBV
is implemented on PyTorch so it is programmatically differentiable: all steps store information
related to gradient calculations during backpropagation, allowing this model to be trained
together with neural networks in an end-to-end fashion. More details about differentiable HBV
can be found in previous studies (Feng et al., 2022; Song et al., 2024b). The details of some

particularly relevant HBV processes are described in Appendix A.

2.4. Experimental design

In this study, we trained the two models of very different types (LSTM and HBV), each
with one of three meteorological forcing datasets (Daymet, NLDAS, and Maurer), resulting in
six corresponding streamflow simulations (Figure 1c¢) for each different test scenario (see sect.
2.5 for additional information). The training processes of LSTM and dHBV followed Kratzert
et al. (2021) and Feng et al. (2023b), respectively. Test results and performance metrics for all
models are reported for the 531-basin subset that excludes those with areas larger than 2,000
km? or with more than a 10% discrepancy between different basin area calculation methods
(Newman et al., 2017).

To generate ensembles, we tested various weighting strategies and ultimately employed

averaging to combine the six single-forcing, single-model-type simulations, as it yielded the
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best performance. To better describe various combinations including cross-model ensembles,
these simulations were categorized into six groups (Table 1). A shorthand notation is used
throughout the remainder of this work to describe the forcing datasets and ensembles. Daymet,
NLDAS, and Maurer are abbreviated as superscripts 1, 2, and 3, respectively. The + symbol is
used to group model types being ensembled, while superscript clustering (e.g., '? or '2) is used
to group the meteorological forcing types being ensembled, with parentheses indicating that
the superscripts apply to all model types within. For example, (LSTM + §HBV)23 could be
explicitly written as LSTM' + LSTM? + LSTM?3 + §HBV' + SHBV? + §HBV 3. To compare
two different strategies to utilize the multiple meteorological forcing datasets and to benchmark
against the previously highest performance, we additionally trained a single LSTM model using
all three forcing datasets as simultaneous inputs as done by Kratzert et al. (2021), referred to

as LSTM™! (the last row in Table 1).
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(a) LSTM
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forcing dataset(s)
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(c) Framework

Forcing Dataset Model Type Streamflow

218

219  Figure 1. (a) The LSTM structure, (b) the SHBYV structure, and (c) the framework to generate

220  the six individual ensemble members of the streamflow simulations, in which different colors
221 of arrow lines denote the different meteorological forcing datasets (also denoted as 1, 2, 3),

222 respectively.
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Table 1. (a) The six groups of streamflow simulations, and (b) the streamflow simulation via
LSTM based on a different strategy, in which three meteorological forcing datasets were
combined as a single set of inputs (Kratzert et al., 2021). Superscripts 1, 2, and 3 denote
Daymet, NLDAS, and Maurer, respectively. The ensemble across forcings (“ef”’) superscript
indicates an ensemble of model simulations, each of which uses a different single

meteorological forcing, e.g., LSTM"?> means the average of LSTM' and LSTM>.

(a) Six Groups of Streamflow Simulations

Group Name Group Members
LSTM LSTM!, LSTM?, LSTM?
3HBV 3HBV', 3HBV?, 3HBV?
LSTM-+6HBV (LSTM+8HBV)!, (LSTM+3HBV)?, (LSTM+5HBV)?
LSTM¢ LSTM!2, LSTM", LSTM?, LSTM!??
SHBVf SHBV'?, SHBV!?, SHBV?, HBV'%,
(LSTM+8HBV)*t (LSTM+3HBV)'?, (LSTM+8HBV)"3, (LSTM+3HBV)?*,
(LSTM+3HBV)!#

(b) Using forcing datasets as simultaneous inputs to an LSTM
Streamflow Model Type Meteorological Forcing Dataset
Simulation

LSTM™ut LSTM Daymet, NLDAS, Maurer

12
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2.5. Evaluation scenarios and criteria

The above cases were comprehensively evaluated for performance in temporal
extrapolation (Feng et al., 2022; Kratzert et al., 2018), as well as two types of spatial
generalization: prediction in ungauged basins (PUB) (Feng et al., 2023b; Kratzert et al., 2019),
and prediction in ungauged regions (PUR) (Feng et al., 2021, 2023b):

e Temporal Test: Models were trained using data from all basins and tested across

different periods.

e PUB Test: Models were trained on randomly selected subsets from all basins and
tested on the remaining basins during the same time period.

e PUR Test: Different from the PUB test, basins were grouped into continuous regions,
one of which was selected to comprise the group of testing basins while the others
were used for training.

Temporal generalization is generally considered to be the easiest of these tests. In terms
of spatial generalization, which approximates data-sparse scenarios, the PUB test is an example
of spatial interpolation, whereas the PUR test involves spatial extrapolation. The PUR test is
widely regarded as the most challenging and may therefore produce findings that differ
significantly from those in other scenarios. In this study, all basins were divided into 10
spatially stratified groups for the PUB test and 7 fully disjoint regional groups for the PUR test
(Table 2) in the same way as Feng et al. (2023b). The spatial extent of the 7 regions for the
PUR test is also shown in Figure 3(c1-c2). Therefore, we conducted 10 rounds for the PUB test
and 7 rounds for the PUR test, with a different group held out for testing in each round. Model

performance was evaluated after concatenating the test results for all basins.
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Table 2. Differences of temporal, PUB, and PUR tests.

Test Training
Scenario Basin Time Basin Time
Temporal All* 1980-1995° All 1995-2010
PUB Random nine-tenths 1980-1999 Holdout® 1995-1999
PUR Random six of seven regions | 1980-1999 Holdout 1995-1999

“OHBYV training followed Feng et al. (2023b) using all 671 CAMELS basins, while LSTM
training followed Kratzert et al (2021) using the selected 531-basin subset. Test results and
performance metrics _for all models are reported for the 531 basins.

bEach hydrological year spans from October st to September 30th of the following year.

¢In the PUB and PUR tests, models are run for 10 and 7 rounds, respectively, with the group
held out for testing changed in each round. The simulation performance was evaluated after

concatenating the test results for all basins.

We repeated all the simulations with three different random seeds. Therefore, all the
simulations come from a total of (2x3+1)x(1+10+7)%3 trained models. The first factor
represents the models: two model types (LSTM and 0HBV) trained separately with each of the
three forcing datasets, along with LSTM™4 3 single model instance trained using all three
forcing datasets simultaneously. The second factor accounts for the three types of tests
(temporal, PUB, and PUR tests), and the last for the three random seeds. With respect to
random seeds, we present two variations in the results, which are visually depicted in Figure
C1. The results without “seed” as a subscript represent the average metric values from multiple
streamflow simulations, each generated from a single model implementation, along with the
corresponding uncertainties, visualized using error bars. The results marked with “seed” as a
subscript are based on the average of multiple streamflow simulations conducted with different
random seeds. In terms of computational cost, training LSTM (30 epochs) and 6HBV (50
epochs) for temporal testing under a single meteorological forcing dataset takes approximately

14
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5 and 21 hours, respectively, using a single NVIDIA Tesla V100 GPU.

