

1 **Ensembling Differentiable Process-based and Data-driven Models with**  
2 **Diverse Meteorological Forcing Datasets to Advance Streamflow Simulation**

3 Peijun Li<sup>1</sup>, Yalan Song<sup>1</sup>, Ming Pan<sup>2</sup>, Kathryn Lawson<sup>1</sup>, Chaopeng Shen<sup>1</sup>

4 <sup>1</sup>Civil and Environmental Engineering, The Pennsylvania State University, University Park,  
5 PA, USA

6 <sup>2</sup>Center for Western Weather and Water Extremes, Scripps Institution of Oceanography,  
7 University of California San Diego, La Jolla, CA, USA

8 \*Correspondence to: Peijun Li, pql5336@psu.edu; Chaopeng Shen, cshen@engr.psu.edu

9

10

## Abstract

11 Streamflow simulations produced by different hydrological models exhibit distinct  
12 characteristics and can provide valuable information when ensembled. However, few studies  
13 have focused on ensembling simulations from models with significant structural differences  
14 and evaluating them under both temporal and spatial tests. Here we systematically evaluated  
15 and utilized the simulations from two highly different models with great performances: a purely  
16 data-driven long short-term memory (LSTM) network and a physics-informed machine  
17 learning (“differentiable”) HBV (Hydrologiska Byråns Vattenbalansavdelning) model ( $\delta$ HBV).  
18 To effectively display the features of the two models, multiple forcing datasets are employed.  
19 The results show that the simulations of LSTM and  $\delta$ HBV have distinct features and  
20 complement each other well, leading to better Nash-Sutcliffe model efficiency coefficients  
21 (NSE) and improved high-flow and low-flow metrics across all spatiotemporal tests, compared  
22 to within-class ensembles. Ensembling models trained on a single forcing outperformed a  
23 single model using fused forcings, challenging the paradigm of feeding all available data into  
24 a single data-driven model. Most notably,  $\delta$ HBV significantly enhanced spatial interpolation  
25 when incorporated into LSTM, and provided even more prominent benefits for spatial

26 extrapolation where the LSTM-only ensembles degraded significantly, attesting to the value of  
27 the structural constraints in  $\delta$ HBV. These advances set new benchmark records on the well-  
28 known CAMELS (Catchment Attributes and Meteorology for Large-sample Studies)  
29 hydrological dataset, reaching median NSE values of  $\sim 0.83$  for the temporal test (densely  
30 trained scenario),  $\sim 0.79$  for the ungauged basin test (PUB, Prediction in Ungauged Basins),  
31 and  $\sim 0.70$  for the ungauged region test (PUR, Prediction in Ungauged Regions). This study  
32 advances our understanding of how various model types, each with distinct mechanisms, can  
33 be effectively leveraged alongside multi-source datasets across diverse scenarios.

34

35 **Highlights**

36 • Combining LSTM and  $\delta$ HBV with diverse forcings sets new accuracy benchmarks

37 • Ensembling models with one forcing outperforms merging forcings as an input

38 •  $\delta$ HBV and LSTM together always increase NSEs, especially spatial generalization

39 •  $\delta$ HBV provides valuable spatial constraints in the deterministic ensemble simulations

40 •  $\delta$ HBV and LSTM have different error characteristics that can be offset in an ensemble

41

42 **Keywords**

43 Streamflow simulation, differentiable model, deep learning, hybrid modeling, multi-source  
44 fusion

45

46 **1. Introduction**

47 Streamflow, a critical component of the global hydrosphere, profoundly influences both  
48 human society and natural ecosystems (Lins and Slack, 1999). Accurate simulation and  
49 prediction of streamflow yield numerous benefits, including improved flood prevention  
50 strategies (Brunner et al., 2021). Hydrological models serve as indispensable tools for  
51 achieving this objective and can be traditionally categorized into two types: data-driven models  
52 (Feng et al., 2020; Kratzert et al., 2018; Liu et al., 2024; Nearing et al., 2024) and process-  
53 based (or physically-based) models (Newman et al., 2017; Paul et al., 2021). Data-driven  
54 models, exemplified by long short-term memory (LSTM) (Feng et al., 2020; Kratzert et al.,  
55 2018) and transformer (Liu et al., 2024) networks, excel in learning patterns from multi-source  
56 data (Li et al., 2023b, 2024; Liu et al., 2022; Nearing et al., 2024) and generally achieve high  
57 performance. However, they often lack interpretability and may not resolve extreme values  
58 very well (Li et al., 2020a; Song et al., 2025b). Conversely, process-based models, derived

59 deductively from physical laws or conceptualized views of natural systems, offer insights into  
60 internal hydrological processes but may exhibit weaker performance due to structural  
61 inadequacies (Li et al., 2020a, 2022; Zhang et al., 2019).

62 To combine the benefits and counteract the weaknesses of these two kinds of models,  
63 many efforts have been made to incorporate physical constraints and structures into data-driven  
64 models to align with fundamental physical principles, such as mass and water balances (Bandai  
65 and Ghezzehei, 2021; Wang et al., 2020; Xie et al., 2021). The most seamless integration uses  
66 neural networks to provide parameterizations or missing process representations for process-  
67 based models (Aboelyazeed et al., 2023; Bindas et al., 2024; Feng et al., 2022; Jiang et al.,  
68 2020; Kraft et al., 2022; Rahmani et al., 2023; Song et al., 2024b; Tsai et al., 2021). These  
69 differentiable models (Shen et al., 2023) connect (flexible amounts of) prior physical  
70 knowledge to neural networks, and have displayed many advantages, including improved  
71 computational efficiency and prediction of untrained variables (Tsai et al., 2021), spatial  
72 generalization (Feng et al., 2023b), and representation of extremes (Song et al., 2025b).  
73 However, it is also unclear whether current differentiable models, e.g.,  $\delta$ HBV, the  
74 Hydrologiska Byråns Vattenbalansavdelning (HBV) model implemented within a  
75 differentiable framework (Feng et al., 2023b; Ji et al., 2025; Shen et al., 2023; Song et al.,  
76 2025b), have unique bias characteristics that are associated with the process-based parts of their  
77 structures that cannot be reduced once the equations are prescribed.

78 Orthogonal to such efforts are ensemble simulations (Yu et al., 2024), which combine  
79 many members with different biases and uncertainties to mitigate their respective biases in  
80 deterministic predictions. Many previous studies have tried ensemble methods to improve  
81 streamflow (Clark et al., 2016; Zounemat-Kermani et al., 2021) based on many factors, like  
82 initial conditions (e.g., initial weights and biases in LSTM (Kratzert et al., 2018)), data used  
83 for parameterization (Feng et al., 2021), and objective functions (Lin et al., 2024). These

84 studies generally use one model to generate the differences among the ensemble members.  
85 Furthermore, some studies (Dion et al., 2021; Solanki et al., 2025) have utilized simulations  
86 from multiple different models but are limited to process-based models, resulting in ensemble  
87 simulations that are better than each individual member. Thus far, however, most studies have  
88 focused on simulations from only similar models or model types, and little work has tested an  
89 ensemble across the boundary of model types, particularly between data-driven, process-based,  
90 and hybrid models, especially on a large number of samples. Presumably, if each model has its  
91 own unique bias, data-driven and process-based models are likely to exhibit greater differences  
92 due to their inherently distinct characteristics. It remains unclear whether ensembling across  
93 model types should bring benefits to deterministic predictions. Furthermore, grounded in the  
94 process-based model, the differentiable process-based hydrological model, such as  $\delta$ HBV,  
95 significantly enhances performance compared to traditional process-based models, while on  
96 the other hand introducing greater uncertainty regarding its potential benefits when ensembled.  
97 Moreover, previous studies have primarily focused on evaluating ensemble simulations for  
98 temporal predictions. However, streamflow simulation under spatial extrapolation scenarios  
99 presents greater challenges, and findings from temporal tests may not be directly applicable in  
100 this context.

101 It is known that the performance of any type of hydrologic model heavily depends on the  
102 quality of input data, particularly meteorological forcing data (Bell and Moore, 2000; Yao et  
103 al., 2020), and other inputs, like the uncertainties of initial conditions, can be mitigated via  
104 warming up (Yu et al., 2019). While independent forcing datasets excel in certain aspects, they  
105 each carry different error characteristics (Beck et al., 2017; Behnke et al., 2016; Newman et al.,  
106 2019) and accordingly affect the hydrological models in different ways. In order to fully display  
107 the different features between LSTM and  $\delta$ HBV, multiple forcing datasets could be considered.  
108 Given the utilization of multiple forcing datasets, one could choose to use data fusion to

109 combine them into a single coherent model input (Kratzert et al., 2021; Sawadekar et al., 2025),  
110 or to pass each forcing dataset through a model and then afterwards combine the multiple  
111 outputs in an ensemble. It is not clear which approach is more beneficial.

112 Considering the knowledge gaps discussed above, we sought to answer several research  
113 questions:

- 114 1. Will a cross-model-type ensemble of LSTM and  $\delta$ HBV improve deterministic  
115 streamflow prediction more than a within-class ensemble?
- 116 2. Is it better to use multiple forcings in one model or to ensemble multiple models, each  
117 with a different forcing input?
- 118 3. Do process-based equations bring unique value to an ensemble, especially in terms of  
119 spatial generalizability?

120 The remainder of this paper is structured as follows: Sect. 2 outlines the hydrological data  
121 and models used in this study, as well as the experimental design. Results and discussions are  
122 presented in Sect. 3, with conclusions provided in Sect. 4.

123

## 124 **2. Materials and methods**

### 125 2.1. CAMELS hydrologic dataset

126 The Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) dataset  
127 (Addor et al., 2017) is widely employed for hydrological model evaluation and community  
128 benchmarking. The CAMELS dataset encompasses 671 basins distributed across the  
129 conterminous United States, with basin sizes ranging from 1 to 25,800 km<sup>2</sup> (median: 335 km<sup>2</sup>).  
130 This standardized and publicly available dataset serves as a benchmark for evaluating various  
131 hydrological models, with LSTM models trained on this dataset often serving as a reference  
132 point for comparing other models (Kratzert et al., 2021). CAMELS provides basin-scale data,  
133 including streamflow observations and static basin attributes, as well as forcing datasets from

134 three independent sources: Daymet (Thornton et al., 1997), North American Land Data  
135 Assimilation System (NLDAS) (Xia et al., 2012), and Maurer (Maurer et al., 2002). Each of  
136 the three meteorological forcing datasets operates at a daily temporal resolution, encompassing  
137 precipitation, temperature, vapor pressure, and surface radiation variables, with daily  
138 temperature extrema of NLDAS and Maurer supplemented from Kratzert et al. (2021). These  
139 three meteorological forcing datasets have methodological distinctions in spatial resolution,  
140 data generation approaches, and temporal processing (Behnke et al., 2016; Kratzert et al., 2021).  
141 Exemplary plots illustrating the differences among the three meteorological forcing datasets  
142 are provided in Appendix B. These features can lead to dataset-specific error characteristics  
143 and make them valuable for displaying the distinct features of different model types. All model  
144 inputs used in this study are detailed in Table C1.

145

## 146 2.2. Long short-term memory

147 As one kind of deep learning algorithm, long short-term memory (LSTM) (Hochreiter and  
148 Schmidhuber, 1997) has unique structures like hidden states and gates activated by the tanh  
149 and sigmoid functions (Li et al., 2023a), respectively. These features enable LSTM to excel in  
150 streamflow simulation tasks (Feng et al., 2020; Kratzert et al., 2018; Nearing et al., 2024). In  
151 the current benchmark framework, LSTM models are trained using dynamic atmospheric  
152 forcings and static basin attributes as inputs, with streamflow as the target output, making it  
153 perform well in both temporal and spatial tests (Figure 1a). In this work, for cross-group  
154 comparability, we used the LSTM model and its hyperparameters as reported in Kratzert et al.  
155 (2021).

156

## 157 2.3. Differentiable HBV model ( $\delta$ HBV)

158 The Hydrologiska Byråns Vattenbalansavdelning (HBV) model is a parsimonious bucket-

159 type hydrologic model that simulates various hydrological variables, including snow water  
160 equivalent, soil water, groundwater storage, evapotranspiration, quick flow, baseflow, and total  
161 streamflow (Aghakouchak and Habib, 2010; Beck et al., 2020; Bergström, 1976, 1992).  
162 Recently demonstrated differentiable HBV ( $\delta$ HBV) model (Feng et al., 2023b; Ji et al., 2025;  
163 Shen et al., 2023; Song et al., 2024b) incorporates deep neural networks for both regionalized  
164 parameterization and missing process representations within a differentiable programming  
165 framework that supports “end-to-end” training (Figure 1b). This innovation enables  $\delta$ HBV to  
166 effectively learn from data while obeying physical laws, resulting in high-level performance  
167 for streamflow simulations. From the perspective of process-based modeling, LSTM is a  
168 regionalized parameter provider that leverages the autocorrelated nature of its inputs to impose  
169 an implicit spatial constraint on the generated parameters.

170 In this study, we used  $\delta$ HBV1.1p (Song et al., 2024b, 2025b), which is an updated version  
171 of  $\delta$ HBV1.0 (Feng et al., 2022, 2023b). The main improvement is the addition of a capillary  
172 rise module, which enhances the characterization of low flows. Three additional modifications  
173 are included to address high-flow simulation challenges: the use of three dynamic parameters  
174 ( $\gamma$ ,  $\beta$ ,  $k_0$ ) (Song et al., 2025b); the removal of log-transform normalization for precipitation;  
175 and the adoption of the normalized squared-error loss function (Table C2) (Frame et al., 2022;  
176 Kratzert et al., 2021; Song et al., 2025a, b; Wilbrand et al., 2023). We also maintain dynamic  
177 parameters during warm-up periods. Although this provides only marginal benefits and  
178 increases computational costs, it yields a more realistic representation and reduces uncertainties  
179 associated with initial conditions. The basic equations in  $\delta$ HBV are as follows:

$$\theta = LSTM_w(\bar{x}, \bar{A}_{attr}) \quad (1)$$

$$Q = HBV(x, \theta) \quad (2)$$

$$W_{opt} = argmin_w(L(Q, Q^*)) \quad (3)$$

180 where  $\theta$  are the dynamic or static physical parameters,  $w$  denotes the weights and biases of

181 LSTM,  $x$  includes the basin-averaged meteorological forcings, such as precipitation, mean  
182 temperature, and potential evapotranspiration, with  $\bar{x}$  representing their normalized versions.  
183 Similarly,  $\bar{A}_{attr}$  consists of normalized observable basin-averaged attributes, encompassing  
184 basin area, topography, climate, soil texture, land cover, and geology (Table C1). Precipitation  
185 and mean temperature are from CAMELS, while potential evapotranspiration is calculated  
186 using the Hargreaves (1994) method based on maximum and minimum temperatures along  
187 with basin latitudes, all from data described in sect. 2.1.  $Q$  and  $Q^*$  are the streamflow  
188 simulations (model outputs) and observations (as provided in CAMELS), respectively. HBV  
189 is implemented on PyTorch so it is programmatically differentiable: all steps store information  
190 related to gradient calculations during backpropagation, allowing this model to be trained  
191 together with neural networks in an end-to-end fashion. More details about differentiable HBV  
192 can be found in previous studies (Feng et al., 2022; Song et al., 2024b). The details of some  
193 particularly relevant HBV processes are described in Appendix A.

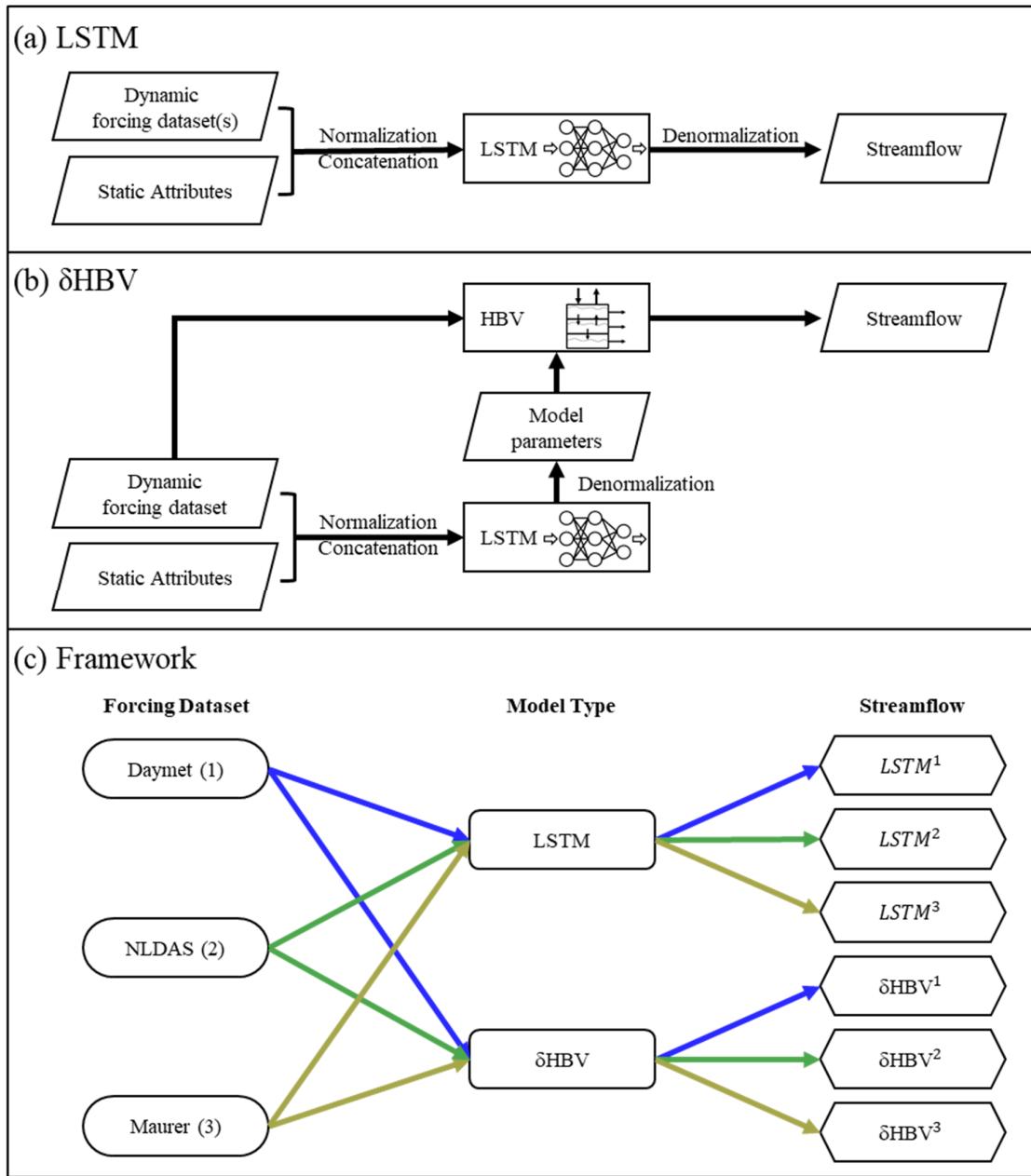
194

#### 195 2.4. Experimental design

196 In this study, we trained the two models of very different types (LSTM and  $\delta$ HBV), each  
197 with one of three meteorological forcing datasets (Daymet, NLDAS, and Maurer), resulting in  
198 six corresponding streamflow simulations (Figure 1c) for each different test scenario (see sect.  
199 2.5 for additional information). The training processes of LSTM and  $\delta$ HBV followed Kratzert  
200 et al. (2021) and Feng et al. (2023b), respectively. Test results and performance metrics for all  
201 models are reported for the 531-basin subset that excludes those with areas larger than 2,000  
202  $\text{km}^2$  or with more than a 10% discrepancy between different basin area calculation methods  
203 (Newman et al., 2017).

204 To generate ensembles, we tested various weighting strategies and ultimately employed  
205 averaging to combine the six single-forcing, single-model-type simulations, as it yielded the

206 best performance. To better describe various combinations including cross-model ensembles,  
207 these simulations were categorized into six groups (Table 1). A shorthand notation is used  
208 throughout the remainder of this work to describe the forcing datasets and ensembles. Daymet,  
209 NLDAS, and Maurer are abbreviated as superscripts 1, 2, and 3, respectively. The + symbol is  
210 used to group model types being ensembled, while superscript clustering (e.g.,  $^{12}$  or  $^{123}$ ) is used  
211 to group the meteorological forcing types being ensembled, with parentheses indicating that  
212 the superscripts apply to all model types within. For example,  $(LSTM + \delta HBV)^{123}$  could be  
213 explicitly written as  $LSTM^1 + LSTM^2 + LSTM^3 + \delta HBV^1 + \delta HBV^2 + \delta HBV^3$ . To compare  
214 two different strategies to utilize the multiple meteorological forcing datasets and to benchmark  
215 against the previously highest performance, we additionally trained a single LSTM model using  
216 all three forcing datasets as simultaneous inputs as done by Kratzert et al. (2021), referred to  
217 as  $LSTM^{multi}$  (the last row in Table 1).



