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Abstract 10 

Streamflow simulations produced by different hydrological models exhibit distinct 11 

characteristics and can provide valuable information when ensembled. However, few studies 12 

have focused on ensembling simulations from models with significant structural differences 13 

and evaluating them under both temporal and spatial tests. Here we systematically evaluated 14 

and utilized the simulations from two highly different models with great performances: a purely 15 

data-driven long short-term memory (LSTM) network and a physics-informed machine 16 

learning (“differentiable”) HBV (Hydrologiska Byråns Vattenbalansavdelning) model (δHBV). 17 

To effectively display the features of the two models, multiple forcing datasets are employed. 18 

The results show that the simulations of LSTM and δHBV have distinct features and 19 

complement each other well, leading to better Nash-Sutcliffe model efficiency coefficients 20 

(NSE) and improved high-flow and low-flow metrics across all spatiotemporal tests, compared 21 

to within-class ensembles. Ensembling models trained on a single forcing outperformed a 22 

single model using fused forcings, challenging the paradigm of feeding all available data into 23 

a single data-driven model. Most notably, δHBV significantly enhanced spatial interpolation 24 

when incorporated into LSTM, and provided even more prominent benefits for spatial 25 
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extrapolation where the LSTM-only ensembles degraded significantly, attesting to the value of 26 

the structural constraints in δHBV. These advances set new benchmark records on the well-27 

known CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) 28 

hydrological dataset, reaching median NSE values of ~0.83 for the temporal test (densely 29 

trained scenario), ~0.79 for the ungauged basin test (PUB, Prediction in Ungauged Basins), 30 

and ~0.70 for the ungauged region test (PUR, Prediction in Ungauged Regions). This study 31 

advances our understanding of how various model types, each with distinct mechanisms, can 32 

be effectively leveraged alongside multi-source datasets across diverse scenarios.  33 
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 34 

Highlights 35 

● Combining LSTM and δHBV with diverse forcings sets new accuracy benchmarks 36 

● Ensembling models with one forcing outperforms merging forcings as an input 37 

● δHBV and LSTM together always increase NSEs, especially spatial generalization 38 

● δHBV provides valuable spatial constraints in the deterministic ensemble simulations 39 

● δHBV and LSTM have different error characteristics that can be offset in an ensemble 40 

 41 
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1. Introduction 46 

Streamflow, a critical component of the global hydrosphere, profoundly influences both 47 

human society and natural ecosystems (Lins and Slack, 1999). Accurate simulation and 48 

prediction of streamflow yield numerous benefits, including improved flood prevention 49 

strategies (Brunner et al., 2021). Hydrological models serve as indispensable tools for 50 

achieving this objective and can be traditionally categorized into two types: data-driven models 51 

(Feng et al., 2020; Kratzert et al., 2018; Liu et al., 2024; Nearing et al., 2024) and process-52 

based (or physically-based) models (Newman et al., 2017; Paul et al., 2021). Data-driven 53 

models, exemplified by long short-term memory (LSTM) (Feng et al., 2020; Kratzert et al., 54 

2018) and transformer (Liu et al., 2024) networks, excel in learning patterns from multi-source 55 

data (Li et al., 2023b, 2024; Liu et al., 2022; Nearing et al., 2024) and generally achieve high 56 

performance. However, they often lack interpretability and may not resolve extreme values 57 

very well (Li et al., 2020a; Song et al., 2025b). Conversely, process-based models, derived 58 
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deductively from physical laws or conceptualized views of natural systems, offer insights into 59 

internal hydrological processes but may exhibit weaker performance due to structural 60 

inadequacies (Li et al., 2020a, 2022; Zhang et al., 2019). 61 

To combine the benefits and counteract the weaknesses of these two kinds of models, 62 

many efforts have been made to incorporate physical constraints and structures into data-driven 63 

models to align with fundamental physical principles, such as mass and water balances (Bandai 64 

and Ghezzehei, 2021; Wang et al., 2020; Xie et al., 2021). The most seamless integration uses 65 

neural networks to provide parameterizations or missing process representations for process-66 

based models (Aboelyazeed et al., 2023; Bindas et al., 2024; Feng et al., 2022; Jiang et al., 67 

2020; Kraft et al., 2022; Rahmani et al., 2023; Song et al., 2024b; Tsai et al., 2021). These 68 

differentiable models (Shen et al., 2023) connect (flexible amounts of) prior physical 69 

knowledge to neural networks, and have displayed many advantages, including improved 70 

computational efficiency and prediction of untrained variables (Tsai et al., 2021), spatial 71 

generalization (Feng et al., 2023b), and representation of extremes (Song et al., 2025b). 72 

However, it is also unclear whether current differentiable models, e.g., δHBV, the 73 

Hydrologiska Byråns Vattenbalansavdelning (HBV) model implemented within a 74 

differentiable framework (Feng et al., 2023b; Ji et al., 2025; Shen et al., 2023; Song et al., 75 

2025b), have unique bias characteristics that are associated with the process-based parts of their 76 

structures that cannot be reduced once the equations are prescribed. 77 

Orthogonal to such efforts are ensemble simulations (Yu et al., 2024), which combine 78 

many members with different biases and uncertainties to mitigate their respective biases in 79 

deterministic predictions. Many previous studies have tried ensemble methods to improve 80 

streamflow (Clark et al., 2016; Zounemat-Kermani et al., 2021) based on many factors, like 81 

initial conditions (e.g., initial weights and biases in LSTM (Kratzert et al., 2018)), data used 82 

for parameterization (Feng et al., 2021), and objective functions (Lin et al., 2024). These 83 
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studies generally use one model to generate the differences among the ensemble members. 84 

Furthermore, some studies (Dion et al., 2021; Solanki et al., 2025) have utilized simulations 85 

from multiple different models but are limited to process-based models, resulting in ensemble 86 

simulations that are better than each individual member. Thus far, however, most studies have 87 

focused on simulations from only similar models or model types, and little work has tested an 88 

ensemble across the boundary of model types, particularly between data-driven, process-based, 89 

and hybrid models, especially on a large number of samples. Presumably, if each model has its 90 

own unique bias, data-driven and process-based models are likely to exhibit greater differences 91 

due to their inherently distinct characteristics. It remains unclear whether ensembling across 92 

model types should bring benefits to deterministic predictions. Furthermore, grounded in the 93 

process-based model, the differentiable process-based hydrological model, such as δHBV, 94 

significantly enhances performance compared to traditional process-based models, while on 95 

the other hand introducing greater uncertainty regarding its potential benefits when ensembled. 96 

Moreover, previous studies have primarily focused on evaluating ensemble simulations for 97 

temporal predictions. However, streamflow simulation under spatial extrapolation scenarios 98 

presents greater challenges, and findings from temporal tests may not be directly applicable in 99 

this context. 100 

It is known that the performance of any type of hydrologic model heavily depends on the 101 

quality of input data, particularly meteorological forcing data (Bell and Moore, 2000; Yao et 102 

al., 2020), and other inputs, like the uncertainties of initial conditions, can be mitigated via 103 

warming up (Yu et al., 2019). While independent forcing datasets excel in certain aspects, they 104 

each carry different error characteristics (Beck et al., 2017; Behnke et al., 2016; Newman et al., 105 

2019) and accordingly affect the hydrological models in different ways. In order to fully display 106 

the different features between LSTM and δHBV, multiple forcing datasets could be considered. 107 

Given the utilization of multiple forcing datasets, one could choose to use data fusion to 108 
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combine them into a single coherent model input (Kratzert et al., 2021; Sawadekar et al., 2025), 109 

or to pass each forcing dataset through a model and then afterwards combine the multiple 110 

outputs in an ensemble. It is not clear which approach is more beneficial. 111 

Considering the knowledge gaps discussed above, we sought to answer several research 112 

questions: 113 

1. Will a cross-model-type ensemble of LSTM and δHBV improve deterministic 114 

streamflow prediction more than a within-class ensemble? 115 

2. Is it better to use multiple forcings in one model or to ensemble multiple models, each 116 

with a different forcing input? 117 

3. Do process-based equations bring unique value to an ensemble, especially in terms of 118 

spatial generalizability? 119 

The remainder of this paper is structured as follows: Sect. 2 outlines the hydrological data 120 

and models used in this study, as well as the experimental design. Results and discussions are 121 

presented in Sect. 3, with conclusions provided in Sect. 4. 122 

 123 

2. Materials and methods 124 

2.1. CAMELS hydrologic dataset 125 

The Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) dataset 126 

(Addor et al., 2017) is widely employed for hydrological model evaluation and community 127 

benchmarking. The CAMELS dataset encompasses 671 basins distributed across the 128 

conterminous United States, with basin sizes ranging from 1 to 25,800 km² (median: 335 km²). 129 

This standardized and publicly available dataset serves as a benchmark for evaluating various 130 

hydrological models, with LSTM models trained on this dataset often serving as a reference 131 

point for comparing other models (Kratzert et al., 2021). CAMELS provides basin-scale data, 132 

including streamflow observations and static basin attributes, as well as forcing datasets from 133 
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three independent sources: Daymet (Thornton et al., 1997), North American Land Data 134 

Assimilation System (NLDAS) (Xia et al., 2012), and Maurer (Maurer et al., 2002). Each of 135 

the three meteorological forcing datasets operates at a daily temporal resolution, encompassing 136 

precipitation, temperature, vapor pressure, and surface radiation variables, with daily 137 

temperature extrema of NLDAS and Maurer supplemented from Kratzert et al. (2021). These 138 

three meteorological forcing datasets have methodological distinctions in spatial resolution, 139 

data generation approaches, and temporal processing (Behnke et al., 2016; Kratzert et al., 2021). 140 

Exemplary plots illustrating the differences among the three meteorological forcing datasets 141 

are provided in Appendix B. These features can lead to dataset-specific error characteristics 142 

and make them valuable for displaying the distinct features of different model types. All model 143 

inputs used in this study are detailed in Table C1. 144 

 145 

2.2. Long short-term memory 146 

As one kind of deep learning algorithm, long short-term memory (LSTM) (Hochreiter and 147 

Schmidhuber, 1997) has unique structures like hidden states and gates activated by the tanh 148 

and sigmoid functions (Li et al., 2023a), respectively. These features enable LSTM to excel in 149 

streamflow simulation tasks (Feng et al., 2020; Kratzert et al., 2018; Nearing et al., 2024). In 150 

the current benchmark framework, LSTM models are trained using dynamic atmospheric 151 

forcings and static basin attributes as inputs, with streamflow as the target output, making it 152 

perform well in both temporal and spatial tests (Figure 1a). In this work, for cross-group 153 

comparability, we used the LSTM model and its hyperparameters as reported in Kratzert et al. 154 

(2021). 155 

 156 

2.3. Differentiable HBV model (δHBV) 157 

The Hydrologiska Byråns Vattenbalansavdelning (HBV) model is a parsimonious bucket-158 
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type hydrologic model that simulates various hydrological variables, including snow water 159 

equivalent, soil water, groundwater storage, evapotranspiration, quick flow, baseflow, and total 160 

streamflow (Aghakouchak and Habib, 2010; Beck et al., 2020; Bergström, 1976, 1992). 161 

Recently demonstrated differentiable HBV (δHBV) model (Feng et al., 2023b; Ji et al., 2025; 162 

Shen et al., 2023; Song et al., 2024b) incorporates deep neural networks for both regionalized 163 

parameterization and missing process representations within a differentiable programming 164 

framework that supports “end-to-end” training (Figure 1b). This innovation enables δHBV to 165 

effectively learn from data while obeying physical laws, resulting in high-level performance 166 

for streamflow simulations. From the perspective of process-based modeling, LSTM is a 167 

regionalized parameter provider that leverages the autocorrelated nature of its inputs to impose 168 

an implicit spatial constraint on the generated parameters. 169 

In this study, we used δHBV1.1p (Song et al., 2024b, 2025b), which is an updated version 170 

of δHBV1.0 (Feng et al., 2022, 2023b). The main improvement is the addition of a capillary 171 

rise module, which enhances the characterization of low flows. Other modifications include 172 

tThree additional modifications are included to address high-flow simulation challenges: the 173 

use of three dynamic parameters (γ, β, 𝑘0) (Song et al., 2025b); the removal of log-transform 174 

normalization for precipitation; and the adoption of the normalized squared-error loss function 175 