We calculated several well-established performance metrics: Nash-Sutcliffe model
efficiency coefficient (NSE) (Nash and Sutcliffe, 1970), Kling-Gupta model efficiency
coefficient (KGE) (Kling et al., 2012), percent bias (PBIAS), and root-mean-square error
(RMSE). We also considered RMSE values for high (top 2% “peak” flow, highRMSE), low
(bottom 30% “low” flow, lowRMSE), and mid-range (the remaining flow, midRMSE) flow
conditions (Yilmaz et al., 2008). These metrics were computed for each basin and aggregated
into error bars and cumulative density functions (CDFs). For brevity, the main text primarily
reports NSE values, and other metric values are provided in Appendices D and E. Furthermore,
we use the spread values (Li et al., 2021; Reichle and Koster, 2003) to investigate ensemble
variability and explore model complementarity. Detailed descriptions of these metrics and their

calculations are available in Table C2.

3. Results and discussion
3.1. Temporal extrapolation

For the temporal test, in which models were trained and tested on the same basins but in
different time periods, we found that cross-model-type ensembles noticeably surpassed the
within-class ensembles when other conditions were the same, with small uncertainties as shown
by the error bars in Figure 2. With a single forcing dataset, the median NSE was elevated from
~0.735 for LSTM to ~0.79 with SHBV added, though 6HBV performance was similar to LSTM
(~0.74 under Daymet). Even after LSTM achieved very high performance when its simulations,
each derived separately from different meteorological forcing datasets, were ensembled (ef =
123, ~0.808), adding 6HBYV still improved the results to ~0.818. This finding was robust for
all different combinations of the tested meteorological forcing datasets. Conversely, adding

LSTM also helped to improve SHBV ensembles. These results highlight the benefits of the
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cross-model-type ensemble framework and indicate distinct simulation features for each model
type. LSTM is a data-driven method that has low bias and large variance. Data errors (Li et al.,
2020b), different sampling strategies (Nai et al., 2024), or even different weight initializations
(Narkhede et al., 2022) can lead to substantively different outcomes. Conversely, SHBV may
have a smaller variance but a larger bias due to the fixed HBV formulation (Moges et al., 2016)
for some scenarios like low flows (Feng et al., 2023b; Song et al., 2024b) or in basins with
significant water uses (Song et al., 2024a). These errors with varying characteristics from
different model classes can partially offset each other in an ensemble. On a side note, SHBV
models seem more reliant on the quality of the forcing data, as shown in Figure 2. SHBV with
the Maurer and NLDAS forcing datasets generally performs worse than it does with Daymet,
which has lower biases. However, even in those cases, the combination of LSTM and 6HBV

was still better than LSTM alone, attesting to the robustness of these benefits.
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Figure 2. Median NSE values for 531 CAMELS basins, indicating model and ensemble
performances for (a) temporal, (b) prediction in ungauged basin (PUB), and (c) prediction in
ungauged region (PUR) tests. Different simulations are represented by variously-shaped and
-colored points, and are organized by ensemble group, listed along the x-axis: LSTM, 0HBY,
LSTM+0HBYV, and their “ensemble forcing” counterparts, LSTM ef SHBV®S, and (LSTM +
SHBV)®S . LSTM™" is q single LSTM model trained directly on all three forcing datasets at
once. The superscript “ef” denotes the forcing datasets involved in each ensemble (choices of
1 for Daymet, 2 for NLDAS, and 3 for Maurer), while the “+” connects the model types used
within an ensemble. The x-axis group and subscript “seed” indicate that simulation results
were averaged based on three different random seeds (see Figure C1). Other points without
“seed”, along with their corresponding error bars, are derived from the averages of metrics
computed over repeated runs with three different random seeds. The error bar indicates one

standard deviation above and below the average value for each simulation.
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Figure 3. Scatter plots comparing the performance differences between hydrological models
for the basins where LSTM outperformed OHBYV (the basins where 0HBV outperformed are not
shown in this plot). The x-axis represents the NSE differences between LSTM* and SHBV!
(LSTM?* - SHBV'Y), while the y-axis shows the NSE differences between SHBV?3 and SHBV!
(SHBV23_ SHBV'). Points are color-coded according to the NSE values of SHBV'. The
correlation coefficient (CORR) and p values between the x-axis values and the y-axis values,
along with the median NSE value of SHBV (NSE,.q) on these basins, are also noted. We
note that NSE is not additive and should generally not be subtracted. Here the purpose is only
to confirm that basins where LSTM outperforms 0HBV also tend to be those that benefit from

the ensemble of forcings.

In the lower-performing basins where LSTM! had advantages over SHBV'!, the ensemble
of meteorological forcings SHBV'? also tended to be higher than SHBV! (Figure 3),
suggesting that forcing quality was a significant reason behind the underperformance of SHBV'!
in these basins. Similar patterns were also observed when analyzing SHBV?and SHBV? values
(Figure D1 and Figure D2). These basins previously contributed to LSTM’s cumulative
distribution function of NSE diverging from that of SHBV! at the low end (Feng et al., 2022).
Forcing errors can exist in the form of systematic timing errors, low or high bias for larger
events, etc., which can be difficult for the mass-balanced conceptual HBV! structure to adapt
to these errors. Because the ensemble of forcings tends to suppress the errors in each forcing
source, part of the advantages of SHBV'!** over SHBV! can be attributed to reducing forcing
bias or timing errors. Since the advantages of LSTM! over SHBV! also tend to occur with these
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same basins, this also explains how LSTM' surpasses SHBV! in some basins with poorer-
quality forcings. In contrast to SHBV, LSTM has the innate ability to shift information in time
and moderately adjust the input scale. Moving from temporal validation to PUB to PUR
scenarios, the advantages of diverse forcing datasets appear to diminish, as evidenced by the
decreasing ratio of points above versus below the diagonal line, since the forcing error patterns

remembered by LSTM may not generalize well in space (discussed in more detail in sect. 3.2).

Ensembling streamflow simulations from different meteorological forcing datasets
demonstrates certain advantages over the previous approach of simultaneously sending
multiple forcings into a data-driven model like LSTM (Kratzert et al., 2021). Ensembling
LSTM simulations each using a single forcing dataset (LSTM'22) resulted in an NSE value of
0.8082, higher than that of 0.7974 from feeding multiple forcing datasets into a single LSTM
(LST M™% This difference was more pronounced in the cross-model-type ensemble, after
including 6HBV, compared to the previous within-class ensemble, and particularly notable for
the spatial generalization tests (to be discussed in more detail in Sect. 3.2). The corresponding
specific performance metrics are summarized in Tables D1-D5, with seasonal evaluations
provided in Figure D3. These results indicate that the trained LSTM in LSTM™“ may be
overfit to the significant redundant information in these three forcing datasets, and that LSTM
models alone cannot fully exploit the information hidden in the multiple forcing datasets.
Training separate ensemble members via different nonlinear hydrological processes, on the
other hand, seems to allow different bias features to emerge with separate forcing datasets,

accordingly mitigating them during the subsequent ensembling process.
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Figure 4. Spatial distributions of NSE values over 531 basins. Subplots are arranged in rows,
indicating (a) temporal, (b) PUB, and (c) PUR test results, and columns, denoting (1) NSE
values from (LSTM + SHBV)323, and (2) the differences between these NSE values and those
of LSTM? (models using only forcing 1, Daymet). For LSTM?, each NSE value reported was
the average of three NSE values from three simulations using three different random seeds.
The seven continuous regions used to divide up basins for the PUR test are outlined and

numbered in the PUR test maps.