225 *Figure 1. (a) The LSTM structure, (b) the  $\delta$ HBV structure, and (c) the framework to generate*  

226 *the six individual ensemble members of the streamflow simulations, in which different colors*  

227 *of arrow lines denote the different meteorological forcing datasets (also denoted as 1, 2, 3),*  

228 *respectively.*

223 *Table 1. (a) The six groups of streamflow simulations, and (b) the streamflow simulation via*  
 224 *LSTM based on a different strategy, in which three meteorological forcing datasets were*  
 225 *combined as a single set of inputs (Kratzert et al., 2021). Superscripts 1, 2, and 3 denote*  
 226 *Daymet, NLDAS, and Maurer, respectively. The ensemble across forcings (“ef”) superscript*  
 227 *indicates an ensemble of model simulations, each of which uses a different single*  
 228 *meteorological forcing, e.g.,  $LSTM^{12}$  means the average of  $LSTM^1$  and  $LSTM^2$ .*

| <b>(a) Six Groups of Streamflow Simulations</b>                     |                                                                                                                |                                       |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|
| <b>Group Name</b>                                                   | <b>Group Members</b>                                                                                           |                                       |
| LSTM                                                                | $LSTM^1, LSTM^2, LSTM^3$                                                                                       |                                       |
| $\delta HBV$                                                        | $\delta HBV^1, \delta HBV^2, \delta HBV^3$                                                                     |                                       |
| $LSTM + \delta HBV$                                                 | $(LSTM + \delta HBV)^1, (LSTM + \delta HBV)^2, (LSTM + \delta HBV)^3$                                          |                                       |
| $LSTM^{ef}$                                                         | $LSTM^{12}, LSTM^{13}, LSTM^{23}, LSTM^{123}$                                                                  |                                       |
| $\delta HBV^{ef}$                                                   | $\delta HBV^{12}, \delta HBV^{13}, \delta HBV^{23}, \delta HBV^{123},$                                         |                                       |
| $(LSTM + \delta HBV)^{ef}$                                          | $(LSTM + \delta HBV)^{12}, (LSTM + \delta HBV)^{13}, (LSTM + \delta HBV)^{23},$<br>$(LSTM + \delta HBV)^{123}$ |                                       |
| <b>(b) Using forcing datasets as simultaneous inputs to an LSTM</b> |                                                                                                                |                                       |
| <b>Streamflow Simulation</b>                                        | <b>Model Type</b>                                                                                              | <b>Meteorological Forcing Dataset</b> |
| $LSTM^{multi}$                                                      | LSTM                                                                                                           | Daymet, NLDAS, Maurer                 |

229

230

231 2.5. Evaluation scenarios and criteria

232 The above cases were comprehensively evaluated for performance in temporal  
233 extrapolation (Feng et al., 2022; Kratzert et al., 2018), as well as two types of spatial  
234 generalization: prediction in ungauged basins (PUB) (Feng et al., 2023b; Kratzert et al., 2019),  
235 and prediction in ungauged regions (PUR) (Feng et al., 2021, 2023b):

236 • **Temporal Test:** Models were trained using data from all basins and tested across  
237 different periods.

238 • **PUB Test:** Models were trained on randomly selected subsets from all basins and  
239 tested on the remaining basins during the same time period.

240 • **PUR Test:** Different from the PUB test, basins were grouped into continuous regions,  
241 one of which was selected to comprise the group of testing basins while the others  
242 were used for training.

243 Temporal generalization is generally considered to be the easiest of these tests. In terms  
244 of spatial generalization, which approximates data-sparse scenarios, the PUB test is an example  
245 of spatial interpolation, whereas the PUR test involves spatial extrapolation. The PUR test is  
246 widely regarded as the most challenging and may therefore produce findings that differ  
247 significantly from those in other scenarios. In this study, all basins were divided into 10  
248 spatially stratified groups for the PUB test and 7 fully disjoint regional groups for the PUR test  
249 (Table 2) in the same way as Feng et al. (2023b). The spatial extent of the 7 regions for the  
250 PUR test is also shown in Figure 3(c1-c2). Therefore, we conducted 10 rounds for the PUB test  
251 and 7 rounds for the PUR test, with a different group held out for testing in each round. Model  
252 performance was evaluated after concatenating the test results for all basins.

253

254 *Table 2. Differences of temporal, PUB, and PUR tests.*

| Test Scenario | Training                    |                        | Testing              |           |
|---------------|-----------------------------|------------------------|----------------------|-----------|
|               | Basin                       | Time                   | Basin                | Time      |
| Temporal      | All <sup>a</sup>            | 1980-1995 <sup>b</sup> | All                  | 1995-2010 |
| PUB           | Random nine-tenths          | 1980-1999              | Holdout <sup>c</sup> | 1995-1999 |
| PUR           | Random six of seven regions | 1980-1999              | Holdout              | 1995-1999 |

255 <sup>a</sup>*δHBV training followed Feng et al. (2023b) using all 671 CAMELS basins, while LSTM*  
 256 *training followed Kratzert et al (2021) using the selected 531-basin subset. Test results and*  
 257 *performance metrics for all models are reported for the 531 basins.*

258 <sup>b</sup>*Each hydrological year spans from October 1st to September 30th of the following year.*

259 <sup>c</sup>*In the PUB and PUR tests, models are run for 10 and 7 rounds, respectively, with the group*  
 260 *held out for testing changed in each round. The simulation performance was evaluated after*  
 261 *concatenating the test results for all basins.*

262

263       We repeated all the simulations with three different random seeds. Therefore, all the  
 264 simulations come from a total of  $(2 \times 3 + 1) \times (1 + 10 + 7) \times 3$  trained models. The first factor  
 265 represents the models: two model types (LSTM and δHBV) trained separately with each of the  
 266 three forcing datasets, along with *LSTM<sup>multi</sup>*, a single model instance trained using all three  
 267 forcing datasets simultaneously. The second factor accounts for the three types of tests  
 268 (temporal, PUB, and PUR tests), and the last for the three random seeds. With respect to  
 269 random seeds, we present two variations in the results, which are visually depicted in Figure  
 270 C1. The results without “seed” as a subscript represent the average metric values from multiple  
 271 streamflow simulations, each generated from a single model implementation, along with the  
 272 corresponding uncertainties, visualized using error bars. The results marked with “seed” as a  
 273 subscript are based on the average of multiple streamflow simulations conducted with different  
 274 random seeds. In terms of computational cost, training LSTM (30 epochs) and δHBV (50  
 275 epochs) for temporal testing under a single meteorological forcing dataset takes approximately

276 5 and 21 hours, respectively, using a single NVIDIA Tesla V100 GPU.

277 We calculated several well-established performance metrics: Nash-Sutcliffe model  
278 efficiency coefficient (*NSE*) (Nash and Sutcliffe, 1970), Kling-Gupta model efficiency  
279 coefficient (*KGE*) (Kling et al., 2012), percent bias (*PBIAS*), and root-mean-square error  
280 (*RMSE*). We also considered *RMSE* values for high (top 2% “peak” flow, *highRMSE*), low  
281 (bottom 30% “low” flow, *lowRMSE*), and mid-range (the remaining flow, *midRMSE*) flow  
282 conditions (Yilmaz et al., 2008). These metrics were computed for each basin and aggregated  
283 into error bars and cumulative density functions (CDFs). For brevity, the main text primarily  
284 reports *NSE* values, and other metric values are provided in Appendices D and E. Furthermore,  
285 we use the spread values (Li et al., 2021; Reichle and Koster, 2003) to investigate ensemble  
286 variability and explore model complementarity. Detailed descriptions of these metrics and their  
287 calculations are available in Table C2.

288

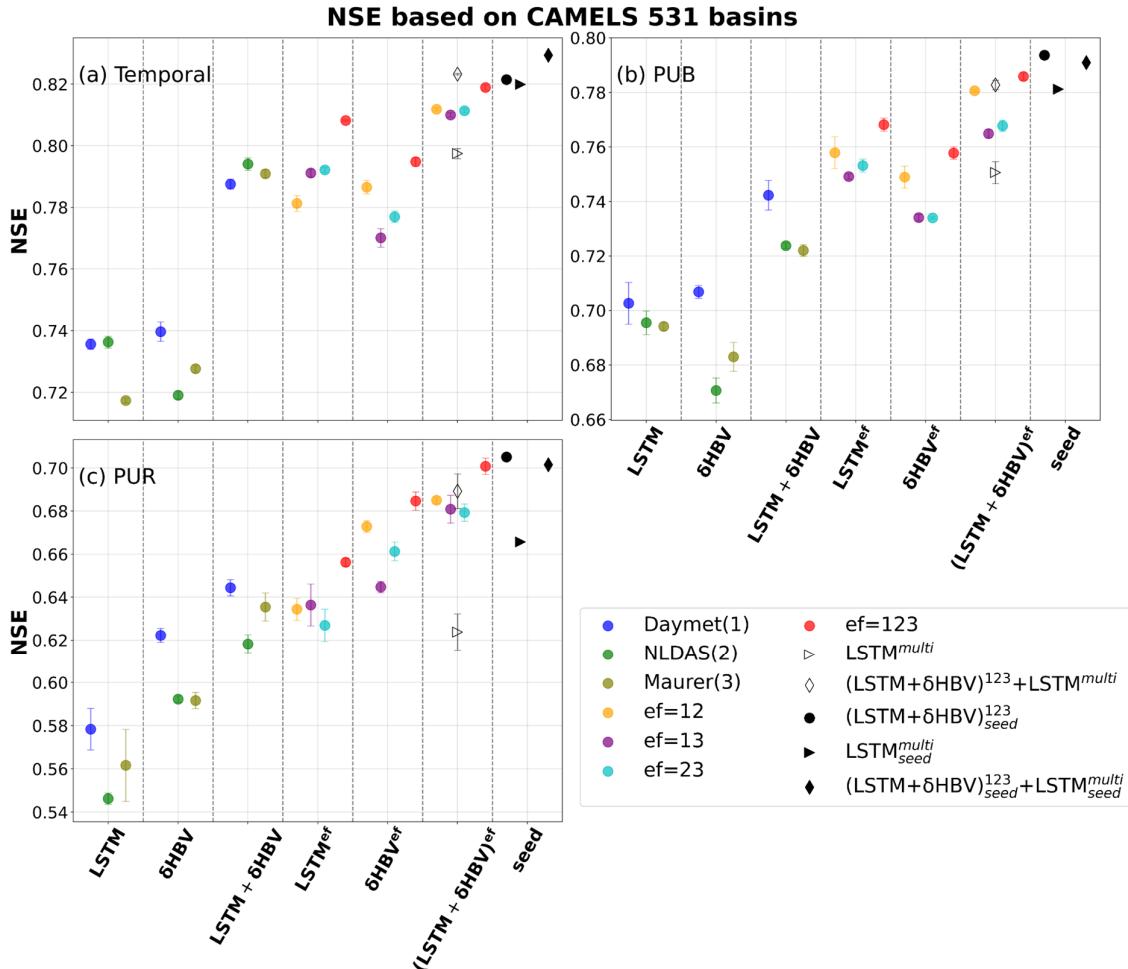
### 289 **3. Results and discussion**

#### 290 3.1. Temporal extrapolation

291 For the temporal test, in which models were trained and tested on the same basins but in  
292 different time periods, we found that cross-model-type ensembles noticeably surpassed the  
293 within-class ensembles when other conditions were the same, with small uncertainties as shown  
294 by the error bars in Figure 2. With a single forcing dataset, the median *NSE* was elevated from  
295 ~0.735 for LSTM to ~0.79 with  $\delta$ HBV added, though  $\delta$ HBV performance was similar to LSTM  
296 (~0.74 under Daymet). Even after LSTM achieved very high performance when its simulations,  
297 each derived separately from different meteorological forcing datasets, were ensembled (ef =  
298 123, ~0.808), adding  $\delta$ HBV still improved the results to ~0.818. This finding was robust for  
299 all different combinations of the tested meteorological forcing datasets. Conversely, adding  
300 LSTM also helped to improve  $\delta$ HBV ensembles. These results highlight the benefits of the

301 cross-model-type ensemble framework and indicate distinct simulation features for each model  
302 type. LSTM is a data-driven method that has low bias and large variance. Data errors (Li et al.,  
303 2020b), different sampling strategies (Nai et al., 2024), or even different weight initializations  
304 (Narkhede et al., 2022) can lead to substantively different outcomes. Conversely,  $\delta$ HBV may  
305 have a smaller variance but a larger bias due to the fixed HBV formulation (Moges et al., 2016)  
306 for some scenarios like low flows (Feng et al., 2023b; Song et al., 2024b) or in basins with  
307 significant water uses (Song et al., 2024a). These errors with varying characteristics from  
308 different model classes can partially offset each other in an ensemble. On a side note,  $\delta$ HBV  
309 models seem more reliant on the quality of the forcing data, as shown in Figure 2.  $\delta$ HBV with  
310 the Maurer and NLDAS forcing datasets generally performs worse than it does with Daymet,  
311 which has lower biases. However, even in those cases, the combination of LSTM and  $\delta$ HBV  
312 was still better than LSTM alone, attesting to the robustness of these benefits.

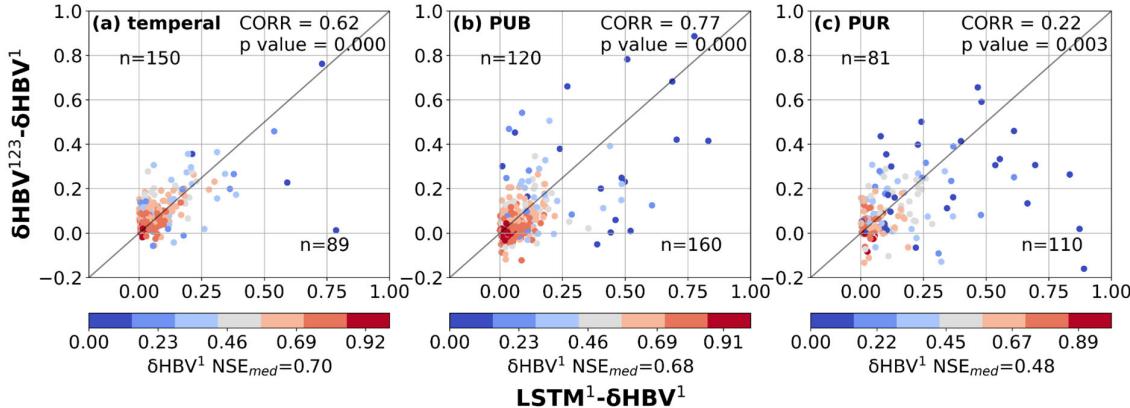
313  
314



315

316 *Figure 2. Median NSE values for 531 CAMELS basins, indicating model and ensemble*  
 317 *performances for (a) temporal, (b) prediction in ungauged basin (PUB), and (c) prediction in*  
 318 *ungauged region (PUR) tests. Different simulations are represented by variously-shaped and*  
 319 *-colored points, and are organized by ensemble group, listed along the x-axis: LSTM, δHBV,*  
 320 *LSTM+δHBV, and their “ensemble forcing” counterparts, LSTM<sup>ef</sup>, δHBV<sup>ef</sup>, and (LSTM +*  
 321 *δHBV)<sup>ef</sup>. LSTM<sup>multi</sup> is a single LSTM model trained directly on all three forcing datasets at*  
 322 *once. The superscript “ef” denotes the forcing datasets involved in each ensemble (choices of*  
 323 *1 for Daymet, 2 for NLDAS, and 3 for Maurer), while the “+” connects the model types used*  
 324 *within an ensemble. The x-axis group and subscript “seed” indicate that simulation results*  
 325 *were averaged based on three different random seeds (see Figure C1). Other points without*  
 326 *“seed”, along with their corresponding error bars, are derived from the averages of metrics*  
 327 *computed over repeated runs with three different random seeds. The error bar indicates one*  
 328 *standard deviation above and below the average value for each simulation.*

329



330

331 *Figure 3. Scatter plots comparing the performance differences between hydrological models*  
 332 *for the basins where LSTM outperformed δHBV (the basins where δHBV outperformed are not*  
 333 *shown in this plot). The x-axis represents the NSE differences between LSTM<sup>1</sup> and δHBV<sup>1</sup>*  
 334 *(LSTM<sup>1</sup> - δHBV<sup>1</sup>), while the y-axis shows the NSE differences between δHBV<sup>123</sup> and δHBV<sup>1</sup>*  
 335 *(δHBV<sup>123</sup> - δHBV<sup>1</sup>). Points are color-coded according to the NSE values of δHBV<sup>1</sup>. The*  
 336 *correlation coefficient (CORR) and p values between the x-axis values and the y-axis values,*  
 337 *along with the median NSE value of δHBV<sup>1</sup> (NSE<sub>med</sub>) on these basins, are also noted. We*  
 338 *note that NSE is not additive and should generally not be subtracted. Here the purpose is only*  
 339 *to confirm that basins where LSTM outperforms δHBV also tend to be those that benefit from*  
 340 *the ensemble of forcings.*

341

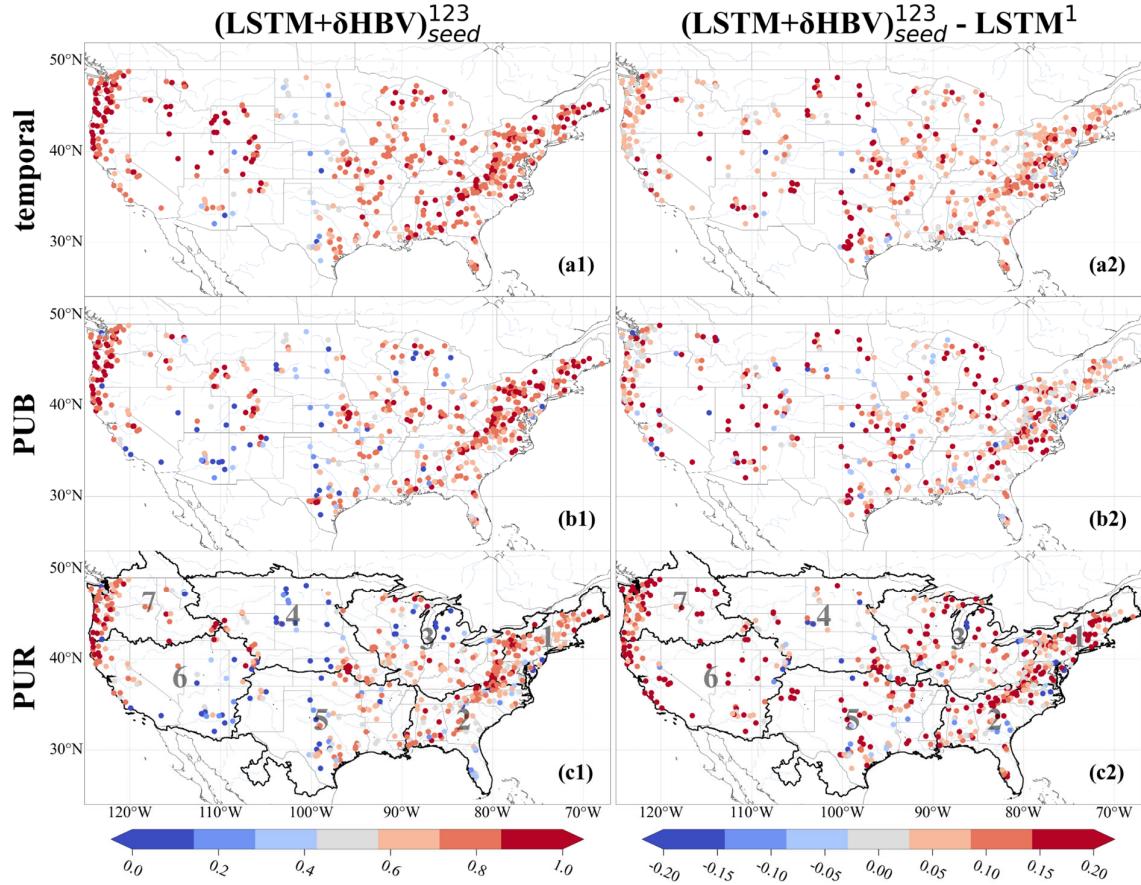
342 In the lower-performing basins where LSTM<sup>1</sup> had advantages over δHBV<sup>1</sup>, the ensemble  
 343 of meteorological forcings δHBV<sup>123</sup> also tended to be higher than δHBV<sup>1</sup> (Figure 3),  
 344 suggesting that forcing quality was a significant reason behind the underperformance of δHBV<sup>1</sup>  
 345 in these basins. Similar patterns were also observed when analyzing δHBV<sup>2</sup> and δHBV<sup>3</sup> values  
 346 (Figure D1 and Figure D2). These basins previously contributed to LSTM's cumulative  
 347 distribution function of NSE diverging from that of δHBV<sup>1</sup> at the low end (Feng et al., 2022).  
 348 Forcing errors can exist in the form of systematic timing errors, low or high bias for larger  
 349 events, etc., which can be difficult for the mass-balanced conceptual HBV<sup>1</sup> structure to adapt  
 350 to these errors. Because the ensemble of forcings tends to suppress the errors in each forcing  
 351 source, part of the advantages of δHBV<sup>123</sup> over δHBV<sup>1</sup> can be attributed to reducing forcing  
 352 bias or timing errors. Since the advantages of LSTM<sup>1</sup> over δHBV<sup>1</sup> also tend to occur with these

353 same basins, this also explains how LSTM<sup>1</sup> surpasses  $\delta$ HBV<sup>1</sup> in some basins with poorer-  
354 quality forcings. In contrast to  $\delta$ HBV, LSTM has the innate ability to shift information in time  
355 and moderately adjust the input scale. Moving from temporal validation to PUB to PUR  
356 scenarios, the advantages of diverse forcing datasets appear to diminish, as evidenced by the  
357 decreasing ratio of points above versus below the diagonal line, since the forcing error patterns  
358 remembered by LSTM may not generalize well in space (discussed in more detail in sect. 3.2).