(Table C2) (Frame et al., 2022; Kratzert et al., 2021; Song et al., 2025a, b; Wilbrand et al., 176 

2023). We also maintain dynamic parameters during warm-up periods. Although this provides 177 

only marginal benefits and increases computational costs, it yields a more realistic 178 

representation and reduces uncertainties associated with initial conditions. The basic equations 179 

in δHBV are as follows: 180 

 𝜃 = 𝐿𝑆𝑇𝑀𝑤(𝑥, 𝐴𝑎𝑡𝑡𝑟) (1) 

 𝑄 = 𝐻𝐵𝑉(𝑥, 𝜃) (2) 
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 𝑊𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑤(𝐿(𝑄, 𝑄
∗)) (3) 

where θ are the dynamic or static physical parameters, w denotes the weights and biases of 181 

LSTM, x includes the basin-averaged meteorological forcings, such as precipitation, mean 182 

temperature, and potential evapotranspiration, with 𝑥 representing their normalized versions. 183 

Similarly, 𝐴𝑎𝑡𝑡𝑟  consists of normalized observable basin-averaged attributes, encompassing 184 

basin area, topography, climate, soil texture, land cover, and geology (Table C1). Precipitation 185 

and mean temperature are from CAMELS, while potential evapotranspiration is calculated 186 

based onusing the Hargreaves (1994)(1994) method using mean,based on maximum, and 187 

minimum temperatures along with basin latitudes, all from data described in sect. 2.1. Q and 188 

𝑄∗ are the streamflow simulations (model outputs) and observations (as provided in CAMELS), 189 

respectively. HBV is implemented on PyTorch so it is programmatically differentiable: all 190 

steps store information related to gradient calculations during backpropagation, allowing this 191 

model to be trained together with neural networks in an end-to-end fashion. More details about 192 

differentiable HBV can be found in previous studies (Feng et al., 2022; Song et al., 193 

2024b)(Feng et al., 2022; Song et al., 2024b). The details of some particularly relevant HBV 194 

processes are described in Appendix A. 195 

 196 

2.4. Experimental design 197 

In this study, we trained the two models of very different types (LSTM and δHBV), each 198 

with one of three meteorological forcing datasets (Daymet, NLDAS, and Maurer), resulting in 199 

six corresponding streamflow simulations (Figure 1c) for each different test scenario (see sect. 200 

2.5 for additional information). The training processes of LSTM and δHBV followed Kratzert 201 

et al. (2021)(2021) and Feng et al. (2023b)(2023b), respectively. Test results and performance 202 

metrics for all models are reported for the 531-basin subset that excludes those with areas larger 203 

than 2,000 km² or with more than a 10% discrepancy between different basin area calculation 204 
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methods (Newman et al., 2017)(Newman et al., 2017). 205 

To generate ensembles, we tested various weighting strategies and ultimately employed 206 

averaging to combine the six single-forcing, single-model-type simulations, as it yielded the 207 

best performance. To better describe various combinations including cross-model ensembles, 208 

these simulations were categorized into six groups (Table 1). A shorthand notation is used 209 

throughout the remainder of this work to describe the forcing datasets and ensembles. Daymet, 210 

NLDAS, and Maurer are abbreviated as superscripts 1, 2, and 3, respectively. The + symbol is 211 

used to group model types being ensembled, while superscript clustering (e.g., 12 or 123) is used 212 

to group the meteorological forcing types being ensembled, with parentheses indicating that 213 

the superscripts apply to all model types within. For example, (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)123 could be 214 

explicitly written as 𝐿𝑆𝑇𝑀1 + 𝐿𝑆𝑇𝑀2 + 𝐿𝑆𝑇𝑀3 + 𝛿𝐻𝐵𝑉1 + 𝛿𝐻𝐵𝑉2 + 𝛿𝐻𝐵𝑉3. To compare 215 

two different strategies to utilize the multiple meteorological forcing datasets and to benchmark 216 

against the previously highest performance, we additionally trained a single LSTM model using 217 

all three forcing datasets as simultaneous inputs as done by Kratzert et al. (2021)(2021), 218 

referred to as LSTMmulti (the last row in Table 1). 219 
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 220 

Figure 1. (a) The LSTM structure, (b) the 𝛿HBV structure, and (c) the framework to generate 221 

the six individual ensemble members of the streamflow simulations, in which different colors 222 

of arrow lines denote the different meteorological forcing datasets (also denoted as 1, 2, 3), 223 

respectively. 224 
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Table 1. (a) The six groups of streamflow simulations, and (b) the streamflow simulation via 225 

LSTM based on a different strategy, in which three meteorological forcing datasets were 226 

combined as a single set of inputs (Kratzert et al., 2021)(Kratzert et al., 2021). Superscripts 1, 227 

2, and 3 denote Daymet, NLDAS, and Maurer, respectively. The ensemble across forcings 228 

(“ef”) superscript indicates an ensemble of model simulations, each of which uses a different 229 

single meteorological forcing, e.g., LSTM12 means the average of LSTM1 and LSTM2. 230 

(a) Six Groups of Streamflow Simulations 

Group Name Group Members 

LSTM LSTM1, LSTM2, LSTM3 

δHBV δHBV1, δHBV2, δHBV3 

LSTM+δHBV (LSTM+δHBV)1, (LSTM+δHBV)2, (LSTM+δHBV)3 

LSTMef LSTM12, LSTM13, LSTM23, LSTM123 

δHBVef δHBV12, δHBV13, δHBV23, δHBV123, 

(LSTM+δHBV)ef (LSTM+δHBV)12, (LSTM+δHBV)13, (LSTM+δHBV)23, 

(LSTM+δHBV)123 

(b) Using forcing datasets as simultaneous inputs to an LSTM 

Streamflow 

Simulation 

Model Type Meteorological Forcing Dataset 

LSTMmulti LSTM Daymet, NLDAS, Maurer 

 231 

  232 
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2.5. Evaluation scenarios and criteria 233 

The above cases were comprehensively evaluated for performance in temporal 234 

extrapolation (Feng et al., 2022; Kratzert et al., 2018)(Feng et al., 2022; Kratzert et al., 2018), 235 

as well as two types of spatial generalization: prediction in ungauged basins (PUB) (Feng et 236 

al., 2023b; Kratzert et al., 2019)(Feng et al., 2023b; Kratzert et al., 2019), and prediction in 237 

ungauged regions (PUR) (Feng et al., 2021, 2023b): 238 

● Temporal Test: Models were trained using data from all basins and tested across 239 

different periods. 240 

● PUB Test: Models were trained on randomly selected subsets from all basins and 241 

tested on the remaining basins during the same time period. 242 

● PUR Test: Different from the PUB test, basins were grouped into continuous regions, 243 

one of which was selected to comprise the group of testing basins while the others 244 

were used for training. 245 

Temporal generalization is generally considered to be the easiest of these tests. In terms 246 

of spatial generalization, which approximates data-sparse scenarios, the PUB test is an example 247 

of spatial interpolation, whereas the PUR test involves spatial extrapolation. The PUR test is 248 

widely regarded as the most challenging and may therefore produce findings that differ 249 

significantly from those in other scenarios. In this study, all basins were divided into 10 250 

spatially stratified groups for the PUB test and 7 fully disjoint regional groups for the PUR test 251 

(Table 2) in the same way as Feng et al. (2023b)(2023b). The spatial extent of the 7 regions for 252 

the PUR test is also shown in Figure 3(c1-c2). Therefore, we conducted 10 rounds for the PUB 253 

test and 7 rounds for the PUR test, with a different group held out for testing in each round. 254 

Model performance was evaluated after concatenating the test results for all basins. 255 

  256 

Field Code Changed
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Table 2. Differences of temporal, PUB, and PUR tests. 257 

Test 

Scenario 

Training Testing 

Basin Time Basin Time 

Temporal Alla 1980-1995b All 1995-2010 

PUB Random nine-tenths 1980-1999 Holdoutc 1995-1999 

PUR Random six of seven regions 1980-1999 Holdout 1995-1999 

aδHBV training followed Feng et al. (2023b)(2023b) using all 671 CAMELS basins, while 258 

LSTM training followed Kratzert et al (2021)(2021) using the selected 531-basin subset. Test 259 

results and performance metrics for all models are reported for the 531 basins. 260 

bEach hydrological year spans from October 1st to September 30th of the following year. 261 

cIn the PUB and PUR tests, models are run for 10 and 7 rounds, respectively, with the group 262 

held out for testing changed in each round. The simulation performance was evaluated after 263 

concatenating the test results for all basins. 264 

 265 

We repeated all the simulations with three different random seeds. Therefore, all the 266 

simulations come from a total of (2×3+1)×(1+10+7)×3 trained models. The first factor 267 

represents the models: two model types (LSTM and δHBV) trained separately with each of the 268 

three forcing datasets, along with 𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖, a single model instance trained using all three 269 

forcing datasets simultaneously. The second factor accounts for the three types of tests 270 

(temporal, PUB, and PUR tests), and the last for the three random seeds. With respect to 271 

random seeds, we present two variations in the results, which are visually depicted in Figure 272 

C1. The results without “seed” as a subscript represent the average metric values from multiple 273 

streamflow simulations, each generated from a single model implementation, along with the 274 

corresponding uncertainties, visualized using error bars. The results marked with “seed” as a 275 

subscript are based on the average of multiple streamflow simulations conducted with different 276 

random seeds. In terms of computational cost, training LSTM (30 epochs) and δHBV (50 277 

epochs) for temporal testing under a single meteorological forcing dataset takes approximately 278 
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5 and 21 hours, respectively, using a single NVIDIA Tesla V100 GPU. 279 

We calculated several well-established performance metrics: Nash-Sutcliffe model 280 

efficiency coefficient (NSE) (Nash and Sutcliffe, 1970)(Nash and Sutcliffe, 1970), Kling-281 

Gupta model efficiency coefficient (KGE) (Kling et al., 2012)(Kling et al., 2012), percent bias 282 

(PBIAS), and root-mean-square error (RMSE). We also considered RMSE values for high (top 283 

2% “peak” flow, highRMSE), low (bottom 30% “low” flow, lowRMSE), and mid-range (the 284 

remaining flow, midRMSE) flow conditions (Yilmaz et al., 2008)(Yilmaz et al., 2008). These 285 

metrics were computed for each basin and aggregated into error bars and cumulative density 286 

functions (CDFs). For brevity, the main text primarily reports NSE values, and other metric 287 

values are provided in Appendices D and E. Furthermore, we use the spread values (Li et al., 288 

2021; Reichle and Koster, 2003)(Li et al., 2021; Reichle and Koster, 2003) to investigate 289 

ensemble variability and explore model complementarity. Detailed descriptions of these 290 

metrics and their calculations are available in Table C2. 291 

 292 

3. Results and discussion 293 

3.1. Temporal extrapolation 294 

For the temporal test, in which models were trained and tested on the same basins but in 295 

different time periods, we found that cross-model-type ensembles noticeably surpassed the 296 

within-class ensembles when other conditions were the same, with small uncertainties as shown 297 

by the error bars in Figure 2. With a single forcing dataset, the median NSE was elevated from 298 

~0.735 for LSTM to ~0.79 with δHBV added, though δHBV performance was similar to LSTM 299 

(~0.74 under Daymet). Even after LSTM achieved very high performance when its simulations, 300 

each derived separately from different meteorological forcing datasets, were ensembled (ef = 301 

123, ~0.808), adding δHBV still improved the results to ~0.818. This finding was robust for 302 

all different combinations of the tested meteorological forcing datasets. Conversely, adding 303 
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LSTM also helped to improve δHBV ensembles. These results highlight the benefits of the 304 

cross-model-type ensemble framework and indicate distinct simulation features for each model 305 

type. LSTM is a data-driven method that has low bias and large variance. Data errors (Li et al., 306 