Our most diverse ensemble, (LSTM + §HBV)123, + LSTM™4 achieved a median NSE
value of ~0.83, surpassing the ~0.82 benchmark set by LSTMM™U! (Table D4). This
advancement was achieved through random seed variation and cross-model-type ensembling.
The performance of (LSTM + SHBV)'?3 ensemble proved more robust than LSTM™“ with
only a slight boost when we incorporated random seeds, i.e., (LSTM + SHBV)123,. Notably,

the derived (LSTM + SHBV)123, ensemble outperformed LSTM* across almost all basins
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(Figure 4). Further incorporation of LSTM™" into this framework, especially when using
multiple random seeds, (LSTM + 6HBV)123, + LSTMI4t | yielded the best overall
performance. Here, the margin over the previous benchmark was small in the temporal test.
However, as we will show in sect. 3.2, the previous benchmark, LSTM S"e“e‘é”, lacked robustness,
exhibited greater deficiencies in spatial generalization, and negatively impacted ensemble
simulations.

When we changed the number of random seeds from 3 to 10, we found that although all
model and ensemble performances slightly improved, the gaps between them did not change
much (Figure 5; Table D5 for 10 seeds, Table D4 for 3 seeds). In particular, the gap between
(LSTM + SHBV)123, + LSTM™UYt and (LSTM + 6HBV)!23, or LSTMI“ remained
unchanged. This indicates that the benefits from more random seeds rapidly become marginal,
and our results based on 3 random seeds were sufficiently robust. For LSTMs alone, different
random seeds displayed higher variation, and ensembling them led to greater improvement than
ensembling (LSTM + §HBV)23 with additional random seeds. It was noteworthy that while the
(LSTM + S§HBV)'?3 ensemble generally showed the lowest RMSE values, it did not always
show the best high flow performance, as indicated by highRMSE (Tables D1-D4). After
incorporating the LSTM™Y variant into(LSTM + SHBV)123, + LSTMI™{ overall RMSE
and highRMSE both improved. Nevertheless, this ensemble did not always obtain the best

values in other metrics like low flow (lowRMSE) and requires further improvement.
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Figure 5. Cumulative distribution function (CDF) curves based on temporal test results for
LSTM™W (LSTM + SHBV)'23, and [(LSTM + SHBV)?3 + LSTM™"] | The solid lines
(with “seed”) denote the results with 10 random seeds while the corresponding dashed and
translucent lines denote the performances of their individual members each based on one
random seed. The median NSE values computed with 3 random seeds are also indicated by

vertical dashed and translucent lines in the corresponding colors.

3.2. Spatial generalization

It is clear that cross-model-type ensembling and the incorporation of SHBV significantly
improved prediction in ungauged basins (PUB) or regions (PUR), mitigating the difficulty of
spatial generalization (Figure 2b - 2c). In particular, the previous record-holder for temporal
test performance, LSTM™4! " incurred large drops in the PUB and PUR tests, once again
reminding us of the limitations of LSTM in spatial generalization. Given the same forcings,
OHBV-only individual simulations or ensembles consistently outperformed LSTM-only
counterparts in the PUR test. Furthermore, adding 6HBV to the same-model-type LSTM

ensembles improved median NSE by 0.02-0.03 for PUB. The role of 3HBV became even more
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prominent in the harder PUR tests, with an increased gap (0.04-0.07), e.g., LSTM'?* (median
NSE ~0.656) and (LSTM + §HBV)23 (median NSE ~0.701). The increased significance of
OHBYV is also illustrated by the optimized weights shown in Figure E1, which were estimated
using a genetic algorithm with streamflow observations from the test periods. These weights
are presented solely to illustrate the relative contributions of the different ensemble components.
The significantly different spatial distribution patterns of these weights among different test
scenarios also indicate the differences among temporal, PUB, and PUR tests (Figures E2-E3).
The performance of (LSTM + §HBV)?® improved compared to LSTM™* regardless of
whether multiple random seeds were employed to form an ensemble. As such, we can conclude
that the inclusion of a differentiable process-based model like SHBV in an ensemble is a
systematic way to reduce the risks of failed generalizations of LSTM.

Utilizing a cross-model-type ensemble led to widespread improvements over LSTM-only
ensembles, with the exception of a few scattered basins for each temporal (Figure 4-a2), PUB
(Figure 4-b2), and PUR (Figure 4-c2) test. The most significant improvements due to the
ensemble were concentrated on the center of the Great Plains along with the midwestern US,
while the eastern US was moderately improved, suggesting data uncertainty is a larger issue in
the central and midwestern US. The Great Plains have historically had poor performance for
all kinds of models (Mai et al., 2022) and even the ensemble model had NSE values of only
0.3-0.4 for many of the basins there, although this still marked significant improvements over
LSTM!' (Figure 4-a2, -b2, -c2). Some western basin NSE values were elevated by more than
0.15 for the temporal test (Figure 4-a2) and even more for PUB and PUR. Meteorological
stations are generally sparse on the Great Plains, and an ensemble seems to be an effective way
to leverage the different forcing datasets that are available. The poor performances in some
basins highlight some remaining deficiencies in current models, which clearly cannot fully

consider the heterogeneities of different basins; thus, multiscale formulations that resolve such
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heterogeneities may have advantages (Song et al., 2024a).

To investigate why ensembles outperformed single-model, single-forcing approaches, we
compared their temporal, PUB, and PUR test simulation time series against observations for
531 basins (Figure 6). Analysis of averaged hydrological year data revealed that while
individual ensemble members using single-source forcing datasets performed similarly for
easily simulated periods, they showed significant divergence during challenging periods,
particularly peak flows. This divergence stems from distinct systematic errors inherent to
different model types and forcing datasets. Notably, LSTM-based simulations alone proved
insufficient in generating adequate spread to capture these divergent points. By averaging
individual model outputs and stabilizing uncertainties, ensemble simulations achieved effective
and robust performance across all conditions, which can be shown via the metric highRMSE
and lowRMSE values in Tables D1-D4. This highlights the critical importance of
comprehensive training for each ensemble member, including diverse forcing inputs, full-
period model calibration, and rigorous hyperparameter tuning, to ensure that each member
develops distinct simulation behaviors. These differences allow the ensemble to better
represent a range of hydrological responses, particularly under extreme or uncertain conditions.
By capturing complementary strengths and compensating for individual weaknesses, such
well-trained ensemble members collectively enhance the robustness and accuracy of

streamflow simulations.
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Figure 6. Comparisons between multi-basin-averaged streamflow observations and
simulations across 531 basins. The time series points are displayed at four-day intervals for
clarity and conciseness. Ensemble members based on the same model (LSTM or 6HBYV) but
driven by different forcing datasets are shown in the same color to highlight the differences

between models more clearly.

3.3 Ensemble variability and robustness analysis

Although 6HBV (median spread 0.61) exhibits lower spreads than LSTM (mean spread
0.72), their combination increases the ensemble spreads, thereby enhancing diversity (Figure
7). This pattern holds across the temporal, PUB, and PUR tests. Ensemble effectiveness
depends on the diversity of model behaviors and their distinct error characteristics.
Consequently, larger spreads are generally associated with greater ensemble benefits. Figure

D4 further demonstrates that SHBV+LSTM exhibits larger spreads than LSTM in most basins.
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Figure 7. Spread values (Table C2) of each model for LSTM, 6HBV, and LSTM + 6HBV due

to different meteorological forcings and random seeds across temporal, PUB, and PUR tests.

