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Abstract

Streamflow simulations produced by different hydrological models exhibit distinct
characteristics and can provide valuable information when ensembled. However, few studies
have focused on ensembling simulations from models with significant structural differences
and evaluating them under both temporal and spatial tests. Here we systematically evaluated
and utilized the simulations from two highly different models with great performances: a purely
data-driven long short-term memory (LSTM) network and a physics-informed machine
learning (“differentiable””) HBV (Hydrologiska Byrans Vattenbalansavdelning) model (3HBV).
To effectively display the features of the two models, multiple forcing datasets are employed.
The results show that the simulations of LSTM and SHBV have distinct features and
complement each other well, leading to better Nash-Sutcliffe model efficiency coefficients
(NSE) and improved high-flow and low-flow metrics across all spatiotemporal tests, compared
to within-class ensembles. Ensembling models trained on a single forcing outperformed a
single model using fused forcings, challenging the paradigm of feeding all available data into
a single data-driven model. Most notably, SHBV significantly enhanced spatial interpolation

when incorporated into LSTM, and provided even more prominent benefits for spatial
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extrapolation where the LSTM-only ensembles degraded significantly, attesting to the value of
the structural constraints in SHBV. These advances set new benchmark records on the well-
known CAMELS (Catchment Attributes and Meteorology for Large-sample Studies)
hydrological dataset, reaching median NSE values of ~0.83 for the temporal test (densely
trained scenario), ~0.79 for the ungauged basin test (PUB, Prediction in Ungauged Basins),
and ~0.70 for the ungauged region test (PUR, Prediction in Ungauged Regions). This study
advances our understanding of how various model types, each with distinct mechanisms, can

be effectively leveraged alongside multi-source datasets across diverse scenarios.
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Highlights

e Combining LSTM and HBV with diverse forcings sets new accuracy benchmarks

e Ensembling models with one forcing outperforms merging forcings as an input

e JOHBYV and LSTM together always increase NSEs, especially spatial generalization

e OHBV provides valuable spatial constraints in the deterministic ensemble simulations

e OHBV and LSTM have different error characteristics that can be offset in an ensemble

Keywords
Streamflow simulation, differentiable model, deep learning, hybrid modeling, multi-source

fusion

1. Introduction

Streamflow, a critical component of the global hydrosphere, profoundly influences both
human society and natural ecosystems (Lins and Slack, 1999). Accurate simulation and
prediction of streamflow yield numerous benefits, including improved flood prevention
strategies (Brunner et al., 2021). Hydrological models serve as indispensable tools for
achieving this objective and can be traditionally categorized into two types: data-driven models
(Feng et al., 2020; Kratzert et al., 2018; Liu et al., 2024; Nearing et al., 2024) and process-
based (or physically-based) models (Newman et al., 2017; Paul et al., 2021). Data-driven
models, exemplified by long short-term memory (LSTM) (Feng et al., 2020; Kratzert et al.,
2018) and transformer (Liu et al., 2024) networks, excel in learning patterns from multi-source
data (Li et al., 2023b, 2024; Liu et al., 2022; Nearing et al., 2024) and generally achieve high
performance. However, they often lack interpretability and may not resolve extreme values

very well (Li et al., 2020a; Song et al., 2025b). Conversely, process-based models, derived
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deductively from physical laws or conceptualized views of natural systems, offer insights into
internal hydrological processes but may exhibit weaker performance due to structural
inadequacies (Li et al., 2020a, 2022; Zhang et al., 2019).

To combine the benefits and counteract the weaknesses of these two kinds of models,
many efforts have been made to incorporate physical constraints and structures into data-driven
models to align with fundamental physical principles, such as mass and water balances (Bandai
and Ghezzehei, 2021; Wang et al., 2020; Xie et al., 2021). The most seamless integration uses
neural networks to provide parameterizations or missing process representations for process-
based models (Aboelyazeed et al., 2023; Bindas et al., 2024; Feng et al., 2022; Jiang et al.,
2020; Kraft et al., 2022; Rahmani et al., 2023; Song et al., 2024b; Tsai et al., 2021). These
differentiable models (Shen et al., 2023) connect (flexible amounts of) prior physical
knowledge to neural networks, and have displayed many advantages, including improved
computational efficiency and prediction of untrained variables (Tsai et al., 2021), spatial
generalization (Feng et al., 2023b), and representation of extremes (Song et al., 2025b).
However, it is also unclear whether current differentiable models, e.g., SHBV, the
Hydrologiska Byrans Vattenbalansavdelning (HBV) model implemented within a

differentiable framework (Feng et al., 2023b; Ji et al., 2025; Shen et al., 2023; Song et al.,

2025b), have unique bias characteristics that are associated with the process-based parts of their
structures that cannot be reduced once the equations are prescribed.

Orthogonal to such efforts are ensemble simulations (Yu et al., 2024), which combine
many members with different biases and uncertainties to mitigate their respective biases in
deterministic predictions. Many previous studies have tried ensemble methods to improve
streamflow (Clark et al., 2016; Zounemat-Kermani et al., 2021) based on many factors, like
initial conditions (e.g., initial weights and biases in LSTM (Kratzert et al., 2018)), data used

for parameterization (Feng et al., 2021), and objective functions (Lin et al., 2024). These
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studies generally use one model to generate the differences among the ensemble members.
Furthermore, some studies (Dion et al., 2021; Solanki et al., 2025) have utilized simulations
from multiple different models but are limited to process-based models, resulting in ensemble
simulations that are better than each individual member. Thus far, however, most studies have
focused on simulations from only similar models or model types, and little work has tested an
ensemble across the boundary of model types, particularly between data-driven, process-based,
and hybrid models, especially on a large number of samples. Presumably, if each model has its
own unique bias, data-driven and process-based models are likely to exhibit greater differences
due to their inherently distinct characteristics. It remains unclear whether ensembling across
model types should bring benefits to deterministic predictions. Furthermore, grounded in the
process-based model, the differentiable process-based hydrological model, such as SHBV,
significantly enhances performance compared to traditional process-based models, while on
the other hand introducing greater uncertainty regarding its potential benefits when ensembled.
Moreover, previous studies have primarily focused on evaluating ensemble simulations for
temporal predictions. However, streamflow simulation under spatial extrapolation scenarios
presents greater challenges, and findings from temporal tests may not be directly applicable in
this context.

It is known that the performance of any type of hydrologic model heavily depends on the
quality of input data, particularly meteorological forcing data (Bell and Moore, 2000; Yao et
al., 2020), and other inputs, like the uncertainties of initial conditions, can be mitigated via
warming up (Yu et al., 2019). While independent forcing datasets excel in certain aspects, they
each carry different error characteristics (Beck et al., 2017; Behnke et al., 2016; Newman et al.,
2019) and accordingly affect the hydrological models in different ways. In order to fully display
the different features between LSTM and SHBV, multiple forcing datasets could be considered.

Given the utilization of multiple forcing datasets, one could choose to use data fusion to
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combine them into a single coherent model input (Kratzert et al., 2021; Sawadekar et al., 2025),
or to pass each forcing dataset through a model and then afterwards combine the multiple
outputs in an ensemble. It is not clear which approach is more beneficial.
Considering the knowledge gaps discussed above, we sought to answer several research
questions:
1. Will a cross-model-type ensemble of LSTM and SHBV improve deterministic
streamflow prediction more than a within-class ensemble?
2. Is it better to use multiple forcings in one model or to ensemble multiple models, each
with a different forcing input?
3. Do process-based equations bring unique value to an ensemble, especially in terms of

spatial generalizability?

The remainder of this paper is structured as follows: Sect. 2 outlines the hydrological data
and models used in this study, as well as the experimental design. Results and discussions are

presented in Sect. 3, with conclusions provided in Sect. 4.

2. Materials and methods
2.1. CAMELS hydrologic dataset

The Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) dataset
(Addor et al., 2017) is widely employed for hydrological model evaluation and community
benchmarking. The CAMELS dataset encompasses 671 basins distributed across the
conterminous United States, with basin sizes ranging from 1 to 25,800 km? (median: 335 km?).
This standardized and publicly available dataset serves as a benchmark for evaluating various
hydrological models, with LSTM models trained on this dataset often serving as a reference
point for comparing other models (Kratzert et al., 2021). CAMELS provides basin-scale data,

including streamflow observations and static basin attributes, as well as forcing datasets from
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three independent sources: Daymet (Thornton et al., 1997), North American Land Data
Assimilation System (NLDAS) (Xia et al., 2012), and Maurer (Maurer et al., 2002). Each of
the three meteorological forcing datasets operates at a daily temporal resolution, encompassing
precipitation, temperature, vapor pressure, and surface radiation variables, with daily
temperature extrema of NLDAS and Maurer supplemented from Kratzert et al. (2021). These
three meteorological forcing datasets have methodological distinctions in spatial resolution,
data generation approaches, and temporal processing (Behnke et al., 2016; Kratzert et al., 2021).
Exemplary plots illustrating the differences among the three meteorological forcing datasets
are provided in Appendix B. These features can lead to dataset-specific error characteristics
and make them valuable for displaying the distinct features of different model types. All model

inputs used in this study are detailed in Table C1.