359

360 Ensembling streamflow simulations from different meteorological forcing datasets  
361 demonstrates certain advantages over the previous approach of simultaneously sending  
362 multiple forcings into a data-driven model like LSTM (Kratzert et al., 2021). Ensembling  
363 LSTM simulations each using a single forcing dataset ( $LSTM^{123}$ ) resulted in an NSE value of  
364 0.8082, higher than that of 0.7974 from feeding multiple forcing datasets into a single LSTM  
365 ( $LSTM^{multi}$ ). This difference was more pronounced in the cross-model-type ensemble, after  
366 including  $\delta$ HBV, compared to the previous within-class ensemble, and particularly notable for  
367 the spatial generalization tests (to be discussed in more detail in Sect. 3.2). The corresponding  
368 specific performance metrics are summarized in Tables D1–D5, with seasonal evaluations  
369 provided in Figure D3. These results indicate that the trained LSTM in  $LSTM^{multi}$  may be  
370 overfit to the significant redundant information in these three forcing datasets, and that LSTM  
371 models alone cannot fully exploit the information hidden in the multiple forcing datasets.  
372 Training separate ensemble members via different nonlinear hydrological processes, on the  
373 other hand, seems to allow different bias features to emerge with separate forcing datasets,  
374 accordingly mitigating them during the subsequent ensembling process.

375



376 *Figure 4. Spatial distributions of NSE values over 531 basins. Subplots are arranged in rows,*  
 377 *indicating (a) temporal, (b) PUB, and (c) PUR test results, and columns, denoting (1) NSE*  
 378 *values from  $(LSTM + \delta HBV)_{seed}^{123}$  and (2) the differences between these NSE values and those*  
 379 *of  $LSTM^1$  (models using only forcing 1, Daymet). For  $LSTM^1$ , each NSE value reported was*  
 380 *the average of three NSE values from three simulations using three different random seeds.*  
 381 *The seven continuous regions used to divide up basins for the PUR test are outlined and*  
 382 *numbered in the PUR test maps.*

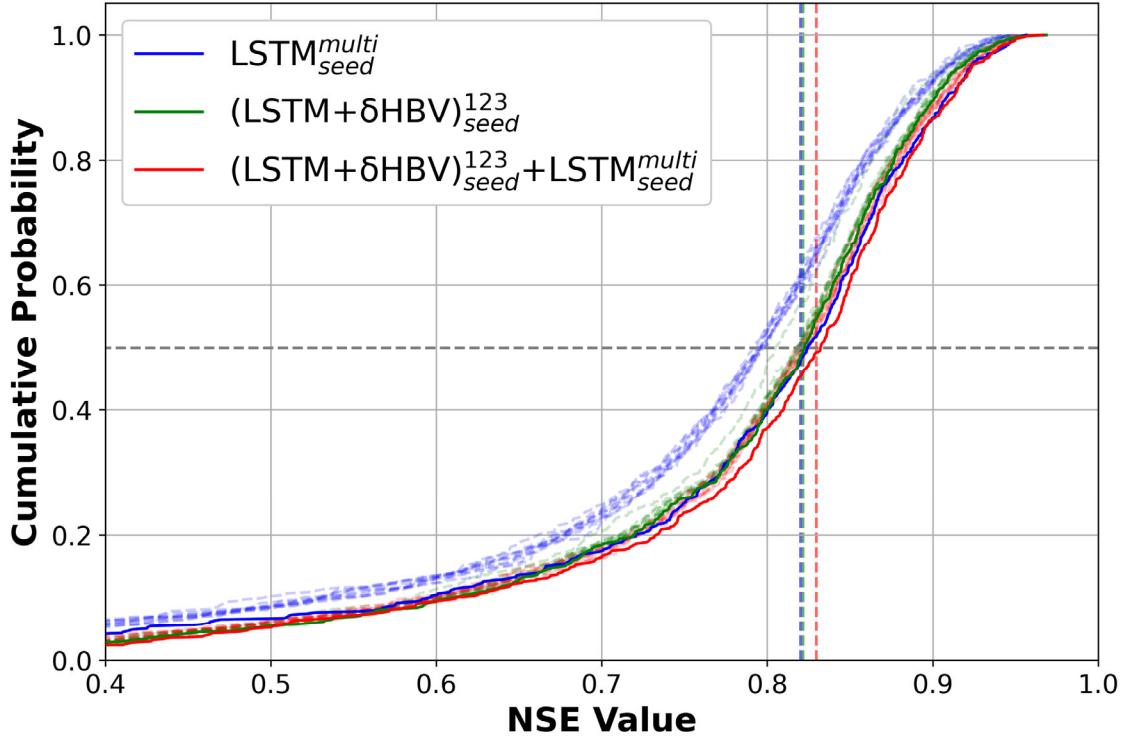
384

385 Our most diverse ensemble,  $(LSTM + \delta HBV)_{seed}^{123} + LSTM_{seed}^{multi}$ , achieved a median NSE  
 386 value of  $\sim 0.83$ , surpassing the  $\sim 0.82$  benchmark set by  $LSTM_{seed}^{multi}$  (Table D4). This  
 387 advancement was achieved through random seed variation and cross-model-type ensembling.  
 388 The performance of  $(LSTM + \delta HBV)^{123}$  ensemble proved more robust than  $LSTM^{multi}$ , with  
 389 only a slight boost when we incorporated random seeds, i.e.,  $(LSTM + \delta HBV)_{seed}^{123}$ . Notably,  
 390 the derived  $(LSTM + \delta HBV)_{seed}^{123}$  ensemble outperformed  $LSTM^1$  across almost all basins

391 (Figure 4). Further incorporation of  $LSTM^{multi}$  into this framework, especially when using  
392 multiple random seeds,  $(LSTM + \delta HBV)_{seed}^{123} + LSTM_{seed}^{multi}$ , yielded the best overall  
393 performance. Here, the margin over the previous benchmark was small in the temporal test.  
394 However, as we will show in sect. 3.2, the previous benchmark,  $LSTM_{seed}^{multi}$ , lacked robustness,  
395 exhibited greater deficiencies in spatial generalization, and negatively impacted ensemble  
396 simulations.

397 When we changed the number of random seeds from 3 to 10, we found that although all  
398 model and ensemble performances slightly improved, the gaps between them did not change  
399 much (Figure 5; Table D5 for 10 seeds, Table D4 for 3 seeds). In particular, the gap between  
400  $(LSTM + \delta HBV)_{seed}^{123} + LSTM_{seed}^{multi}$  and  $(LSTM + \delta HBV)_{seed}^{123}$  or  $LSTM_{seed}^{multi}$  remained  
401 unchanged. This indicates that the benefits from more random seeds rapidly become marginal,  
402 and our results based on 3 random seeds were sufficiently robust. For LSTMs alone, different  
403 random seeds displayed higher variation, and ensembling them led to greater improvement than  
404 ensembling  $(LSTM + \delta HBV)^{123}$  with additional random seeds. It was noteworthy that while the  
405  $(LSTM + \delta HBV)^{123}$  ensemble generally showed the lowest RMSE values, it did not always  
406 show the best high flow performance, as indicated by highRMSE (Tables D1-D4). After  
407 incorporating the  $LSTM_{seed}^{multi}$  variant into  $(LSTM + \delta HBV)_{seed}^{123} + LSTM_{seed}^{multi}$ , overall RMSE  
408 and highRMSE both improved. Nevertheless, this ensemble did not always obtain the best  
409 values in other metrics like low flow (lowRMSE) and requires further improvement.

410



411

412 *Figure 5. Cumulative distribution function (CDF) curves based on temporal test results for*  
 413  *$LSTM^{multi}$ ,  $(LSTM + \delta HBV)^{123}$ , and  $[(LSTM + \delta HBV)^{123} + LSTM^{multi}]$ . The solid lines*  
 414 *(with “seed”) denote the results with 10 random seeds while the corresponding dashed and*  
 415 *translucent lines denote the performances of their individual members each based on one*  
 416 *random seed. The median NSE values computed with 3 random seeds are also indicated by*  
 417 *vertical dashed and translucent lines in the corresponding colors.*

418

### 419 3.2. Spatial generalization

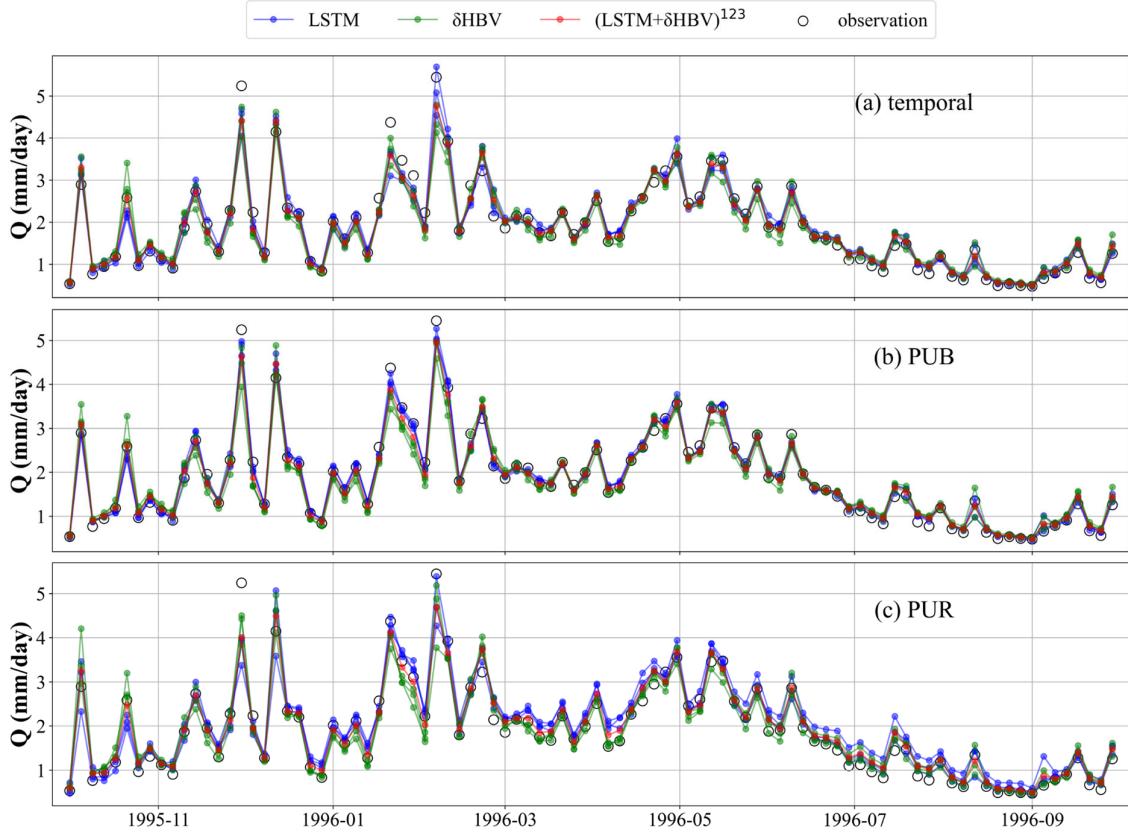
420 It is clear that cross-model-type ensembling and the incorporation of  $\delta HBV$  significantly  
 421 improved prediction in ungauged basins (PUB) or regions (PUR), mitigating the difficulty of  
 422 spatial generalization (Figure 2b - 2c). In particular, the previous record-holder for temporal  
 423 test performance,  $LSTM_{seed}^{multi}$ , incurred large drops in the PUB and PUR tests, once again  
 424 reminding us of the limitations of LSTM in spatial generalization. Given the same forcings,  
 425  $\delta HBV$ -only individual simulations or ensembles consistently outperformed LSTM-only  
 426 counterparts in the PUR test. Furthermore, adding  $\delta HBV$  to the same-model-type LSTM  
 427 ensembles improved median NSE by 0.02-0.03 for PUB. The role of  $\delta HBV$  became even more

428 prominent in the harder PUR tests, with an increased gap (0.04-0.07), e.g., LSTM<sup>123</sup> (median  
429 NSE ~0.656) and  $(LSTM + \delta HBV)^{123}$  (median NSE ~0.701). The increased significance of  
430  $\delta HBV$  is also illustrated by the optimized weights shown in Figure E1, which were estimated  
431 using a genetic algorithm with streamflow observations from the test periods. These weights  
432 are presented solely to illustrate the relative contributions of the different ensemble components.  
433 The significantly different spatial distribution patterns of these weights among different test  
434 scenarios also indicate the differences among temporal, PUB, and PUR tests (Figures E2-E3).  
435 The performance of  $(LSTM + \delta HBV)^{123}$  improved compared to  $LSTM^{multi}$  regardless of  
436 whether multiple random seeds were employed to form an ensemble. As such, we can conclude  
437 that the inclusion of a differentiable process-based model like  $\delta HBV$  in an ensemble is a  
438 systematic way to reduce the risks of failed generalizations of LSTM.

439 Utilizing a cross-model-type ensemble led to widespread improvements over LSTM-only  
440 ensembles, with the exception of a few scattered basins for each temporal (Figure 4-a2), PUB  
441 (Figure 4-b2), and PUR (Figure 4-c2) test. The most significant improvements due to the  
442 ensemble were concentrated on the center of the Great Plains along with the midwestern US,  
443 while the eastern US was moderately improved, suggesting data uncertainty is a larger issue in  
444 the central and midwestern US. The Great Plains have historically had poor performance for  
445 all kinds of models (Mai et al., 2022) and even the ensemble model had NSE values of only  
446 0.3-0.4 for many of the basins there, although this still marked significant improvements over  
447 LSTM<sup>1</sup> (Figure 4-a2, -b2, -c2). Some western basin NSE values were elevated by more than  
448 0.15 for the temporal test (Figure 4-a2) and even more for PUB and PUR. Meteorological  
449 stations are generally sparse on the Great Plains, and an ensemble seems to be an effective way  
450 to leverage the different forcing datasets that are available. The poor performances in some  
451 basins highlight some remaining deficiencies in current models, which clearly cannot fully  
452 consider the heterogeneities of different basins; thus, multiscale formulations that resolve such

453 heterogeneities may have advantages (Song et al., 2024a).

454 To investigate why ensembles outperformed single-model, single-forcing approaches, we  
455 compared their temporal, PUB, and PUR test simulation time series against observations for  
456 531 basins (Figure 6). Analysis of averaged hydrological year data revealed that while  
457 individual ensemble members using single-source forcing datasets performed similarly for  
458 easily simulated periods, they showed significant divergence during challenging periods,  
459 particularly peak flows. This divergence stems from distinct systematic errors inherent to  
460 different model types and forcing datasets. Notably, LSTM-based simulations alone proved  
461 insufficient in generating adequate spread to capture these divergent points. By averaging  
462 individual model outputs and stabilizing uncertainties, ensemble simulations achieved effective  
463 and robust performance across all conditions, which can be shown via the metric highRMSE  
464 and lowRMSE values in Tables D1-D4. This highlights the critical importance of  
465 comprehensive training for each ensemble member, including diverse forcing inputs, full-  
466 period model calibration, and rigorous hyperparameter tuning, to ensure that each member  
467 develops distinct simulation behaviors. These differences allow the ensemble to better  
468 represent a range of hydrological responses, particularly under extreme or uncertain conditions.  
469 By capturing complementary strengths and compensating for individual weaknesses, such  
470 well-trained ensemble members collectively enhance the robustness and accuracy of  
471 streamflow simulations.

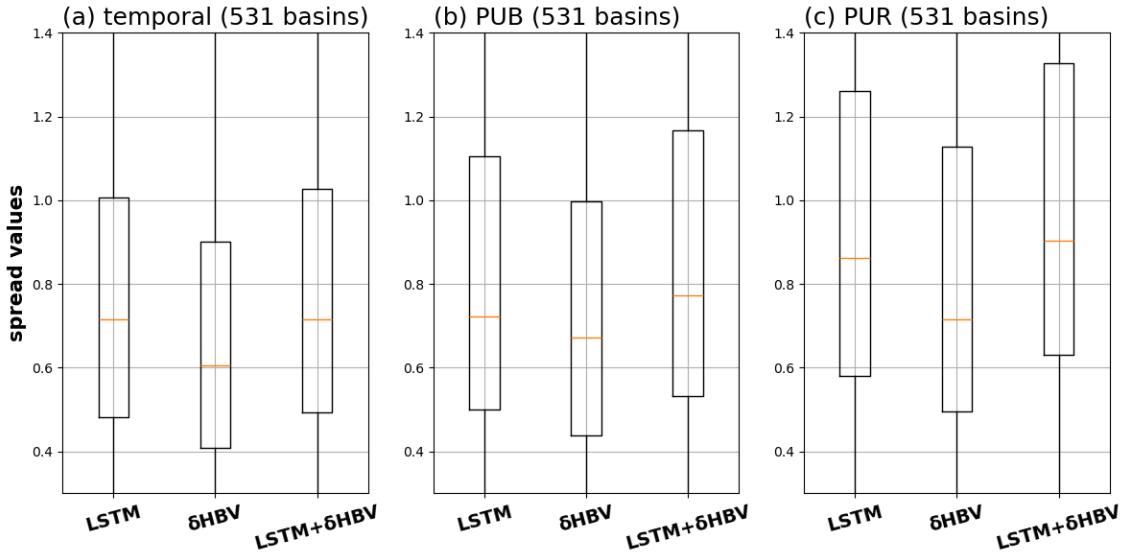


472  
473 *Figure 6. Comparisons between multi-basin-averaged streamflow observations and*  
474 *simulations across 531 basins. The time series points are displayed at four-day intervals for*  
475 *clarity and conciseness. Ensemble members based on the same model (LSTM or δHBV) but*  
476 *driven by different forcing datasets are shown in the same color to highlight the differences*  
477 *between models more clearly.*

478

### 479 3.3 Ensemble variability and robustness analysis

480       Although δHBV (median spread 0.61) exhibits lower spreads than LSTM (mean spread  
481 0.72), their combination increases the ensemble spreads, thereby enhancing diversity (Figure  
482 7). This pattern holds across the temporal, PUB, and PUR tests. Ensemble effectiveness  
483 depends on the diversity of model behaviors and their distinct error characteristics.  
484 Consequently, larger spreads are generally associated with greater ensemble benefits. Figure  
485 D4 further demonstrates that δHBV+LSTM exhibits larger spreads than LSTM in most basins.



486  
487 *Figure 7. Spread values (Table C2) of each model for LSTM,  $\delta$ HBV, and LSTM +  $\delta$ HBV due*  
488 *to different meteorological forcings and random seeds across temporal, PUB, and PUR tests.*

489

490 As the warming signal is already clear across most basins under any forcing across the  
491 periods of simulation (Figure D5), the models' strong performance in the temporal test suggests  
492 decent extrapolation capability under warming scenarios. It is often questioned whether data-  
493 driven models like LSTM lose accuracy under stronger climate drift, but no substantially  
494 warmed dataset is available to test this. Benchmarks suggest LSTM captures 15-year trends  
495 well in temporal tests, but less so in data-sparse scenarios (Feng et al., 2023b). Introducing a  
496 10% precipitation perturbation (multiplying precipitation by 1.1) slightly reduced performance  
497 for both models as expected (Figures D6a and D6b), but ensemble benefits remained robust  
498 across models despite the perturbation.

499 Training sample size, dynamic parameter choices, and lookback windows exert only a  
500 limited impact on our conclusions.  $\delta$ HBV shows limited sensitivity to sample size, with similar  
501 results when trained on 531 versus 671 basins (Figure D6c). Regarding parameter uncertainties,  
502 fixing one  $\delta$ HBV parameter ( $k_0$ ) as static increased structural errors and reduced performance  
503 (Figure D6d), yet ensemble benefits remained robust. For LSTM, alternative window sizes of  
504 182 and 730 days were tested, with the default 365-day window yielding optimal performance

505 (Figure D6e). Importantly, variations in the lookback window had only minor effects on model  
506 performance, underscoring the robustness of ensemble benefits.

507

### 508 3.4. Further discussion

509 Based on our results, we identified several avenues for future research. First, while we  
510 have explored various weighting strategies and found that averaging yields the best  
511 performance yet, we believe that dynamic or adaptive weighting schemes could further enhance  
512 performance in future studies. It is also demonstrated by Table E1 that estimated uneven  
513 weights can significantly improve simulation performance. Moreover, within specific basins,  
514 the estimated weights of different components are often highly imbalanced, as evidenced by  
515 the spatial distribution of optimized weights (Figures E2-E3). Some potential feasible ways  
516 include using the simulations from these individually-trained models as inputs of a data-driven  
517 model (Solanki et al., 2025), and making the weight estimation and the ensemble member  
518 training simultaneously.