As the warming signal is already clear across most basins under any forcing across the
periods of simulation (Figure D5), the models’ strong performance in the temporal test suggests
decent extrapolation capability under warming scenarios. It is often questioned whether data-
driven models like LSTM lose accuracy under stronger climate drift, but no substantially
warmed dataset is available to test this. Benchmarks suggest LSTM captures 15-year trends
well in temporal tests, but less so in data-sparse scenarios (Feng et al., 2023b). Introducing a
10% precipitation perturbation (multiplying precipitation by 1.1) slightly reduced performance
for both models as expected (Figures D6a and D6b), but ensemble benefits remained robust
across models despite the perturbation.

Training sample size, dynamic parameter choices, and lookback windows exert only a
limited impact on our conclusions. SHBV shows limited sensitivity to sample size, with similar
results when trained on 531 versus 671 basins (Figure D6c¢). Regarding parameter uncertainties,
fixing one SHBV parameter (k) as static increased structural errors and reduced performance
(Figure D6d), yet ensemble benefits remained robust. For LSTM, alternative window sizes of

182 and 730 days were tested, with the default 365-day window yielding optimal performance
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(Figure D6e). Importantly, variations in the lookback window had only minor effects on model

performance, underscoring the robustness of ensemble benefits.

3.4. Further discussion

Based on our results, we identified several avenues for future research. First, while we
have explored various weighting strategies and found that averaging yields the best
performance yet, we believe that dynamic or adaptive weighting schemes could further enhance
performance in future studies. It is also demonstrated by Table El that estimated uneven
weights can significantly improve simulation performance. Moreover, within specific basins,
the estimated weights of different components are often highly imbalanced, as evidenced by
the spatial distribution of optimized weights (Figures E2-E3). Some potential feasible ways
include using the simulations from these individually-trained models as inputs of a data-driven
model (Solanki et al., 2025), and making the weight estimation and the ensemble member
training simultaneously.

Both LSTM and 8HBV models exhibit limitations in regions with significant
anthropogenic impacts, such as dam presence, as well as arid climatic and highly heterogeneous
geological conditions. These regions are mainly located in the midwestern and western
CONUS, where high evaporation conditions (Heidari et al., 2020) and numerous dams
(Bellmore et al., 2017) coincide with complex water use processes (Wada et al., 2016) that
current models cannot simulate well. Together, these factors suggest that anthropogenic
influence is likely an important driver of poor model performance. Further improvements may
include incorporating additional data that capture these factors like capacity-to-runoff ratio
(Ouyang et al., 2021) or integrating specialized modules, such as reservoirs (Hanazaki et al.,
2022; West et al., 2025). Compared with LSTM, dHBYV is more sensitive to precipitation biases.
For example, the differences between SHBV simulations under different forcing datasets were
generally larger than those for LSTM, and dHBV using the Daymet forcing dataset showed
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largely better performance than with the other two forcing datasets, which indicates that SHBV
may not be able to fit different forcing datasets well. Therefore, many potential structural
optimizations can be implemented to improve SHBV. Our analysis provided corroborating
evidence that forcing error is an important reason why LSTM can outperform SHBV in the
temporal test for some basins, although such patterns may not generalize well in space. A
meteorological forcing data correction module can be developed in the future to account for
timing and magnitude errors in precipitation. Ensemble simulations may face challenges when
computational resources are constrained, particularly for large-scale or real-time applications.
Nevertheless, we remain optimistic about overcoming these challenges due to several
promising solutions. These include tailoring the hydrological model by simplifying less
relevant components to specific simulation objectives (Clark et al., 2015; Kraft et al., 2022)
and cloud-based computing infrastructures that offer scalable, on-demand resource allocation
(He et al., 2024; Leube et al., 2013). Importantly, the majority of computational costs are
incurred during model training. In practice, ensemble members are typically pre-trained by
different research or application groups (Bodnar et al., 2025; Nearing et al., 2024; Song et al.,
2025a), enabling direct reuse of these well-trained models and significantly improving
computational efficiency.

For this work, we did not create a SHBV™!" model (in the same vein as LSTM™!") using
all forcings as an input to a single model, since a similar experiment has already been conducted
by Sawadekar et al. (2025). We also did not examine “seed” combinations of a SHBV™!t a5
we believed they would not result in a significant performance boost (unlike that seen with
LSTM™%) because LSTM has high variability and low bias, while SHBV has lower variance
and potentially higher bias. As a result, random seeds would likely not create large enough
perturbations for SHBV and wouldn’t bring the benefits seen with LSTM™4 . To achieve an

equivalent perturbation level for SHBV, it may be necessary to incorporate multiple distinct

28



556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

hydrological models, such as SAC-SMA, PRMS, and GR4J, similar to the approach
implemented in the Framework for Understanding Structural Errors (FUSE) (Clark et al., 2008).
Work is ongoing to create a combination of a series of differentiable process-based models,
which is expected to produce a further improved ensemble with great interpretability. Given
the success of cross-model-type ensembles shown in this work, we also encourage further

exploration of ensemble simulations involving models with other distinct mechanisms.

4. Summary and conclusions

This study comprehensively analyzes ensemble combinations of two advanced model
types (LSTM and 6HBV), each with distinct mechanisms, for streamflow simulation across
531 basins in the US. Three meteorological forcing datasets (Daymet, NLDAS, and Maurer)
are employed to fully capture the characteristics of the two models. Their applications are also
tested in two distinct ways: (1) by feeding all diverse forcing datasets simultaneously into a
single LSTM model, and (2) by ensembling the outputs of multiple LSTM models, each trained
separately using a single forcing dataset. The performance of ensemble simulations was
evaluated under three distinct testing scenarios (temporal, PUB, and PUR tests), surpassing the
previous highest performances. Our findings enhance the understanding of how to effectively
utilize diverse model types and multi-source datasets to improve streamflow simulations. The
principal conclusions are:

(1) Cross-model-type ensembles (LSTM+3HBV) consistently outperformed single-
model approaches across all test scenarios, setting new performance benchmarks on
the CAMELS dataset. These ensembles demonstrated the complementarity of data-
driven (LSTM) and physics-informed (0HBV) approaches in capturing diverse
hydrological behaviors.

(2) Ensembling models trained on different forcing datasets proved more effective than
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using multiple forcing datasets as simultaneous inputs to a single model. This suggests
that separate training allows each model to capture unique features contained in each
forcing dataset, which can then be effectively leveraged in the ensemble.

(3) oHBYV provided significant benefits to ensemble simulations on spatial generalization.
Ensembling LSTM with S8HBV showed increasing benefits as generalization
challenges increased, from temporal to spatial interpolation (PUB) to spatial
extrapolation (PUR) tests. This underscores the value of physics-informed constraints
in improving model transferability to ungauged basins and regions.

(4) While ensemble methods significantly improved overall performance, they did not
fully mitigate consistent deficiencies in certain challenging areas (e.g., regions with
high dam density or heterogeneous hydrogeological conditions). This indicates areas
for future model development.

These findings have important implications for hydrological modeling and water
resources management. The improved accuracy and spatial generalization of our ensemble
approach can enhance streamflow predictions, benefiting water resources planning and
management, particularly in data-scarce regions. Our results also suggest that future
hydrological model development should focus on combining data-driven and physics-based
approaches to improve model generalizability across diverse conditions. The superior
performance of ensembling models with different forcing datasets over using merged forcings
as a single input highlights the risk of indiscriminately feeding all available data into one data-
driven model. While computational demands certainly require consideration, the potential
improvements in prediction accuracy offer significant value for both research and operational
applications. Future work should focus on refining these ensemble techniques, addressing
model limitations in challenging regions, and exploring ensemble implementation in

operational settings.
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Appendix A: Detailed processes of HBV employed in this study.