2.2. Long short-term memory

As one kind of deep learning algorithm, long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) has unique structures like hidden states and gates activated by the tanh
and sigmoid functions (Li et al., 2023a), respectively. These features enable LSTM to excel in
streamflow simulation tasks (Feng et al., 2020; Kratzert et al., 2018; Nearing et al., 2024). In
the current benchmark framework, LSTM models are trained using dynamic atmospheric
forcings and static basin attributes as inputs, with streamflow as the target output, making it
perform well in both temporal and spatial tests (Figure la). In this work, for cross-group
comparability, we used the LSTM model and its hyperparameters as reported in Kratzert et al.

(2021).

2.3. Differentiable HBV model (SHBV)

The Hydrologiska Byréns Vattenbalansavdelning (HBV) model is a parsimonious bucket-
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type hydrologic model that simulates various hydrological variables, including snow water
equivalent, soil water, groundwater storage, evapotranspiration, quick flow, baseflow, and total
streamflow (Aghakouchak and Habib, 2010; Beck et al., 2020; Bergstrom, 1976, 1992).
Recently demonstrated differentiable HBV (8HBV) model (Feng et al., 2023b; Ji et al., 2025;
Shen et al., 2023; Song et al., 2024b) incorporates deep neural networks for both regionalized
parameterization and missing process representations within a differentiable programming
framework that supports “end-to-end” training (Figure 1b). This innovation enables SHBV to
effectively learn from data while obeying physical laws, resulting in high-level performance
for streamflow simulations. From the perspective of process-based modeling, LSTM is a
regionalized parameter provider that leverages the autocorrelated nature of its inputs to impose
an implicit spatial constraint on the generated parameters.

In this study, we used SHBV1.1p (Song et al., 2024b, 2025b), which is an updated version
of SHBV1.0 (Feng et al., 2022, 2023b). The main improvement is the addition of a capillary
rise module, which enhances the characterization of low flows. Other-medifications—inchade
tThree additional modifications_are included to address high-flow simulation challenges: the
use of three dynamic parameters (y, f, ko) (Song et al., 2025b); the removal of log-transform
normalization for precipitation; and the adoption of the normalized squared-error loss function
(Table C2) (Frame et al., 2022; Kratzert et al., 2021; Song et al., 2025a, b; Wilbrand et al.,
2023). We also maintain dynamic parameters during warm-up periods. Although this provides
only marginal benefits and increases computational costs, it yields a more realistic
representation and reduces uncertainties associated with initial conditions. The basic equations

in 6HBYV are as follows:
6 = LSTM,, (X, Agetr) ey

Q = HBV(x,0) @)
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Wope = argmin,, (L(Q, Q")) A3)
where 0 are the dynamic or static physical parameters, w denotes the weights and biases of
LSTM, x includes the basin-averaged meteorological forcings, such as precipitation, mean

temperature, and potential evapotranspiration, with X representing their normalized versions.

Similarly, A, consists of normalized observable basin-averaged attributes, encompassing
basin area, topography, climate, soil texture, land cover, and geology (Table C1). Precipitation
and mean temperature are from CAMELS, while potential evapotranspiration is calculated
based—enusing the Hargreaves (1994)(1994) method using—meansbased on maximum; and
minimum temperatures along with basin latitudes, all from data described in sect. 2.1. Q and
Q* are the streamflow simulations (model outputs) and observations (as provided in CAMELS)),
respectively. HBV is implemented on PyTorch so it is programmatically differentiable: all
steps store information related to gradient calculations during backpropagation, allowing this
model to be trained together with neural networks in an end-to-end fashion. More details about

differentiable HBV can be found in previous studies (Feng—et—al—2022: Song—et—als

2024by(Feng et al., 2022; Song et al., 2024b). The details of some particularly relevant HBV

processes are described in Appendix A.

2.4. Experimental design

In this study, we trained the two models of very different types (LSTM and HBV), each
with one of three meteorological forcing datasets (Daymet, NLDAS, and Maurer), resulting in
six corresponding streamflow simulations (Figure 1c) for each different test scenario (see sect.
2.5 for additional information). The training processes of LSTM and SHBV followed Kratzert
et al. 2621(2021) and Feng et al. {20235)(2023b), respectively. Test results and performance
metrics for all models are reported for the 531-basin subset that excludes those with areas larger

than 2,000 km? or with more than a 10% discrepancy between different basin area calculation
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methods Newman-etal20H7(Newman et al., 2017).

To generate ensembles, we tested various weighting strategies and ultimately employed
averaging to combine the six single-forcing, single-model-type simulations, as it yielded the
best performance. To better describe various combinations including cross-model ensembles,
these simulations were categorized into six groups (Table 1). A shorthand notation is used
throughout the remainder of this work to describe the forcing datasets and ensembles. Daymet,
NLDAS, and Maurer are abbreviated as superscripts 1, 2, and 3, respectively. The + symbol is
used to group model types being ensembled, while superscript clustering (e.g., !> or '2) is used
to group the meteorological forcing types being ensembled, with parentheses indicating that
the superscripts apply to all model types within. For example, (LSTM + §HBV)'?3 could be
explicitly written as LSTM?! + LSTM? + LSTM® + SHBV' + SHBV? + §HBV3. To compare
two different strategies to utilize the multiple meteorological forcing datasets and to benchmark
against the previously highest performance, we additionally trained a single LSTM model using
all three forcing datasets as simultaneous inputs as done by Kratzert et al. (2621(2021),

referred to as LSTM™! (the last row in Table 1).
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Figure 1. (a) The LSTM structure, (b) the SHBYV structure, and (c) the framework to generate

the six individual ensemble members of the streamflow simulations, in which different colors

of arrow lines denote the different meteorological forcing datasets (also denoted as 1, 2, 3),

respectively.
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Table 1. (a) The six groups of streamflow simulations, and (b) the streamflow simulation via
LSTM based on a different strategy, in which three meteorological forcing datasets were
combined as a single set of inputs (Kratzert-et-al-2021)(Kratzert et al., 2021). Superscripts 1,
2, and 3 denote Daymet, NLDAS, and Maurer, respectively. The ensemble across forcings

(“‘ef”) superscript indicates an ensemble of model simulations, each of which uses a different

single meteorological forcing, e.g., LSTM'? means the average of LSTM" and LSTM-.

(a) Six Groups of Streamflow Simulations

Group Name Group Members
LST™M LSTM!, LSTM?, LSTM?
SHBV SHBV!, SHBV?, SHBV?
LSTM+6HBV (LSTM+3HBV)!, (LSTM+3HBV)?, (LSTM+3HBV)?
LSTM®! LSTM!'2, LSTM!3, LSTM?, LSTM %
SHBV®! SHBV!2, HBVS, SHBV?, SHBV'%,
(LSTM+8HBV)f (LSTM+8HBV)!2, (LSTM+8HBV)!3, (LSTM+8HBV)?,
(LSTM+8HBV)'?

(b) Using forcing datasets as simultaneous inputs to an LSTM
Streamflow Model Type Meteorological Forcing Dataset
Simulation

LSTM™u LSTM Daymet, NLDAS, Maurer
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2.5. Evaluation scenarios and criteria

The above cases were comprehensively evaluated for performance in temporal

extrapolation (Eeng-etal;2022: Kratzertet-al52048)(Feng et al., 2022; Kratzert et al., 2018),

as well as two types of spatial generalization: prediction in ungauged basins (PUB) (Feng-et

al52023bKratzert-et-al5 2049 (Feng et al., 2023b; Kratzert et al., 2019), and prediction in

ungauged regions (PUR) (Feng et al., 2021, 2023b):

e Temporal Test: Models were trained using data from all basins and tested across
different periods.

e PUB Test: Models were trained on randomly selected subsets from all basins and
tested on the remaining basins during the same time period.

e PUR Test: Different from the PUB test, basins were grouped into continuous regions,
one of which was selected to comprise the group of testing basins while the others
were used for training.

Temporal generalization is generally considered to be the easiest of these tests. In terms
of spatial generalization, which approximates data-sparse scenarios, the PUB test is an example
of spatial interpolation, whereas the PUR test involves spatial extrapolation. The PUR test is
widely regarded as the most challenging and may therefore produce findings that differ
significantly from those in other scenarios. In this study, all basins were divided into 10
spatially stratified groups for the PUB test and 7 fully disjoint regional groups for the PUR test
(Table 2) in the same way as Feng et al. {2623b)(2023b). The spatial extent of the 7 regions for
the PUR test is also shown in Figure 3(c1-c2). Therefore, we conducted 10 rounds for the PUB
test and 7 rounds for the PUR test, with a different group held out for testing in each round.

Model performance was evaluated after concatenating the test results for all basins.

[ Field Code Changed
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Table 2. Differences of temporal, PUB, and PUR tests.

Test Training Testing
Scenario Basin Time Basin Time
Temporal All? 1980-1995° All 1995-2010
PUB Random nine-tenths 1980-1999 Holdout® 1995-1999
PUR Random six of seven regions | 1980-1999 Holdout 1995-1999

“OHBYV training followed Feng et al. (20235)(2023b) using all 671 CAMELS basins, while
LSTM training followed Kratzert et al (20215(2021) using the selected 531-basin subset. Test
results and performance metrics for all models are reported for the 531 basins.