519 Both LSTM and  $\delta$ HBV models exhibit limitations in regions with significant  
520 anthropogenic impacts, such as dam presence, as well as arid climatic and highly heterogeneous  
521 geological conditions. These regions are mainly located in the midwestern and western  
522 CONUS, where high evaporation conditions (Heidari et al., 2020) and numerous dams  
523 (Bellmore et al., 2017) coincide with complex water use processes (Wada et al., 2016) that  
524 current models cannot simulate well. Together, these factors suggest that anthropogenic  
525 influence is likely an important driver of poor model performance. Further improvements may  
526 include incorporating additional data that capture these factors like capacity-to-runoff ratio  
527 (Ouyang et al., 2021) or integrating specialized modules, such as reservoirs (Hanazaki et al.,  
528 2022; West et al., 2025). Compared with LSTM,  $\delta$ HBV is more sensitive to precipitation biases.  
529 For example, the differences between  $\delta$ HBV simulations under different forcing datasets were  
530 generally larger than those for LSTM, and  $\delta$ HBV using the Daymet forcing dataset showed

531 largely better performance than with the other two forcing datasets, which indicates that  $\delta$ HBV  
532 may not be able to fit different forcing datasets well. Therefore, many potential structural  
533 optimizations can be implemented to improve  $\delta$ HBV. Our analysis provided corroborating  
534 evidence that forcing error is an important reason why LSTM can outperform  $\delta$ HBV in the  
535 temporal test for some basins, although such patterns may not generalize well in space. A  
536 meteorological forcing data correction module can be developed in the future to account for  
537 timing and magnitude errors in precipitation. Ensemble simulations may face challenges when  
538 computational resources are constrained, particularly for large-scale or real-time applications.  
539 Nevertheless, we remain optimistic about overcoming these challenges due to several  
540 promising solutions. These include tailoring the hydrological model by simplifying less  
541 relevant components to specific simulation objectives (Clark et al., 2015; Kraft et al., 2022)  
542 and cloud-based computing infrastructures that offer scalable, on-demand resource allocation  
543 (He et al., 2024; Leube et al., 2013). Importantly, the majority of computational costs are  
544 incurred during model training. In practice, ensemble members are typically pre-trained by  
545 different research or application groups (Bodnar et al., 2025; Nearing et al., 2024; Song et al.,  
546 2025a), enabling direct reuse of these well-trained models and significantly improving  
547 computational efficiency.

548 For this work, we did not create a  $\delta$ HBV<sup>multi</sup> model (in the same vein as LSTM<sup>multi</sup>) using  
549 all forcings as an input to a single model, since a similar experiment has already been conducted  
550 by Sawadekar et al. (2025). We also did not examine “seed” combinations of a  $\delta$ HBV<sup>multi</sup> as  
551 we believed they would not result in a significant performance boost (unlike that seen with  
552 LSTM<sup>multi</sup>), because LSTM has high variability and low bias, while  $\delta$ HBV has lower variance  
553 and potentially higher bias. As a result, random seeds would likely not create large enough  
554 perturbations for  $\delta$ HBV and wouldn’t bring the benefits seen with  $LSTM_{seed}^{multi}$ . To achieve an  
555 equivalent perturbation level for  $\delta$ HBV, it may be necessary to incorporate multiple distinct

556 hydrological models, such as SAC-SMA, PRMS, and GR4J, similar to the approach  
557 implemented in the Framework for Understanding Structural Errors (FUSE) (Clark et al., 2008).  
558 Work is ongoing to create a combination of a series of differentiable process-based models,  
559 which is expected to produce a further improved ensemble with great interpretability. Given  
560 the success of cross-model-type ensembles shown in this work, we also encourage further  
561 exploration of ensemble simulations involving models with other distinct mechanisms.

562

#### 563 **4. Summary and conclusions**

564 This study comprehensively analyzes ensemble combinations of two advanced model  
565 types (LSTM and  $\delta$ HBV), each with distinct mechanisms, for streamflow simulation across  
566 531 basins in the US. Three meteorological forcing datasets (Daymet, NLDAS, and Maurer)  
567 are employed to fully capture the characteristics of the two models. Their applications are also  
568 tested in two distinct ways: (1) by feeding all diverse forcing datasets simultaneously into a  
569 single LSTM model, and (2) by ensembling the outputs of multiple LSTM models, each trained  
570 separately using a single forcing dataset. The performance of ensemble simulations was  
571 evaluated under three distinct testing scenarios (temporal, PUB, and PUR tests), surpassing the  
572 previous highest performances. Our findings enhance the understanding of how to effectively  
573 utilize diverse model types and multi-source datasets to improve streamflow simulations. The  
574 principal conclusions are:

575 (1) Cross-model-type ensembles (LSTM+ $\delta$ HBV) consistently outperformed single-  
576 model approaches across all test scenarios, setting new performance benchmarks on  
577 the CAMELS dataset. These ensembles demonstrated the complementarity of data-  
578 driven (LSTM) and physics-informed ( $\delta$ HBV) approaches in capturing diverse  
579 hydrological behaviors.

580 (2) Ensembling models trained on different forcing datasets proved more effective than

581 using multiple forcing datasets as simultaneous inputs to a single model. This suggests  
582 that separate training allows each model to capture unique features contained in each  
583 forcing dataset, which can then be effectively leveraged in the ensemble.

584 (3)  $\delta$ HBV provided significant benefits to ensemble simulations on spatial generalization.  
585 Ensembling LSTM with  $\delta$ HBV showed increasing benefits as generalization  
586 challenges increased, from temporal to spatial interpolation (PUB) to spatial  
587 extrapolation (PUR) tests. This underscores the value of physics-informed constraints  
588 in improving model transferability to ungauged basins and regions.

589 (4) While ensemble methods significantly improved overall performance, they did not  
590 fully mitigate consistent deficiencies in certain challenging areas (e.g., regions with  
591 high dam density or heterogeneous hydrogeological conditions). This indicates areas  
592 for future model development.

593 These findings have important implications for hydrological modeling and water  
594 resources management. The improved accuracy and spatial generalization of our ensemble  
595 approach can enhance streamflow predictions, benefiting water resources planning and  
596 management, particularly in data-scarce regions. Our results also suggest that future  
597 hydrological model development should focus on combining data-driven and physics-based  
598 approaches to improve model generalizability across diverse conditions. The superior  
599 performance of ensembling models with different forcing datasets over using merged forcings  
600 as a single input highlights the risk of indiscriminately feeding all available data into one data-  
601 driven model. While computational demands certainly require consideration, the potential  
602 improvements in prediction accuracy offer significant value for both research and operational  
603 applications. Future work should focus on refining these ensemble techniques, addressing  
604 model limitations in challenging regions, and exploring ensemble implementation in  
605 operational settings.

606 **Appendix A: Detailed processes of HBV employed in this study.**

607 The Hydrologiska Byråns Vattenbalansavdelning (HBV) model (Aghakouchak and Habib,  
 608 2010; Beck et al., 2020; Bergström, 1976, 1992) is a simple yet effective bucket-type  
 609 hydrologic model that simulates hydrologic components including snow water equivalent, soil  
 610 moisture, groundwater storage, evapotranspiration, quick flow, baseflow, and total streamflow.

611 In the following, we describe these processes in detail with their corresponding equations.  
 612 Uppercase letters denote state variables, while lowercase letters denote parameters. The overall  
 613 water balance is expressed as Equation (S1).

$$EP - AE - Q_t = SN + SM + SUZ + SLZ + LAKE \quad (S1)$$

614 where  $EP$  is effective precipitation,  $AE$  is actual evapotranspiration,  $Q_t$  is total simulated  
 615 runoff,  $SN$  is snow storage,  $SM$  is soil moisture storage,  $SUZ$  and  $SLZ$  are the upper and lower  
 616 groundwater storages, respectively, and  $LAKE$  represents lake storage (omitted in this study).

617 First, effective precipitation ( $EP$ ) is partitioned into rain ( $RN$ ) and snow ( $SN$ ) components  
 618 based on the air temperature ( $T$ ) relative to a threshold temperature ( $tt$ ):

$$RN = EP \text{ if } T \geq tt \quad (S2)$$

$$SN = EP \text{ if } T < tt \quad (S3)$$

619 Snow ( $SN$ ) accumulates in the snowpack ( $SNP$ ), while snowmelt ( $SNM$ ) happens when  $T \geq tt$ ,  
 620 which is calculated based on a melt factor ( $cfm$ ) and the temperature difference ( $T - tt$ ). The  
 621 computed snowmelt ( $SNM$ ) is constrained by the available snowpack ( $SNP$ ).

$$SNM = \min[\max(cfm \cdot (T - tt), 0), SNP] \quad (S4)$$

622 The snowmelt ( $SNM$ ) contributes to meltwater ( $MW$ ), while the snowpack ( $SNP$ ) is updated as:

$$MW = MW + SNM \quad (S5)$$

$$SNP = SNP + SN - SNM \quad (S6)$$

623 A portion of the meltwater ( $MW$ ) may refreeze when  $T < tt$ , controlled by the refreezing  
 624 parameter ( $cfr$ ):

$$RFZ = \min[\max(cfr \cdot cfm \cdot (tt - T), 0), MW] \quad (S7)$$

$$SNP = SNP + RFZ \quad (S8)$$

$$MW = MW - RFZ \quad (S9)$$

625 The remaining meltwater ( $MW$ ) exceeding the snowpack's liquid water holding capacity ( $cwh \cdot$   
 626  $SNP$ ) infiltrates into the soil ( $IF$ ), with the remainder retained in  $MW$ :

$$IF = \max(MW - cwh \cdot SNP, 0) \quad (S10)$$

$$MW = MW - IF \quad (S11)$$

627 The fraction of soil moisture ( $SM$ ) relative to the field capacity ( $fc$ ), raised to the power index  
 628  $\beta$ , modulates shallow seepage ( $SP$ ) according to the available water ( $IF + RN$ ):

$$SP = \left( \frac{SM}{fc} \right)^\beta (IF + RN) \quad (S12)$$

$$SM = SM + IF + RN - SP \quad (S13)$$

629 Excess soil water above the field capacity contributes to direct infiltration ( $IF_{dir}$ ):

$$IF_{dir} = \max(SM - fc, 0) \quad (S14)$$

$$SM = SM - IF_{dir} \quad (S15)$$

630 Actual evapotranspiration ( $AE$ ) is estimated as the product of potential evapotranspiration ( $PE$ )  
 631 and an evapotranspiration coefficient ( $PEC$ ). The  $PEC$  depends on soil moisture storage ( $SM$ ),  
 632 field capacity ( $fc$ ), a shape parameter ( $\lambda$ ), and a threshold parameter ( $lp$ ).

$$PEC = \min \left[ 1, \max \left( 0, \left( \frac{SM}{lp \cdot fc} \right)^\lambda \right) \right] \quad (S16)$$

$$AE = \min(PE \cdot PEC, SM) \quad (S17)$$

$$SM = SM - AE \quad (S18)$$

633 Capillary rise ( $CP$ ) from the lower zone ( $SLZ$ ) replenishes  $SM$ , controlled by a coefficient ( $c$ )  
 634 and constrained by the soil moisture deficit:

$$CP = \min \left[ c \cdot SLZ \cdot \left( 1 - \frac{SM}{fc} \right), SLZ \right] \quad (S19)$$

$$SM = SM + CP \quad (S20)$$

$$SLZ = SLZ - CP \quad (S21)$$

635 Recharge from the soil, consisting of shallow seepage ( $SP$ ) and direct infiltration ( $IF_{dir}$ ), enters  
 636 the upper groundwater zone ( $SUZ$ ). Water in the upper zone either percolates to the lower  
 637 groundwater zone ( $SLZ$ ) at a constant percolation rate ( $prc$ ) or contributes to direct runoff ( $Q_0$ )  
 638 when the upper zone ( $SUZ$ ) exceeds a threshold ( $uzl$ ). Flow from the upper and lower zones is  
 639 computed using linear reservoir formulations, with parameters  $k_0$ ,  $k_1$ ,  $k_2$  controlling the  
 640 respective runoff components  $Q_0$ ,  $Q_1$ ,  $Q_2$ . The total simulated streamflow ( $Q_t$ ) is then  
 641 computed as the sum of these components.

$$SUZ = SUZ + SP + IF_{dir} \quad (S22)$$

$$PERC = \min(prc, SUZ) \quad (S23)$$

$$SUZ = SUZ - PERC \quad (S24)$$

$$Q_0 = \max[k_0 \cdot (SUZ - uzl), 0] \quad (S25)$$

$$SUZ = SUZ - Q_0 \quad (S26)$$

$$Q_1 = SUZ \cdot k_1 \quad (S27)$$

$$SUZ = SUZ - Q_1 \quad (S28)$$

$$SLZ = SLZ + PERC \quad (S29)$$

$$Q_2 = SLZ \cdot k_2 \quad (S30)$$

$$SLZ = SLZ - Q_2 \quad (S31)$$

$$Q_t = Q_0 + Q_1 + Q_2 \quad (S32)$$

642

643 Finally, a routing module (Feng et al., 2022) is used to process  $Q_t$  to produce the final  
 644 streamflow output ( $Q_t^*$ ). This module with two parameters ( $\theta_\alpha, \theta_\tau$ ) assumes a gamma function  
 645 for the unit hydrograph and convolves the unit hydrograph with the runoff as,

646

$$Q_t^* = \int_0^{t_{max}} \xi(s: \theta_\alpha, \theta_\tau) \cdot Q(t-s) ds \quad (S33)$$

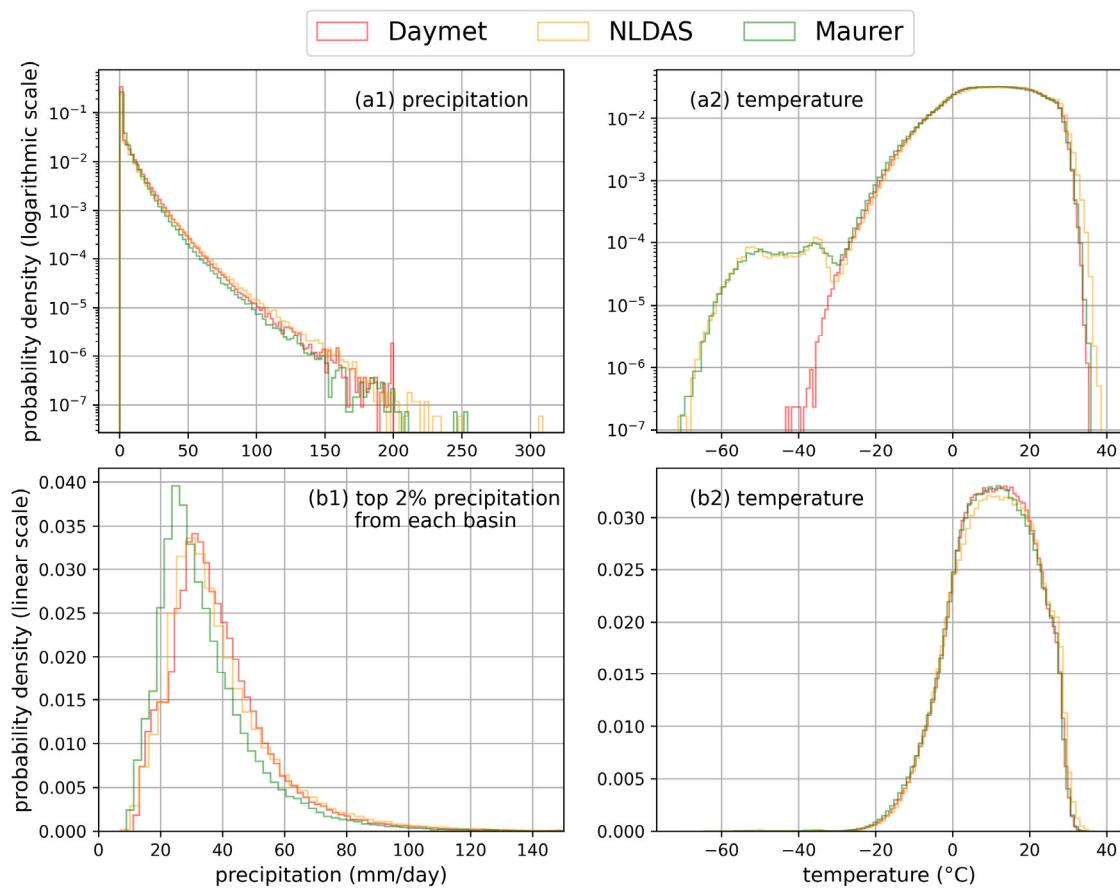
$$\xi(s: \theta_\alpha, \theta_\tau) = \frac{1}{\Gamma(\theta_\alpha)\theta_\tau^{\theta_\alpha}} t^{\theta_\alpha-1} e^{-\frac{t}{\theta_\tau}} \quad (S34)$$

647

648

649

650 **Appendix B: Illustrated differences among the three meteorological forcing datasets**

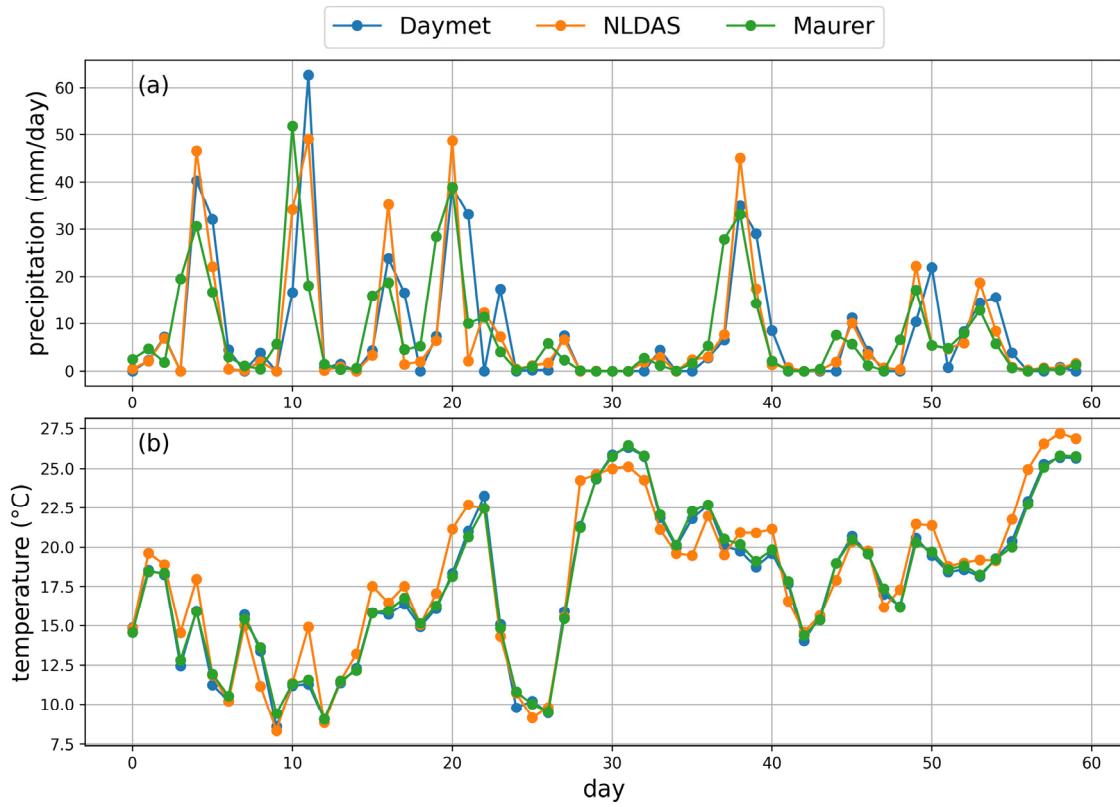


651

652 *Figure B1. Probability density distributions (top panel in logarithmic scale, bottom panel in*  
 653 *linear scale) of precipitation and temperature across three meteorological forcing datasets.*

654

655



656

657 *Figure B2. Illustrated temporal variations of precipitation and temperature in a basin across*  
 658 *three meteorological forcing datasets.*

659

660 **Appendix C: Details of model inputs, ensemble frameworks, and evaluations**

661 *Table C1. Full names for the abbreviations of dynamic data (all but streamflow are “forcings”) and static basin attributes used as model inputs and outputs. All variables and their values are*  
 662 *provided in the CAMELS dataset (Addor et al., 2017) except for the NLDAS and Maurer daily*  
 663 *temperature extrema, which are from Kratzert et al. (2021). Potential evapotranspiration and*  
 664 *normalized streamflow were calculated in this work, using CAMELS data. The number in*  
 665 *parentheses specifies model usage: 1 denotes use in the LSTM model, and 2 denotes use in the*  
 666 *δHBV model.*