The Hydrologiska Byrans Vattenbalansavdelning (HBV) model (Aghakouchak and Habib,
2010; Beck et al., 2020; Bergstrom, 1976, 1992) is a simple yet effective bucket-type
hydrologic model that simulates hydrologic components including snow water equivalent, soil
moisture, groundwater storage, evapotranspiration, quick flow, baseflow, and total streamflow.

In the following, we describe these processes in detail with their corresponding equations.
Uppercase letters denote state variables, while lowercase letters denote parameters. The overall
water balance is expressed as Equation (S1).

EP — AE — Q, = SN + SM + SUZ + SLZ + LAKE (S1)

where EP is effective precipitation, AE is actual evapotranspiration, Q; is total simulated
runoff, SN is snow storage, SM is soil moisture storage, SUZ and SLZ are the upper and lower
groundwater storages, respectively, and LAKE represents lake storage (omitted in this study).
First, effective precipitation (EP) is partitioned into rain (RN) and snow (SN) components
based on the air temperature (7) relative to a threshold temperature (#¢):
RN =EPifT>tt (S2)
SN=EPifT<tt (S3)
Snow (SN) accumulates in the snowpack (SNP), while snowmelt (SNM) happens when T > tt,
which is calculated based on a melt factor (cfin) and the temperature difference (7 - #). The
computed snowmelt (SNM) is constrained by the available snowpack (SNP).
SNM = min[max(cfm - (T —tt),0),SNP] (S4)
The snowmelt (SNM) contributes to meltwater (M W), while the snowpack (SNP) is updated as:
MW = MW + SNM (S5)
SNP = SNP + SN — SNM (S6)
A portion of the meltwater (MW) may refreeze when T < tt, controlled by the refreezing

parameter (cfr):

RFZ = min[max(cfr - cfm - (tt —T),0), MW] (S7)
SNP = SNP + RFZ (S8)
MW = MW — RFZ (S9)

The remaining meltwater (MW) exceeding the snowpack’s liquid water holding capacity (cwh -
SNP) infiltrates into the soil (/F’), with the remainder retained in MW:
IF = max(MW — cwh - SNP,0) (S10)
MW = MW — IF (S11)
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The fraction of soil moisture (SM) relative to the field capacity (fc), raised to the power index

[, modulates shallow seepage (SP) according to the available water (/F' + RN):

SP = (‘jc—l\:)ﬁ (IF + RN) (512)
SM =SM + IF + RN — SP (S13)
Excess soil water above the field capacity contributes to direct infiltration (IF;,):
IF4; = max(SM — fc,0) (S14)
SM = SM — [Fy;, (S15)

Actual evapotranspiration (4E) is estimated as the product of potential evapotranspiration (PE)
and an evapotranspiration coefficient (PEC). The PEC depends on soil moisture storage (SM),
field capacity (fc), a shape parameter (1), and a threshold parameter (/p).

SM \*
PEC = min |1, max 0,( ) (S16)
lp-fc
AE = min(PE - PEC,SM) (S17)
SM = SM — AE (S18)

Capillary rise (CP) from the lower zone (SLZ) replenishes SM, controlled by a coefficient (c)

and constrained by the soil moisture deficit:

SM
CP = min [c .SLZ - (1 —F>,SLZ] (S19)
SM = SM + CP (S20)
SLZ = SLZ — CP (S21)

Recharge from the soil, consisting of shallow seepage (SP) and direct infiltration (/Fy;,.), enters
the upper groundwater zone (SUZ). Water in the upper zone either percolates to the lower
groundwater zone (SLZ) at a constant percolation rate (prc) or contributes to direct runoff (Q)
when the upper zone (SUZ) exceeds a threshold (uz/). Flow from the upper and lower zones is
computed using linear reservoir formulations, with parameters kg, k;, k, controlling the
respective runoff components @y, Q;, Q,. The total simulated streamflow (Q;) is then

computed as the sum of these components.

SUZ = SUZ + SP + IF;, (S22)
PERC = min(prc,SUZ) (S23)
SUZ = SUZ — PERC (S24)

Qo = max[k, - (SUZ — uzl), 0] (S25)
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SUZ = SUZ — Q,

Ql =SUZ'k1

SUZ = SUZ — Q,
SLZ = SLZ + PERC
Qz = SLZ - kz

SLZ = SLZ — Q,

Q:=0Qo+ 0, +0Q;

(S26)
(S27)
(S28)
(S29)
(S30)
(S31)
(S32)

Finally, a routing module (Feng et al., 2022) is used to process Q; to produce the final

streamflow output (Q;). This module with two parameters (6, 6;) assumes a gamma function

for the unit hydrograph and convolves the unit hydrograph with the runoff as,

tmax
0 = f £(5: 0, 0,) - Q¢ — 5)ds
0

§(s:0q,0;) =

b
F(82)0;

t

t0a—1070;

e b

(S33)

(S34)
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Appendix B: Illustrated differences among the three meteorological forcing datasets
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linear scale) of precipitation and temperature across three meteorological forcing datasets.
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657  Figure B2. lllustrated temporal variations of precipitation and temperature in a basin across

658  three meteorological forcing datasets.
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Appendix C: Details of model inputs, ensemble frameworks, and evaluations

Table Cl. Full names for the abbreviations of dynamic data (all but streamflow are “forcings”)

and static basin attributes used as model inputs and outputs. All variables and their values are

provided in the CAMELS dataset (Addor et al., 2017) except for the NLDAS and Maurer daily

temperature extrema, which are from Kratzert et al. (2021). Potential evapotranspiration and

normalized streamflow were calculated in this work, using CAMELS data. The number in

parentheses specifies model usage: 1 denotes use in the LSTM model, and 2 denotes use in the

SHBYV model.
Type Abbreviation Full name Unit
Dynamic prep (1,2) Precipitation mm/day
data Potential evapotranspiration (calculated in
pet (2) this work using the Hargreaves equation mm/day
and CAMELS data)
tmean (2) Mean air temperature °C
tmax (1) Maximum air temperature °C
tmin (1) Minimum air temperature °C
srad (1) Shortwave radiation W/m?
vp (1) Water vapor pressure pa
q_vol Volumetric streamflow ft’/s
Streamflow normalized by basin area
q(1,2) mm/day
(q_vol / area gages2)
Static p_mean (1,2) Mean daily precipitation mm/day
basin pet_mean (1,2) Mean daily potential evapotranspiration mm/day
attributes p_seasonality (2) Seasonality and timing of precipitation -
frac_snow (1,2) Fraction of precipitation falling as snow -
aridity (1.2) Rate of mean values of potential ]
evapotranspiration and precipitation
high prec_freq (1,2) Frequency of high precipitation days days/year
high prec dur (1.2) Average duration of high precipitation days
events
low_prec freq (1,2) Frequency of dry days days/year
low_prec_dur (1,2) Average duration of dry periods days

36




elev_mean (1,2) Catchment mean elevation m
slope mean (1,2) Catchment mean slope m/km
area gages?2 (1,2) Catchment area (GAGES-II estimate) km?