2020b)Data errors (Li et al., 2020b), different sampling strategies (Nai et al., 2024)(Nai et al., 307 

2024), or even different weight initializations (Narkhede et al., 2022)(Narkhede et al., 2022) 308 

can lead to substantively different outcomes. Conversely, δHBV may have a smaller variance 309 

but a larger bias due to the fixed HBV formulation (Moges et al., 2016)(Moges et al., 2016) for 310 

some scenarios like low flows (Feng et al., 2023b; Song et al., 2024b)(Feng et al., 2023b; Song 311 

et al., 2024b) or in basins with significant water uses (Song et al., 2024a)(Song et al., 2024a). 312 

These errors with varying characteristics from different model classes can partially offset each 313 

other in an ensemble. On a side note, δHBV models seem more reliant on the quality of the 314 

forcing data, as shown in Figure 2. δHBV with the Maurer and NLDAS forcing datasets 315 

generally performs worse than it does with Daymet, which has lower biases. However, even in 316 

those cases, the combination of LSTM and δHBV was still better than LSTM alone, attesting 317 

to the robustness of these benefits.  318 

 319 

 320 
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 321 

Figure 2. Median NSE values for 531 CAMELS basins, indicating model and ensemble 322 

performances for (a) temporal, (b) prediction in ungauged basin (PUB), and (c) prediction in 323 

ungauged region (PUR) tests. Different simulations are represented by variously-shaped and 324 

-colored points, and are organized by ensemble group, listed along the x-axis: LSTM, δHBV, 325 

LSTM+δHBV, and their “ensemble forcing” counterparts, 𝐿𝑆𝑇𝑀𝑒𝑓, 𝛿𝐻𝐵𝑉𝑒𝑓, and (𝐿𝑆𝑇𝑀 +326 

𝛿𝐻𝐵𝑉)𝑒𝑓. 𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖 is a single LSTM model trained directly on all three forcing datasets at 327 

once. The superscript “ef” denotes the forcing datasets involved in each ensemble (choices of 328 

1 for Daymet, 2 for NLDAS, and 3 for Maurer), while the “+” connects the model types used 329 

within an ensemble. The x-axis group and subscript “seed” indicate that simulation results 330 

were averaged based on three different random seeds (see Figure C1). Other points without 331 

“seed”, along with their corresponding error bars, are derived from the averages of metrics 332 

computed over repeated runs with three different random seeds. The error bar indicates one 333 

standard deviation above and below the average value for each simulation. 334 

 335 



 

18 

 336 

Figure 3. Scatter plots comparing the performance differences between hydrological models 337 

for the basins where LSTM outperformed δHBV (the basins where δHBV outperformed are not 338 

shown in this plot). The x-axis represents the NSE differences between 𝐿𝑆𝑇𝑀1 and 𝛿𝐻𝐵𝑉1 339 

(𝐿𝑆𝑇𝑀1 - 𝛿𝐻𝐵𝑉1), while the y-axis shows the NSE differences between 𝛿𝐻𝐵𝑉123 and 𝛿𝐻𝐵𝑉1 340 

(𝛿𝐻𝐵𝑉123- 𝛿𝐻𝐵𝑉1). Points are color-coded according to the NSE values of 𝛿𝐻𝐵𝑉1. The 341 

correlation coefficient (CORR) and p values between the x-axis values and the y-axis values, 342 

along with the median NSE value of 𝛿𝐻𝐵𝑉1 (𝑁𝑆𝐸𝑚𝑒𝑑 ) on these basins, are also noted. We 343 

note that NSE is not additive and should generally not be subtracted. Here the purpose is only 344 

to confirm that basins where LSTM outperforms δHBV also tend to be those that benefit from 345 

the ensemble of forcings.  346 

 347 

In the lower-performing basins where LSTM1 had advantages over δHBV1, the ensemble 348 

of meteorological forcings δHBV123 also tended to be higher than δHBV1 (Figure 3), 349 

suggesting that forcing quality was a significant reason behind the underperformance of δHBV1 350 

in these basins. Similar patterns were also observed when analyzing δHBV2 and δHBV3 values 351 

(Figure D1 and Figure D2). These basins previously contributed to LSTM’s cumulative 352 

distribution function of NSE diverging from that of δHBV1 at the low end (Feng et al., 2022). 353 

Forcing errors can exist in the form of systematic timing errors, low or high bias for larger 354 

events, etc., which can be difficult for the mass-balanced conceptual HBV1 structure to adapt 355 

to these errors. Because the ensemble of forcings tends to suppress the errors in each forcing 356 

source, part of the advantages of δHBV123 over δHBV1 can be attributed to reducing forcing 357 

bias or timing errors. Since the advantages of LSTM1 over δHBV1 also tend to occur with these 358 
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same basins, this also explains how LSTM1 surpasses δHBV1 in some basins with poorer-359 

quality forcings. In contrast to δHBV, LSTM has the innate ability to shift information in time 360 

and moderately adjust the input scale. Moving from temporal validation to PUB to PUR 361 

scenarios, the advantages of diverse forcing datasets appear to diminish, as evidenced by the 362 

decreasing ratio of points above versus below the diagonal line, since the forcing error patterns 363 

remembered by LSTM may not generalize well in space (discussed in more detail in sect. 3.2). 364 

 365 

Ensembling streamflow simulations from different meteorological forcing datasets 366 

demonstrates certain advantages over the previous approach of simultaneously sending 367 

multiple forcings into a data-driven model like LSTM (Kratzert et al., 2021)(Kratzert et al., 368 

2021). Ensembling LSTM simulations each using a single forcing dataset (𝐿𝑆𝑇𝑀123) resulted 369 

in an NSE value of 0.8082, higher than that of 0.7974 from feeding multiple forcing datasets 370 

into a single LSTM (𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖). This difference was more pronounced in the cross-model-371 

type ensemble, after including δHBV, compared to the previous within-class ensemble, and 372 

particularly notable for the spatial generalization tests (to be discussed in more detail in Sect. 373 

3.2), with ). The corresponding specific metric valuesperformance metrics are summarized in 374 

Tables D1–D5, with seasonal evaluations provided in Tables D1-D5Figure D3. These results 375 

indicate that the trained LSTM in 𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖 may be overfitted to the significant redundant 376 

information in these three forcing datasets, and that only LSTM models alone cannot fully 377 

exploit the information hidden in the multiple forcing datasets. Training separate ensemble 378 

members via different nonlinear hydrological processes, on the other hand, seems to allow 379 

different bias features to emerge with separate forcing datasets, accordingly mitigating them 380 

during the subsequent ensembling process. 381 

 382 
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 383 

Figure 4. Spatial distributions of NSE values over 531 basins. Subplots are arranged in rows, 384 

indicating (a) temporal, (b) PUB, and (c) PUR test results, and columns, denoting (1) NSE 385 

values from (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)𝑠𝑒𝑒𝑑
123  and (2) the differences between these NSE values and those 386 

of 𝐿𝑆𝑇𝑀1 (models using only forcing 1, Daymet). For 𝐿𝑆𝑇𝑀1, each NSE value reported was 387 

the average of three NSE values from three simulations using three different random seeds. 388 

The seven continuous regions used to divide up basins for the PUR test are outlined and 389 

numbered in the PUR test maps. 390 

 391 

Our most diverse ensemble, (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)𝑠𝑒𝑒𝑑
123 + 𝐿𝑆𝑇𝑀𝑠𝑒𝑒𝑑

𝑚𝑢𝑙𝑡𝑖, achieved a median NSE 392 

value of ~0.83, surpassing the ~0.82 benchmark set by 𝐿𝑆𝑇𝑀𝑠𝑒𝑒𝑑
𝑚𝑢𝑙𝑡𝑖  (Table D4). This 393 

advancement was achieved through random seed variation and cross-model-type ensembling. 394 

The performance of (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)123 ensemble proved more robust than 𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖, with 395 

only a slight boost when we incorporated random seeds, i.e., (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)𝑠𝑒𝑒𝑑
123 . Notably, 396 

the derived (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)𝑠𝑒𝑒𝑑
123  ensemble outperformed 𝐿𝑆𝑇𝑀1  across almost all basins 397 
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(Figure 4). Further incorporation of 𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖  into this framework, especially when using 398 

multiple random seeds, (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)𝑠𝑒𝑒𝑑
123 + 𝐿𝑆𝑇𝑀𝑠𝑒𝑒𝑑

𝑚𝑢𝑙𝑡𝑖 , yielded the best overall 399 

performance. Here, the margin over the previous benchmark was small in the temporal test. 400 

However, as we will show in sect. 3.2, the previous benchmark, 𝐿𝑆𝑇𝑀𝑠𝑒𝑒𝑑
𝑚𝑢𝑙𝑡𝑖, lacked robustness, 401 

exhibited greater deficiencies in spatial generalization, and negatively impacted ensemble 402 

simulations.  403 

When we changed the number of random seeds from 3 to 10, we found that although all 404 

model and ensemble performances slightly increasedimproved, the gaps between them did not 405 

change much (Figure 5 and; Table D5 for 10 seeds, Table D4 for 3 seeds). In particular, the 406 

gap between (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)𝑠𝑒𝑒𝑑
123 + 𝐿𝑆𝑇𝑀𝑠𝑒𝑒𝑑

𝑚𝑢𝑙𝑡𝑖  and (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)𝑠𝑒𝑒𝑑
123  or 𝐿𝑆𝑇𝑀𝑠𝑒𝑒𝑑

𝑚𝑢𝑙𝑡𝑖 407 

remained unchanged. This indicates that the benefits from more random seeds rapidly become 408 

marginal, and our results based on 3 random seeds were sufficiently robust. For LSTMs alone, 409 

different random seeds displayed higher variation, and ensembling them led to greater 410 

improvement than ensembling (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)123  with additional random seeds. It was 411 

noteworthy that while the (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)123  ensemble generally showed the lowest RMSE 412 

values, it did not always show the best high flow performance, as indicated by highRMSE 413 

(Tables D1-D4). After incorporating the 𝐿𝑆𝑇𝑀𝑠𝑒𝑒𝑑
𝑚𝑢𝑙𝑡𝑖  variant into (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)𝑠𝑒𝑒𝑑

123 +414 

𝐿𝑆𝑇𝑀𝑠𝑒𝑒𝑑
𝑚𝑢𝑙𝑡𝑖, overall RMSE and highRMSE both improved. Nevertheless, this ensemble did not 415 

always obtain the best values in other metrics like low flow (lowRMSE) and requires further 416 

improvement.  417 

 418 
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 419 

 420 

Figure 5. Cumulative distribution function (CDF) curves based on temporal test results for 421 

𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖 , (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)123, and [(𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)123 + 𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖] . The solid lines 422 

(with “seed”) denote the results with 10 random seeds while the corresponding dashed and 423 
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translucent lines denote the performances of their individual members each based on one 424 

random seed. The median NSE values computed with 3 random seeds are also indicated by 425 

vertical dashed and translucent lines in the corresponding colors. 426 

 427 

3.2. Spatial generalization 428 

It is clear that cross-model-type ensembling and the incorporation of δHBV significantly 429 

improved prediction in ungauged basins (PUB) or regions (PUR), mitigating the difficulty of 430 

spatial generalization (Figure 2b - 2c). In particular, the previous record-holder for temporal 431 

test performance, 𝐿𝑆𝑇𝑀𝑠𝑒𝑒𝑑
𝑚𝑢𝑙𝑡𝑖 , incurred large drops in the PUB and PUR tests, once again 432 

reminding us of the limitations of LSTM in spatial generalization. Given the same forcings, 433 

δHBV-only individual simulations or ensembles consistently outperformed LSTM-only 434 

counterparts in the PUR test. Furthermore, adding δHBV to the same-model-type LSTM 435 

ensembles improved median NSE by 0.02-0.03 for PUB. The role of δHBV became even more 436 

prominent in the harder PUR tests, with an increased gap (0.04-0.07), e.g., LSTM123 (median 437 