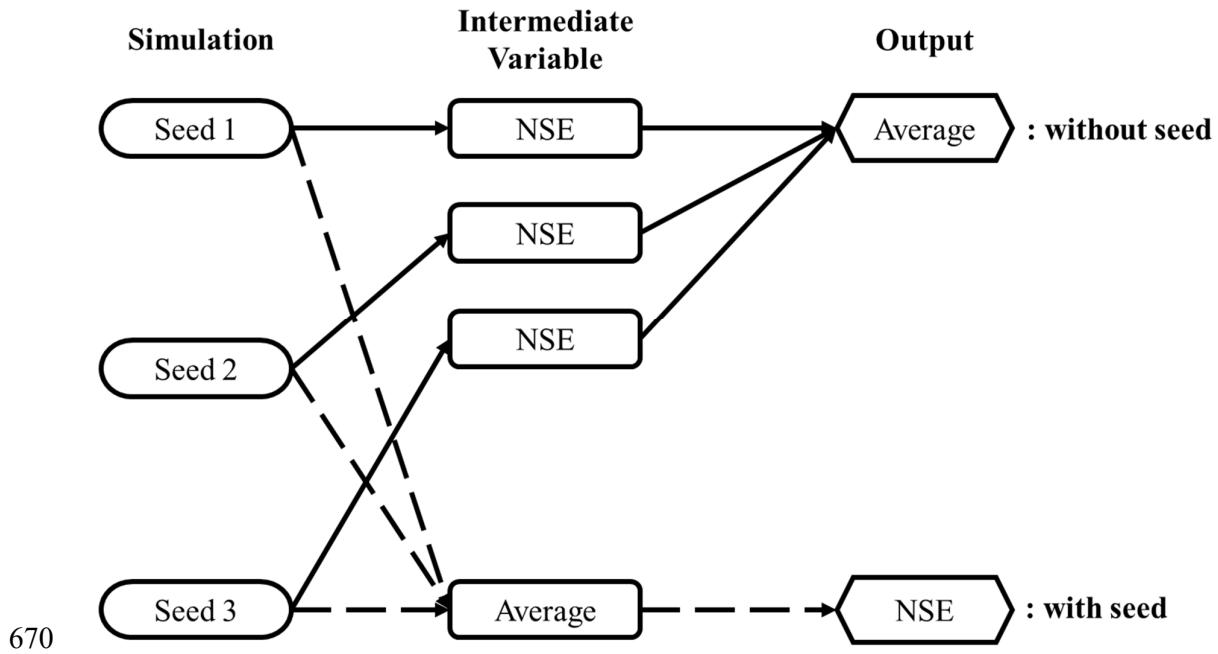
| Type                    | Abbreviation         | Full name                                                                                            | Unit               |
|-------------------------|----------------------|------------------------------------------------------------------------------------------------------|--------------------|
| Dynamic data            | prcp (1,2)           | Precipitation                                                                                        | mm/day             |
|                         | pet (2)              | Potential evapotranspiration (calculated in this work using the Hargreaves equation and CAMELS data) | mm/day             |
|                         | tmean (2)            | Mean air temperature                                                                                 | °C                 |
|                         | tmax (1)             | Maximum air temperature                                                                              | °C                 |
|                         | tmin (1)             | Minimum air temperature                                                                              | °C                 |
|                         | srad (1)             | Shortwave radiation                                                                                  | W/m <sup>2</sup>   |
|                         | vp (1)               | Water vapor pressure                                                                                 | pa                 |
|                         | q_vol                | Volumetric streamflow                                                                                | ft <sup>3</sup> /s |
| Static basin attributes | q (1,2)              | Streamflow normalized by basin area (q_vol / area_gages2)                                            | mm/day             |
|                         | p_mean (1,2)         | Mean daily precipitation                                                                             | mm/day             |
|                         | pet_mean (1,2)       | Mean daily potential evapotranspiration                                                              | mm/day             |
|                         | p_seasonality (2)    | Seasonality and timing of precipitation                                                              | -                  |
|                         | frac_snow (1,2)      | Fraction of precipitation falling as snow                                                            | -                  |
|                         | aridity (1,2)        | Rate of mean values of potential evapotranspiration and precipitation                                | -                  |
|                         | high_prec_freq (1,2) | Frequency of high precipitation days                                                                 | days/year          |
|                         | high_prec_dur (1,2)  | Average duration of high precipitation events                                                        | days               |
|                         | low_prec_freq (1,2)  | Frequency of dry days                                                                                | days/year          |
|                         | low_prec_dur (1,2)   | Average duration of dry periods                                                                      | days               |

|                            |                                                                                                                                                                |                 |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| elev_mean (1,2)            | Catchment mean elevation                                                                                                                                       | m               |
| slope_mean (1,2)           | Catchment mean slope                                                                                                                                           | m/km            |
| area_gages2 (1,2)          | Catchment area (GAGES-II estimate)                                                                                                                             | km <sup>2</sup> |
| frac_forest (1,2)          | Fraction of catchment area having land cover identified as forest                                                                                              | -               |
| lai_max (1,2)              | Maximum monthly mean of the leaf area index                                                                                                                    | -               |
| lai_diff (1,2)             | Difference between the maximum and minimum monthly mean of the leaf area index                                                                                 | -               |
| gvf_max (1,2)              | Maximum monthly mean of the green vegetation                                                                                                                   | -               |
| gvf_diff (1,2)             | Difference between the maximum and minimum monthly mean of the green vegetation fraction                                                                       | -               |
| dom_land_cover_frac (2)    | Fraction of the catchment area associated with the dominant land cover                                                                                         | -               |
| dom_land_cover (2)         | Dominant land cover type                                                                                                                                       | -               |
| root_depth_50 (2)          | Root depth at 50 <sup>th</sup> percentile, extracted from a root depth distribution based on the International Geosphere-Biosphere Programme (IGBP) land cover | m               |
| soil_depth_pelletier (1,2) | Depth to bedrock                                                                                                                                               | m               |
| soil_depth_statgso (1,2)   | Soil depth                                                                                                                                                     | m               |
| soil_porosity (1,2)        | Volumetric soil porosity                                                                                                                                       | -               |
| soil_conductivity (1,2)    | Saturated hydraulic conductivity                                                                                                                               | cm/hr           |
| max_water_content (1,2)    | Maximum water content                                                                                                                                          | m               |
| sand_frac (1,2)            | Fraction of soil which is sand                                                                                                                                 | -               |

|  |                            |                                                                                   |                |
|--|----------------------------|-----------------------------------------------------------------------------------|----------------|
|  | silt_frac (1,2)            | Fraction of soil which is silt                                                    | -              |
|  | clay_frac (1,2)            | Fraction of soil which is clay                                                    | -              |
|  | geol_class_1st (2)         | Most common geologic class in the catchment basin                                 | -              |
|  | geol_class_1st_frac (2)    | Fraction of the catchment area associated with its most common geologic class     | -              |
|  | geol_class_2nd (2)         | Second most common geologic class in the catchment basin                          | -              |
|  | geol_class_2nd_frac (2)    | Fraction of the catchment area associated with its 2nd most common geologic class | -              |
|  | carbonate_rocks_frac (1,2) | Fraction of the catchment area as carbonate sedimentary rocks                     | -              |
|  | geol_porosity (2)          | Subsurface porosity                                                               | -              |
|  | geol_permeability (1,2)    | Subsurface permeability                                                           | m <sup>2</sup> |

668

669



671 *Figure C1. Ensemble frameworks to generate metrics for ensembles named without (solid  
672 arrows) and with (dashed arrows) "seed" as a subscript.*

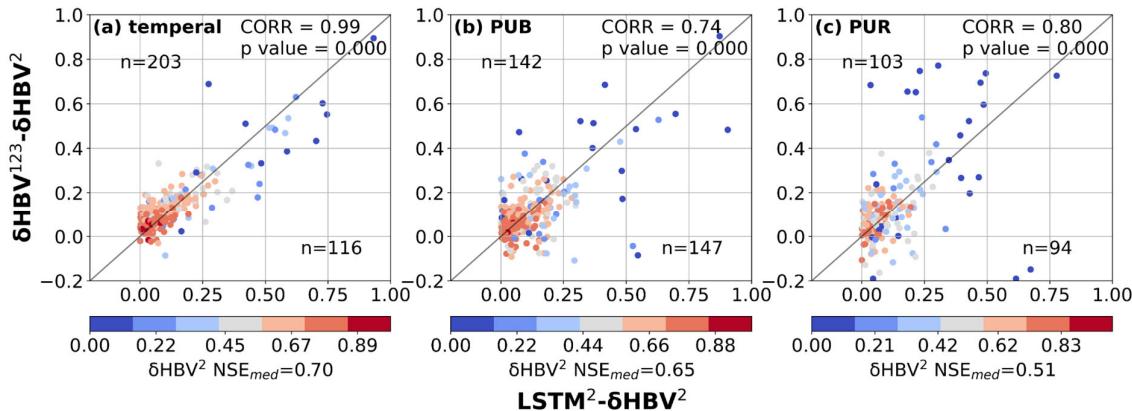
673 Table C2. Loss function and evaluation metrics.

| Statistic | Equation*                                                                                                                                                     | Range                 | Optimal Value |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|
| Loss      | $\frac{1}{n} \sum_{i=1}^n \frac{(O_i - S_i)^2}{(\sigma_o + \epsilon)^2}$                                                                                      | 0.0 to $\infty$       | 0.0           |
| NSE       | $1 - \frac{\sum_{i=1}^n (O_i - S_i)^2}{\sum_{i=1}^n (O_i - \mu_o)^2}$                                                                                         | $-\infty$ to 1.0      | 1.0           |
| KGE       | $1 - \sqrt{(r - 1)^2 + (\beta - 1)^2 + (\gamma - 1)^2},$<br>$\beta = \frac{\mu_S}{\mu_O}, \gamma = \frac{CV_S}{CV_O} = \frac{\sigma_S/\mu_S}{\sigma_O/\mu_O}$ | $-\infty$ to 1.0      | 1.0           |
| PBIAS     | $\frac{\sum_{i=1}^n (O_i - S_i)}{\sum_{i=1}^n O_i} \times 100$                                                                                                | $-\infty$ to $\infty$ | 0.0           |
| RMSE      | $\sqrt{\frac{1}{n} \sum_{i=1}^n (O_i - S_i)^2}$                                                                                                               | 0.0 to $\infty$       | 0.0           |
| spread    | $\sqrt{\frac{1}{n} \frac{1}{e} \sum_{i=1}^n \sum_{j=1}^e (S_{i,j} - \mu_{S,i})^2}$                                                                            | 0.0 to $\infty$       | None          |

674 \*  $S$  is a streamflow simulation;  $O$  is the corresponding observation;  $n$  is the number of total  $S$   
675 or  $O$ ;  $\epsilon$  is a numerical stabilizer, with a default value of 0.1;  $e$  is the number of ensemble members;  
676  $r$  is the linear Pearson correlation between  $S$  and  $O$ ;  $\beta$  is the mean bias; and  $\gamma$  is the variability  
677 bias. The mean and standard deviation of simulations are denoted as  $\mu_S$  and  $\sigma_S$ , respectively,  
678 and  $\mu_O$  and  $\sigma_O$  are the mean and standard deviation of the observations.

679 **Appendix D: Additional details on model performance**

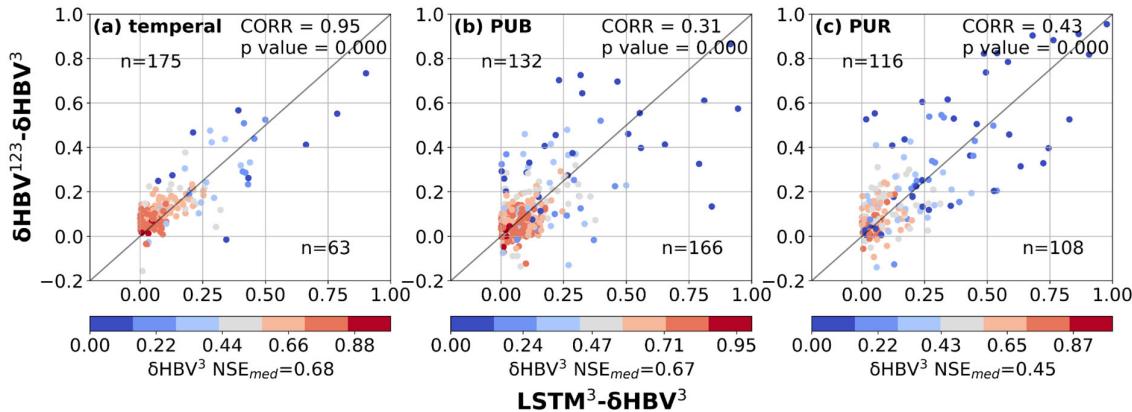
680



681

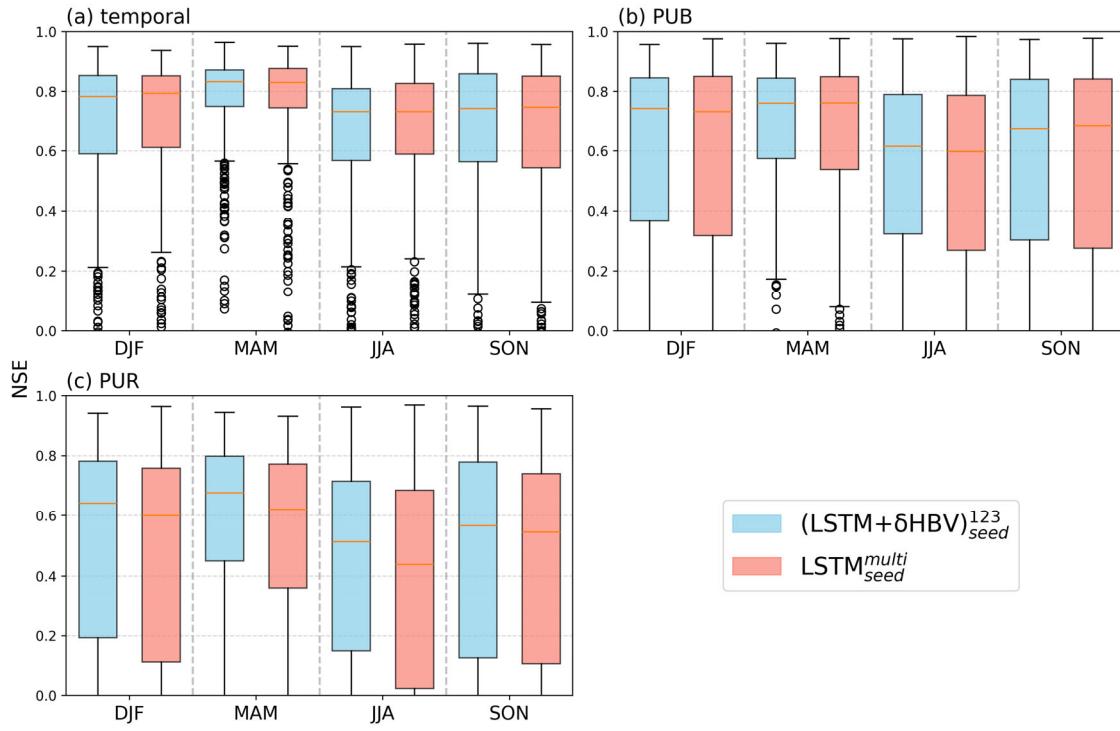
682 *Figure D1. Scatter plots comparing the performance differences between hydrological models*  
683 *for the basins where LSTM outperformed  $\delta HBV$  (the basins where  $\delta HBV$  outperformed are not*  
684 *shown in this plot). The x-axis represents the NSE differences between  $LSTM^2$  and  $\delta HBV^2$*   
685 *( $LSTM^2 - \delta HBV^2$ ), while the y-axis shows the NSE differences between  $\delta HBV^{123}$  and  $\delta HBV^2$*   
686 *( $\delta HBV^{123} - \delta HBV^2$ ). Points are color-coded according to the NSE values of  $\delta HBV^2$ . The*  
687 *correlation coefficient (CORR) and p values between the x-axis values and the y-axis values,*  
688 *along with the median NSE value of  $\delta HBV^2$  (NSE<sub>med</sub>) on these basins, are also noted.*

689

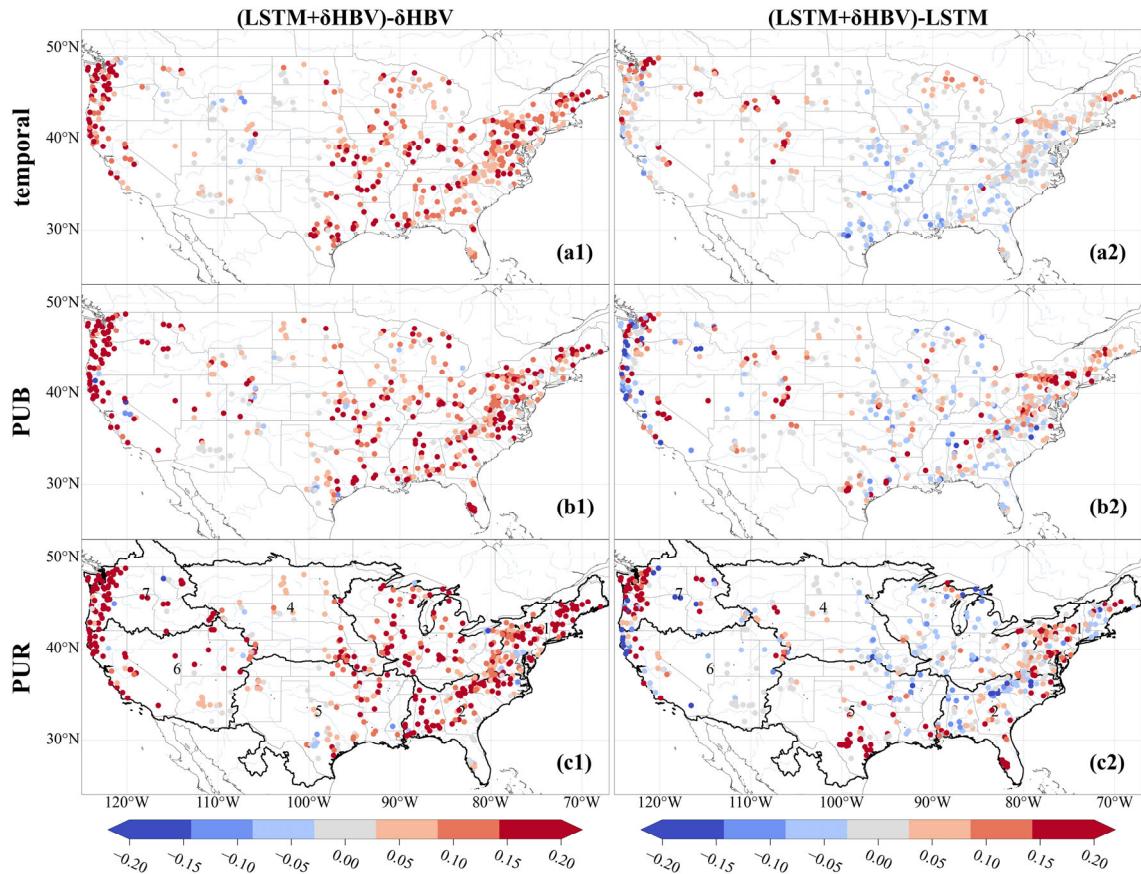


690

691 *Figure D2. Scatter plots comparing the performance differences between hydrological models*  
692 *for the basins where LSTM outperformed  $\delta HBV$  (the basins where  $\delta HBV$  outperformed are not*  
693 *shown in this plot). The x-axis represents the NSE differences between  $LSTM^3$  and  $\delta HBV^3$*   
694 *( $LSTM^3 - \delta HBV^3$ ), while the y-axis shows the NSE differences between  $\delta HBV^{123}$  and  $\delta HBV^3$*   
695 *( $\delta HBV^{123} - \delta HBV^3$ ). Points are color-coded according to the NSE values of  $\delta HBV^3$ . The*  
696 *correlation coefficient (CORR) and p values between the x-axis values and the y-axis values,*  
697 *along with the median NSE value of  $\delta HBV^3$  (NSE<sub>med</sub>) on these basins, are also noted.*



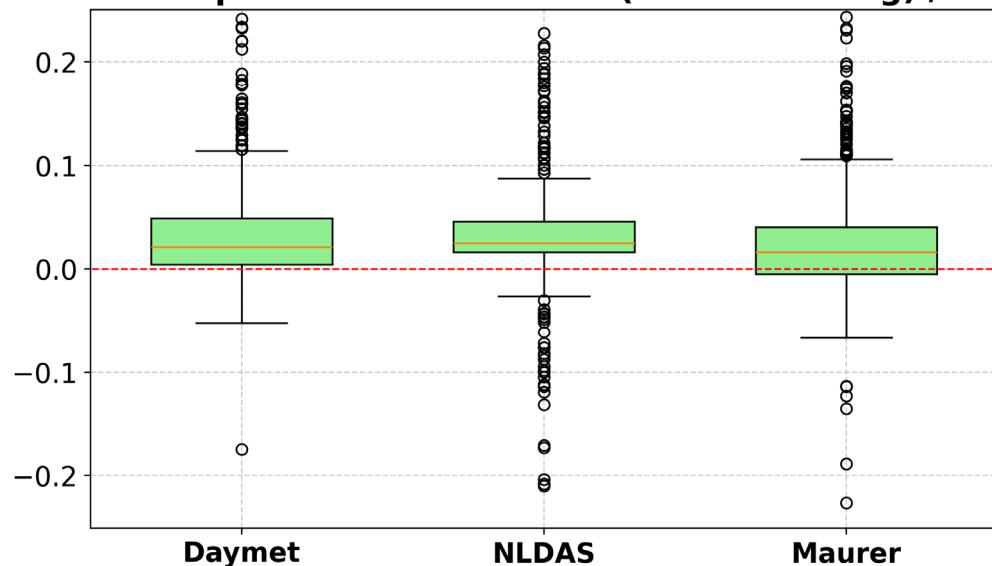
700 *Figure D3. Seasonal comparison of Nash–Sutcliffe efficiency (NSE) values for (LSTM +*  
 701  *$\delta\text{HBV}$ )<sub>seed</sub><sup>123</sup> (blue) and LSTM<sub>seed</sub><sup>multi</sup> (red) in (a) temporal, (b) PUB, and (c) PUR tests. Each box*  
 702 *represents the distribution of NSE values across 531 basins for a given season (DJF:*  
 703 *December–February, MAM: March–May, JJA: June–August, SON: September–November).*  
 704 *Vertical dashed lines separate different seasons. (LSTM +  $\delta\text{HBV}$ )<sub>seed</sub><sup>123</sup> performs better than*  
 705 *LSTM<sub>seed</sub><sup>multi</sup> in most cases, especially during MAM, likely due to differences in snowmelt*  
 706 *representation.*



709  
710 *Figure D4. Spatial distributions of model spread values increase from  $\delta$ HBV and LSTM to the*  
711 *LSTM+ $\delta$ HBV ensemble across temporal, PUB, and PUR tests.*