Fraction of catchment area having land
frac_forest (1,2) _ ) -
cover identified as forest
Maximum monthly mean of the leaf area
lai_max (1,2) -
index
Difference between the maximum and
lai_diff (1,2) minimum monthly mean of the leaf area -
index
Maximum monthly mean of the green
gvf max (1,2) _ -
vegetation
Difference between the maximum and
gvf diff (1,2) minimum monthly mean of the green -
vegetation fraction
dom land cover frac | Fraction of the catchment area associated
2) with the dominant land cover
dom land cover (2) Dominant land cover type -
Root depth at 50" percentile, extracted
from a root depth distribution based on the
root_depth 50 (2) _ _ m
International Geosphere-Biosphere
Programme (IGBP) land cover
soil_depth pelletier
a Depth to bedrock m
(1,2)
soil depth_statsgso )
Soil depth m
(1,2)
soil porosity (1,2) Volumetric soil porosity -
soil_conductivity _ o
(1.2) Saturated hydraulic conductivity cm/hr
max_water content )
(12) Maximum water content m

sand_frac (1,2)

Fraction of soil which is sand
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668
669

silt_frac (1,2)

Fraction of soil which is silt

clay frac (1,2)

Fraction of soil which is clay

geol class 1st (2)

Most common geologic class in the

catchment basin

geol class 1st frac

2)

Fraction of the catchment area associated

with its most common geologic class

geol class 2nd (2)

Second most common geologic class in the

catchment basin

geol class 2nd frac

Fraction of the catchment area associated

(2) with its 2nd most common geologic class
carbonate rocks frac | Fraction of the catchment area as carbonate
(1,2) sedimentary rocks
geol porosity (2) Subsurface porosity
geol permeability .
(1.2) Subsurface permeability
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671  Figure Cl. Ensemble frameworks to generate metrics for ensembles named without (solid
672  arrows) and with (dashed arrows) “seed” as a subscript.
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Table C2. Loss function and evaluation metrics.

Statistic Equation* Range Optimal Value
15 (0= $)*
Loss - ) 0.0 to 0.0
ni (oo + €)
n (0; —S.)?
NSE 1- ,‘;1#1)2 -0 to 1.0 1.0
Zi=1(0i - ﬂo)
1= -1+ -1)*+ @ -1
KGE gt _ cvs _ os/us -0 to 1.0 1.0
to’ CVo  0o/ko
n (0, —S;
PBIAS # X 100 -0 t0 o0 0.0
i=10i
1 n
RMSE _Z(O" —5)? 0.0 to o 0.0
n
i=1
1 1 n e
spread _— Z Z(Si’j — lsi)? 0.0 to None
i=1 j=1

* S is a streamflow simulation; O is the corresponding observation; n is the number of total S
or O; € is a numerical stabilizer, with a default value of 0.1, e is the number of ensemble members;
ris the linear Pearson correlation between S and O; [ is the mean bias, and y is the variability
bias. The mean and standard deviation of simulations are denoted as g and dg, respectively,

and Uy and o, are the mean and standard deviation of the observations.
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Appendix D: Additional details on model performance
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Figure DI. Scatter plots comparing the performance differences between hydrological models
for the basins where LSTM outperformed 0HBYV (the basins where 0HBV outperformed are not
shown in this plot). The x-axis represents the NSE differences between LSTM? and SHBV?
(LSTM? - SHBV'?), while the y-axis shows the NSE differences between SHBV 123 and SHBV ?
(SHBV123_ §HBV?). Points are color-coded according to the NSE values of SHBV?. The
correlation coefficient (CORR) and p values between the x-axis values and the y-axis values,

along with the median NSE value of SHBV? (NSE,, .4 ) on these basins, are also noted.
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Figure D2. Scatter plots comparing the performance differences between hydrological models
for the basins where LSTM outperformed 0HBYV (the basins where 0HBV outperformed are not
shown in this plot). The x-axis represents the NSE differences between LSTM? and SHBV 3
(LSTM?3 - HBV3), while the y-axis shows the NSE differences between SHBV 1?3 and SHBV 3
(SHBV123_ §HBV3). Points are color-coded according to the NSE values of SHBV3. The
correlation coefficient (CORR) and p values between the x-axis values and the y-axis values,

along with the median NSE value of SHBV 3 (NSE,.q ) on these basins, are also noted.
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Figure D3. Seasonal comparison of Nash—Sutcliffe efficiency (NSE) values for (LSTM +
SHBV)23, (blue) and LSTMTE (ved) in (a) temporal, (b) PUB, and (c) PUR tests. Each box
represents the distribution of NSE values across 531 basins for a given season (DJF:
December—February, MAM: March—-May, JJA: June—August, SON: September—November).
Vertical dashed lines separate different seasons. (LSTM + SHBV)123, performs better than
LSTMT™E iy most cases, especially during MAM, likely due to differences in snowmelt

representation.
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Figure D4. Spatial distributions of model spread values increase from 6HBV and LSTM to the
LSTM+0HBYV ensemble across temporal, PUB, and PUR tests.
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Figure D5. Boxplot of relative temperature differences between the test and training periods,
calculated as (Test — Training) / Training. Each box represents the distribution of normalized
temperature changes across basins for a specific meteorological forcing dataset: Daymet,
NLDAS, and Maurer. Positive values indicate warming in the test period relative to the training

period.
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Figure D6. Simulation performance (NSE) under the temporal test: (a) LSTM model with and

without a 10% precipitation error (precipitation x 1.1); (b) SHBV model with and without a

10% precipitation error; (c) 0HBV model trained on 671 versus 531 basins, (d) 0HBV model

729
730
731

with 3 versus 2 dynamic parameters, (e) 0HBV model using time steps of 365, 182, and 730

days. Individual and ensemble groups are distinguished along the x-axis. Ensemble benefits

are indicated by the gap between columns of the same color within each panel—columns 1-7

732
733

correspond to individual LSTM or 0HBV groups, and the last two columns correspond to

LSTM+0HBYV ensembles.
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737  Table DI1. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high
738 (highRMSE), and middle (midRMSE) flows based on 531 basins under the temporal test. The

739 values are the mean of three simulations run with different random seeds.

Temporal Number Daymet NLDAS Maurer
NSE 0.735639 | 0.736301 | 0.717337

KGE 0.789375 | 0.782555 | 0.760575

RMSE 1.21088 1.19847 1.27723

LSTM PBIAS 4.04818 5.99486 1.58911
lowRMSE | 0.0596913 | 0.0602381 | 0.0545577

highRMSE [ 2.70508 2.89684 2.97028

midRMSE | 0.196039 | 0.210022 | 0.219922

NSE 0.739688 | 0.71903 | 0.727669

KGE 0.77033 | 0.730753 | 0.762022

RMSE 1.18752 1.26239 1.23193

SHBV PBIAS 5.07898 | -0.14449 | 3.65263
lowRMSE | 0.060906 | 0.063581 | 0.063466

highRMSE | 2.68479 3.13011 2.6845
midRMSE | 0.226595 | 0.245242 | 0.230125
LSTM+3HBV NSE 0.787545 | 0.794053 | 0.790903
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KGE 0.794412 | 0.78383 | 0.786854
RMSE 1.0777 1.0716 1.07141
PBIAS 4.59065 3.33053 3.45501

lowRMSE | 0.059955 | 0.059565 | 0.054838
highRMSE | 2.70216 2.88511 2.69633
midRMSE | 0.20394 | 0.214726 | 0.212514
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743