YEach hydrological year spans from October Ist to September 30th of the following year.

“In the PUB and PUR tests, models are run for 10 and 7 rounds, respectively, with the group
held out for testing changed in each round. The simulation performance was evaluated after

concatenating the test results for all basins.

We repeated all the simulations with three different random seeds. Therefore, all the
simulations come from a total of (2x3+1)x(1+10+7)x3 trained models. The first factor
represents the models: two model types (LSTM and SHBV) trained separately with each of the
three forcing datasets, along with LSTM™! 4 single model instance trained using all three
forcing datasets simultaneously. The second factor accounts for the three types of tests
(temporal, PUB, and PUR tests), and the last for the three random seeds. With respect to
random seeds, we present two variations in the results, which are visually depicted in Figure
C1. The results without “seed” as a subscript represent the average metric values from multiple
streamflow simulations, each generated from a single model implementation, along with the
corresponding uncertainties, visualized using error bars. The results marked with “seed” as a
subscript are based on the average of multiple streamflow simulations conducted with different
random seeds. In terms of computational cost, training LSTM (30 epochs) and 6HBV (50
epochs) for temporal testing under a single meteorological forcing dataset takes approximately

14
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5 and 21 hours, respectively, using a single NVIDIA Tesla V100 GPU.
We calculated several well-established performance metrics: Nash-Sutcliffe model
efficiency coefficient (NSE) (Nash—and-Suteliffe;1970)(Nash and Sutcliffe, 1970), Kling-

Gupta model efficiency coefficient (KGE) (Klingetal2042)(Kling et al., 2012), percent bias

(PBIAS), and root-mean-square error (RMSE). We also considered RMSE values for high (top

2% “peak” flow, highRMSE), low (bottom 30% “low” flow, lowRMSE), and mid-range (the
remaining flow, midRMSE) flow conditions (Yilmazetal;2008)(Yilmaz et al., 2008). These
metrics were computed for each basin and aggregated into error bars and cumulative density
functions (CDFs). For brevity, the main text primarily reports NSE values, and other metric
values are provided in Appendices D and E. Furthermore, we use the spread values (=ietals

2021 Reichleand Koster, 2003)(Li et al., 2021; Reichle and Koster, 2003) to investigate

ensemble variability and explore model complementarity. Detailed descriptions of these

metrics and their calculations are available in Table C2.

3. Results and discussion
3.1. Temporal extrapolation

For the temporal test, in which models were trained and tested on the same basins but in
different time periods, we found that cross-model-type ensembles noticeably surpassed the
within-class ensembles when other conditions were the same, with small uncertainties as shown
by the error bars in Figure 2. With a single forcing dataset, the median NSE was elevated from
~0.735 for LSTM to ~0.79 with SHBV added, though SHBV performance was similar to LSTM
(~0.74 under Daymet). Even after LSTM achieved very high performance when its simulations,
each derived separately from different meteorological forcing datasets, were ensembled (ef =
123, ~0.808), adding SHBV still improved the results to ~0.818. This finding was robust for

all different combinations of the tested meteorological forcing datasets. Conversely, adding
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LSTM also helped to improve SHBV ensembles. These results highlight the benefits of the
cross-model-type ensemble framework and indicate distinct simulation features for each model
type. LSTM is a data-driven method that has low bias and large variance. Data-errors{Li-etal;

2020byData errors (Li et al., 2020b), different sampling strategies (Nai-et-al-2024)(Nai et al.,

2024), or even different weight initializations (Narkhede-et-al-2022)(Narkhede et al., 2022)

can lead to substantively different outcomes. Conversely, SHBV may have a smaller variance

but a larger bias due to the fixed HBV formulation Megesetal;20+6)(Moges et al., 2016) for

some scenarios like low flows (Fengetal;2023b:-Sengetal;2024b)(Feng et al.. 2023b; Song
et al., 2024b) or in basins with significant water uses (Senget-al;2024a)(Song et al., 2024a).

These errors with varying characteristics from different model classes can partially offset each
other in an ensemble. On a side note, SHBV models seem more reliant on the quality of the
forcing data, as shown in Figure 2. SHBV with the Maurer and NLDAS forcing datasets
generally performs worse than it does with Daymet, which has lower biases. However, even in
those cases, the combination of LSTM and SHBV was still better than LSTM alone, attesting

to the robustness of these benefits.
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Figure 2. Median NSE values for 531 CAMELS basins, indicating model and ensemble
performances for (a) temporal, (b) prediction in ungauged basin (PUB), and (c) prediction in
ungauged region (PUR) tests. Different simulations are represented by variously-shaped and
-colored points, and are organized by ensemble group, listed along the x-axis: LSTM, 6HBYV,
LSTM+J0HBYV, and their “ensemble forcing” counterparts, LSTM ef SHBV®S, and (LSTM +
SHBV)®S . LSTM™" js q single LSTM model trained directly on all three forcing datasets at
once. The superscript “ef” denotes the forcing datasets involved in each ensemble (choices of
1 for Daymet, 2 for NLDAS, and 3 for Maurer), while the “+ " connects the model types used
within an ensemble. The x-axis group and subscript “seed” indicate that simulation results
were averaged based on three different random seeds (see Figure CI1). Other points without
“seed”, along with their corresponding error bars, are derived from the averages of metrics
computed over repeated runs with three different random seeds. The error bar indicates one

standard deviation above and below the average value for each simulation.
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Figure 3. Scatter plots comparing the performance differences between hydrological models
for the basins where LSTM outperformed O0HBV (the basins where 0HBV outperformed are not
shown in this plot). The x-axis represents the NSE differences between LSTM* and SHBV!
(LSTM? - SHBV'), while the y-axis shows the NSE differences between SHBV?3 and SHBV?!
(SHBV23_ SHBV!). Points are color-coded according to the NSE values of SHBV'. The
correlation coefficient (CORR) and p values between the x-axis values and the y-axis values,
along with the median NSE value of SHBV' (NSE.q) on these basins, are also noted. We
note that NSE is not additive and should generally not be subtracted. Here the purpose is only
to confirm that basins where LSTM outperforms SHBV also tend to be those that benefit from

the ensemble of forcings.

In the lower-performing basins where LSTM! had advantages over SHBV'!, the ensemble
of meteorological forcings SHBV'? also tended to be higher than SHBV! (Figure 3),
suggesting that forcing quality was a significant reason behind the underperformance of SHBV'!
in these basins. Similar patterns were also observed when analyzing SHBV? and SHBV? values
(Figure D1 and Figure D2). These basins previously contributed to LSTM’s cumulative
distribution function of NSE diverging from that of SHBV' at the low end (Feng et al., 2022).
Forcing errors can exist in the form of systematic timing errors, low or high bias for larger
events, etc., which can be difficult for the mass-balanced conceptual HBV! structure to adapt
to these errors. Because the ensemble of forcings tends to suppress the errors in each forcing
source, part of the advantages of SHBV'!% over SHBV! can be attributed to reducing forcing
bias or timing errors. Since the advantages of LSTM' over SHBV! also tend to occur with these
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same basins, this also explains how LSTM! surpasses SHBV! in some basins with poorer-
quality forcings. In contrast to SHBV, LSTM has the innate ability to shift information in time
and moderately adjust the input scale. Moving from temporal validation to PUB to PUR
scenarios, the advantages of diverse forcing datasets appear to diminish, as evidenced by the
decreasing ratio of points above versus below the diagonal line, since the forcing error patterns

remembered by LSTM may not generalize well in space (discussed in more detail in sect. 3.2).

Ensembling streamflow simulations from different meteorological forcing datasets
demonstrates certain advantages over the previous approach of simultaneously sending
multiple forcings into a data-driven model like LSTM (Kratzert-et-al;2021(Kratzert et al.,
2021). Ensembling LSTM simulations each using a single forcing dataset (LSTM*23) resulted
in an NSE value of 0.8082, higher than that of 0.7974 from feeding multiple forcing datasets
into a single LSTM (LSTM™)) This difference was more pronounced in the cross-model-
type ensemble, after including SHBV, compared to the previous within-class ensemble, and
particularly notable for the spatial generalization tests (to be discussed in more detail in Sect.

3.2);-with-). The corresponding specific metrie-valuesperformance metrics are summarized in

Tables D1-D5. with seasonal evaluations provided in Fables D1-BSFigure D3. These results

indicate that the trained LSTM in LSTM™% may be overfitted to the significant redundant
information in these three forcing datasets, and that enly-LSTM _models alone cannot fully
exploit the information hidden in the multiple forcing datasets. Training separate ensemble
members via different nonlinear hydrological processes, on the other hand, seems to allow
different bias features to emerge with separate forcing datasets, accordingly mitigating them

during the subsequent ensembling process.
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Figure 4. Spatial distributions of NSE values over 531 basins. Subplots are arranged in rows,
indicating (a) temporal, (b) PUB, and (c) PUR test results, and columns, denoting (1) NSE
values from (LSTM + SHBV)123, and (2) the differences between these NSE values and those
of LSTM?* (models using only forcing 1, Daymet). For LSTM*, each NSE value reported was
the average of three NSE values from three simulations using three different random seeds.
The seven continuous regions used to divide up basins for the PUR test are outlined and

numbered in the PUR test maps.