712  
713  
714  
715

### relative temperature differences: (test – training) / training



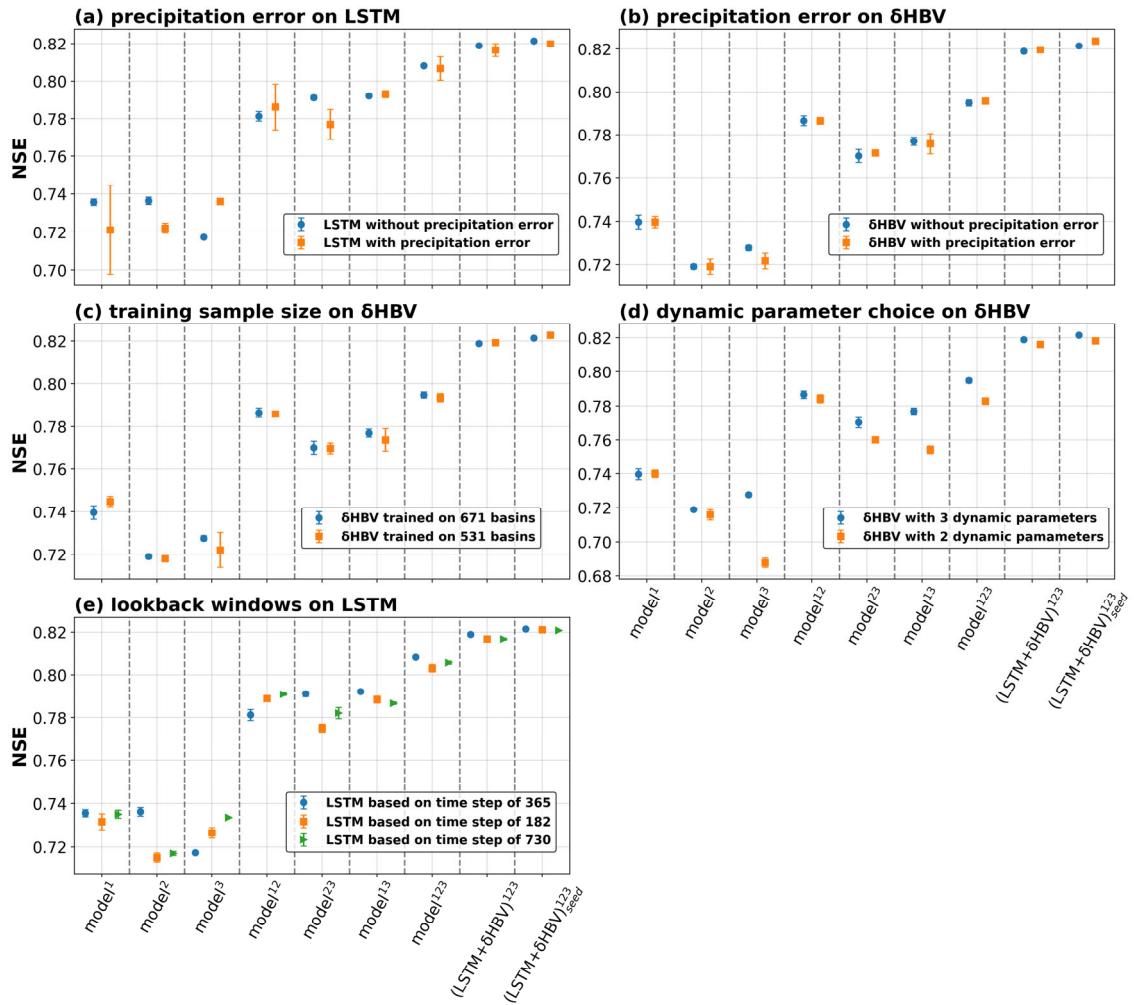
716  
717 *Figure D5. Boxplot of relative temperature differences between the test and training periods,*  
718 *calculated as (Test – Training) / Training. Each box represents the distribution of normalized*  
719 *temperature changes across basins for a specific meteorological forcing dataset: Daymet,*  
720 *NLDAS, and Maurer. Positive values indicate warming in the test period relative to the training*  
721 *period.*

722

723

724

725



726

727 *Figure D6. Simulation performance (NSE) under the temporal test: (a) LSTM model with and*  
 728 *without a 10% precipitation error (precipitation  $\times 1.1$ ); (b) δHBV model with and without a*  
 729 *10% precipitation error; (c) δHBV model trained on 671 versus 531 basins; (d) δHBV model*  
 730 *with 3 versus 2 dynamic parameters; (e) δHBV model using time steps of 365, 182, and 730*  
 731 *days. Individual and ensemble groups are distinguished along the x-axis. Ensemble benefits*  
 732 *are indicated by the gap between columns of the same color within each panel—columns 1–7*  
 733 *correspond to individual LSTM or δHBV groups, and the last two columns correspond to*  
 734 *LSTM+δHBV ensembles.*

735

736

737 *Table D1. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high*  
 738 *(highRMSE), and middle (midRMSE) flows based on 531 basins under the temporal test. The*  
 739 *values are the mean of three simulations run with different random seeds.*

| Temporal  | Number   | Daymet    | NLDAS     | Maurer    |
|-----------|----------|-----------|-----------|-----------|
| LSTM      | NSE      | 0.735639  | 0.736301  | 0.717337  |
|           | KGE      | 0.789375  | 0.782555  | 0.760575  |
|           | RMSE     | 1.21088   | 1.19847   | 1.27723   |
|           | PBIAS    | 4.04818   | 5.99486   | 1.58911   |
|           | lowRMSE  | 0.0596913 | 0.0602381 | 0.0545577 |
|           | highRMSE | 2.70508   | 2.89684   | 2.97028   |
|           | midRMSE  | 0.196039  | 0.210022  | 0.219922  |
| δHBV      | NSE      | 0.739688  | 0.71903   | 0.727669  |
|           | KGE      | 0.77033   | 0.730753  | 0.762022  |
|           | RMSE     | 1.18752   | 1.26239   | 1.23193   |
|           | PBIAS    | 5.07898   | -0.14449  | 3.65263   |
|           | lowRMSE  | 0.060906  | 0.063581  | 0.063466  |
|           | highRMSE | 2.68479   | 3.13011   | 2.6845    |
|           | midRMSE  | 0.226595  | 0.245242  | 0.230125  |
| LSTM+δHBV | NSE      | 0.787545  | 0.794053  | 0.790903  |

|          |          |          |          |
|----------|----------|----------|----------|
| KGE      | 0.794412 | 0.78383  | 0.786854 |
| RMSE     | 1.0777   | 1.0716   | 1.07141  |
| PBIAS    | 4.59065  | 3.33053  | 3.45501  |
| lowRMSE  | 0.059955 | 0.059565 | 0.054838 |
| highRMSE | 2.70216  | 2.88511  | 2.69633  |
| midRMSE  | 0.20394  | 0.214726 | 0.212514 |

740

741

742

743 *Table D1 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low*  
 744 *(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the*  
 745 *temporal test. The values are the mean of three simulations run with different random seeds.*

| Temporal  | Number   | Daymet+NLDAS | Daymet+Maurer | NLDAS+Maurer | All       |
|-----------|----------|--------------|---------------|--------------|-----------|
| LSTM      | NSE      | 0.781275     | 0.791158      | 0.792144     | 0.808176  |
|           | KGE      | 0.800955     | 0.795026      | 0.794441     | 0.803476  |
|           | RMSE     | 1.09103      | 1.06374       | 1.06701      | 1.01395   |
|           | PBIAS    | 5.17159      | 3.34362       | 4.5305       | 4.48263   |
|           | lowRMSE  | 0.0636155    | 0.0582563     | 0.0566306    | 0.0613625 |
|           | highRMSE | 2.70218      | 2.71366       | 2.78962      | 2.67803   |
|           | midRMSE  | 0.194849     | 0.199809      | 0.206653     | 0.197469  |
| δHBV      | NSE      | 0.786562     | 0.77012       | 0.776938     | 0.794796  |
|           | KGE      | 0.773732     | 0.778557      | 0.768854     | 0.77834   |
|           | RMSE     | 1.08362      | 1.12584       | 1.10875      | 1.06118   |
|           | PBIAS    | 1.91507      | 4.28194       | 2.03584      | 2.71021   |
|           | lowRMSE  | 0.061667     | 0.060679      | 0.062765     | 0.061539  |
|           | highRMSE | 2.93961      | 2.7394        | 2.88758      | 2.84994   |
|           | midRMSE  | 0.230576     | 0.220743      | 0.230272     | 0.228375  |
| LSTM+δHBV | NSE      | 0.811825     | 0.809964      | 0.811316     | 0.818907  |

|          |          |          |          |          |
|----------|----------|----------|----------|----------|
| KGE      | 0.797564 | 0.797635 | 0.78735  | 0.794936 |
| RMSE     | 1.01938  | 1.01755  | 1.0314   | 1.00067  |
| PBIAS    | 4.14594  | 4.23333  | 3.19652  | 3.88096  |
| lowRMSE  | 0.0603   | 0.058022 | 0.057882 | 0.059221 |
| highRMSE | 2.75275  | 2.67122  | 2.81393  | 2.70606  |
| midRMSE  | 0.207637 | 0.205965 | 0.213191 | 0.207905 |

746

747 *Table D2. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high*  
 748 *(highRMSE), and middle (midRMSE) flows based on 531 basins under the PUB test. The values*  
 749 *are the mean of three simulations run with different random seeds.*

| PUB       | Number   | Daymet    | NLDAS     | Maurer    |
|-----------|----------|-----------|-----------|-----------|
| LSTM      | NSE      | 0.702636  | 0.695496  | 0.694156  |
|           | KGE      | 0.693998  | 0.677438  | 0.6909    |
|           | RMSE     | 1.31714   | 1.3394    | 1.34233   |
|           | PBIAS    | 0.669018  | 0.283106  | 0.936582  |
|           | lowRMSE  | 0.087648  | 0.088393  | 0.086873  |
|           | highRMSE | 4.2852    | 4.49292   | 4.16042   |
|           | midRMSE  | 0.354458  | 0.364921  | 0.368124  |
| δHBV      | NSE      | 0.706809  | 0.670636  | 0.682998  |
|           | KGE      | 0.703137  | 0.66566   | 0.686912  |
|           | RMSE     | 1.35541   | 1.41185   | 1.37942   |
|           | PBIAS    | 1.49234   | -2.43395  | 0.291966  |
|           | lowRMSE  | 0.0798196 | 0.0808967 | 0.0846775 |
|           | highRMSE | 4.21648   | 4.49582   | 4.18003   |
|           | midRMSE  | 0.335159  | 0.351271  | 0.356903  |
| LSTM+δHBV | NSE      | 0.74227   | 0.723778  | 0.72202   |

|          |           |           |           |
|----------|-----------|-----------|-----------|
| KGE      | 0.715931  | 0.690154  | 0.707292  |
| RMSE     | 1.24887   | 1.278     | 1.26697   |
| PBIAS    | 1.27863   | -0.599778 | 0.903464  |
| lowRMSE  | 0.0816748 | 0.0795686 | 0.0825691 |
| highRMSE | 4.08432   | 4.23483   | 3.94929   |
| midRMSE  | 0.327459  | 0.33851   | 0.347169  |

750

751

752

753 *Table D2 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low*  
 754 *(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the*  
 755 *PUB test. The values are the mean of three simulations run with different random seeds.*

| PUB       | Number   | Daymet+NLDAS | Daymet+Maurer | NLDAS+Maurer | All       |
|-----------|----------|--------------|---------------|--------------|-----------|
| LSTM      | NSE      | 0.757853     | 0.749151      | 0.753136     | 0.768181  |
|           | KGE      | 0.713319     | 0.720099      | 0.716497     | 0.727143  |
|           | RMSE     | 1.18251      | 1.22254       | 1.19718      | 1.15026   |
|           | PBIAS    | 0.320396     | 0.931656      | 0.766216     | 0.970047  |
|           | lowRMSE  | 0.0875191    | 0.0864129     | 0.0835341    | 0.0874717 |
|           | highRMSE | 4.1296       | 4.06602       | 4.17217      | 4.0061    |
|           | midRMSE  | 0.334683     | 0.349856      | 0.342819     | 0.333534  |
| δHBV      | NSE      | 0.748916     | 0.734052      | 0.733955     | 0.757749  |
|           | KGE      | 0.699768     | 0.714323      | 0.69436      | 0.714048  |
|           | RMSE     | 1.26852      | 1.27637       | 1.27244      | 1.23229   |
|           | PBIAS    | 0.0446112    | 1.212         | -1.04135     | 0.201809  |
|           | lowRMSE  | 0.0808293    | 0.0792486     | 0.0814476    | 0.0808359 |
|           | highRMSE | 4.19575      | 3.97788       | 4.21623      | 4.07419   |
|           | midRMSE  | 0.311826     | 0.33668       | 0.339257     | 0.318165  |
| LSTM+δHBV | NSE      | 0.780625     | 0.764866      | 0.767761     | 0.785833  |

|          |           |           |           |           |
|----------|-----------|-----------|-----------|-----------|
| KGE      | 0.719781  | 0.725373  | 0.715982  | 0.723972  |
| RMSE     | 1.14924   | 1.17659   | 1.16881   | 1.13591   |
| PBIAS    | 0.186062  | 0.881644  | 0.405548  | 0.565489  |
| lowRMSE  | 0.0805946 | 0.0814251 | 0.0817114 | 0.0826379 |
| highRMSE | 3.97373   | 3.86834   | 3.88      | 3.91692   |
| midRMSE  | 0.313708  | 0.324777  | 0.324089  | 0.323671  |

756

757

758 *Table D3. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high*  
 759 *(highRMSE), and middle (midRMSE) flows based on 531 basins under the PUR test. The values*  
 760 *are the mean of three simulations run with different random seeds.*

| PUR       | Number   | Daymet    | NLDAS    | Maurer    |
|-----------|----------|-----------|----------|-----------|
| LSTM      | NSE      | 0.578365  | 0.546217 | 0.56164   |
|           | KGE      | 0.557788  | 0.559986 | 0.567231  |
|           | RMSE     | 1.59111   | 1.63626  | 1.5833    |
|           | PBIAS    | -0.575328 | -2.77709 | -0.623183 |
|           | lowRMSE  | 0.124837  | 0.118971 | 0.118695  |
|           | highRMSE | 5.42346   | 5.38886  | 5.05212   |
|           | midRMSE  | 0.498133  | 0.498442 | 0.471744  |
| δHBV      | NSE      | 0.622278  | 0.592306 | 0.59161   |
|           | KGE      | 0.638818  | 0.601338 | 0.620877  |
|           | RMSE     | 1.57189   | 1.61191  | 1.63628   |
|           | PBIAS    | 1.27223   | -1.60075 | 1.62709   |
|           | lowRMSE  | 0.10142   | 0.102975 | 0.101075  |
|           | highRMSE | 5.07706   | 5.16093  | 4.99602   |
|           | midRMSE  | 0.447879  | 0.474516 | 0.439697  |
| LSTM+δHBV | NSE      | 0.644398  | 0.618255 | 0.635444  |

|          |           |           |          |
|----------|-----------|-----------|----------|
| KGE      | 0.627481  | 0.605237  | 0.615883 |
| RMSE     | 1.46185   | 1.5153    | 1.48393  |
| PBIAS    | -0.269697 | -0.719505 | 0.197859 |
| lowRMSE  | 0.105146  | 0.100944  | 0.106272 |
| highRMSE | 4.95749   | 4.99478   | 4.78638  |
| midRMSE  | 0.431456  | 0.4575    | 0.426126 |

761

762

763 *Table D3 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low*  
 764 *(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the*  
 765 *PUR test. The values are the mean of three simulations run with different random seeds.*

| PUR       | Number   | Daymet+NLDAS | Daymet+Maurer | NLDAS+Maurer | All       |
|-----------|----------|--------------|---------------|--------------|-----------|
| LSTM      | NSE      | 0.634398     | 0.636369      | 0.626939     | 0.656228  |
|           | KGE      | 0.59844      | 0.600371      | 0.605007     | 0.612858  |
|           | RMSE     | 1.4434       | 1.43416       | 1.43009      | 1.38042   |
|           | PBIAS    | -0.547128    | -0.687947     | -0.865748    | -0.543918 |
|           | lowRMSE  | 0.118989     | 0.120228      | 0.115004     | 0.117728  |
|           | highRMSE | 5.03277      | 5.02434       | 4.84415      | 4.74281   |
|           | midRMSE  | 0.462923     | 0.455257      | 0.453912     | 0.449598  |
| δHBV      | NSE      | 0.672839     | 0.644732      | 0.661231     | 0.684685  |
|           | KGE      | 0.653841     | 0.65646       | 0.6515       | 0.66205   |
|           | RMSE     | 1.43224      | 1.50803       | 1.48604      | 1.43376   |
|           | PBIAS    | 0.564363     | 1.55134       | -0.156553    | 0.956961  |
|           | lowRMSE  | 0.0975783    | 0.0984076     | 0.100773     | 0.100807  |
|           | highRMSE | 4.83843      | 4.81176       | 4.72529      | 4.71255   |
|           | midRMSE  | 0.447828     | 0.431252      | 0.433688     | 0.432018  |
| LSTM+δHBV | NSE      | 0.685032     | 0.680872      | 0.679321     | 0.700814  |

|  |          |            |          |           |            |
|--|----------|------------|----------|-----------|------------|
|  | KGE      | 0.638788   | 0.647826 | 0.646782  | 0.649999   |
|  | RMSE     | 1.35303    | 1.3873   | 1.36795   | 1.3185     |
|  | PBIAS    | -0.0150729 | 0.406127 | -0.135091 | -0.0232668 |
|  | lowRMSE  | 0.103284   | 0.101814 | 0.104528  | 0.102916   |
|  | highRMSE | 4.80178    | 4.72583  | 4.70024   | 4.70713    |
|  | midRMSE  | 0.426819   | 0.411727 | 0.41573   | 0.41081    |

766

767

768 *Table D4. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high*  
 769 *(highRMSE), and middle (midRMSE) flows based on 531 basins under the temporal, PUB, and*  
 770 *PUR tests of  $LSTM^{multi}$ ,  $(LSTM + \delta HBV)^{123} + LSTM^{multi}$ , their “seed” version, and*  
 771  *$(LSTM + \delta HBV)^{123}_{seed}$ .*

| Test     | Metric   | $LSTM^{multi}$ | $(LSTM + \delta HBV)^{123}$<br>+ $LSTM^{multi}$ |
|----------|----------|----------------|-------------------------------------------------|
| Temporal | NSE      | 0.797448       | 0.82321                                         |
|          | KGE      | 0.811064       | 0.810248                                        |
|          | RMSE     | 1.05987        | 0.983168                                        |
|          | PBIAS    | 3.95241        | 4.08594                                         |
|          | lowRMSE  | 0.056221       | 0.05702                                         |
|          | highRMSE | 2.7089         | 2.58881                                         |
|          | midRMSE  | 0.183526       | 0.192442                                        |
| PUB      | NSE      | 0.750605       | 0.782727                                        |
|          | KGE      | 0.71469        | 0.734731                                        |
|          | RMSE     | 1.20586        | 1.11509                                         |
|          | PBIAS    | 0.475674       | 0.706777                                        |
|          | lowRMSE  | 0.0861127      | 0.0836                                          |
|          | highRMSE | 4.13615        | 3.83009                                         |
|          | midRMSE  | 0.347562       | 0.326814                                        |

|     |          |          |          |
|-----|----------|----------|----------|
| PUR | NSE      | 0.623755 | 0.68923  |
|     | KGE      | 0.593757 | 0.633971 |
|     | RMSE     | 1.47379  | 1.31221  |
|     | PBIAS    | -2.6737  | -1.38119 |
|     | lowRMSE  | 0.112434 | 0.107646 |
|     | highRMSE | 4.98202  | 4.59232  |
|     | midRMSE  | 0.501807 | 0.436811 |

772

773 *Table D4 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low*  
 774 *(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the*  
 775 *temporal, PUB, and PUR tests of  $LSTM^{multi}$ ,  $(LSTM + \delta HBV)^{123}$  +  $LSTM^{multi}$ , their “seed”*  
 776 *version, and  $(LSTM + \delta HBV)^{123}_{seed}$ .*

| Test     | Metric   | $(LSTM + \delta HBV)^{123}_{seed}$ | $LSTM^{multi}_{seed}$ | $(LSTM + \delta HBV)^{123}_{seed}$<br>+ $LSTM^{multi}_{seed}$ |
|----------|----------|------------------------------------|-----------------------|---------------------------------------------------------------|
| Temporal | NSE      | 0.821444                           | 0.81992               | 0.829385                                                      |
|          | KGE      | 0.795317                           | 0.82078               | 0.812581                                                      |
|          | RMSE     | 0.99455                            | 1.00908               | 0.967779                                                      |
|          | PBIAS    | 3.99009                            | 4.09469               | 4.08882                                                       |
|          | lowRMSE  | 0.059782                           | 0.057346              | 0.057015                                                      |
|          | highRMSE | 2.7279                             | 2.62815               | 2.58384                                                       |
|          | midRMSE  | 0.209943                           | 0.183656              | 0.195557                                                      |
| PUB      | NSE      | 0.793673                           | 0.781175              | 0.790921                                                      |
|          | KGE      | 0.726188                           | 0.736191              | 0.739284                                                      |
|          | RMSE     | 1.12957                            | 1.13079               | 1.09176                                                       |
|          | PBIAS    | 0.370674                           | 1.13671               | 0.869057                                                      |
|          | lowRMSE  | 0.083423                           | 0.084038              | 0.085728                                                      |
|          | highRMSE | 3.89363                            | 3.93473               | 3.79505                                                       |
|          | midRMSE  | 0.323045                           | 0.329772              | 0.325627                                                      |

|     |          |           |          |          |
|-----|----------|-----------|----------|----------|
| PUR | NSE      | 0.705154  | 0.665723 | 0.701504 |
|     | KGE      | 0.651538  | 0.614649 | 0.64373  |
|     | RMSE     | 1.30377   | 1.3727   | 1.2851   |
|     | PBIAS    | -0.283645 | -2.74069 | -1.39149 |
|     | lowRMSE  | 0.100525  | 0.111229 | 0.108121 |
|     | highRMSE | 4.74889   | 4.88127  | 4.58344  |
|     | midRMSE  | 0.406797  | 0.473783 | 0.432447 |