Table DI (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low

744 (lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the
745  temporal test. The values are the mean of three simulations run with different random seeds.
Temporal Number | Daymet+NLDAS | Daymet+Maurer | NLDAS+Maurer All
NSE 0.781275 0.791158 0.792144 0.808176
KGE 0.800955 0.795026 0.794441 0.803476
RMSE 1.09103 1.06374 1.06701 1.01395
LSTM PBIAS 5.17159 3.34362 4.5305 4.48263
lowRMSE 0.0636155 0.0582563 0.0566306 0.0613625
highRMSE 2.70218 2.71366 2.78962 2.67803
midRMSE 0.194849 0.199809 0.206653 0.197469
NSE 0.786562 0.77012 0.776938 0.794796
KGE 0.773732 0.778557 0.768854 0.77834
RMSE 1.08362 1.12584 1.10875 1.06118
SHBV PBIAS 1.91507 4.28194 2.03584 2.71021
lowRMSE 0.061667 0.060679 0.062765 0.061539
highRMSE 2.93961 2.7394 2.88758 2.84994
midRMSE 0.230576 0.220743 0.230272 0.228375
LSTM+SHBV NSE 0.811825 0.809964 0.811316 0.818907




746

KGE 0.797564 0.797635 0.78735 0.794936
RMSE 1.01938 1.01755 1.0314 1.00067
PBIAS 4.14594 4.23333 3.19652 3.88096

lowRMSE 0.0603 0.058022 0.057882 0.059221
highRMSE 2.775275 2.67122 2.81393 2.70606
midRMSE 0.207637 0.205965 0.213191 0.207905
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Table D2. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high
(highRMSE), and middle (midRMSE) flows based on 531 basins under the PUB test. The values

are the mean of three simulations run with different random seeds.

PUB Number Daymet NLDAS Maurer
NSE 0.702636 | 0.695496 | 0.694156
KGE 0.693998 | 0.677438 0.6909
RMSE 1.31714 1.3394 1.34233
LSTM PBIAS 0.669018 | 0.283106 | 0.936582
lowRMSE | 0.087648 | 0.088393 | 0.086873
highRMSE 4.2852 4.49292 4.16042
midRMSE [ 0.354458 | 0.364921 | 0.368124
NSE 0.706809 | 0.670636 | 0.682998
KGE 0.703137 | 0.66566 | 0.686912
RMSE 1.35541 1.41185 1.37942
OHBV PBIAS 1.49234 | -2.43395 | 0.291966
lowRMSE | 0.0798196 | 0.0808967 | 0.0846775
highRMSE | 4.21648 4.49582 4.18003
midRMSE [ 0.335159 | 0.351271 | 0.356903
LSTM+6HBV NSE 0.74227 | 0.723778 | 0.72202
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KGE 0.715931 | 0.690154 | 0.707292
RMSE 1.24887 1.278 1.26697
PBIAS 1.27863 | -0.599778 | 0.903464
lowRMSE | 0.0816748 | 0.0795686 | 0.0825691
highRMSE | 4.08432 4.23483 3.94929
midRMSE | 0.327459 | 0.33851 [ 0.347169
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Table D2 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low
(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the

PUB test. The values are the mean of three simulations run with different random seeds.

PUB Number | Daymet+NLDAS | Daymet+Maurer | NLDAS+Maurer All
NSE 0.757853 0.749151 0.753136 0.768181
KGE 0.713319 0.720099 0.716497 0.727143
RMSE 1.18251 1.22254 1.19718 1.15026
LSTM PBIAS 0.320396 0.931656 0.766216 0.970047
lowRMSE 0.0875191 0.0864129 0.0835341 0.0874717
highRMSE 4.1296 4.06602 4.17217 4.0061
midRMSE 0.334683 0.349856 0.342819 0.333534
NSE 0.748916 0.734052 0.733955 0.757749
KGE 0.699768 0.714323 0.69436 0.714048
RMSE 1.26852 1.27637 1.27244 1.23229
SHBV PBIAS 0.0446112 1.212 -1.04135 0.201809
lowRMSE 0.0808293 0.0792486 0.0814476 0.0808359
highRMSE 4.19575 3.97788 4.21623 4.07419
midRMSE 0.311826 0.33668 0.339257 0.318165
LSTM+3HBV NSE 0.780625 0.764866 0.767761 0.785833
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KGE 0.719781 0.725373 0.715982 0.723972

RMSE 1.14924 1.17659 1.16881 1.13591

PBIAS 0.186062 0.881644 0.405548 0.565489
lowRMSE 0.0805946 0.0814251 0.0817114 0.0826379
highRMSE 3.97373 3.86834 3.88 3.91692
midRMSE 0.313708 0.324777 0.324089 0.323671
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Table D3. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high
(highRMSE), and middle (midRMSE) flows based on 531 basins under the PUR test. The values

are the mean of three simulations run with different random seeds.

PUR Number Daymet NLDAS Maurer
NSE 0.578365 | 0.546217 | 0.56164

KGE 0.557788 | 0.559986 | 0.567231

RMSE 1.59111 1.63626 1.5833
LSTM PBIAS -0.575328 | -2.77709 | -0.623183
lowRMSE | 0.124837 | 0.118971 | 0.118695

highRMSE | 5.42346 5.38886 5.05212
midRMSE | 0.498133 | 0.498442 | 0.471744

NSE 0.622278 | 0.592306 | 0.59161
KGE 0.638818 | 0.601338 | 0.620877

RMSE 1.57189 1.61191 1.63628

OHBV PBIAS 1.27223 -1.60075 1.62709
lowRMSE | 0.10142 | 0.102975 | 0.101075

highRMSE | 5.07706 5.16093 4.99602
midRMSE | 0.447879 | 0.474516 | 0.439697
LSTM+6HBV NSE 0.644398 | 0.618255 | 0.635444
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KGE 0.627481 | 0.605237 | 0.615883
RMSE 1.46185 1.5153 1.48393
PBIAS -0.269697 | -0.719505 | 0.197859

lowRMSE | 0.105146 | 0.100944 | 0.106272
highRMSE [ 4.95749 4.99478 4.78638
midRMSE | 0.431456 0.4575 0.426126
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Table D3 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low
(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the

PUR test. The values are the mean of three simulations run with different random seeds.