Our most diverse ensemble, (LSTM + SHBV)123, + LSTM™¥Y achieved a median NSE
value of ~0.83, surpassing the ~0.82 benchmark set by LSTMTY¥ (Table D4). This
advancement was achieved through random seed variation and cross-model-type ensembling.
The performance of (LSTM + §HBV)'?® ensemble proved more robust than LSTM™* with
only a slight boost when we incorporated random seeds, i.e., (LSTM + SHBV)1%3,. Notably,

the derived (LSTM + SHBV)}Z3, ensemble outperformed LSTM?! across almost all basins
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M™E into this framework, especially when using

(Figure 4). Further incorporation of LST
multiple random seeds, (LSTM + SHBV)123, + LSTM™Y | vielded the best overall
performance. Here, the margin over the previous benchmark was small in the temporal test.
However, as we will show in sect. 3.2, the previous benchmark, LS’ TMS'Zfoi, lacked robustness,
exhibited greater deficiencies in spatial generalization, and negatively impacted ensemble
simulations.

When we changed the number of random seeds from 3 to 10, we found that although all

model and ensemble performances slightly inereasedimproved, the gaps between them did not

change much (Figure 5-and; Table D5_for 10 seeds, Table D4 for 3 seeds). In particular, the

gap between (LSTM + SHBV)!23, + LSTM™UY and (LSTM + SHBV)1Z, or LSTMMUY
remained unchanged. This indicates that the benefits from more random seeds rapidly become
marginal, and our results based on 3 random seeds were sufficiently robust. For LSTMs alone,
different random seeds displayed higher variation, and ensembling them led to greater
improvement than ensembling (LSTM + SHBV)'23 with additional random seeds. It was
noteworthy that while the (LSTM + §HBV)123 ensemble generally showed the lowest RMSE
values, it did not always show the best high flow performance, as indicated by highRMSE
(Tables D1-D4). After incorporating the LSTMMY! variant into (LSTM + SHBV)!23, +
LSTMTE overall RMSE and highRMSE both improved. Nevertheless, this ensemble did not
always obtain the best values in other metrics like low flow (lowRMSE) and requires further

improvement.
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translucent lines denote the performances of their individual members each based on one

random seed. The median NSE values computed with 3 random seeds are also indicated by

vertical dashed and translucent lines in the corresponding colors.

3.2. Spatial generalization

It is clear that cross-model-type ensembling and the incorporation of SHBV significantly
improved prediction in ungauged basins (PUB) or regions (PUR), mitigating the difficulty of
spatial generalization (Figure 2b - 2c). In particular, the previous record-holder for temporal
test performance, LSTM™Y incurred large drops in the PUB and PUR tests, once again
reminding us of the limitations of LSTM in spatial generalization. Given the same forcings,
SHBV-only individual simulations or ensembles consistently outperformed LSTM-only
counterparts in the PUR test. Furthermore, adding SHBV to the same-model-type LSTM
ensembles improved median NSE by 0.02-0.03 for PUB. The role of SHBV became even more
prominent in the harder PUR tests, with an increased gap (0.04-0.07), e.g., LSTM!?* (median
NSE ~0.656) and (LSTM + §HBV)*?3 (median NSE ~0.701). The increased significance of
SHBYV is also illustrated by the optimized weights shown in Figure E1, which were estimated
using a genetic algorithm with streamflow observations from the test periods. These weights
are presented solely to illustrate the relative contributions of the different ensemble components.
The significantly different spatial distribution patterns of these weights among different test
scenarios also indicate the differences among temporal, PUB, and PUR tests (Figures E2-E3).
The performance of (LSTM + SHBV)'?% improved compared to LSTM™ regardless of
whether ernot-we-employed-multiple random seeds were employed to form an ensemble. As
such, we can conclude that the inclusion of a differentiable process-based model like SHBV in
an ensemble is a systematic way to reduce the risks of failed generalizations of LSTM.

Utilizing a cross-model-type ensemble led to widespread improvements over LSTM-only

ensembles, with the exception of a few scattered basins for each temporal (Figure 4-a2), PUB
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(Figure 4-b2), and PUR (Figure 4-c2) test. The most significant improvements due to the
ensemble were concentrated on the center of the Great Plains along with the midwestern US,
while the eastern US was moderately improved, suggesting data uncertainty is a larger issue in
the central and midwestern US. The Great Plains have historically had poor performance for
all kinds of models Mai-et-al;26223(Mai et al., 2022) and even the ensemble model had NSE
values of only 0.3-0.4 for many of the basins there, although this still marked significant
improvements over LSTM! (Figure 4-a2, -b2, -c2). Some western basin NSE values were
elevated by more than 0.15 for the temporal test (Figure 4-a2) and even more for PUB and
PUR. Meteorological stations are generally sparse on the Great Plains, and an ensemble seems
to be an effective way to leverage the different forcing datasets that are available. The poor
performances in some basins highlight some remaining deficiencies in current models, which
clearly cannot fully consider the heterogeneities of different basins; thus, multiscale
formulations that resolve such heterogeneities may have advantages (Sengetal-20624a3(Song
et al., 2024a).

To investigate why ensembles outperformed single-model, single-forcing approaches, we
compared their temporal, PUB, and PUR test simulation time series against observations for
531 basins (Figure 6). Analysis of averaged hydrological year data revealed that while
individual ensemble members using single-source forcing datasets performed similarly for
easily simulated periods, they showed significant divergence during challenging periods,
particularly peak flows. This divergence stems from distinct systematic errors inherent to
different model types and forcing datasets. Notably, LSTM-based simulations alone proved
insufficient in generating adequate spread to capture these divergent points. By averaging
individual model outputs and stabilizing uncertainties, ensemble simulations achieved effective
and robust performance across all conditions, which can be shown via the metric highRMSE

and lowRMSE values in Tables D1-D4. This highlights the critical importance of
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comprehensive training for each ensemble member, including diverse forcing inputs, full-
period model calibration, and rigorous hyperparameter tuning, to ensure that each member
develops distinct simulation behaviors. These differences allow the ensemble to better
represent a range of hydrological responses, particularly under extreme or uncertain conditions.
By capturing complementary strengths and compensating for individual weaknesses, such
well-trained ensemble members collectively enhance the robustness and accuracy of
streamflow simulations.
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Figure 6. Comparisons between multi-basin-averaged streamflow observations and
simulations across 531 basins. The time series points are displayed at four-day intervals for
clarity and conciseness. Ensemble members based on the same model (LSTM or 0HBV) but
driven by different forcing datasets are shown in the same color to highlight the differences

between models more clearly.

3.3 Ensemble variability and robustness analysis

Although 6HBV (median spread 0.61) exhibits lower spreads than LSTM (mean spread
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0.72), their combination increases the ensemble spreads, thereby enhancing diversity (Figure

7). This pattern holds across the temporal, PUB, and PUR tests. Ensemble effectiveness

depends on the diversity of model behaviors and their distinct error characteristics.

Consequently, larger spreads eentribute—toare generally associated with greater ensemble

benefits. Figure B3D4 further demonstrates that SHBV+LSTM exhibits larger spreads than

LSTM in most basins.
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Figure 7. Spread values (Table C2) of each model for LSTM, dHBV, and LSTM + 6HBV due

to different meteorological forcings and random seeds across temporal, PUB, and PUR tests.
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As the warming signal is already clear across most basins under any forcing across the

periods of simulation (Figure B4D5), the models’ strong performance in the temporal test

suggests decent extrapolation capability under warming scenarios. It is often questioned
whether data-driven models like LSTM lose accuracy under stronger climate drift, but no
substantially warmed dataset is available to test this. Benchmarks suggest LSTM captures 15-
year trends well in temporal tests, but less so in data-sparse scenarios (Eeng-et-al;2023b)(Feng
et al., 2023b). Introducing a 10% precipitation perturbation (multiplying precipitation by 1.1)
slightly reduced performance for both models as expected (Figures D56a and D56b), but
ensemble benefits remained robust across models despite the perturbation.

Training sample size, dynamic parameter choices, and lookback windows aH-haveexert
only a limited impact on our conclusions. SHBV shows limited sensitivity to sample size, with
similar results when trained on 531 versus 671 basins (Figure D56c¢). Regarding parameter
uncertainties, fixing one SHBV parameter (k) as static increased structural errors and reduced
performance (Figure D56d), yet ensemble benefits remained robust. For LSTM, alternative
window sizes of 182 and 730 days were tested, with the default 365-day window yielding
optimal performance (Figure D56¢). Importantly, variations in the lookback window had only

minor effects on model performance, underscoring the robustness of ensemble benefits.

3.4. Further discussion

Based on our results, we identified several avenues for future research. First, while we
have explored various weighting strategies and found that averaging yields the best
performance yet, we believe that dynamic or adaptive weighting schemes could further enhance
performance in future studies. It is also demonstrated by Table E1 that estimated uneven
weights can significantly improve simulation performance. Moreover, within specific basins,
the estimated weights of different components are often highly imbalanced, as evidenced by
the spatial distribution of optimized weights (Figures E2-E3). Some potential feasible ways
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include using the simulations from these individually-trained models as inputs of a data-driven
model (Solanki et al., 2025), and making the weight estimation and the ensemble member
training simultaneously.