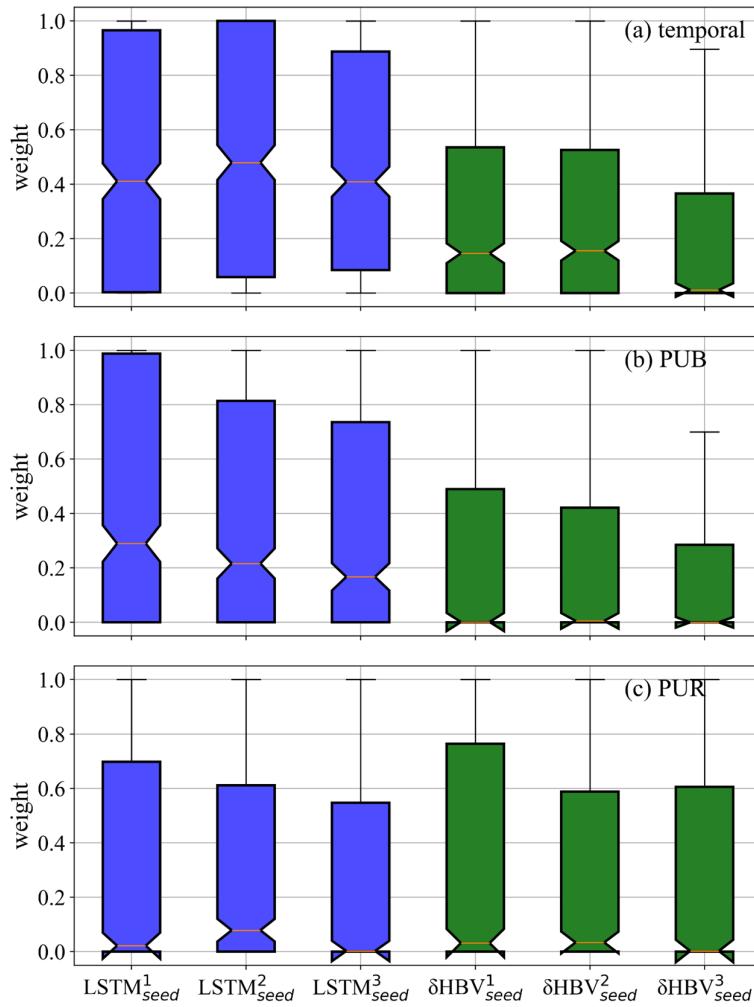
777

778 *Table D5. Median NSE values based on ten different random seeds during the temporal test.*  
 779 *Each number (1 through 10) represents metric values calculated for an individual simulation*  
 780 *based on only one random seed. “Seed” indicates metric values calculated by averages of these*  
 781 *ten simulations based on different random seeds, while “mean” denotes the average of metrics*  
 782 *from 1-10 individual simulations (visualized in Figure C1).*

| Number | $LSTM^{multi}$ | $(LSTM + \delta HBV)^{123}$ | $(LSTM + \delta HBV)^{123} + LSTM^{multi}$ |
|--------|----------------|-----------------------------|--------------------------------------------|
| 1      | 0.797742       | 0.818436                    | 0.82315                                    |
| 2      | 0.795312       | 0.820188                    | 0.823559                                   |
| 3      | 0.799291       | 0.818097                    | 0.822922                                   |
| 4      | 0.796388       | 0.818251                    | 0.821791                                   |
| 5      | 0.791192       | 0.818285                    | 0.820132                                   |
| 6      | 0.795691       | 0.81966                     | 0.823268                                   |
| 7      | 0.795912       | 0.821511                    | 0.82352                                    |
| 8      | 0.796625       | 0.81831                     | 0.825204                                   |
| 9      | 0.794062       | 0.804959                    | 0.816497                                   |
| 10     | 0.796066       | 0.817122                    | 0.82169                                    |
| Seed   | 0.82425        | 0.822528                    | 0.832197                                   |
| Mean   | 0.795828       | 0.817482                    | 0.822173                                   |

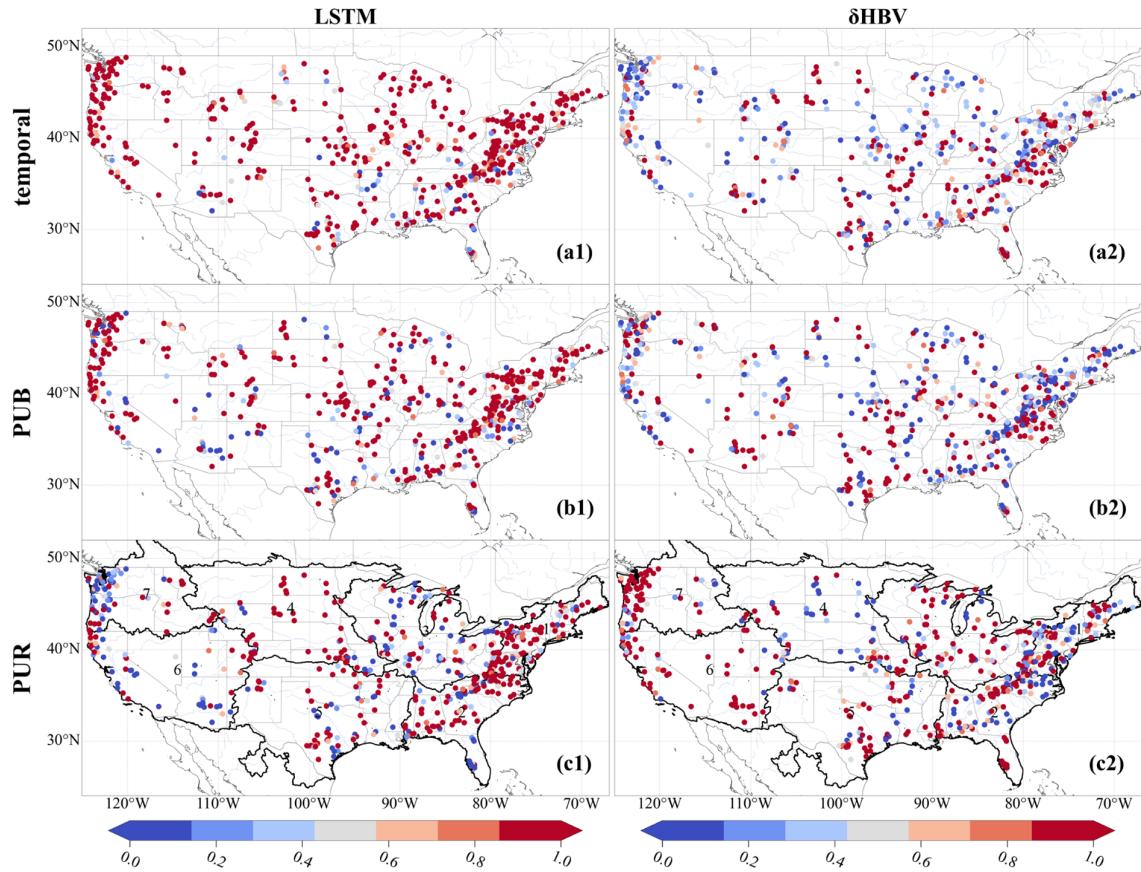
783

784 **Appendix E: Intuitive visualization of the relative contributions of ensemble members**  
785 **based on optimized weights**



787 *Figure E1. Weights of six components across 531 basins, estimated basin-by-basin using a*  
788 *genetic algorithm based on streamflow observations during the test periods. The weights are*  
789 *normalized by the maximum weight within each ensemble group. These weights are used*  
790 *exclusively for qualitatively analyzing the relative contributions of different ensemble members,*  
791 *with higher values indicating larger relative contributions.*

792

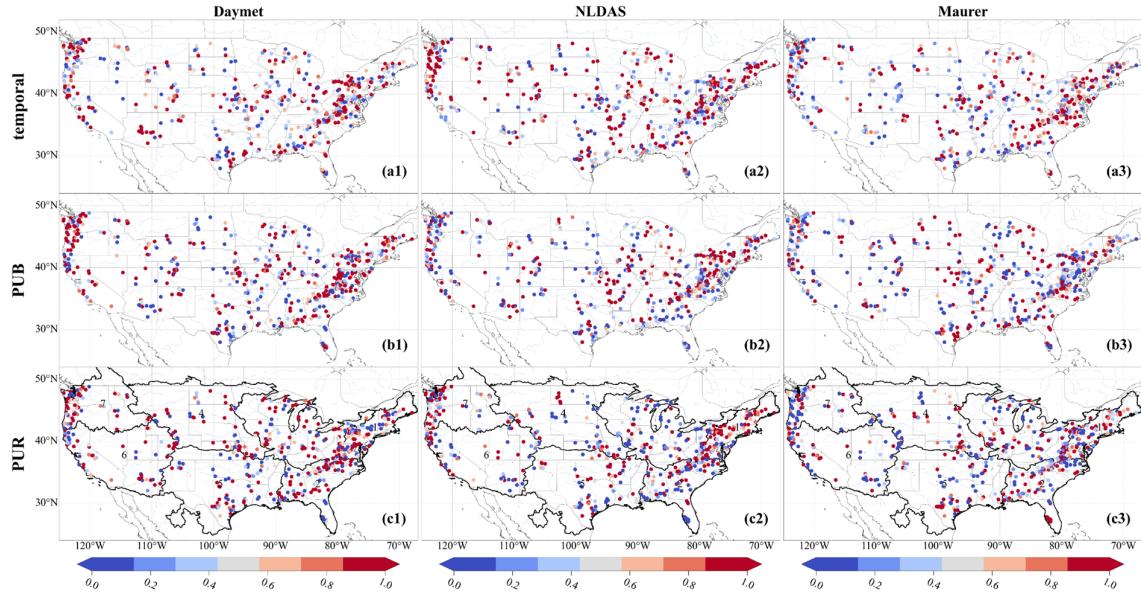


793

794 *Figure E2. Spatial distributions of weights of the LSTM and  $\delta$ HBV models, estimated by a*  
 795 *genetic algorithm based on streamflow observations during the test periods. The weights are*  
 796 *normalized by the maximum weight within each ensemble group. These weights are used*  
 797 *exclusively for qualitatively analyzing the relative contributions of different ensemble members,*  
 798 *with higher values indicating larger relative contributions.*

799

800



801

802 *Figure E3. Spatial distributions of weights of the Daymet, NLDAS, and Maurer meteorological*  
 803 *forcing datasets, estimated by a genetic algorithm based on streamflow observations during*  
 804 *the test periods. The weights are normalized by the maximum weight within each ensemble*  
 805 *group. These weights are used exclusively for qualitatively analyzing the relative contributions*  
 806 *of different ensemble members, with higher values indicating larger relative contributions.*

807

808

809

810 *Table E1. Comparisons of metric values between averaged ensemble simulations and*  
 811 *optimized weighted simulations, estimated using a genetic algorithm based on streamflow*  
 812 *observations during the test periods. The results highlight the potential for further*  
 813 *improvements in ensemble simulations.*

814

|          | Temporal | Averaged  | Optimized weighted |
|----------|----------|-----------|--------------------|
| Temporal | NSE      | 0.821444  | 0.844303212        |
|          | KGE      | 0.795317  | 0.829996445        |
|          | RMSE     | 0.99455   | 0.920954559        |
|          | PBIAS    | 3.99009   | 3.252278013        |
|          | lowRMSE  | 0.059782  | 0.057137161        |
|          | highRMSE | 2.7279    | 2.451194907        |
| PUB      | midRMSE  | 0.209943  | 0.183127162        |
|          | NSE      | 0.793673  | 0.842396015        |
|          | KGE      | 0.726188  | 0.79571295         |
|          | RMSE     | 1.12957   | 0.987170488        |
|          | PBIAS    | 0.370674  | 1.023040859        |
|          | lowRMSE  | 0.0834234 | 0.079807878        |
| PUR      | highRMSE | 3.89363   | 3.030715903        |
|          | midRMSE  | 0.323045  | 0.285110115        |
|          | NSE      | 0.705154  | 0.790796063        |
| PUR      | KGE      | 0.651538  | 0.746396324        |
|          | RMSE     | 1.30377   | 1.13058149         |

|  |          |           |             |
|--|----------|-----------|-------------|
|  | PBIAS    | -0.283645 | 0.273698787 |
|  | lowRMSE  | 0.100525  | 0.093595304 |
|  | highRMSE | 4.74889   | 3.665495069 |
|  | midRMSE  | 0.406797  | 0.351694421 |

815

816

817 **Code and data availability**

818 The source codes and datasets utilized in this study are publicly accessible through the  
819 following repositories: The  $\delta$ HBV modeling framework, including all computational scripts  
820 and documentation, is hosted on Zenodo (<https://doi.org/10.5281/zenodo.7091334>) (Feng et al.,  
821 2023a), with an updated version and comprehensive software release scheduled upon  
822 manuscript acceptance. The implementation of the LSTM architecture is accessible through  
823 Zenodo (<https://doi.org/10.5281/zenodo.6326394>) (Kratzert et al., 2022). The CAMELS  
824 hydrometeorological dataset, which provides the foundational basin characteristics and time  
825 series data used in our analysis, can be obtained via <https://dx.doi.org/10.5065/D6MW2F4D>  
826 (Addor et al., 2017; Newman and Clark, 2014). The streamflow simulations produced in this  
827 study can be downloaded at <https://doi.org/10.5281/zenodo.16895228> (Li et al., 2025).

828

829 **Author contributions**

830 PL and CS designed the experiments and PL carried them out. YS developed the modified  
831  $\delta$ HBV code. PL prepared the manuscript with contributions from all co-authors.

832

833 **Competing interests**

834 Chaopeng Shen and Kathryn Lawson have financial interests in HydroSapient, Inc., a  
835 company that could potentially benefit from the results of this research. This interest has been  
836 reviewed by the Pennsylvania State University in accordance with its individual conflict of  
837 interest policy for the purpose of maintaining the objectivity and the integrity of research. The  
838 other authors have no competing interests to declare.

839

840 **Acknowledgments**

841 PL, CS, and KL were supported by the Office of Biological and Environmental Research

842 of the U.S. Department of Energy (contract no. DESC0016605). PJ and MP were also partially  
843 supported by California Department of Water Resources Atmospheric River Program Phase III  
844 (Grant 4600014294). YS and CS were partially supported by subaward A23-0252-S002 from  
845 the Cooperative Institute for Research to Operations in Hydrology (CIROH) through the  
846 National Oceanic and Atmospheric Administration (NOAA) Cooperative Agreement (Grant  
847 no. NA22NWS4320003).

848

849 **References**

850 Aboelyazeed, D., Xu, C., Hoffman, F. M., Liu, J., Jones, A. W., Rackauckas, C., Lawson, K.,  
851 and Shen, C.: A differentiable, physics-informed ecosystem modeling and learning framework  
852 for large-scale inverse problems: demonstration with photosynthesis simulations,  
853 *Biogeosciences*, 20, 2671–2692, <https://doi.org/10.5194/bg-20-2671-2023>, 2023.

854 Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment  
855 attributes and meteorology for large-sample studies, *Hydrol. Earth Syst. Sci.*, 21, 5293–5313,  
856 <https://doi.org/10.5194/hess-21-5293-2017>, 2017.

857 Aghakouchak, A. and Habib, E.: Application of a Conceptual Hydrologic Model in Teaching  
858 Hydrologic Processes, *International Journal of Engineering Education*, 26, 2010.

859 Bandai, T. and Ghezzehei, T. A.: Physics-informed neural networks with monotonicity  
860 constraints for Richardson-Richards equation: Estimation of constitutive relationships and soil  
861 water flux density from volumetric water content measurements, *Water Resources Research*,  
862 57, e2020WR027642, <https://doi.org/10.1029/2020wr027642>, 2021.

863 Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Dutra, E., Fink, G., Orth, R., and Schellekens,  
864 J.: Global evaluation of runoff from 10 state-of-the-art hydrological models, *Hydrology and*  
865 *Earth System Sciences*, 21, 2881–2903, <https://doi.org/10.5194/hess-21-2881-2017>, 2017.

866 Beck, H. E., Pan, M., Lin, P., Seibert, J., Dijk, A. I. J. M. van, and Wood, E. F.: Global fully  
867 distributed parameter regionalization based on observed streamflow from 4,229 headwater  
868 catchments, *Journal of Geophysical Research: Atmospheres*, 125, e2019JD031485,  
869 <https://doi.org/10.1029/2019JD031485>, 2020.

870 Behnke, R., Vavrus, S., Allstadt, A., Albright, T., Thogmartin, W. E., and Radeloff, V. C.:  
871 Evaluation of downscaled, gridded climate data for the conterminous United States, *Ecological*  
872 *Applications*, 26, 1338–1351, <https://doi.org/10.1002/15-1061>, 2016.

873 Bell, V. A. and Moore, R. J.: The sensitivity of catchment runoff models to rainfall data at  
874 different spatial scales, *Hydrology and Earth System Sciences*, 4, 653–667,  
875 <https://doi.org/10.5194/hess-4-653-2000>, 2000.

876 Bellmore, J. R., Duda, J. J., Craig, L. S., Greene, S. L., Torgersen, C. E., Collins, M. J., and

877 Vittum, K.: Status and trends of dam removal research in the United States, Wiley  
878 Interdisciplinary Reviews: Water, 4, e1164, <https://doi.org/10.1002/wat2.1164>, 2017.

879 Bergström, S.: Development and application of a conceptual runoff model for Scandinavian  
880 catchments, PhD Thesis, Swedish Meteorological and Hydrological Institute (SMHI),  
881 Norköping, Sweden, 1976.

882 Bergström, S.: The HBV model—its structure and applications, SMHI, 1992.

883 Bindas, T., Tsai, W.-P., Liu, J., Rahmani, F., Feng, D., Bian, Y., Lawson, K., and Shen, C.:  
884 Improving river routing using a differentiable Muskingum-Cunge model and physics-informed  
885 machine learning, Water Resources Research, 60, e2023WR035337,  
886 <https://doi.org/10.1029/2023WR035337>, 2024.

887 Bodnar, C., Bruinsma, W. P., Lucic, A., Stanley, M., Allen, A., Brandstetter, J., Garvan, P.,  
888 Riechert, M., Weyn, J. A., Dong, H., Gupta, J. K., Thambiratnam, K., Archibald, A. T., Wu,  
889 C.-C., Heider, E., Welling, M., Turner, R. E., and Perdikaris, P.: A foundation model for the  
890 Earth system, Nature, 641, 1180–1187, <https://doi.org/10.1038/s41586-025-09005-y>, 2025.

891 Brunner, M. I., Slater, L., Tallaksen, L. M., and Clark, M.: Challenges in modeling and  
892 predicting floods and droughts: A review, WIREs Water, 8, e1520,  
893 <https://doi.org/10.1002/wat2.1520>, 2021.

894 Clark, M. P., Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener,  
895 T., and Hay, L. E.: Framework for Understanding Structural Errors (FUSE): A modular  
896 framework to diagnose differences between hydrological models, Water Resources Research,  
897 44, <https://doi.org/10/chvc6k>, 2008.

898 Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J.  
899 E., Gutmann, E. D., Wood, A. W., Brekke, L. D., Arnold, J. R., Gochis, D. J., and Rasmussen,  
900 R. M.: A unified approach for process-based hydrologic modeling: 1. Modeling concept, Water  
901 Resources Research, 51, 2498–2514, <https://doi.org/10/f7db99>, 2015.

902 Clark, M. P., Wilby, R. L., Gutmann, E. D., Vano, J. A., Gangopadhyay, S., Wood, A. W.,  
903 Fowler, H. J., Prudhomme, C., Arnold, J. R., and Brekke, L. D.: Characterizing uncertainty of  
904 the hydrologic impacts of climate change, Curr Clim Change Rep, 2, 55–64,  
905 <https://doi.org/10.1007/s40641-016-0034-x>, 2016.

906 Dion, P., Martel, J.-L., and Arsenault, R.: Hydrological ensemble forecasting using a multi-  
907 model framework, Journal of Hydrology, 600, 126537,  
908 <https://doi.org/10.1016/j.jhydrol.2021.126537>, 2021.

909 Feng, D., Fang, K., and Shen, C.: Enhancing streamflow forecast and extracting insights using  
910 long-short term memory networks with data integration at continental scales, Water Resources  
911 Research, 56, e2019WR026793, <https://doi.org/10.1029/2019WR026793>, 2020.

912 Feng, D., Lawson, K., and Shen, C.: Mitigating prediction error of deep learning streamflow  
913 models in large data-sparse regions with ensemble modeling and soft data, Geophysical  
914 Research Letters, 48, e2021GL092999, <https://doi.org/10.1029/2021GL092999>, 2021.

915 Feng, D., Liu, J., Lawson, K., and Shen, C.: Differentiable, learnable, regionalized process-  
916 based models with multiphysical outputs can approach state-of-the-art hydrologic prediction

917 accuracy, Water Resources Research, 58, e2022WR032404,  
918 <https://doi.org/10.1029/2022WR032404>, 2022.