NSE ~0.656) and (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)123 (median NSE ~0.701). The increased significance of 438 

δHBV is also illustrated by the optimized weights shown in Figure E1, which were estimated 439 

using a genetic algorithm with streamflow observations from the test periods. These weights 440 

are presented solely to illustrate the relative contributions of the different ensemble components. 441 

The significantly different spatial distribution patterns of these weights among different test 442 

scenarios also indicate the differences among temporal, PUB, and PUR tests (Figures E2-E3). 443 

The performance of (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)123  improved compared to 𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖  regardless of 444 

whether or not we employed multiple random seeds were employed to form an ensemble. As 445 

such, we can conclude that the inclusion of a differentiable process-based model like δHBV in 446 

an ensemble is a systematic way to reduce the risks of failed generalizations of LSTM.  447 

Utilizing a cross-model-type ensemble led to widespread improvements over LSTM-only 448 

ensembles, with the exception of a few scattered basins for each temporal (Figure 4-a2), PUB 449 
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(Figure 4-b2), and PUR (Figure 4-c2) test. The most significant improvements due to the 450 

ensemble were concentrated on the center of the Great Plains along with the midwestern US, 451 

while the eastern US was moderately improved, suggesting data uncertainty is a larger issue in 452 

the central and midwestern US. The Great Plains have historically had poor performance for 453 

all kinds of models (Mai et al., 2022)(Mai et al., 2022) and even the ensemble model had NSE 454 

values of only 0.3-0.4 for many of the basins there, although this still marked significant 455 

improvements over LSTM1 (Figure 4-a2, -b2, -c2). Some western basin NSE values were 456 

elevated by more than 0.15 for the temporal test (Figure 4-a2) and even more for PUB and 457 

PUR. Meteorological stations are generally sparse on the Great Plains, and an ensemble seems 458 

to be an effective way to leverage the different forcing datasets that are available. The poor 459 

performances in some basins highlight some remaining deficiencies in current models, which 460 

clearly cannot fully consider the heterogeneities of different basins; thus, multiscale 461 

formulations that resolve such heterogeneities may have advantages (Song et al., 2024a)(Song 462 

et al., 2024a). 463 

To investigate why ensembles outperformed single-model, single-forcing approaches, we 464 

compared their temporal, PUB, and PUR test simulation time series against observations for 465 

531 basins (Figure 6). Analysis of averaged hydrological year data revealed that while 466 

individual ensemble members using single-source forcing datasets performed similarly for 467 

easily simulated periods, they showed significant divergence during challenging periods, 468 

particularly peak flows. This divergence stems from distinct systematic errors inherent to 469 

different model types and forcing datasets. Notably, LSTM-based simulations alone proved 470 

insufficient in generating adequate spread to capture these divergent points. By averaging 471 

individual model outputs and stabilizing uncertainties, ensemble simulations achieved effective 472 

and robust performance across all conditions, which can be shown via the metric highRMSE 473 

and lowRMSE values in Tables D1-D4. This highlights the critical importance of 474 
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comprehensive training for each ensemble member, including diverse forcing inputs, full-475 

period model calibration, and rigorous hyperparameter tuning, to ensure that each member 476 

develops distinct simulation behaviors. These differences allow the ensemble to better 477 

represent a range of hydrological responses, particularly under extreme or uncertain conditions. 478 

By capturing complementary strengths and compensating for individual weaknesses, such 479 

well-trained ensemble members collectively enhance the robustness and accuracy of 480 

streamflow simulations. 481 

 482 
Figure 6. Comparisons between multi-basin-averaged streamflow observations and 483 

simulations across 531 basins. The time series points are displayed at four-day intervals for 484 

clarity and conciseness. Ensemble members based on the same model (LSTM or δHBV) but 485 

driven by different forcing datasets are shown in the same color to highlight the differences 486 

between models more clearly. 487 

 488 

3.3 Ensemble variability and robustness analysis  489 

Although δHBV (median spread 0.61) exhibits lower spreads than LSTM (mean spread 490 
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0.72), their combination increases the ensemble spreads, thereby enhancing diversity (Figure 491 

7). This pattern holds across the temporal, PUB, and PUR tests. Ensemble effectiveness 492 

depends on the diversity of model behaviors and their distinct error characteristics. 493 

Consequently, larger spreads contribute toare generally associated with greater ensemble 494 

benefits. Figure D3D4 further demonstrates that δHBV+LSTM exhibits larger spreads than 495 

LSTM in most basins. 496 

 497 

 498 

Figure 7. Spread values (Table C2) of each model for LSTM, δHBV, and LSTM + δHBV due 499 

to different meteorological forcings and random seeds across temporal, PUB, and PUR tests. 500 

 501 
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As the warming signal is already clear across most basins under any forcing across the 502 

periods of simulation (Figure D4D5), the models’ strong performance in the temporal test 503 

suggests decent extrapolation capability under warming scenarios. It is often questioned 504 

whether data-driven models like LSTM lose accuracy under stronger climate drift, but no 505 

substantially warmed dataset is available to test this. Benchmarks suggest LSTM captures 15-506 

year trends well in temporal tests, but less so in data-sparse scenarios (Feng et al., 2023b)(Feng 507 

et al., 2023b). Introducing a 10% precipitation perturbation (multiplying precipitation by 1.1) 508 

slightly reduced performance for both models as expected (Figures D56a and D56b), but 509 

ensemble benefits remained robust across models despite the perturbation.  510 

Training sample size, dynamic parameter choices, and lookback windows all haveexert 511 

only a limited impact on our conclusions. δHBV shows limited sensitivity to sample size, with 512 

similar results when trained on 531 versus 671 basins (Figure D56c). Regarding parameter 513 

uncertainties, fixing one δHBV parameter (𝑘0) as static increased structural errors and reduced 514 

performance (Figure D56d), yet ensemble benefits remained robust. For LSTM, alternative 515 

window sizes of 182 and 730 days were tested, with the default 365-day window yielding 516 

optimal performance (Figure D56e). Importantly, variations in the lookback window had only 517 

minor effects on model performance, underscoring the robustness of ensemble benefits. 518 

 519 

3.4. Further discussion 520 

Based on our results, we identified several avenues for future research. First, while we 521 

have explored various weighting strategies and found that averaging yields the best 522 

performance yet, we believe that dynamic or adaptive weighting schemes could further enhance 523 

performance in future studies. It is also demonstrated by Table E1 that estimated uneven 524 

weights can significantly improve simulation performance. Moreover, within specific basins, 525 

the estimated weights of different components are often highly imbalanced, as evidenced by 526 

the spatial distribution of optimized weights (Figures E2-E3). Some potential feasible ways 527 
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include using the simulations from these individually-trained models as inputs of a data-driven 528 

model (Solanki et al., 2025), and making the weight estimation and the ensemble member 529 

training simultaneously.  530 

Both LSTM and δHBV models exhibit limitations in regions with significant 531 

anthropogenic impacts, such as like dam presence, as well as arid climatic and 532 

highlysignificantly heterogeneous geological conditions. These regions are mainly located in 533 

the midwestern and western CONUS, where high evaporation conditions (Heidari et al., 2020, 534 

Figure 2) and numerous dams (Ryan Bellmore et al., 2017, Figure 1) coincide with complex 535 

water use processes (Wada et al., 2016, Figure 11) that current models cannot simulate well. 536 

Together, these factors suggest that anthropogenic influence is likely an important driver of 537 

poor model performance. Further improvements may include incorporating additional data that 538 

capture these factors like capacity-to-runoff ratio (Ouyang et al., 2021) or integrating 539 

specialized modules, such as reservoirs (Hanazaki et al., 2022; West et al., 2025). Compared 540 

with LSTM, δHBV is more sensitive to precipitation biases. For example, the differences 541 

between δHBV simulations under different forcing datasets were generally larger than those 542 

for LSTM, and δHBV using the Daymet forcing dataset showed largely better performance 543 

than with the other two forcing datasets, which indicates that δHBV may not be able to fit 544 

different forcing datasets well. Therefore, many potential structural optimizations can be 545 

implemented to improve δHBV. Our analysis provided corroborating evidence that forcing 546 

error is an important reason why LSTM can outperform δHBV in the temporal test for some 547 

basins, although such patterns may not generalize well in space. A meteorological forcing data 548 

correction module can be developed in the future to account for timing and magnitude errors 549 

in precipitation. Ensemble simulations may face challenges when computational resources are 550 

constrained, particularly for large-scale or real-time applications. Nevertheless, we remain 551 

optimistic about overcoming these challenges due to several promising solutions. These 552 

Field Code Changed
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include tailoring the hydrological model by simplifying less relevant components to specific 553 

simulation objectives (Clark et al., 2015; Kraft et al., 2022) and cloud-based computing 554 

infrastructures that offer scalable, on-demand resource allocation (He et al., 2024; Leube et al., 555 

2013). Importantly, the majority of computational costs are incurred during model training. In 556 

practice, ensemble members are typically pre-trained by different research or application 557 

groups (Bodnar et al., 2025; Nearing et al., 2024; Song et al., 2025a), enabling direct reuse of 558 

these well-trained models and significantly improving computational efficiency. 559 

For this work, we did not create a δHBVmulti model (in the same vein as LSTMmulti) using 560 

all forcings as an input to a single model, since a similar experiment has already been conducted 561 

by Sawadekar et al. (2025). We also did not examine “seed” combinations of a δHBVmulti as 562 

we believed they would not result in a significant performance boost (unlike that seen with 563 

LSTMmulti), because LSTM has high variability and low bias, while δHBV has lower variance 564 

and potentially higher bias. As a result, random seeds would likely not create large enough 565 

perturbations for δHBV and wouldn’t bring the benefits seen with 𝐿𝑆𝑇𝑀𝑠𝑒𝑒𝑑
𝑚𝑢𝑙𝑡𝑖. To achieve an 566 

equivalent perturbation level for δHBV, it may be necessary to incorporate multiple distinct 567 

hydrological models, such as SAC-SMA, PRMS, and GR4J, similar to the approach 568 

implemented in the Framework for Understanding Structural Errors (FUSE) (Clark et al., 569 

2008)(Clark et al., 2008). Work is ongoing to create a combination of a series of differentiable 570 

process-based models, which is expected to produce a further improved ensemble with great 571 

interpretability. Given the success of cross-model-type ensembles shown in this work, we also 572 

encourage further exploration of ensemble simulations involving models with other distinct 573 

mechanisms.  574 

 575 

4. Summary and conclusions 576 

This study comprehensively analyzes ensemble combinations of two advanced model 577 



 

30 

types (LSTM and δHBV), each with distinct mechanisms, for streamflow simulation across 578 

531 basins in the US. Three meteorological forcing datasets (Daymet, NLDAS, and Maurer) 579 

are employed to fully capture the characteristics of the two models. Their applications are also 580 

tested in two distinct ways: (1) by feeding all diverse forcing datasets simultaneously into a 581 

single LSTM model, and (2) by ensembling the outputs of multiple LSTM models, each trained 582 

separately using a single forcing dataset. The performance of ensemble simulations was 583 

evaluated under three distinct testing scenarios (temporal, PUB, and PUR tests), surpassing the 584 

previous highest performances. Our findings enhance the understanding of how to effectively 585 

utilize diverse model types and multi-source datasets to improve streamflow simulations. The 586 

principal conclusions are: 587 

(1) Cross-model-type ensembles (LSTM+δHBV) consistently outperformed single-588 

model approaches across all test scenarios, setting new performance benchmarks on 589 

the CAMELS dataset. These ensembles demonstrated the complementarity of data-590 

driven (LSTM) and physics-informed (δHBV) approaches in capturing diverse 591 

hydrological behaviors. 592 

(2) Ensembling models trained on different forcing datasets proved more effective than 593 

using multiple forcing datasets as simultaneous inputs to a single model. This suggests 594 

that separate training allows each model to capture unique features contained in each 595 

forcing dataset, which can then be effectively leveraged in the ensemble. 596 

(3) δHBV provided significant benefits to ensemble simulations on spatial generalization. 597 