Both LSTM and S8HBV models exhibit limitations in regions with significant

anthropogenic impacts, such as—like dam presence, as well as arid climatic and

highlysignifieantly heterogeneous geological conditions. These regions are mainly located in
the midwestern and western CONUS, where high evaporation conditions (Heidari et al., 2020,
Figure 2) and numerous dams (Ryan-Bellmore et al., 2017, Figure 1) coincide with complex
water use processes (Wada et al., 2016, Figure 11) that current models cannot simulate well.
Together, these factors suggest that anthropogenic influence is likely an important driver of
poor model performance. Further improvements may include incorporating additional data that
capture these factors like capacity-to-runoff ratio (Ouyang et al., 2021) or integrating
specialized modules, such as reservoirs (Hanazaki et al., 2022; West et al., 2025). Compared
with LSTM, SHBV is more sensitive to precipitation biases. For example, the differences
between SHBV simulations under different forcing datasets were generally larger than those
for LSTM, and dHBYV using the Daymet forcing dataset showed largely better performance
than with the other two forcing datasets, which indicates that SHBV may not be able to fit
different forcing datasets well. Therefore, many potential structural optimizations can be
implemented to improve SHBV. Our analysis provided corroborating evidence that forcing
error is an important reason why LSTM can outperform 6HBV in the temporal test for some
basins, although such patterns may not generalize well in space. A meteorological forcing data
correction module can be developed in the future to account for timing and magnitude errors
in precipitation. Ensemble simulations may face challenges when computational resources are
constrained, particularly for large-scale or real-time applications. Nevertheless, we remain

optimistic about overcoming these challenges due to several promising solutions. These
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include tailoring the hydrological model by simplifying less relevant components to specific
simulation objectives (Clark et al., 2015; Kraft et al., 2022) and cloud-based computing
infrastructures that offer scalable, on-demand resource allocation (He et al., 2024; Leube et al.,
2013). Importantly, the majority of computational costs are incurred during model training. In
practice, ensemble members are typically pre-trained by different research or application
groups (Bodnar et al., 2025; Nearing et al., 2024; Song et al., 2025a), enabling direct reuse of
these well-trained models and significantly improving computational efficiency.

For this work, we did not create a SHBV™! model (in the same vein as LSTM™!) using
all forcings as an input to a single model, since a similar experiment has already been conducted
by Sawadekar et al. (2025). We also did not examine “seed” combinations of a SHBV™ ! a5
we believed they would not result in a significant performance boost (unlike that seen with
LSTM™!), because LSTM has high variability and low bias, while SHBV has lower variance
and potentially higher bias. As a result, random seeds would likely not create large enough
perturbations for SHBV and wouldn’t bring the benefits seen with LSTMTU¥ To achieve an
equivalent perturbation level for SHBV, it may be necessary to incorporate multiple distinct
hydrological models, such as SAC-SMA, PRMS, and GR4J, similar to the approach
implemented in the Framework for Understanding Structural Errors (FUSE) (Clark—etals
2008)(Clark et al., 2008). Work is ongoing to create a combination of a series of differentiable
process-based models, which is expected to produce a further improved ensemble with great
interpretability. Given the success of cross-model-type ensembles shown in this work, we also
encourage further exploration of ensemble simulations involving models with other distinct

mechanisms.

4. Summary and conclusions

This study comprehensively analyzes ensemble combinations of two advanced model
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types (LSTM and dHBV), each with distinct mechanisms, for streamflow simulation across
531 basins in the US. Three meteorological forcing datasets (Daymet, NLDAS, and Maurer)
are employed to fully capture the characteristics of the two models. Their applications are also
tested in two distinct ways: (1) by feeding all diverse forcing datasets simultaneously into a
single LSTM model, and (2) by ensembling the outputs of multiple LSTM models, each trained
separately using a single forcing dataset. The performance of ensemble simulations was
evaluated under three distinct testing scenarios (temporal, PUB, and PUR tests), surpassing the
previous highest performances. Our findings enhance the understanding of how to effectively
utilize diverse model types and multi-source datasets to improve streamflow simulations. The
principal conclusions are:

(1) Cross-model-type ensembles (LSTM+38HBV) consistently outperformed single-
model approaches across all test scenarios, setting new performance benchmarks on
the CAMELS dataset. These ensembles demonstrated the complementarity of data-
driven (LSTM) and physics-informed (3HBV) approaches in capturing diverse
hydrological behaviors.

(2) Ensembling models trained on different forcing datasets proved more effective than
using multiple forcing datasets as simultaneous inputs to a single model. This suggests
that separate training allows each model to capture unique features contained in each
forcing dataset, which can then be effectively leveraged in the ensemble.

(3) SHBYV provided significant benefits to ensemble simulations on spatial generalization.
Ensembling LSTM with SHBV showed increasing benefits as generalization
challenges increased, from temporal to spatial interpolation (PUB) to spatial
extrapolation (PUR) tests. This underscores the value of physics-informed constraints
in improving model transferability to ungauged basins and regions.

(4) While ensemble methods significantly improved overall performance, they did not
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fully mitigate consistent deficiencies in certain challenging areas (e.g., regions with
high dam density or heterogeneous hydrogeological conditions). This indicates areas
for future model development.

These findings have important implications for hydrological modeling and water
resources management. The improved accuracy and spatial generalization of our ensemble
approach can enhance streamflow predictions, benefiting water resources planning and
management, particularly in data-scarce regions. Our results also suggest that future
hydrological model development should focus on combining data-driven and physics-based
approaches to improve model generalizability across diverse conditions. The superior
performance of ensembling models with different forcing datasets over using merged forcings
as a single input highlights the risk of indiscriminately feeding all available data into one data-
driven model. While computational demands certainly require consideration, the potential
improvements in prediction accuracy offer significant value for both research and operational
applications. Future work should focus on refining these ensemble techniques, addressing
model limitations in challenging regions, and exploring ensemble implementation in

operational settings.
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619  Appendix A: Detailed processes of HBV employed in this study.
620 i & i
621
022
023
024
025
626

627 The Hydrologiska Byrans Vattenbalansavdelning (HBV) model (Aghakouchak and Habib,
628  2010; Beck et al., 2020: Bergstrom, 1976, 1992) is a simple yet effective bucket-type

629  hydrologic model that simulates hydrologic components including snow water equivalent, soil

630 moisture, groundwater storage, evapotranspiration, quick flow. baseflow, and total streamflow.

631 In the following, we describe these processes in detail with their corresponding equations.

632  Uppercase letters denote state variables, while lowercase letters denote parameters. The overall

633  water balance is expressed as Equation (S1).

EP — AE — Q; = SN + SM + UR+1LRSUZ + SLZ + LAKE (S1)

0634  where EP is effective precipitation, AE is the—actual evapotranspiration, Q, is the—total
635  simulated runoff, SN is snow storage, SM is soil watermoisture storage, JR-isSUZ and SLZ are
636  the upper reserveirwatertevelLR-isthe-and lower reserveirwatertevelgroundwater storages,

637  respectively, and LAKE is-therepresents lake levelstorage (omitted in this study).

638 First, effective precipitation (EP) is separatitioned into lguidrain (RN) and setidsnow (SN)

0639  components based on the air temperature (7) relative to thea threshold temperature (#1-as):
RN =EPifT>tt (S2)
SN =EPifT<tt (S3)

640  Snow (SN) accumulates in the snowpack (SNP), while the-snowmelt (SNM) happens when 7>

641 1, which is calculated usingbased on a temperature-dependent-melt ratefactor (cfm)-) and the
642  temperature difference (7 - #/). The computed snowmelt (SNM) is Hmited-toconstrained by the

643 available snowpack (SNP};-and-any-exeess-melt-contributes-to-meltwater (MH)-as).

SNP = SNP + SN 4
SNP efmAT—tt)>=SNP
= =t S5)
0 T<tt
MUL= MUz L CNM S6)
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SNP =SNP—SNMSNM
= min[max(cfm - (T — tt),0),SNP]
044  Seme—ofthis—The snowmelt (SNM) contributes to meltwater (MW)—refreezes—based—on—a

(5754)

645 efreezing paramete B T

646  while the snowpack (SNP)-—Fheameunt-ofrefrozenwater) is labeledupdated as-FRZ:
MW = MW + SNMREZ

647
648

649 A portion of the meltwater (MW) may refreeze when T < ¢, controlled by the refreezing

650  parameter (cfr):

IE— {Mm—ezlh—*w MWL—GW#*WE—QRFZ s
= min[max(cfr - cfm- (tt —T),0), MW]
SNP = SNP + RFZ (S8)
MW =MW —IFZ (84289)
651
652
653
654  water(SP)as

655  The remaining meltwater (M) exceeding the snowpack’s liquid water holding capacity (cwh -
656  SNP) infiltrates into the soil (/F), with the remainder retained in MW:
B

sM
IF = max(MW — cwh - SNP,0)SP = (f—c) —{E RN (S130)
SM = SM+MW = MW — IF+RN—SP (S141)

057  The execess-water,—abevefraction of soil moisture (SM) relative to the field capacity (F)is
658  ealeulated-and subsequentlyremoved-from/c), raised to the seilmeisturestorage-aspower index

659  f, modulates shallow seepage (SP) according to the available water (/FF + RN):

SM\P (SM—fe ifSM>=fe
=(—) 1E.= - S1
SP <fc) =g e (IF + RN) (S152)
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665
066
067
668
669
670
671

SM = SM— g+ IF + RN — SP (S163)

Excess soil water above the field capacity contributes to direct infiltration (/F;,):

(SN M

\-fe) 7 77 \Upfe)

ol M IF gy

7 \ipfe) (S174)

Y AN

L T \pfe) T
= max(SM — f¢c,0)

1
PEC—\l 5

(e

SM = SM — AEIF,;, (S195)

Actual evapotranspiration (4F) is estimated as the product of potential evapotranspiration (PE)

and an evapotranspiration coefficient (PEC). The PEC depends on soil moisture storage (SM),

field capacity (fc), a shape parameter (4), and a threshold parameter (/p).