PUR Number | Daymet+NLDAS | Daymet+Maurer | NLDAS+Maurer All

NSE 0.634398 0.636369 0.626939 0.656228

KGE 0.59844 0.600371 0.605007 0.612858

RMSE 1.4434 1.43416 1.43009 1.38042
LSTM PBIAS -0.547128 -0.687947 -0.865748 -0.543918
lowRMSE 0.118989 0.120228 0.115004 0.117728

highRMSE 5.03277 5.02434 4.84415 4.74281

midRMSE 0.462923 0.455257 0.453912 0.449598

NSE 0.672839 0.644732 0.661231 0.684685

KGE 0.653841 0.65646 0.6515 0.66205

RMSE 1.43224 1.50803 1.48604 1.43376

SHBV PBIAS 0.564363 1.55134 -0.156553 0.956961
lowRMSE 0.0975783 0.0984076 0.100773 0.100807

highRMSE 4.83843 4.81176 4.72529 4.71255
midRMSE 0.447828 0.431252 0.433688 0.432018
LSTM+3HBV NSE 0.685032 0.680872 0.679321 0.700814
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KGE 0.638788 0.647826 0.646782 0.649999

RMSE 1.35303 1.3873 1.36795 1.3185

PBIAS -0.0150729 0.406127 -0.135091 -0.0232668
lowRMSE 0.103284 0.101814 0.104528 0.102916
highRMSE 4.80178 4.72583 4.70024 4.70713
midRMSE 0.426819 0.411727 0.41573 0.41081
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768  Table D4. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high
769  (highRMSE), and middle (midRMSE) flows based on 531 basins under the temporal, PUB, and
770 PUR tests of LSTM™"  (LSTM + SHBV)%3 + LSTM™"t
771 (LSTM + SHBV)123,.

their “seed” version, and

Test Metric LSTM™uitt (LSTM + SHBV)™ ,
+ LST MMt
NSE 0.797448 0.82321
KGE 0.811064 0.810248
RMSE 1.05987 0.983168
Temporal | PBIAS 3.95241 4.08594
lowRMSE | 0.056221 0.05702
highRMSE | 2.7089 2.58881
midRMSE | 0.183526 0.192442
NSE 0.750605 0.782727
KGE 0.71469 0.734731
RMSE 1.20586 1.11509
PUB PBIAS 0.475674 0.706777
lowRMSE | 0.0861127 0.0836
highRMSE | 4.13615 3.83009
midRMSE | 0.347562 0.326814




772

PUR

NSE 0.623755 0.68923
KGE 0.593757 0.633971
RMSE 1.47379 1.31221
PBIAS -2.6737 -1.38119
lowRMSE | 0.112434 0.107646
highRMSE | 4.98202 4.59232
midRMSE | 0.501807 0.436811
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773 Table D4 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low
774  (lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the
775  temporal, PUB, and PUR tests of LSTM™Wt (LSTM + SHBV)'23 + LSTM™WE | their “seed”
776  version, and (LSTM + SHBV)123,.

(LSTM + SHBV)'23,
Test Metric (LSTM + SHBV)123, | LSTMT¥H .
+ LSTM ot
NSE 0.821444 0.81992 0.829385
KGE 0.795317 0.82078 0.812581
RMSE 0.99455 1.00908 0.967779
Temporal | PBIAS 3.99009 4.09469 4.08882
lowRMSE 0.059782 0.057346 0.057015
highRMSE 2.7279 2.62815 2.58384
midRMSE 0.209943 0.183656 0.195557
NSE 0.793673 0.781175 0.790921
KGE 0.726188 0.736191 0.739284
RMSE 1.12957 1.13079 1.09176
PUB PBIAS 0.370674 1.13671 0.869057
lowRMSE 0.083423 0.084038 0.085728
highRMSE 3.89363 3.93473 3.79505
midRMSE 0.323045 0.329772 0.325627

60



777

PUR

NSE 0.705154 0.665723 0.701504
KGE 0.651538 0.614649 0.64373
RMSE 1.30377 1.3727 1.2851
PBIAS -0.283645 -2.74069 -1.39149
lowRMSE 0.100525 0.111229 0.108121
highRMSE 4.74889 4.88127 4.58344
midRMSE 0.406797 0.473783 0.432447
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778
779
780
781
782

783

Table D5. Median NSE values based on ten different random seeds during the temporal test.

Each number (1 through 10) represents metric values calculated for an individual simulation

based on only one random seed. “Seed” indicates metric values calculated by averages of these

ten simulations based on different random seeds, while “mean” denotes the average of metrics

from 1-10 individual simulations (visualized in Figure CI).

Number | LSTM™Wti | (LSTM + SHBV)'33 | (LSTM + SHBV)'?3 + LSTM™ulti
1 0.797742 | 0.818436 0.82315
2 0.795312 | 0.820188 0.823559
3 0.799291 | 0.818097 0.822922
4 0.796388 | 0.818251 0.821791
5 0.791192 | 0.818285 0.820132
6 0.795691 | 0.81966 0.823268
7 0.795912 | 0.821511 0.82352
8 0.796625 | 0.81831 0.825204
9 0.794062 | 0.804959 0.816497
10 0.796066 | 0.817122 0.82169
Seed 0.82425 | 0.822528 0.832197
Mean | 0.795828 | 0.817482 0.822173
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784  Appendix E: Intuitive visualization of the relative contributions of ensemble members

785  based on optimized weights
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787  Figure El. Weights of six components across 531 basins, estimated basin-by-basin using a
788  genetic algorithm based on streamflow observations during the test periods. The weights are
789  normalized by the maximum weight within each ensemble group. These weights are used
790  exclusively for qualitatively analyzing the relative contributions of different ensemble members,

791 with higher values indicating larger relative contributions.

792
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Figure E2. Spatial distributions of weights of the LSTM and 0HBV models, estimated by a
genetic algorithm based on streamflow observations during the test periods. The weights are
normalized by the maximum weight within each ensemble group. These weights are used
exclusively for qualitatively analyzing the relative contributions of different ensemble members,

with higher values indicating larger relative contributions.
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Figure E3. Spatial distributions of weights of the Daymet, NLDAS, and Maurer meteorological
forcing datasets, estimated by a genetic algorithm based on streamflow observations during
the test periods. The weights are normalized by the maximum weight within each ensemble
group. These weights are used exclusively for qualitatively analyzing the relative contributions

of different ensemble members, with higher values indicating larger relative contributions.
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810  Table EI. Comparisons of metric values between averaged ensemble simulations and
811  optimized weighted simulations, estimated using a genetic algorithm based on streamflow

812  observations during the test periods. The results highlight the potential for further

813 improvements in ensemble simulations.
814

Temporal Averaged Optimized weighted
NSE 0.821444 0.844303212
KGE 0.795317 0.829996445
RMSE 0.99455 0.920954559

Temporal [PBIAS 3.99009 3.252278013
lowRMSE 0.059782 0.057137161
highRMSE 2.7279 2.451194907
midRMSE 0.209943 0.183127162
NSE 0.793673 0.842396015
KGE 0.726188 0.79571295
RMSE 1.12957 0.987170488

PUB PBIAS 0.370674 1.023040859
lowRMSE 0.0834234 0.079807878
highRMSE 3.89363 3.030715903
midRMSE 0.323045 0.285110115
NSE 0.705154 0.790796063

PUR KGE 0.651538 0.746396324
RMSE 1.30377 1.13058149
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815
816

PBIAS -0.283645 0.273698787
lowRMSE 0.100525 0.093595304
highRMSE 4.74889 3.665495069
midRMSE 0.406797 0.351694421
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Code and data availability
The source codes and datasets utilized in this study are publicly accessible through the

following repositories: The SHBV modeling framework, including all computational scripts

and documentation, is hosted on Zenodo (https://doi.org/10.5281/zenodo.7091334) (Feng et al.,
2023a), with an updated version and comprehensive software release scheduled upon
manuscript acceptance. The implementation of the LSTM architecture is accessible through

Zenodo (https://doi.org/10.5281/zen0do.6326394) (Kratzert et al., 2022). The CAMELS

hydrometeorological dataset, which provides the foundational basin characteristics and time
series data used in our analysis, can be obtained via https://dx.doi.org/10.5065/D6MW2F4D
(Addor et al., 2017; Newman and Clark, 2014). The streamflow simulations produced in this

study can be downloaded at https://doi.org/10.5281/zenodo.16895228 (Li et al., 2025).
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