919 Feng, D., Shen, C., Liu, J., Lawson, K., and Beck, H.: differentiable parameter learning (dPL)  
920 + HBV hydrologic model, <https://doi.org/10.5281/zenodo.7943626>, 2023a.

921 Feng, D., Beck, H., Lawson, K., and Shen, C.: The suitability of differentiable, physics-  
922 informed machine learning hydrologic models for ungauged regions and climate change impact  
923 assessment, Hydrology and Earth System Sciences, 27, 2357–2373,  
924 <https://doi.org/10.5194/hess-27-2357-2023>, 2023b.

925 Frame, J. M., Kratzert, F., Klotz, D., Gauch, M., Shalev, G., Gilon, O., Qualls, L. M., Gupta,  
926 H. V., and Nearing, G. S.: Deep learning rainfall–runoff predictions of extreme events,  
927 Hydrology and Earth System Sciences, 26, 3377–3392, <https://doi.org/10.5194/hess-26-3377-2022>, 2022.

929 Hanazaki, R., Yamazaki, D., and Yoshimura, K.: Development of a reservoir flood control  
930 scheme for global flood models, JAMES, 14, e2021MS002944,  
931 <https://doi.org/10.1029/2021MS002944>, 2022.

932 Hargreaves, G. H.: Defining and using reference evapotranspiration, Journal of Irrigation and  
933 Drainage Engineering, 120, 1132–1139, [https://doi.org/10.1061/\(ASCE\)0733-9437\(1994\)120:6\(1132\)](https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132)), 1994.

935 He, Y., Chen, M., Wen, Y., Duan, Q., Yue, S., Zhang, J., Li, W., Sun, R., Zhang, Z., Tao, R.,  
936 Tang, W., and Lü, G.: An open online simulation strategy for hydrological ensemble  
937 forecasting, Environmental Modelling & Software, 174, 105975,  
938 <https://doi.org/10.1016/j.envsoft.2024.105975>, 2024.

939 Heidari, H., Arabi, M., Warziniack, T., and Kao, S.-C.: Assessing shifts in regional  
940 hydroclimatic conditions of U.S. river basins in response to climate change over the 21st  
941 century, Earth's Future, 8, e2020EF001657, <https://doi.org/10.1029/2020EF001657>, 2020.

942 Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory, Neural Computation, 9, 1735–  
943 1780, <https://doi.org/10.1162/neco.1997.9.8.1735>, 1997.

944 Ji, H., Song, Y., Bindas, T., Shen, C., Yang, Y., Pan, M., Liu, J., Rahmani, F., Abbas, A., Beck,  
945 H., Lawson, K., and Wada, Y.: Distinct hydrologic response patterns and trends worldwide  
946 revealed by physics-embedded learning, Nat. Commun., 16, 9169,  
947 <https://doi.org/10.1038/s41467-025-64367-1>, 2025.

948 Jiang, S., Zheng, Y., and Solomatine, D.: Improving AI system awareness of geoscience  
949 knowledge: Symbiotic integration of physical approaches and deep learning, Geophys. Res.  
950 Lett., 47, e2020GL088229, <https://doi.org/10.1029/2020GL088229>, 2020.

951 Kling, H., Fuchs, M., and Paulin, M.: Runoff conditions in the upper Danube basin under an  
952 ensemble of climate change scenarios, Journal of Hydrology, 424–425, 264–277,  
953 <https://doi.org/10.1016/j.jhydrol.2012.01.011>, 2012.

954 Kraft, B., Jung, M., Körner, M., Koirala, S., and Reichstein, M.: Towards hybrid modeling of  
955 the global hydrological cycle, Hydrology and Earth System Sciences, 26, 1579–1614,  
956 <https://doi.org/10.5194/hess-26-1579-2022>, 2022.

957 Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall-Runoff modelling  
958 using Long-Short-Term-Memory (LSTM) networks, *Hydrology and Earth System Sciences*,  
959 22, 6005–6022, <https://doi.org/10.17605/OSF.IO/QV5JZ>, 2018.

960 Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., and Nearing, G. S.: Toward improved predictions in ungauged basins: Exploiting the power of machine learning,  
961 *Water Resources Research*, 55, 11344–11354, <https://doi.org/10/gg4ck8>, 2019.

963 Kratzert, F., Klotz, D., Hochreiter, S., and Nearing, G. S.: A note on leveraging synergy in  
964 multiple meteorological data sets with deep learning for rainfall–runoff modeling, *Hydrology*  
965 and Earth System Sciences, 25, 2685–2703, <https://doi.org/10.5194/hess-25-2685-2021>, 2021.

966 Kratzert, F., Gauch, M., Nearing, G., and Klotz, D.: NeuralHydrology — A Python library for  
967 Deep Learning research in hydrology, , <https://doi.org/10.5281/zenodo.6326394>, 2022.

968 Leube, P. C., de Barros, F. P. J., Nowak, W., and Rajagopal, R.: Towards optimal allocation of  
969 computer resources: Trade-offs between uncertainty quantification, discretization and model  
970 reduction, *Environmental Modelling & Software*, 50, 97–107,  
971 <https://doi.org/10.1016/j.envsoft.2013.08.008>, 2013.

972 Li, P., Zha, Y., Shi, L., Tso, C. H. M., Zhang, Y., and Zeng, W.: Comparison of the use of a  
973 physical-based model with data assimilation and machine learning methods for simulating soil  
974 water dynamics, *Journal of Hydrology*, 584, 124692,  
975 <https://doi.org/10.1016/j.jhydrol.2020.124692>, 2020a.

976 Li, P., Zha, Y., Tso, C. H. M., Shi, L., Yu, D., Zhang, Y., and Zeng, W.: Data assimilation of  
977 uncalibrated soil moisture measurements from frequency-domain reflectometry, *Geoderma*,  
978 374, 114432, <https://doi.org/10.1016/j.geoderma.2020.114432>, 2020b.

979 Li, P., Zha, Y., Shi, L., and Zhong, H.: Identification of the terrestrial water storage change  
980 features in the North China Plain via independent component analysis, *Journal of Hydrology: Regional Studies*, 38, 100955, <https://doi.org/10.1016/j.ejrh.2021.100955>, 2021.

982 Li, P., Zha, Y., Shi, L., and Zhong, H.: Assessing the Global Relationships Between  
983 Teleconnection Factors and Terrestrial Water Storage Components, *Water Resources Management*, 36, 119–133, <https://doi.org/10.1007/s11269-021-03015-x>, 2022.

985 Li, P., Zha, Y., Zuo, B., and Zhang, Y.: A family of soil water retention models based on  
986 sigmoid functions, *Water Resources Research*, 59, e2022WR033160,  
987 <https://doi.org/10.1029/2022WR033160>, 2023a.

988 Li, P., Zha, Y., and Tso, C.-H. M.: Reconstructing GRACE-derived terrestrial water storage  
989 anomalies with in-situ groundwater level measurements and meteorological forcing data,  
990 *Journal of Hydrology: Regional Studies*, 50, 101528,  
991 <https://doi.org/10.1016/j.ejrh.2023.101528>, 2023b.

992 Li, P., Zha, Y., Zhang, Y., Michael Tso, C.-H., Attinger, S., Samaniego, L., and Peng, J.: Deep  
993 learning integrating scale conversion and pedo-transfer function to avoid potential errors in  
994 cross-scale transfer, *Water Resources Research*, 60, e2023WR035543,  
995 <https://doi.org/10.1029/2023WR035543>, 2024.

996 Li, P., Song, Y., Pan, M., Lawson, K., and Shen, C.: Streamflow Simulation Data from

997 Differentiable HBV and LSTM Models Using CAMELS Datasets,  
998 <https://doi.org/10.5281/zenodo.16895228>, 2025.

999 Lin, Y., Wang, D., Zhu, J., Sun, W., Shen, C., and Shangguan, W.: Development of objective  
1000 function-based ensemble model for streamflow forecasts, *Journal of Hydrology*, 632, 130861,  
1001 <https://doi.org/10.1016/j.jhydrol.2024.130861>, 2024.

1002 Lins, H. F. and Slack, J. R.: Streamflow trends in the United States, *Geophysical Research  
1003 Letters*, 26, 227–230, <https://doi.org/10/d5zbdb>, 1999.

1004 Liu, J., Rahmani, F., Lawson, K., and Shen, C.: A multiscale deep learning model for soil  
1005 moisture integrating satellite and in situ data, *Geophysical Research Letters*, 49,  
1006 <https://doi.org/10.1029/2021GL096847>, 2022.

1007 Liu, J., Bian, Y., Lawson, K., and Shen, C.: Probing the limit of hydrologic predictability with  
1008 the Transformer network, *Journal of Hydrology*, 637, 131389,  
1009 <https://doi.org/10.1016/j.jhydrol.2024.131389>, 2024.

1010 Mai, J., Craig, J. R., Tolson, B. A., and Arsenault, R.: The sensitivity of simulated streamflow  
1011 to individual hydrologic processes across North America, *Nat Commun*, 13, 455,  
1012 <https://doi.org/10.1038/s41467-022-28010-7>, 2022.

1013 Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., and Nijssen, B.: A long-term  
1014 hydrologically based dataset of land surface fluxes and states for the conterminous United  
1015 States, *Journal of Climate*, 15, 3237–3251, [https://doi.org/10.1175/1520-0442\(2002\)015<3237:ALTHBD>2.0.CO;2](https://doi.org/10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2), 2002.

1017 Moges, E., Demissie, Y., and Li, H.-Y.: Hierarchical mixture of experts and diagnostic  
1018 modeling approach to reduce hydrologic model structural uncertainty, *Water Resources  
1019 Research*, 52, 2551–2570, <https://doi.org/10.1002/2015WR018266>, 2016.

1020 Nai, C., Liu, X., Tang, Q., Liu, L., Sun, S., and Gaffney, P. P. J.: A novel strategy for automatic  
1021 selection of cross-basin data to improve local machine learning-based runoff models, *Water  
1022 Resources Research*, 60, e2023WR035051, <https://doi.org/10.1029/2023WR035051>, 2024.

1023 Narkhede, M. V., Bartakke, P. P., and Sutaone, M. S.: A review on weight initialization  
1024 strategies for neural networks, *Artificial Intelligence Review*, 55, 291–322,  
1025 <https://doi.org/10.1007/s10462-021-10033-z>, 2022.

1026 Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I — A  
1027 discussion of principles, *Journal of Hydrology*, 10, 282–290, [https://doi.org/10.1016/0022-1694\(70\)90255-6](https://doi.org/10.1016/0022-1694(70)90255-6), 1970.

1029 Nearing, G., Cohen, D., Dube, V., Gauch, M., Gilon, O., Harrigan, S., Hassidim, A., Klotz, D.,  
1030 Kratzert, F., Metzger, A., Nevo, S., Pappenberger, F., Prudhomme, C., Shalev, G., Shenzis, S.,  
1031 Tekalign, T. Y., Weitzner, D., and Matias, Y.: Global prediction of extreme floods in ungauged  
1032 watersheds, *Nature*, 627, 559–563, <https://doi.org/10.1038/s41586-024-07145-1>, 2024.

1033 Newman, A. J. and Clark, M.: A large-sample watershed-scale hydrometeorological dataset for  
1034 the contiguous USA, <https://doi.org/10.5065/D6MW2F4D>, 2014.

1035 Newman, A. J., Mizukami, N., Clark, M. P., Wood, A. W., Nijssen, B., Nearing, G., Newman,

1036 A. J., Mizukami, N., Clark, M. P., Wood, A. W., Nijssen, B., and Nearing, G.: Benchmarking  
1037 of a Physically Based Hydrologic Model, *Journal of Hydrometeorology*, 18, 2215–2225,  
1038 <https://doi.org/10/gbwr9s>, 2017.

1039 Newman, A. J., Clark, M. P., Longman, R. J., and Giambelluca, T. W.: Methodological  
1040 intercomparisons of station-based gridded meteorological products: Utility, limitations, and  
1041 paths forward, <https://doi.org/10.1175/JHM-D-18-0114.1>, 2019.

1042 Ouyang, W., Lawson, K., Feng, D., Ye, L., Zhang, C., and Shen, C.: Continental-scale  
1043 streamflow modeling of basins with reservoirs: Towards a coherent deep-learning-based  
1044 strategy, *Journal of Hydrology*, 599, 126455, <https://doi.org/10.1016/j.jhydrol.2021.126455>,  
1045 2021.

1046 Paul, P. K., Zhang, Y., Ma, N., Mishra, A., Panigrahy, N., and Singh, R.: Selecting hydrological  
1047 models for developing countries: Perspective of global, continental, and country scale models  
1048 over catchment scale models, *Journal of Hydrology*, 600, 126561,  
1049 <https://doi.org/10.1016/j.jhydrol.2021.126561>, 2021.

1050 Rahmani, F., Appling, A., Feng, D., Lawson, K., and Shen, C.: Identifying structural priors in  
1051 a hybrid differentiable model for stream water temperature modeling, *Water Resources  
1052 Research*, 59, e2023WR034420, <https://doi.org/10.1029/2023WR034420>, 2023.

1053 Reichle, R. H. and Koster, R. D.: Assessing the impact of horizontal error correlations in  
1054 background fields on soil moisture estimation, *Journal of Hydrometeorology*, 4, 1229–1242,  
1055 [https://doi.org/10.1175/1525-7541\(2003\)004<1229:ATIOHE>2.0.CO;2](https://doi.org/10.1175/1525-7541(2003)004<1229:ATIOHE>2.0.CO;2), 2003.

1056 Sawadekar, K., Song, Y., Pan, M., Beck, H., McCrary, R., Ullrich, P., Lawson, K., and Shen,  
1057 C.: Improving differentiable hydrologic modeling with interpretable forcing fusion, *J. Hydrol.*,  
1058 659, 133320, <https://doi.org/10.1016/j.jhydrol.2025.133320>, 2025.

1059 Shen, C., Appling, A. P., Gentine, P., Bandai, T., Gupta, H., Tartakovsky, A., Baity-Jesi, M.,  
1060 Fenicia, F., Kifer, D., Li, L., Liu, X., Ren, W., Zheng, Y., Harman, C. J., Clark, M., Farthing,  
1061 M., Feng, D., Kumar, P., Aboelyazeed, D., Rahmani, F., Song, Y., Beck, H. E., Bindas, T.,  
1062 Dwivedi, D., Fang, K., Höge, M., Rackauckas, C., Mohanty, B., Roy, T., Xu, C., and Lawson,  
1063 K.: Differentiable modelling to unify machine learning and physical models for geosciences,  
1064 *Nat Rev Earth Environ*, 4, 552–567, <https://doi.org/10.1038/s43017-023-00450-9>, 2023.

1065 Solanki, H., Vegad, U., Kushwaha, A., and Mishra, V.: Improving streamflow prediction using  
1066 multiple hydrological models and machine learning methods, *Water Resources Research*, 61,  
1067 e2024WR038192, <https://doi.org/10.1029/2024WR038192>, 2025.

1068 Song, Y., Bindas, T., Shen, C., Ji, H., Knoben, W. J. M., Lonzarich, L., Clark, M. P., Liu, J.,  
1069 van Werkhoven, K., Lemont, S., Denno, M., Pan, M., Yang, Y., Rapp, J., Kumar, M., Rahmani,  
1070 F., Thébault, C., Sawadekar, K., and Lawson, K.: High-resolution national-scale water  
1071 modeling is enhanced by multiscale differentiable physics-informed machine learning,  
1072 <https://doi.org/10.22541/essoar.172736277.74497104/v1>, 26 September 2024a.

1073 Song, Y., Knoben, W. J. M., Clark, M. P., Feng, D., Lawson, K., Sawadekar, K., and Shen, C.:  
1074 When ancient numerical demons meet physics-informed machine learning: adjoint-based  
1075 gradients for implicit differentiable modeling, *Hydrology and Earth System Sciences*, 28,  
1076 3051–3077, <https://doi.org/10.5194/hess-28-3051-2024>, 2024b.

1077 Song, Y., Bindas, T., Shen, C., Ji, H., Knoben, W. J. M., Lonzarich, L., Clark, M. P., Liu, J.,  
1078 van Werkhoven, K., Lamont, S., Denno, M., Pan, M., Yang, Y., Rapp, J., Kumar, M., Rahmani,  
1079 F., Thébault, C., Adkins, R., Halgren, J., Patel, T., Patel, A., Sawadekar, K. A., and Lawson,  
1080 K.: High-resolution national-scale water modeling is enhanced by multiscale differentiable  
1081 physics-informed machine learning, *Water Resour. Res.*, 61, e2024WR038928,  
1082 <https://doi.org/10.1029/2024WR038928>, 2025a.

1083 Song, Y., Sawadekar, K., Frame, J. M., Pan, M., Clark, M., Knoben, W. J. M., Wood, A. W.,  
1084 Lawson, K. E., Patel, T., and Shen, C.: Physics-informed, differentiable hydrologic models for  
1085 capturing unseen extreme events, <https://doi.org/10.22541/essoar.172304428.82707157/v2>,  
1086 2025b.

1087 Thornton, P. E., Running, S. W., and White, M. A.: Generating surfaces of daily meteorological  
1088 variables over large regions of complex terrain, *Journal of Hydrology*, 190, 214–251,  
1089 [https://doi.org/10.1016/S0022-1694\(96\)03128-9](https://doi.org/10.1016/S0022-1694(96)03128-9), 1997.

1090 Tsai, W.-P., Feng, D., Pan, M., Beck, H., Lawson, K., Yang, Y., Liu, J., and Shen, C.: From  
1091 calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific  
1092 modeling, *Nat Commun*, 12, 5988, <https://doi.org/10.1038/s41467-021-26107-z>, 2021.

1093 Wada, Y., de Graaf, I. E. M., and van Beek, L. P. H.: High-resolution modeling of human and  
1094 climate impacts on global water resources, *Journal of Advances in Modeling Earth Systems*, 8,  
1095 735–763, <https://doi.org/10.1029/2016F8wgpv>, 2016.

1096 Wang, N., Zhang, D., Chang, H., and Li, H.: Deep learning of subsurface flow via theory-  
1097 guided neural network, *Journal of Hydrology*, 584, 124700,  
1098 <https://doi.org/10.1016/j.jhydrol.2020.124700>, 2020.

1099 West, B. D., Maxwell, R. M., and Condon, L. E.: A scalable and modular reservoir  
1100 implementation for large-scale integrated hydrologic simulations, *Hydrology and Earth System  
1101 Sciences*, 29, 245–259, <https://doi.org/10.5194/hess-29-245-2025>, 2025.

1102 Wilbrand, K., Taormina, R., ten Veldhuis, M.-C., Visser, M., Hrachowitz, M., Nuttall, J., and  
1103 Dahm, R.: Predicting streamflow with LSTM networks using global datasets, *Front. Water*, 5,  
1104 <https://doi.org/10.3389/frwa.2023.1166124>, 2023.

1105 Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei,  
1106 H., Meng, J., Livneh, B., Lettenmaier, D., Koren, V., Duan, Q., Mo, K., Fan, Y., and Mocko,  
1107 D.: Continental-scale water and energy flux analysis and validation for the North American  
1108 Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and  
1109 application of model products, *Journal of Geophysical Research: Atmospheres*, 117,  
1110 <https://doi.org/10.1029/2011JD016048>, 2012.

1111 Xie, K., Liu, P., Zhang, J., Han, D., Wang, G., and Shen, C.: Physics-guided deep learning for  
1112 rainfall-runoff modeling by considering extreme events and monotonic relationships, *Journal  
1113 of Hydrology*, 603, 127043, <https://doi.org/10.1016/j.jhydrol.2021.127043>, 2021.

1114 Yao, L., Libera, D. A., Kheimi, M., Sankarasubramanian, A., and Wang, D.: The roles of  
1115 climate forcing and its variability on streamflow at daily, monthly, annual, and long-term scales,  
1116 *Water Resources Research*, 56, e2020WR027111, <https://doi.org/10.1029/2020WR027111>,  
1117 2020.

1118 Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based diagnostic approach to model  
1119 evaluation: Application to the NWS distributed hydrologic model, *Water Resources Research*,  
1120 44, <https://doi.org/10/fpvsgb>, 2008.

1121 Yu, D., Yang, J., Shi, L., Zhang, Q., Huang, K., Fang, Y., and Zha, Y.: On the uncertainty of  
1122 initial condition and initialization approaches in variably saturated flow modeling, *Hydrology*  
1123 and *Earth System Sciences*, 23, 2897–2914, <https://doi.org/10.5194/hess-23-2897-2019>, 2019.

1124 Yu, M., Huang, Q., and Li, Z.: Deep learning for spatiotemporal forecasting in Earth system  
1125 science: a review, *International Journal of Digital Earth*, 17, 2391952,  
1126 <https://doi.org/10.1080/17538947.2024.2391952>, 2024.

1127 Zhang, Q., Shi, L., Holzman, M., Ye, M., Wang, Y., Carmona, F., and Zha, Y.: A dynamic  
1128 data-driven method for dealing with model structural error in soil moisture data assimilation,  
1129 *Advances in Water Resources*, 132, 103407, <https://doi.org/10.1016/j.advwatres.2019.103407>,  
1130 2019.

1131 Zounemat-Kermani, M., Batelaan, O., Fadaee, M., and Hinkelmann, R.: Ensemble machine  
1132 learning paradigms in hydrology: A review, *Journal of Hydrology*, 598, 126266,  
1133 <https://doi.org/10.1016/j.jhydrol.2021.126266>, 2021.

1134

1135