‘ sLz 517 < ST {1 o)
cp=] U fe) ppe

Verstz (1 17 m sz {1

\ U %) 777= U7/ ($20816)
_ ikt o (M 4
= min |1, max ’(lp-fc)

AE = min(PE - PEC, SM)SM = SM + CP (S217)

SLZ—CP ifSLZ=CP

stz={ . SM = SM — AE $22518
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678

679
680
081
682
683
0684
685
086
687
088
689
690

contributes—to—runeff(Qy Capillary rise (CP) from the lower zone (SLZ) replenishes SM,

controlled by a coefficient (c¢) and constrained by the soil moisture deficit:

CP = min [c .SLZ - (1 - S—IZ) , SLZ] SUZ = SUZ + SP + IFy, (523519)

SM = SM + CPPERC = {;’f’g ekt i — (S240)

SUZ=SUZ—PERGC 25

o,  (r-(SUE—irh) i SUZ= sl 526,
&= 0 FSUZ<uzl

SUZ=SUZ -0y 25

Qr="SVZHy 28

SUZ-=SUZ—@; (529

Sz iz pEoe $30)

Qr="SLZ4es &35

SLZ = SLZ —Q5CP (S321)

G=&y+&,+& 533

Recharge from the soil, consisting of shallow seepage (SP) and direct infiltration (/Fy;,.), enters

the upper groundwater zone (SUZ). Water in the upper zone either percolates to the lower

groundwater zone (SLZ) at a constant percolation rate (prc) or contributes to direct runoff (Q)

when the upper zone (SUZ) exceeds a threshold (uz/). Flow from the upper and lower zones is

computed using linear reservoir formulations, with parameters k,. ki, k,_controlling the

respective runoff components Q,, Q1. Q,. The total simulated streamflow (Q;) is then

computed as the sum of these components.

tmax

SUZ = SUZ + SP + IFdl-re;——{—ées:—W%—sadﬁ (S34522)
9
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1 t
&5 B8y =——— % BPERC = min(prc, SUZ)
rep 0

SUZ = SUZ — PERC
Qo = max[ky ' (SUZ — uzl), 0]
SUZ = SUZ - Q,
Q,=SUZ Ik
SUZ =SUZ - Q,
SLZ = SLZ + PERC
Q, =SLZ -k,
SLZ = SLZ - Q,
Q=0 +0Q:1+Q2
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S32

Finally, a routing module (Feng et al., 2022) is used to process Q, _to produce the final
streamflow output (Q¢). This module with two parameters (6, 6;) assumes a gamma function

for the unit hydrograph and convolves the unit hydrograph with the runoff as,

tmax

Qi = f £(s: 6,,6,) - Q¢ — 5)ds
0

1 _t
£(s: 0,,0;) = ——5—t0 e
I(6)60

S33

S34
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699  Appendix B: Illustrated differences among the three meteorological forcing datasets
Daymet NLDAS Maurer
- (al) Precipitation (a2) Temperature
107+ 4 10724 k
> 10774 '
E H\L 1077 5 7 H
-3 ] LY I i
g0 s )
Z 107 & 107 T
2 1073 5 107% 5 ’ il
E )
. Oy |
1074 - N 1070 4
o] LR |
v r r T r v 10774 v =y v T v v
50 100 150 200 250 300 -60  -40  -20 0 20 40
0.040
(b1) high Precipitation /
0.035 A 0.030 { ¥
2 0.030 0.025 + ( ‘1
w
g i 1
& 00257 0.020 1 | 4
Z 0.020 JJ
= 0.015 4
§ 0.015 J'j
£ o0 ] 0.010 / l
0.005 - 0.005 1" (p2) Temperature |
0.000 " 0.000 . r T r . LL :
10t 10? -60 -40  -20 0 20 40
700 precipitation {(mm/day) temperature (°C)

37



701
702
703
704
705

Daymet NLDAS Maurer
)
o N
8 10 (al) precipitation 1o-2] (a2) temperature h
L2 / i
g i} |
f- 1074 "“L -3 ] i
k= <, 10 )
% 1077 % ‘
= : 1074 4 . 1
= 1074 4 i, I 7
£ 5 I
g 1071 mu 05— i
he= i }
£ 10 e s
i 1 107° 4 1
2 L
5 1077 o
= . : ‘ . ‘ . 1077 . - - - —
0 50 100 150 200 250 300 -60  —40  -20 0 20 40
__ 0.040 ——t
] (b1) top 2% precipitation (b2) temperature I
S 0.035 - from each basin 0.030 A 4 ‘,‘I
I
o \
T 0.030 1 0.025 - i
£ ] 1
= 0.025 1
0.020 A 1
g 0.020 | !
[CHR B
S 0.015 - /
=}
3 0.015 II
= 0.010 00109 f ‘
g0 / 1
S 0.005 4 i 0.005 - # 1
s |
0.000 : : : Ty : , 0.000 v : ; ; ; ll— ;
0 20 40 B0 8O 100 120 140 -60  —40 20 0 20 40

precipitation (mm/day)

temperature (°C)

Figure Bl. Probability density distributions (top panel in logarithmic scale, bottom panel in

linear scale) of precipitation and temperature across three meteorological forcing datasets.
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Appendix C: Details of model inputs, ensemble frameworks, and evaluations

Table C1. Full names for the abbreviations of dynamic data (all but streamflow are “forcings”)

and static basin attributes used as model inputs and outputs. All variables and their values are

provided in the CAMELS dataset (Addor et al., 2017) except for the NLDAS and Maurer daily

temperature extrema, which are from Kratzert et al. (2021). Potential evapotranspiration and

normalized streamflow were calculated in this work, using CAMELS data. The number in

parentheses specifiesindicates model usage: 1 denotes—se—infor the LSTM model, and 2

denotes-wse-infor the SHBV model.
Type Abbreviation Full name Unit
Dynamic prep (1,2) Precipitation mm/day
data Potential evapotranspiration (calculated in
pet (2) this work using the Hargreaves equation mm/day
and CAMELS data)
tmean (2) Mean air temperature °C
tmax (1) Maximum air temperature °C
tmin (1) Minimum air temperature °C
srad (1) Shortwave radiation W/m?
vp (1) Water vapor pressure pa
q_vol Volumetric streamflow ft3/s
0(12) Streamflow normalized by basin area mm/day
(q_vol / area_gages?2)
Static p_mean (1,2) Mean daily precipitation mm/day
basin pet_mean (1,2) Mean daily potential evapotranspiration mm/day
attributes p_seasonality (2) Seasonality and timing of precipitation -
frac_snow (1,2) Fraction of precipitation falling as snow -
aridity (1.2) Rate of mean values of potential )
evapotranspiration and precipitation
high prec freq (1,2) Frequency of high precipitation days days/year
Average duration of high precipitation
high prec_dur (1,2) days
events
low_prec_freq (1,2) Frequency of dry days days/year
low prec_dur (1,2) Average duration of dry periods days

41




elev_mean (1,2) Catchment mean elevation m
slope_mean (1,2) Catchment mean slope m/km
area_gages2 (1,2) Catchment areca (GAGES-II estimate) km?
Fraction of catchment area having land
frac_forest (1,2) S -
cover identified as forest
Maximum monthly mean of the leaf area
lai_max (1,2) ) -
index
Difference between the maximum and
lai_diff (1,2) minimum monthly mean of the leaf area -
index
Maximum monthly mean of the green
gvf max (1,2) -
vegetation
Difference between the maximum and
gvt diff (1,2) minimum monthly mean of the green -
vegetation fraction
dom_land cover frac | Fraction of the catchment area associated
2) with the dominant land cover
dom land cover (2) Dominant land cover type -
Root depth at 50 percentile, extracted
from a root depth distribution based on the
root_depth 50 (2) m
International Geosphere-Biosphere
Programme (IGBP) land cover
soil_depth_pelletier
N Depth to bedrock m
(1,2)
soil_depth_statsgso )
Soil depth m
(1,2)
soil_porosity (1,2) Volumetric soil porosity -
soil_conductivity
(1.2) Saturated hydraulic conductivity cm/hr
max_water_content )
Maximum water content m
(1,2)

sand_frac (1,2)

Fraction of soil which is sand
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719
720

silt_frac (1,2)

Fraction of soil which is silt

clay frac (1,2)

Fraction of soil which is clay

geol class_1st (2)

Most common geologic class in the

catchment basin

geol_class_1st_frac

2

Fraction of the catchment area associated

with its most common geologic class

geol class 2nd (2)

Second most common geologic class in the

catchment basin

geol class 2nd_frac

Fraction of the catchment area associated

@) with its 2nd most common geologic class
carbonate_rocks frac | Fraction of the catchment area as carbonate
(1,2) sedimentary rocks
geol porosity (2) Subsurface porosity
geol permeability
12) Subsurface permeability 2
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Intermediate
Variable Output
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\
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Figure Cl. Ensemble frameworks to generate metrics for ensembles named without (solid

Seed 3
721

722

723 arrows) and with (dashed arrows) “seed” as a subscript.
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Table C2. EvalnationLoss function and evaluation metrics.