Ensembling LSTM with δHBV showed increasing benefits as generalization 598 

challenges increased, from temporal to spatial interpolation (PUB) to spatial 599 

extrapolation (PUR) tests. This underscores the value of physics-informed constraints 600 

in improving model transferability to ungauged basins and regions. 601 

(4) While ensemble methods significantly improved overall performance, they did not 602 
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fully mitigate consistent deficiencies in certain challenging areas (e.g., regions with 603 

high dam density or heterogeneous hydrogeological conditions). This indicates areas 604 

for future model development. 605 

These findings have important implications for hydrological modeling and water 606 

resources management. The improved accuracy and spatial generalization of our ensemble 607 

approach can enhance streamflow predictions, benefiting water resources planning and 608 

management, particularly in data-scarce regions. Our results also suggest that future 609 

hydrological model development should focus on combining data-driven and physics-based 610 

approaches to improve model generalizability across diverse conditions. The superior 611 

performance of ensembling models with different forcing datasets over using merged forcings 612 

as a single input highlights the risk of indiscriminately feeding all available data into one data-613 

driven model. While computational demands certainly require consideration, the potential 614 

improvements in prediction accuracy offer significant value for both research and operational 615 

applications. Future work should focus on refining these ensemble techniques, addressing 616 

model limitations in challenging regions, and exploring ensemble implementation in 617 

operational settings.  618 
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Appendix A: Detailed processes of HBV employed in this study. 619 

The Hydrologiska Byråns Vattenbalansavdelning (HBV) model (Aghakouchak and Habib, 620 

2010; Beck et al., 2020; Bergström, 1976, 1992) is a simple but effective bucket-type 621 

hydrologic model that simulates hydrologic variables including snow water equivalent, soil 622 

water, groundwater storage, evapotranspiration, quick flow, baseflow, and total streamflow. In 623 

the following texts, we describe these processes in detail by equations, in which uppercase 624 

letters indicate state variables, and lowercase letters indicate model parameters. In general, the 625 

water balance is developed based on Equation (S1). 626 

The Hydrologiska Byråns Vattenbalansavdelning (HBV) model (Aghakouchak and Habib, 627 

2010; Beck et al., 2020; Bergström, 1976, 1992) is a simple yet effective bucket-type 628 

hydrologic model that simulates hydrologic components including snow water equivalent, soil 629 

moisture, groundwater storage, evapotranspiration, quick flow, baseflow, and total streamflow. 630 

In the following, we describe these processes in detail with their corresponding equations. 631 

Uppercase letters denote state variables, while lowercase letters denote parameters. The overall 632 

water balance is expressed as Equation (S1). 633 

 𝐸𝑃 − 𝐴𝐸 − 𝑄𝑡 = 𝑆𝑁 + 𝑆𝑀 + 𝑈𝑅 + 𝐿𝑅𝑆𝑈𝑍 + 𝑆𝐿𝑍 + 𝐿𝐴𝐾𝐸 (S1) 

where 𝐸𝑃  is effective precipitation, 𝐴𝐸  is the actual evapotranspiration, 𝑄𝑡  is the total 634 

simulated runoff, 𝑆𝑁 is snow storage, 𝑆𝑀 is soil watermoisture storage, 𝑈𝑅 isSUZ and SLZ are 635 

the upper reservoir water level, 𝐿𝑅 is the and lower reservoir water levelgroundwater storages, 636 

respectively, and 𝐿𝐴𝐾𝐸 is therepresents lake levelstorage (omitted in this study).  637 

First, effective precipitation (EP) is separatitioned into liquidrain (RN) and solidsnow (SN) 638 

components based on the air temperature (T) relative to thea threshold temperature (tt) as): 639 

 𝑅𝑁 = 𝐸𝑃 𝑖𝑓 𝑇 ≥ 𝑡𝑡 (S2) 

 𝑆𝑁 = 𝐸𝑃 𝑖𝑓 𝑇 < 𝑡𝑡 (S3) 

Snow (SN) accumulates in the snowpack (SNP), while the snowmelt (SNM) happens when T ≥ 640 

tt, which is calculated usingbased on a temperature-dependent melt ratefactor (cfm).) and the 641 

temperature difference (T - tt). The computed snowmelt (SNM) is limited toconstrained by the 642 

available snowpack (SNP), and any excess melt contributes to meltwater (MW) as). 643 

 𝑆𝑁𝑃 = 𝑆𝑁𝑃 + 𝑆𝑁 (S4) 

 𝑆𝑁𝑀 = {

𝑆𝑁𝑃 𝑐𝑓𝑚 ∙ (𝑇 − 𝑡𝑡) ≥ 𝑆𝑁𝑃

𝑐𝑓𝑚 ∙ (𝑇 − 𝑡𝑡) 𝑇 ≥ 𝑡𝑡, 𝑐𝑓𝑚 ∙ (𝑇 − 𝑡𝑡)
0 𝑇 < 𝑡𝑡

< 𝑆𝑁𝑃 (S5) 

 𝑀𝑊 = 𝑀𝑊 + 𝑆𝑁𝑀 (S6) 
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𝑆𝑁𝑃 = 𝑆𝑁𝑃 − 𝑆𝑁𝑀𝑆𝑁𝑀

= 𝑚𝑖𝑛[max(𝑐𝑓𝑚 ⋅ (𝑇 − 𝑡𝑡), 0) , 𝑆𝑁𝑃] 
(S7S4) 

Some of this The snowmelt (SNM) contributes to meltwater (MW) refreezes based on a 644 

refreezing parameter (cfr) and the temperature difference from the threshold, returning to ), 645 

while the snowpack (SNP). The amount of refrozen water) is labeledupdated as FRZ.: 646 

 

𝑀𝑊 = 𝑀𝑊 + 𝑆𝑁𝑀𝑅𝐹𝑍

= {

𝑀𝑊 𝑐𝑓𝑟 ∙ 𝑐𝑓𝑚 ∙ (𝑡𝑡 − 𝑇) ≥ 𝑀𝑊

𝑐𝑓𝑟 ∙ 𝑐𝑓𝑚 ∙ (𝑡𝑡 − 𝑇) 𝑇 < 𝑡𝑡, 𝑐𝑓𝑟 ∙ 𝑐𝑓𝑚 ∙ (𝑡𝑡 − 𝑇) < 𝑀𝑊
0 𝑇 ≥ 𝑡𝑡

 
(S8S5) 

 𝑆𝑁𝑃 = 𝑆𝑁𝑃 + 𝑅𝐹𝑍𝑆𝑁 − 𝑆𝑁𝑀 (S9S6) 

 𝑀𝑊 = 𝑀𝑊 −𝑅𝐹𝑍 (S10) 

The remaining meltwater (MW) that exceeds the snowpack's holding capacity (cwh) contributes 647 

to soil infiltration (IF), and the rest remains in the meltwater (MW) storage as 648 

A portion of the meltwater (MW) may refreeze when T < tt, controlled by the refreezing 649 

parameter (cfr): 650 

 
𝐼𝐹 = {

𝑀𝑊 − 𝑐𝑤ℎ ∗ 𝑆𝑁𝑃 𝑀𝑊 − 𝑐𝑤ℎ ∗ 𝑆𝑁𝑃 ≥ 0
0 𝑀𝑊 − 𝑐𝑤ℎ ∗ 𝑆𝑁𝑃 < 0

𝑅𝐹𝑍

= min[max(𝑐𝑓𝑟 ⋅ 𝑐𝑓𝑚 ⋅ (𝑡𝑡 − 𝑇), 0) ,𝑀𝑊] 

(S11S7) 

 𝑆𝑁𝑃 = 𝑆𝑁𝑃 + 𝑅𝐹𝑍 (S8) 

 𝑀𝑊 = 𝑀𝑊 − 𝐼𝐹𝑍 (S12S9) 

The fraction of soil moisture relative to the field capacity (fc) determines the soil wetness, 651 

which modulates the amount of water recharged into the soil (SP). Then soil moisture (SM) is 652 

updated based on the infiltration of meltwater (IF), rain (RN), and the amount of recharged 653 

water (SP) as 654 

The remaining meltwater (MW) exceeding the snowpack’s liquid water holding capacity (𝑐𝑤ℎ ⋅655 

𝑆𝑁𝑃) infiltrates into the soil (IF), with the remainder retained in MW: 656 

 𝐼𝐹 = 𝑚𝑎𝑥(𝑀𝑊 − 𝑐𝑤ℎ ⋅ 𝑆𝑁𝑃, 0)𝑆𝑃 = (
𝑆𝑀

𝑓𝑐
)

𝛽

∙  (𝐼𝐹 + 𝑅𝑁) (S130) 

 𝑆𝑀 = 𝑆𝑀 +𝑀𝑊 = 𝑀𝑊 − 𝐼𝐹 + 𝑅𝑁 − 𝑆𝑃 (S141) 

The excess water, abovefraction of soil moisture (SM) relative to the field capacity (𝐼𝐹𝑑𝑖𝑟), is 657 

calculated and subsequently removed fromfc), raised to the soil moisture storage aspower index 658 

β, modulates shallow seepage (SP) according to the available water (IF + RN): 659 

 𝑆𝑃 = (
𝑆𝑀

𝑓𝑐
)

𝛽

𝐼𝐹𝑑𝑖𝑟 = {
𝑆𝑀 − 𝑓𝑐 𝑖𝑓 𝑆𝑀 ≥ 𝑓𝑐

0 𝑖𝑓 𝑆𝑀 < 𝑓𝑐
(𝐼𝐹 + 𝑅𝑁) (S152) 
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 𝑆𝑀 = 𝑆𝑀 − 𝐼𝐹𝑑𝑖𝑟 + 𝐼𝐹 + 𝑅𝑁 − 𝑆𝑃 (S163) 

Actual evapotranspiration (AE) is determined by an evaporation factor (PEC), which depends 660 

on the soil moisture, a shape parameter (𝜆), a parameter (lp), and field capacity (fc) for 661 

evapotranspiration. This factor limits the actual evapotranspiration (AE) to both the potential 662 

evapotranspiration (PE) and the available soil moisture. 663 

Excess soil water above the field capacity contributes to direct infiltration (𝐼𝐹𝑑𝑖𝑟): 664 

 
𝑃𝐸𝐶 =

{
 
 
 

 
 
 (

𝑆𝑀

𝑙𝑝 ∙ 𝑓𝑐
)

𝜆

𝑖𝑓 0 ≤  (
𝑆𝑀

𝑙𝑝 ∙ 𝑓𝑐
)

𝜆

< 1

0 𝑖𝑓 𝑆 (
𝑆𝑀

𝑙𝑝 ∙ 𝑓𝑐
)

𝜆

< 0

1 𝑖𝑓 𝑆 (
𝑆𝑀

𝑙𝑝 ∙ 𝑓𝑐
)

𝜆

≥ 1

𝐼𝐹𝑑𝑖𝑟

= max(𝑆𝑀 − 𝑓𝑐, 0) 

(S174) 

 𝐴𝐸 = {
𝑃𝐸 ⋅ 𝑃𝐸𝐶 𝑖𝑓 𝑆𝑀 ≥ 𝑃𝐸 ⋅ 𝑃𝐸𝐶
𝑆𝑀 𝑖𝑓 𝑆𝑀 < 𝑃𝐸 ⋅ 𝑃𝐸𝐶

 (S18) 

 𝑆𝑀 = 𝑆𝑀 − 𝐴𝐸𝐼𝐹𝑑𝑖𝑟 (S195) 

Capillary rise (CP) from the lower soil zone (SLZ) is governed by a parameter (c), which 665 

determines the amount of water moving upward based on the soil moisture content. This 666 

capillary flow replenishes the soil moisture, while groundwater interactions occur through 667 

recharge processes in the upper (SUZ) and lower (SLZ) groundwater zones.  668 

Actual evapotranspiration (AE) is estimated as the product of potential evapotranspiration (PE) 669 

and an evapotranspiration coefficient (PEC). The PEC depends on soil moisture storage (SM), 670 

field capacity (fc), a shape parameter (λ), and a threshold parameter (lp). 671 

 