Statistic Equation* Range Optimal Value
15 (0= )2
Loss — W 0.0 to 0.0
n&t (9
n_(0; —S;)?
NSE - 2O 507 010 1.0 1.0
=100 — 1o)
1= Jr -2+ B -1)2+F-1?
KGE g bs _ Vs _ aslus -0 to 1.0 1.0
wo’ CVo  0do/Mo
2i=1(0: — S)
PBIAS =——=———X%x100 -0 t0 0 0.0
i=10i
1 n
RMSE _Z(Oi —5)? 0.0 to 0.0
=
1 1 n e
spread - (Sij — Us,i)? 0.0 to o None
=17=1

* S is athe streamflow simulation; O is the corresponding observation, n is the number of total

S or O, ¢ is a numerical stabilizer, with a default value of (.1, e is the number of ensemble

members; » is the linear Pearson correlation between S and O; B is the mean bias, and y is the
variability bias. The mean and standard deviation of simulations are denoted as us and o,
respectively, andwhile [y and 0y are—the—mean—and-—standard-deviationdenote those of the

observations.
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Appendix D: Additional details on model performance
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Figure D1. Scatter plots comparing the performance differences between hydrological models
for the basins where LSTM outperformed O0HBV (the basins where 0HBV outperformed are not
shown in this plot). The x-axis represents the NSE differences between LSTM? and SHBV?
(LSTM? - §HBV?), while the y-axis shows the NSE differences between SHBV %3 and SHBV?
(SHBV'23. §HBV?). Points are color-coded according to the NSE values of SHBV?. The
correlation coefficient (CORR) and p values between the x-axis values and the y-axis values,

along with the median NSE value of SHBV? (NSE,.q) on these basins, are also noted.
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Figure D2. Scatter plots comparing the performance differences between hydrological models
for the basins where LSTM outperformed 0HBYV (the basins where SHBV outperformed are not
shown in this plot). The x-axis represents the NSE differences between LSTM® and SHBV3
(LSTM? - SHBV3), while the y-axis shows the NSE differences between SHBV %3 and SHBV?
(SHBV'23_ §HBV3). Points are color-coded according to the NSE values of SHBV3. The
correlation coefficient (CORR) and p values between the x-axis values and the y-axis values,

along with the median NSE value of SHBV3 (NSE;.q) on these basins, are also noted.
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Ficure D3. Seasonal comparison of NSE values for (LSTM+6HBV)§§gd (blue) and
LSTM;’;’;,;” (red) in (a) temporal, (b) PUB, and (c) PUR tests. Each box represents the

distribution of NSE values across 531 basins for a given season (DJF: December—February,

MAM: March-May, JJA: June—August, SON: September—November). Vertical dashed lines

separate_different seasons. (LSTM + SHBV )23, performs better than LSTM™ in most

cases, especially during MAM, likely due to differences in snowmelt representation.
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Figure B3D4. Spatial distributions of model spread values increase from SHBV and LSTM to
the LSTM+J0HBYV ensemble across temporal, PUB, and PUR tests.

48



0.2 1

Relative Temperature Differences: (Test — Training) / Training

:

: 0
0.1
0.0 - —
_01 4
8
o] =]
-0.21 8 e
o]
b67 Daymet NLDAS Maurer
relative temperature differences: (test — training) / training
8 8
0.2 E 8
0.1
0.0
-0.14
8
Q
-0.21 ?
o]
b63 Daymet NLDAS Maurer

769  Figure B4D5. Boxplot of relative temperature differences between the test and training periods,
770 calculated as (Fest—Training)/Trainingtest — training) / training. Each box represents the

771  distribution of normalized temperature changes across basins for a specific meteorological

772 forcing dataset: Daymet, NLDAS, and Maurer. Positive values indicate warming in the test

773 period relative to the training period.
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(a) precipitation error on LSTM (b) precipitation error on 6HBV
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778
r779 Figure BD3D6. Simulation performance (NSE) under the temporal test: (a) LSTM model with

780  and without a 10% precipitation error (precipitation % 1.1); (b) 0HBV model with and without
781  a 10% precipitation error, (c) 0HBV model trained on 671 versus 531 basins, (d) SHBV model
782 with 3 versus 2 dynamic parameters, (e) SHBV model using time steps of 365, 182, and 730
783 days. Individual and ensemble groups are distinguished along the x-axis. Ensemble benefits
784  are indicated by the gap between columns of the same color within each panel—columns 1-7
785  correspond to individual LSTM or 0HBYV groups, and the last two columns correspond to
786  LSTM+JHBYV ensembles.
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Table D1. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high
(highRMSE), and middle (midRMSE) flows based on 531 basins under the temporal test. The

values are the mean of three simulations run with different random seeds.

Temporal Number Daymet NLDAS Maurer
NSE 0.735639 | 0.736301 | 0.717337
KGE 0.789375 | 0.782555 | 0.760575
RMSE 1.21088 1.19847 1.27723
LSTM PBIAS 4.04818 5.99486 1.58911
lowRMSE | 0.0596913 [ 0.0602381 | 0.0545577
highRMSE | 2.70508 2.89684 2.97028
midRMSE | 0.196039 | 0.210022 | 0.219922
NSE 0.739688 | 0.71903 | 0.727669
KGE 0.77033 | 0.730753 | 0.762022
RMSE 1.18752 1.26239 1.23193
SHBV PBIAS 5.07898 | -0.14449 | 3.65263
lowRMSE | 0.060906 | 0.063581 | 0.063466
highRMSE | 2.68479 3.13011 2.6845
midRMSE | 0.226595 | 0.245242 | 0.230125
LSTM+8HBV NSE 0.787545 | 0.794053 | 0.790903
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KGE 0.794412 | 0.78383 | 0.786854
RMSE 1.0777 1.0716 1.07141
PBIAS 4.59065 3.33053 3.45501
lowRMSE | 0.059955 | 0.059565 | 0.054838
highRMSE | 2.70216 2.88511 2.69633
midRMSE | 0.20394 | 0.214726 | 0.212514
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Table DI (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low
(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the

temporal test. The values are the mean of three simulations run with different random seeds.

Temporal Number Daymet+NLDAS | Daymet+Maurer | NLDAS+Maurer All

NSE 0.781275 0.791158 0.792144 0.808176

KGE 0.800955 0.795026 0.794441 0.803476

RMSE 1.09103 1.06374 1.06701 1.01395

LSTM PBIAS 5.17159 3.34362 4.5305 4.48263
lowRMSE 0.0636155 0.0582563 0.0566306 0.0613625

highRMSE 2.70218 2.71366 2.78962 2.67803

midRMSE 0.194849 0.199809 0.206653 0.197469

NSE 0.786562 0.77012 0.776938 0.794796

KGE 0.773732 0.778557 0.768854 0.77834

RMSE 1.08362 1.12584 1.10875 1.06118

SHBV PBIAS 1.91507 4.28194 2.03584 2.71021
lowRMSE 0.061667 0.060679 0.062765 0.061539

highRMSE 2.93961 2.7394 2.88758 2.84994

midRMSE 0.230576 0.220743 0.230272 0.228375
LSTM+8HBV NSE 0.811825 0.809964 0.811316 0.818907
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KGE 0.797564 0.797635 0.78735 0.794936
RMSE 1.01938 1.01755 1.0314 1.00067
PBIAS 4.14594 4.23333 3.19652 3.88096
lowRMSE 0.0603 0.058022 0.057882 0.059221
highRMSE 2.75275 2.67122 2.81393 2.70606
midRMSE 0.207637 0.205965 0.213191 0.207905
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Table D2. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high
(highRMSE), and middle (midRMSE) flows based on 531 basins under the PUB test. The values

are the mean of three simulations run with different random seeds.

PUB Number Daymet NLDAS Maurer
NSE 0.702636 | 0.695496 | 0.694156
KGE 0.693998 | 0.677438 0.6909
RMSE 1.31714 1.3394 1.34233
LSTM PBIAS 0.669018 | 0.283106 | 0.936582
lowRMSE | 0.087648 | 0.088393 | 0.086873
highRMSE 4.2852 4.49292 4.16042
midRMSE | 0.354458 | 0.364921 | 0.368124
NSE 0.706809 | 0.670636 | 0.682998
KGE 0.703137 | 0.66566 | 0.686912
RMSE 1.35541 1.41185 1.37942
SHBV PBIAS 1.49234 | -2.43395 | 0.291966
lowRMSE | 0.0798196 | 0.0808967 | 0.0846775
highRMSE | 4.21648 4.49582 4.18003
midRMSE | 0.335159 | 0.351271 | 0.356903
LSTM+6HBV NSE 0.74227 | 0.723778 | 0.72202
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802
803
804

KGE 0.715931 | 0.690154 | 0.707292
RMSE 1.24887 1.278 1.26697
PBIAS 1.27863 | -0.599778 | 0.903464

lowRMSE | 0.0816748 [ 0.0795686 | 0.0825691
highRMSE | 4.08432 4.23483 3.94929
midRMSE | 0.327459 | 0.33851 [ 0.347169

56



805
806
807

Table D2 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low
(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the

PUB test. The values are the mean of three simulations run with different random seeds.