𝐶𝑃 =

{
 

 𝑆𝐿𝑍 𝑖𝑓 𝑆𝐿𝑍 < 𝑐 ∙ 𝑆𝐿𝑍 ⋅ (1 −
𝑆𝑀

𝑓𝑐
)

𝑐 ∙ 𝑆𝐿𝑍 ⋅ (1 −
𝑆𝑀

𝑓𝑐
) 𝑖𝑓 𝑆𝐿𝑍 ≥ 𝑐 ∙ 𝑆𝐿𝑍 ⋅ (1 −

𝑆𝑀

𝑓𝑐
)

𝑃𝐸𝐶

= min [1,max (0, (
𝑆𝑀

𝑙𝑝 ∙ 𝑓𝑐
)

𝜆

)] 

(S20S16) 

 𝐴𝐸 = min(𝑃𝐸 ⋅ 𝑃𝐸𝐶, 𝑆𝑀)𝑆𝑀 = 𝑆𝑀 + 𝐶𝑃 (S217) 

 𝑆𝐿𝑍 = {
𝑆𝐿𝑍 − 𝐶𝑃 𝑖𝑓 𝑆𝐿𝑍 ≥ 𝐶𝑃

0 𝑖𝑓 𝑆𝐿𝑍 < 𝐶𝑃
𝑆𝑀 = 𝑆𝑀 − 𝐴𝐸 (S22S18) 

Excess recharge (SP and 𝐼𝐹𝑑𝑖𝑟) from the soil enters the upper zone, where it either percolates 672 

to the lower zone (PERC) based on a constant rate (prc) or contributes to direct runoff (𝑄0) 673 

when it exceeds the upper zone threshold (uzl). The generated flow is modeled using 674 
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parameters (𝑘0, 𝑘1, 𝑘2) governing flow from the upper and lower zones. Each of these flows 675 

contributes to runoff (𝑄0Capillary rise (CP) from the lower zone (SLZ) replenishes SM, 676 

controlled by a coefficient (c) and constrained by the soil moisture deficit:  677 

, 𝑄1, 𝑄2), and their respective contributions to streamflow (𝑄𝑡) are modeled over time. 678 

 𝐶𝑃 = min [𝑐 ∙ 𝑆𝐿𝑍 ⋅ (1 −
𝑆𝑀

𝑓𝑐
) , 𝑆𝐿𝑍] 𝑆𝑈𝑍 = 𝑆𝑈𝑍 + 𝑆𝑃 + 𝐼𝐹𝑑𝑖𝑟 (S23S19) 

 𝑆𝑀 = 𝑆𝑀 + 𝐶𝑃𝑃𝐸𝑅𝐶 = {
𝑝𝑟𝑐 𝑖𝑓 𝑆𝑈𝑍 ≥ 𝑝𝑟𝑐
𝑆𝑈𝑍 𝑖𝑓 𝑆𝑈𝑍 < 𝑝𝑟𝑐

 (S240) 

 𝑆𝑈𝑍 = 𝑆𝑈𝑍 − 𝑃𝐸𝑅𝐶 (S25) 

 𝑄0 = {
𝑘0 ∙ (𝑆𝑈𝑍 − 𝑢𝑧𝑙) 𝑖𝑓 𝑆𝑈𝑍 ≥ 𝑢𝑧𝑙

0 𝑖𝑓 𝑆𝑈𝑍 < 𝑢𝑧𝑙
 (S26) 

 𝑆𝑈𝑍 = 𝑆𝑈𝑍 − 𝑄0 (S27) 

 𝑄1 = 𝑆𝑈𝑍 ∙ 𝑘1 (S28) 

 𝑆𝑈𝑍 = 𝑆𝑈𝑍 − 𝑄1 (S29) 

 𝑆𝐿𝑍 = 𝑆𝐿𝑍 + 𝑃𝐸𝑅𝐶 (S30) 

 𝑄2 = 𝑆𝐿𝑍 ∙ 𝑘2 (S31) 

 𝑆𝐿𝑍 = 𝑆𝐿𝑍 − 𝑄2𝐶𝑃 (S321) 

 𝑄𝑡 = 𝑄0 + 𝑄1 + 𝑄2 (S33) 

Recharge from the soil, consisting of shallow seepage (SP) and direct infiltration (𝐼𝐹𝑑𝑖𝑟), enters 679 

the upper groundwater zone (SUZ). Water in the upper zone either percolates to the lower 680 

groundwater zone (SLZ) at a constant percolation rate (prc) or contributes to direct runoff (𝑄0) 681 

when the upper zone (SUZ) exceeds a threshold (uzl). Flow from the upper and lower zones is 682 

computed using linear reservoir formulations, with parameters 𝑘0 , 𝑘1 , 𝑘2  controlling the 683 

respective runoff components 𝑄0 , 𝑄1 , 𝑄2 . The total simulated streamflow (𝑄𝑡 ) is then 684 

computed as the sum of these components. 685 

 686 

Finally, a routing module (Feng et al., 2022) is used to process 𝑄𝑡  to produce the final 687 

streamflow output (𝑄𝑡
∗). This module with two parameters (𝜃𝛼, 𝜃𝜏) assumes a gamma function 688 

for the unit hydrograph and convolves the unit hydrograph with the runoff as, 689 

 690 

 𝑆𝑈𝑍 = 𝑆𝑈𝑍 + 𝑆𝑃 + 𝐼𝐹𝑑𝑖𝑟𝑄𝑡
∗ = ∫ 𝜉(𝑠: 𝜃𝛼 , 𝜃𝜏)

𝑡𝑚𝑎𝑥

0

⋅ 𝑄(𝑡 − 𝑠)𝑑𝑠 (S34S22) 
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 𝜉(𝑠: 𝜃𝛼 , 𝜃𝜏) =
1

𝛤(𝜃𝛼)𝜃𝜏
𝜃𝛼
𝑡𝜃𝛼−1𝑒

−
𝑡
𝜃𝜏𝑃𝐸𝑅𝐶 = min(𝑝𝑟𝑐, 𝑆𝑈𝑍) (S235) 

 𝑆𝑈𝑍 = 𝑆𝑈𝑍 − 𝑃𝐸𝑅𝐶 (S24) 

 𝑄0 = max[𝑘0 ∙ (𝑆𝑈𝑍 − 𝑢𝑧𝑙), 0] (S25) 

 𝑆𝑈𝑍 = 𝑆𝑈𝑍 − 𝑄0 (S26) 

 𝑄1 = 𝑆𝑈𝑍 ∙ 𝑘1 (S27) 

 𝑆𝑈𝑍 = 𝑆𝑈𝑍 − 𝑄1 (S28) 

 𝑆𝐿𝑍 = 𝑆𝐿𝑍 + 𝑃𝐸𝑅𝐶 (S29) 

 𝑄2 = 𝑆𝐿𝑍 ∙ 𝑘2 (S30) 

 𝑆𝐿𝑍 = 𝑆𝐿𝑍 − 𝑄2 (S31) 

 𝑄𝑡 = 𝑄0 + 𝑄1 + 𝑄2 (S32) 

 691 

Finally, a routing module (Feng et al., 2022) is used to process 𝑄𝑡  to produce the final 692 

streamflow output (𝑄𝑡
∗). This module with two parameters (𝜃𝛼, 𝜃𝜏) assumes a gamma function 693 

for the unit hydrograph and convolves the unit hydrograph with the runoff as, 694 

 695 

 𝑄𝑡
∗ = ∫ 𝜉(𝑠: 𝜃𝛼, 𝜃𝜏)

𝑡𝑚𝑎𝑥

0

⋅ 𝑄(𝑡 − 𝑠)𝑑𝑠 (S33) 

 𝜉(𝑠: 𝜃𝛼 , 𝜃𝜏) =
1

𝛤(𝜃𝛼)𝜃𝜏
𝜃𝛼
𝑡𝜃𝛼−1𝑒

−
𝑡
𝜃𝜏 (S34) 

 696 

 697 

 698 
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Appendix B: Illustrated differences among the three meteorological forcing datasets 699 

 700 
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 701 

Figure B1. Probability density distributions (top panel in logarithmic scale, bottom panel in 702 

linear scale) of precipitation and temperature across three meteorological forcing datasets. 703 

 704 

 705 
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 706 

 707 

Figure B2. IllustratedExample of temporal variations ofin precipitation and temperature in 708 
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afor one basin across three meteorological forcing datasets. 709 

  710 
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Appendix C: Details of model inputs, ensemble frameworks, and evaluations 711 

Table C1. Full names for the abbreviations of dynamic data (all but streamflow are “forcings”) 712 

and static basin attributes used as model inputs and outputs. All variables and their values are 713 

provided in the CAMELS dataset (Addor et al., 2017) except for the NLDAS and Maurer daily 714 

temperature extrema, which are from Kratzert et al. (2021). Potential evapotranspiration and 715 

normalized streamflow were calculated in this work, using CAMELS data. The number in 716 

parentheses specifiesindicates model usage: 1 denotes use infor the LSTM model, and 2 717 

denotes use infor the 𝛿HBV model. 718 

Type Abbreviation Full name Unit 

Dynamic 

data  

prcp (1,2) Precipitation mm/day 

pet (2) 

Potential evapotranspiration (calculated in 

this work using the Hargreaves equation 

and CAMELS data) 

mm/day 

tmean (2) Mean air temperature °C 

tmax (1) Maximum air temperature °C 

tmin (1) Minimum air temperature °C 

srad (1) Shortwave radiation W/m2 

vp (1) Water vapor pressure pa 

q_vol Volumetric streamflow ft3/s 

q (1,2) 
Streamflow normalized by basin area 

(q_vol / area_gages2) 
mm/day 

Static 

basin 

attributes 

p_mean (1,2) Mean daily precipitation mm/day 

pet_mean (1,2) Mean daily potential evapotranspiration mm/day 

p_seasonality (2) Seasonality and timing of precipitation - 

frac_snow (1,2) Fraction of precipitation falling as snow - 

aridity (1,2) 
Rate of mean values of potential 

evapotranspiration and precipitation 
- 

high_prec_freq (1,2) Frequency of high precipitation days days/year 

high_prec_dur (1,2) 
Average duration of high precipitation 

events 
days 

low_prec_freq (1,2) Frequency of dry days days/year 

low_prec_dur (1,2) Average duration of dry periods days 
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elev_mean (1,2) Catchment mean elevation m 

slope_mean (1,2) Catchment mean slope m/km 

area_gages2 (1,2) Catchment area (GAGES-II estimate) km2 

frac_forest (1,2) 
Fraction of catchment area having land 

cover identified as forest  
- 

lai_max (1,2) 
Maximum monthly mean of the leaf area 

index 
- 

lai_diff (1,2) 

Difference between the maximum and 

minimum monthly mean of the leaf area 

index 

- 

gvf_max (1,2) 
Maximum monthly mean of the green 

vegetation 
- 

gvf_diff (1,2) 

Difference between the maximum and 

minimum monthly mean of the green 

vegetation fraction 

- 

dom_land_cover_frac 

(2) 

Fraction of the catchment area associated 

with the dominant land cover 
- 

dom_land_cover (2) Dominant land cover type - 

root_depth_50 (2) 

Root depth at 50th percentile, extracted 

from a root depth distribution based on the 

International Geosphere‐Biosphere 

Programme (IGBP) land cover 

m 

soil_depth_pelletier 

(1,2) 
Depth to bedrock m 

soil_depth_statsgso 

(1,2) 
Soil depth m 

soil_porosity (1,2) Volumetric soil porosity  - 

soil_conductivity 

(1,2) 
Saturated hydraulic conductivity cm/hr 

max_water_content 

(1,2) 
Maximum water content m 

sand_frac (1,2) Fraction of soil which is sand - 
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silt_frac (1,2) Fraction of soil which is silt - 

clay_frac (1,2) Fraction of soil which is clay - 

geol_class_1st (2) 
Most common geologic class in the 

catchment basin 
- 

geol_class_1st_frac 

(2) 

Fraction of the catchment area associated 

with its most common geologic class 
- 

geol_class_2nd (2) 
Second most common geologic class in the 

catchment basin 
- 

geol_class_2nd_frac 

(2) 

Fraction of the catchment area associated 

with its 2nd most common geologic class 
- 

carbonate_rocks_frac 

(1,2) 

Fraction of the catchment area as carbonate 

sedimentary rocks 
- 

geol_porosity (2) Subsurface porosity - 

geol_permeability 

(1,2) 
Subsurface permeability m2 

 719 

  720 
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 721 

Figure C1. Ensemble frameworks to generate metrics for ensembles named without (solid 722 

arrows) and with (dashed arrows) “seed” as a subscript. 723 
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Table C2. EvaluationLoss function and evaluation metrics. 724 

Statistic Equation* Range Optimal Value 

Loss 
1

𝑛
∑

(𝑂𝑖 − 𝑆𝑖)
2

(𝜎𝑂  +  𝜖)2

𝑛

𝑖=1

 0.0 to ∞ 0.0 

NSE 1 −
∑ (𝑂𝑖 − 𝑆𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − 𝜇𝑜)2
𝑛
𝑖=1

 -∞ to 1.0 1.0 

KGE 

1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2, 

 𝛽 =
𝜇𝑆

𝜇𝑂
, 𝛾 =

𝐶𝑉𝑆

𝐶𝑉𝑂
=

𝜎𝑆/𝜇𝑆

𝜎𝑂/𝜇𝑂
 

-∞ to 1.0 1.0 

PBIAS 
∑ (𝑂𝑖 − 𝑆𝑖)
𝑛
𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

× 100 -∞ to ∞ 0.0 

RMSE √
1

𝑛
∑(𝑂𝑖 − 𝑆𝑖)2
𝑛

𝑖=1

 0.0 to ∞ 0.0 

spread √
1

𝑛

1

𝑒
 ∑∑(𝑆𝑖,𝑗 − 𝜇𝑆,𝑖)

2

𝑒

𝑗=1

𝑛

𝑖=1

 0.0 to ∞ None 

* S is athe streamflow simulation; O is the corresponding observation; n is the number of total 725 

S or O; ϵ is a numerical stabilizer, with a default value of 0.1; e is the number of ensemble 726 

members; r is the linear Pearson correlation between S and O; 𝛽 is the mean bias; and 𝛾 is the 727 

variability bias. The mean and standard deviation of simulations are denoted as 𝜇𝑆 and 𝜎𝑆, 728 

respectively, andwhile 𝜇𝑂  and 𝜎𝑂  are the mean and standard deviationdenote those of the 729 

observations. 730 
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Appendix D: Additional details on model performance 731 

 732 

 733 

Figure D1. Scatter plots comparing the performance differences between hydrological models 734 

for the basins where LSTM outperformed δHBV (the basins where δHBV outperformed are not 735 

shown in this plot). The x-axis represents the NSE differences between 𝐿𝑆𝑇𝑀2 and 𝛿𝐻𝐵𝑉2 736 

(𝐿𝑆𝑇𝑀2 - 𝛿𝐻𝐵𝑉2), while the y-axis shows the NSE differences between 𝛿𝐻𝐵𝑉123 and 𝛿𝐻𝐵𝑉2 737 

(𝛿𝐻𝐵𝑉123- 𝛿𝐻𝐵𝑉2). Points are color-coded according to the NSE values of 𝛿𝐻𝐵𝑉2. The 738 

correlation coefficient (CORR) and p values between the x-axis values and the y-axis values, 739 

along with the median NSE value of 𝛿𝐻𝐵𝑉2 (𝑁𝑆𝐸𝑚𝑒𝑑 ) on these basins, are also noted. 740 

 741 

 742 

Figure D2. Scatter plots comparing the performance differences between hydrological models 743 

for the basins where LSTM outperformed δHBV (the basins where δHBV outperformed are not 744 

shown in this plot). The x-axis represents the NSE differences between 𝐿𝑆𝑇𝑀3 and 𝛿𝐻𝐵𝑉3 745 

(𝐿𝑆𝑇𝑀3 - 𝛿𝐻𝐵𝑉3), while the y-axis shows the NSE differences between 𝛿𝐻𝐵𝑉123 and 𝛿𝐻𝐵𝑉3 746 

(𝛿𝐻𝐵𝑉123- 𝛿𝐻𝐵𝑉3). Points are color-coded according to the NSE values of 𝛿𝐻𝐵𝑉3. The 747 

correlation coefficient (CORR) and p values between the x-axis values and the y-axis values, 748 

along with the median NSE value of 𝛿𝐻𝐵𝑉3 (𝑁𝑆𝐸𝑚𝑒𝑑 ) on these basins, are also noted. 749 



 

47 

 750 

 751 

Figure D3. Seasonal comparison of NSE values for (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)𝑠𝑒𝑒𝑑
123  (blue) and 752 

𝐿𝑆𝑇𝑀𝑠𝑒𝑒𝑑
𝑚𝑢𝑙𝑡𝑖  (red) in (a) temporal, (b) PUB, and (c) PUR tests. Each box represents the 753 

distribution of NSE values across 531 basins for a given season (DJF: December–February, 754 

MAM: March–May, JJA: June–August, SON: September–November). Vertical dashed lines 755 

separate different seasons. (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)𝑠𝑒𝑒𝑑
123  performs better than 𝐿𝑆𝑇𝑀𝑠𝑒𝑒𝑑

𝑚𝑢𝑙𝑡𝑖  in most 756 

cases, especially during MAM, likely due to differences in snowmelt representation. 757 

 758 

 759 
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 760 
Figure D3D4. Spatial distributions of model spread values increase from δHBV and LSTM to 761 

the LSTM+δHBV ensemble across temporal, PUB, and PUR tests. 762 

 763 

 764 

 765 

 766 
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 767 

 768 

Figure D4D5. Boxplot of relative temperature differences between the test and training periods, 769 

calculated as (Test − Training) / Trainingtest − training) / training. Each box represents the 770 

distribution of normalized temperature changes across basins for a specific meteorological 771 

forcing dataset: Daymet, NLDAS, and Maurer. Positive values indicate warming in the test 772 

period relative to the training period. 773 

 774 

 775 

 776 

 777 
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 778 
Figure D5D6. Simulation performance (NSE) under the temporal test: (a) LSTM model with 779 

and without a 10% precipitation error (precipitation × 1.1); (b) δHBV model with and without 780 

a 10% precipitation error; (c) δHBV model trained on 671 versus 531 basins; (d) δHBV model 781 

with 3 versus 2 dynamic parameters; (e) δHBV model using time steps of 365, 182, and 730 782 

days. Individual and ensemble groups are distinguished along the x-axis. Ensemble benefits 783 

are indicated by the gap between columns of the same color within each panel—columns 1–7 784 

correspond to individual LSTM or δHBV groups, and the last two columns correspond to 785 

LSTM+δHBV ensembles. 786 

 787 

  788 
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Table D1. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high 789 

(highRMSE), and middle (midRMSE) flows based on 531 basins under the temporal test. The 790 

values are the mean of three simulations run with different random seeds. 791 

Temporal Number Daymet NLDAS Maurer 

LSTM 

NSE 0.735639 0.736301 0.717337 

KGE 0.789375 0.782555 0.760575 

RMSE 1.21088 1.19847 1.27723 

PBIAS 4.04818 5.99486 1.58911 

lowRMSE 0.0596913 0.0602381 0.0545577 

highRMSE 2.70508 2.89684 2.97028 

midRMSE 0.196039 0.210022 0.219922 

δHBV 

NSE 0.739688 0.71903 0.727669 

KGE 0.77033 0.730753 0.762022 

RMSE 1.18752 1.26239 1.23193 

PBIAS 5.07898 -0.14449 3.65263 

lowRMSE 0.060906 0.063581 0.063466 

highRMSE 2.68479 3.13011 2.6845 

midRMSE 0.226595 0.245242 0.230125 

LSTM+δHBV NSE 0.787545 0.794053 0.790903 



 

52 

KGE 0.794412 0.78383 0.786854 

RMSE 1.0777 1.0716 1.07141 

PBIAS 4.59065 3.33053 3.45501 

lowRMSE 0.059955 0.059565 0.054838 

highRMSE 2.70216 2.88511 2.69633 

midRMSE 0.20394 0.214726 0.212514 

 792 

 793 

  794 
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Table D1 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low 795 

(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the 796 

temporal test. The values are the mean of three simulations run with different random seeds. 797 

Temporal Number Daymet+NLDAS Daymet+Maurer NLDAS+Maurer All 

LSTM 

NSE 0.781275 0.791158 0.792144 0.808176 

KGE 0.800955 0.795026 0.794441 0.803476 

RMSE 1.09103 1.06374 1.06701 1.01395 

PBIAS 5.17159 3.34362 4.5305 4.48263 

lowRMSE 0.0636155 0.0582563 0.0566306 0.0613625 

highRMSE 2.70218 2.71366 2.78962 2.67803 

midRMSE 0.194849 0.199809 0.206653 0.197469 

δHBV 

NSE 0.786562 0.77012 0.776938 0.794796 

KGE 0.773732 0.778557 0.768854 0.77834 

RMSE 1.08362 1.12584 1.10875 1.06118 

PBIAS 1.91507 4.28194 2.03584 2.71021 

lowRMSE 0.061667 0.060679 0.062765 0.061539 

highRMSE 2.93961 2.7394 2.88758 2.84994 

midRMSE 0.230576 0.220743 0.230272 0.228375 

LSTM+δHBV NSE 0.811825 0.809964 0.811316 0.818907 



 

54 

KGE 0.797564 0.797635 0.78735 0.794936 

RMSE 1.01938 1.01755 1.0314 1.00067 

PBIAS 4.14594 4.23333 3.19652 3.88096 

lowRMSE 0.0603 0.058022 0.057882 0.059221 

highRMSE 2.75275 2.67122 2.81393 2.70606 

midRMSE 0.207637 0.205965 0.213191 0.207905 

  798 
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Table D2. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high 799 

(highRMSE), and middle (midRMSE) flows based on 531 basins under the PUB test. The values 800 

are the mean of three simulations run with different random seeds. 801 

PUB Number Daymet NLDAS Maurer 

LSTM 

NSE 0.702636 0.695496 0.694156 

KGE 0.693998 0.677438 0.6909 

RMSE 1.31714 1.3394 1.34233 

PBIAS 0.669018 0.283106 0.936582 

lowRMSE 0.087648 0.088393 0.086873 

highRMSE 4.2852 4.49292 4.16042 

midRMSE 0.354458 0.364921 0.368124 

δHBV 

NSE 0.706809 0.670636 0.682998 

KGE 0.703137 0.66566 0.686912 

RMSE 1.35541 1.41185 1.37942 

PBIAS 1.49234 -2.43395 0.291966 

lowRMSE 0.0798196 0.0808967 0.0846775 

highRMSE 4.21648 4.49582 4.18003 

midRMSE 0.335159 0.351271 0.356903 

LSTM+δHBV NSE 0.74227 0.723778 0.72202 



 

56 

KGE 0.715931 0.690154 0.707292 

RMSE 1.24887 1.278 1.26697 

PBIAS 1.27863 -0.599778 0.903464 

lowRMSE 0.0816748 0.0795686 0.0825691 

highRMSE 4.08432 4.23483 3.94929 

midRMSE 0.327459 0.33851 0.347169 

 802 

 803 

  804 
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Table D2 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low 805 

(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the 806 

PUB test. The values are the mean of three simulations run with different random seeds. 807 

PUB Number Daymet+NLDAS Daymet+Maurer NLDAS+Maurer All 

LSTM 

NSE 0.757853 0.749151 0.753136 0.768181 

KGE 0.713319 0.720099 0.716497 0.727143 

RMSE 1.18251 1.22254 1.19718 1.15026 

PBIAS 0.320396 0.931656 0.766216 0.970047 

lowRMSE 0.0875191 0.0864129 0.0835341 0.0874717 

highRMSE 4.1296 4.06602 4.17217 4.0061 

midRMSE 0.334683 0.349856 0.342819 0.333534 

δHBV 

NSE 0.748916 0.734052 0.733955 0.757749 

KGE 0.699768 0.714323 0.69436 0.714048 

RMSE 1.26852 1.27637 1.27244 1.23229 

PBIAS 0.0446112 1.212 -1.04135 0.201809 

lowRMSE 0.0808293 0.0792486 0.0814476 0.0808359 

highRMSE 4.19575 3.97788 4.21623 4.07419 

midRMSE 0.311826 0.33668 0.339257 0.318165 

LSTM+δHBV NSE 0.780625 0.764866 0.767761 0.785833 
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KGE 0.719781 0.725373 0.715982 0.723972 

RMSE 1.14924 1.17659 1.16881 1.13591 

PBIAS 0.186062 0.881644 0.405548 0.565489 

lowRMSE 0.0805946 0.0814251 0.0817114 0.0826379 

highRMSE 3.97373 3.86834 3.88 3.91692 

midRMSE 0.313708 0.324777 0.324089 0.323671 

 808 

  809 
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Table D3. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high 810 

(highRMSE), and middle (midRMSE) flows based on 531 basins under the PUR test. The values 811 

are the mean of three simulations run with different random seeds. 812 

PUR Number Daymet NLDAS Maurer 

LSTM 

NSE 0.578365 0.546217 0.56164 

KGE 0.557788 0.559986 0.567231 

RMSE 1.59111 1.63626 1.5833 

PBIAS -0.575328 -2.77709 -0.623183 

lowRMSE 0.124837 0.118971 0.118695 

highRMSE 5.42346 5.38886 5.05212 

midRMSE 0.498133 0.498442 0.471744 

δHBV 

NSE 0.622278 0.592306 0.59161 

KGE 0.638818 0.601338 0.620877 

RMSE 1.57189 1.61191 1.63628 

PBIAS 1.27223 -1.60075 1.62709 

lowRMSE 0.10142 0.102975 0.101075 

highRMSE 5.07706 5.16093 4.99602 

midRMSE 0.447879 0.474516 0.439697 

LSTM+δHBV NSE 0.644398 0.618255 0.635444 
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KGE 0.627481 0.605237 0.615883 

RMSE 1.46185 1.5153 1.48393 

PBIAS -0.269697 -0.719505 0.197859 

lowRMSE 0.105146 0.100944 0.106272 

highRMSE 4.95749 4.99478 4.78638 

midRMSE 0.431456 0.4575 0.426126 

 813 

  814 
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Table D3 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low 815 

(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the 816 

PUR test. The values are the mean of three simulations run with different random seeds. 817 

PUR Number Daymet+NLDAS Daymet+Maurer NLDAS+Maurer All 

LSTM 

NSE 0.634398 0.636369 0.626939 0.656228 

KGE 0.59844 0.600371 0.605007 0.612858 

RMSE 1.4434 1.43416 1.43009 1.38042 

PBIAS -0.547128 -0.687947 -0.865748 -0.543918 

lowRMSE 0.118989 0.120228 0.115004 0.117728 

highRMSE 5.03277 5.02434 4.84415 4.74281 

midRMSE 0.462923 0.455257 0.453912 0.449598 

δHBV 

NSE 0.672839 0.644732 0.661231 0.684685 

KGE 0.653841 0.65646 0.6515 0.66205 

RMSE 1.43224 1.50803 1.48604 1.43376 

PBIAS 0.564363 1.55134 -0.156553 0.956961 

lowRMSE 0.0975783 0.0984076 0.100773 0.100807 

highRMSE 4.83843 4.81176 4.72529 4.71255 

midRMSE 0.447828 0.431252 0.433688 0.432018 

LSTM+δHBV NSE 0.685032 0.680872 0.679321 0.700814 



 

62 

KGE 0.638788 0.647826 0.646782 0.649999 

RMSE 1.35303 1.3873 1.36795 1.3185 

PBIAS -0.0150729 0.406127 -0.135091 -0.0232668 

lowRMSE 0.103284 0.101814 0.104528 0.102916 

highRMSE 4.80178 4.72583 4.70024 4.70713 

midRMSE 0.426819 0.411727 0.41573 0.41081 

 818 

  819 
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Table D4. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high 820 

(highRMSE), and middle (midRMSE) flows based on 531 basins under the temporal, PUB, and 821 

PUR tests of 𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖 , (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)123 + 𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖  , their “seed” version, and 822 

(𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)𝑠𝑒𝑒𝑑
123 . 823 

Test Metric 𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖 
(𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)123

+ 𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖  

Temporal 

NSE 0.797448 0.82321 

KGE 0.811064 0.810248 

RMSE 1.05987 0.983168 

PBIAS 3.95241 4.08594 

lowRMSE 0.056221 0.05702 

highRMSE 2.7089 2.58881 

midRMSE 0.183526 0.192442 

PUB 

NSE 0.750605 0.782727 

KGE 0.71469 0.734731 

RMSE 1.20586 1.11509 

PBIAS 0.475674 0.706777 

lowRMSE 0.0861127 0.0836 

highRMSE 4.13615 3.83009 

midRMSE 0.347562 0.326814 
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PUR 

NSE 0.623755 0.68923 

KGE 0.593757 0.633971 

RMSE 1.47379 1.31221 

PBIAS -2.6737 -1.38119 

lowRMSE 0.112434 0.107646 

highRMSE 4.98202 4.59232 

midRMSE 0.501807 0.436811 

  824 
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Table D4 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low 825 

(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the 826 

temporal, PUB, and PUR tests of 𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖, (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)123 + 𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖  , their “seed” 827 

version, and (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)𝑠𝑒𝑒𝑑
123 . 828 

Test Metric (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)𝑠𝑒𝑒𝑑
123  𝐿𝑆𝑇𝑀𝑠𝑒𝑒𝑑

𝑚𝑢𝑙𝑡𝑖 
(𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)𝑠𝑒𝑒𝑑

123

+ 𝐿𝑆𝑇𝑀𝑠𝑒𝑒𝑑
𝑚𝑢𝑙𝑡𝑖  

Temporal 

NSE 0.821444 0.81992 0.829385 

KGE 0.795317 0.82078 0.812581 

RMSE 0.99455 1.00908 0.967779 

PBIAS 3.99009 4.09469 4.08882 

lowRMSE 0.059782 0.057346 0.057015 

highRMSE 2.7279 2.62815 2.58384 

midRMSE 0.209943 0.183656 0.195557 

PUB 

NSE 0.793673 0.781175 0.790921 

KGE 0.726188 0.736191 0.739284 

RMSE 1.12957 1.13079 1.09176 

PBIAS 0.370674 1.13671 0.869057 

lowRMSE 0.083423 0.084038 0.085728 

highRMSE 3.89363 3.93473 3.79505 

midRMSE 0.323045 0.329772 0.325627 
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PUR 

NSE 0.705154 0.665723 0.701504 

KGE 0.651538 0.614649 0.64373 

RMSE 1.30377 1.3727 1.2851 

PBIAS -0.283645 -2.74069 -1.39149 

lowRMSE 0.100525 0.111229 0.108121 

highRMSE 4.74889 4.88127 4.58344 

midRMSE 0.406797 0.473783 0.432447 

 829 
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Table D5. Median NSE values based on ten different random seeds during the temporal test. 830 

Each number (1 through 10) represents metric values calculated for an individual simulation 831 

based on only one random seed. “Seed” indicates metric values calculated by averages of these 832 

ten simulations based on different random seeds, while “mean” denotes the average of metrics 833 

from 1-10 individual simulations (visualized in Figure C1). 834 

Number 𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖 (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)123 (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)123 + 𝐿𝑆𝑇𝑀𝑚𝑢𝑙𝑡𝑖   

1 0.797742 0.818436 0.82315 

2 0.795312 0.820188 0.823559 

3 0.799291 0.818097 0.822922 

4 0.796388 0.818251 0.821791 

5 0.791192 0.818285 0.820132 

6 0.795691 0.81966 0.823268 

7 0.795912 0.821511 0.82352 

8 0.796625 0.81831 0.825204 

9 0.794062 0.804959 0.816497 

10 0.796066 0.817122 0.82169 

Seed 0.82425 0.822528 0.832197 

Mean 0.795828 0.817482 0.822173 

 835 
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Appendix E: Intuitive visualization of the relative contributions of ensemble members 836 

based on optimized weights 837 

 838 

Figure E1. Weights of six components across 531 basins, estimated basin-by-basin using a 839 

genetic algorithm based on streamflow observations during the test periods. The weights are 840 

normalized by the maximum weight within each ensemble group. These weights are used 841 

exclusively for qualitatively analyzing the relative contributions of different ensemble members, 842 

with higher values indicating larger relative contributions. 843 

 844 
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 845 

Figure E2. Spatial distributions of weights of the LSTM and δHBV models, estimated by a 846 

genetic algorithm based on streamflow observations during the test periods. The weights are 847 

normalized by the maximum weight within each ensemble group. These weights are used 848 

exclusively for qualitatively analyzing the relative contributions of different ensemble members, 849 

with higher values indicating larger relative contributions. 850 

 851 

 852 
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 853 

Figure E3. Spatial distributions of weights of the Daymet, NLDAS, and Maurer meteorological 854 

forcing datasets, estimated by a genetic algorithm based on streamflow observations during 855 

the test periods. The weights are normalized by the maximum weight within each ensemble 856 

group. These weights are used exclusively for qualitatively analyzing the relative contributions 857 

of different ensemble members, with higher values indicating larger relative contributions. 858 

 859 

 860 

  861 
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Table E1. Comparisons of metric values between averaged ensemble simulations and 862 

optimized weighted simulations, estimated using a genetic algorithm based on streamflow 863 

observations during the test periods. The results highlight the potential for further 864 

improvements in ensemble simulations. 865 

 866 

 Temporal Averaged Optimized weighted 

Temporal 

NSE 0.821444 0.844303212 

KGE 0.795317 0.829996445 

RMSE 0.99455 0.920954559 

PBIAS 3.99009 3.252278013 

lowRMSE 0.059782 0.057137161 

highRMSE 2.7279 2.451194907 

midRMSE 0.209943 0.183127162 

PUB 

NSE 0.793673 0.842396015 

KGE 0.726188 0.79571295 

RMSE 1.12957 0.987170488 

PBIAS 0.370674 1.023040859 

lowRMSE 0.0834234 0.079807878 

highRMSE 3.89363 3.030715903 

midRMSE 0.323045 0.285110115 

PUR 

NSE 0.705154 0.790796063 

KGE 0.651538 0.746396324 

RMSE 1.30377 1.13058149 
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PBIAS -0.283645 0.273698787 

lowRMSE 0.100525 0.093595304 

highRMSE 4.74889 3.665495069 

midRMSE 0.406797 0.351694421 

 867 

  868 



 

73 

Code and data availability 869 

The source codes and datasets utilized in this study are publicly accessible through the 870 

following repositories: The δHBV modeling framework, including all computational scripts 871 

and documentation, is hosted on Zenodo (https://doi.org/10.5281/zenodo.7091334) (Feng et al., 872 

2023a)(Feng et al., 2023a), with an updated version and comprehensive software release 873 

scheduled upon manuscript acceptance. The implementation of the LSTM architecture is 874 

accessible through Zenodo (https://doi.org/10.5281/zenodo.6326394) (Kratzert et al., 875 

2022)(Kratzert et al., 2022). The CAMELS hydrometeorological dataset, which provides the 876 

foundational basin characteristics and time series data used in our analysis, can be obtained via 877 

https://dx.doi.org/10.5065/D6MW2F4D (Addor et al., 2017; Newman and Clark, 2014)(Addor 878 

et al., 2017; Newman and Clark, 2014). The streamflow simulations produced in this study will 879 

be made available on Zenodo upon acceptance of the manuscript. 880 
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