PUB Number Daymet+NLDAS | Daymet+Maurer | NLDAS+Maurer All

NSE 0.757853 0.749151 0.753136 0.768181
KGE 0.713319 0.720099 0.716497 0.727143

RMSE 1.18251 1.22254 1.19718 1.15026
LSTM PBIAS 0.320396 0.931656 0.766216 0.970047
lowRMSE 0.0875191 0.0864129 0.0835341 0.0874717

highRMSE 4.1296 4.06602 4.17217 4.0061
midRMSE 0.334683 0.349856 0.342819 0.333534
NSE 0.748916 0.734052 0.733955 0.757749
KGE 0.699768 0.714323 0.69436 0.714048

RMSE 1.26852 1.27637 1.27244 1.23229
SHBV PBIAS 0.0446112 1.212 -1.04135 0.201809
lowRMSE 0.0808293 0.0792486 0.0814476 0.0808359

highRMSE 4.19575 3.97788 421623 4.07419

midRMSE 0.311826 0.33668 0.339257 0.318165
LSTM+6HBV NSE 0.780625 0.764866 0.767761 0.785833
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808
809

KGE 0.719781 0.725373 0.715982 0.723972

RMSE 1.14924 1.17659 1.16881 1.13591

PBIAS 0.186062 0.881644 0.405548 0.565489
lowRMSE 0.0805946 0.0814251 0.0817114 0.0826379
highRMSE 3.97373 3.86834 3.88 3.91692
midRMSE 0.313708 0.324777 0.324089 0.323671

58




810
811
812

Table D3. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high
(highRMSE), and middle (midRMSE) flows based on 531 basins under the PUR test. The values

are the mean of three simulations run with different random seeds.

PUR Number Daymet NLDAS Maurer
NSE 0.578365 | 0.546217 | 0.56164

KGE 0.557788 | 0.559986 | 0.567231

RMSE 1.59111 1.63626 1.5833
LSTM PBIAS -0.575328 | -2.77709 | -0.623183
lowRMSE | 0.124837 | 0.118971 | 0.118695

highRMSE | 5.42346 5.38886 5.05212
midRMSE | 0.498133 | 0.498442 [ 0.471744

NSE 0.622278 | 0.592306 | 0.59161
KGE 0.638818 | 0.601338 | 0.620877

RMSE 1.57189 1.61191 1.63628

SHBV PBIAS 1.27223 -1.60075 1.62709
lowRMSE | 0.10142 | 0.102975 | 0.101075

highRMSE | 5.07706 5.16093 4.99602
midRMSE | 0.447879 | 0.474516 | 0.439697
LSTM+6HBV NSE 0.644398 | 0.618255 | 0.635444
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814

KGE 0.627481 | 0.605237 | 0.615883
RMSE 1.46185 1.5153 1.48393
PBIAS -0.269697 | -0.719505 | 0.197859

lowRMSE | 0.105146 | 0.100944 | 0.106272
highRMSE | 4.95749 4.99478 4.78638
midRMSE | 0.431456 0.4575 0.426126
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815
816
817

Table D3 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low
(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the

PUR test. The values are the mean of three simulations run with different random seeds.

PUR Number Daymet+NLDAS | Daymet+Maurer | NLDAS+Maurer All

NSE 0.634398 0.636369 0.626939 0.656228

KGE 0.59844 0.600371 0.605007 0.612858

RMSE 1.4434 1.43416 1.43009 1.38042
LSTM PBIAS -0.547128 -0.687947 -0.865748 -0.543918
lowRMSE 0.118989 0.120228 0.115004 0.117728

highRMSE 5.03277 5.02434 4.84415 4.74281

midRMSE 0.462923 0.455257 0.453912 0.449598
NSE 0.672839 0.644732 0.661231 0.684685

KGE 0.653841 0.65646 0.6515 0.66205

RMSE 1.43224 1.50803 1.48604 1.43376

SHBV PBIAS 0.564363 1.55134 -0.156553 0.956961
lowRMSE 0.0975783 0.0984076 0.100773 0.100807

highRMSE 4.83843 4.81176 4.72529 4.71255
midRMSE 0.447828 0.431252 0.433688 0.432018
LSTM+6HBV NSE 0.685032 0.680872 0.679321 0.700814
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818
819

KGE 0.638788 0.647826 0.646782 0.649999

RMSE 1.35303 1.3873 1.36795 1.3185

PBIAS -0.0150729 0.406127 -0.135091 -0.0232668
lowRMSE 0.103284 0.101814 0.104528 0.102916
highRMSE 4.80178 4.72583 4.70024 4.70713
midRMSE 0.426819 0.411727 0.41573 0.41081
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820
821
822
823

Table D4. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high
(highRMSE), and middle (midRMSE) flows based on 531 basins under the temporal, PUB, and
PUR tests of LSTM™ultt (LSTM + §HBV)123 + LSTM™HEE  their “seed” version, and
(LSTM + SHBV)123,.

Test Metric LST Mmuiti (LSTM + SHEV)™ )
+ LSTMmut
NSE 0.797448 0.82321
KGE 0.811064 0.810248
RMSE 1.05987 0.983168
Temporal PBIAS 3.95241 4.0859%4
lowRMSE | 0.056221 0.05702
highRMSE 2.7089 2.58881
midRMSE | 0.183526 0.192442
NSE 0.750605 0.782727
KGE 0.71469 0.734731
RMSE 1.20586 1.11509
PUB PBIAS 0.475674 0.706777
lowRMSE | 0.0861127 0.0836
highRMSE | 4.13615 3.83009
midRMSE | 0.347562 0.326814
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824

PUR

NSE 0.623755 0.68923
KGE 0.593757 0.633971
RMSE 1.47379 1.31221
PBIAS -2.6737 -1.38119
lowRMSE | 0.112434 0.107646
highRMSE | 4.98202 4.59232
midRMSE | 0.501807 0.436811
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825
826
827
828

Table D4 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low
(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the
temporal, PUB, and PUR tests of LSTM™* (LSTM + SHBV)'?% + LSTM™ | their “seed”
version, and (LSTM + 6HBV)123,.

(LSTM + SHBV)!23,

Test Metric (LSTM + SHBV)!23, | LSTMTLE p——
NSE 0.821444 0.81992 0.829385
KGE 0.795317 0.82078 0.812581
RMSE 0.99455 1.00908 0.967779
Temporal PBIAS 3.99009 4.09469 4.08832
lowRMSE 0.059782 0.057346 0.057015
highRMSE 2.7279 2.62815 258384
midRMSE 0.209943 0.183656 0.195557
NSE 0.793673 0.781175 0.790921
KGE 0.726188 0.736191 0.739284
RMSE 1.12957 1.13079 1.09176
PUB PBIAS 0.370674 1.13671 0.869057
lowRMSE 0.083423 0.084038 0.085728
highRMSE 3.89363 3.93473 3.79505
midRMSE 0.323045 0.329772 0.325627
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829

PUR

NSE 0.705154 0.665723 0.701504
KGE 0.651538 0.614649 0.64373
RMSE 1.30377 1.3727 1.2851
PBIAS -0.283645 -2.74069 -1.39149
lowRMSE 0.100525 0.111229 0.108121
highRMSE 4.74889 4.88127 4.58344
midRMSE 0.406797 0.473783 0.432447
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830
831
832
833
834

835

Table D5. Median NSE values based on ten different random seeds during the temporal test.

Each number (1 through 10) represents metric values calculated for an individual simulation

based on only one random seed. “Seed” indicates metric values calculated by averages of these

ten simulations based on different random seeds, while “mean” denotes the average of metrics

from 1-10 individual simulations (visualized in Figure CI).

Number | LSTM™wti | (LSTM + SHBV)23 | (LSTM + SHBV)123 + LSTM™ti
1 0.797742 | 0.818436 0.82315
2 0.795312 | 0.820188 0.823559
3 0.799291 | 0.818097 0.822922
4 0.796388 | 0.818251 0.821791
5 0.791192 | 0.818285 0.820132
6 0.795691 | 0.81966 0.823268
7 0.795912 | 0.821511 0.82352
8 0.796625 | 0.81831 0.825204
9 0.794062 | 0.804959 0.816497
10 0.796066 | 0.817122 0.82169
Seed 0.82425 | 0.822528 0.832197
Mean | 0.795828 | 0.817482 0.822173
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836  Appendix E: Intuitive visualization of the relative contributions of ensemble members

837  based on optimized weights
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839  Figure El. Weights of six components across 531 basins, estimated basin-by-basin using a
840  genetic algorithm based on streamflow observations during the test periods. The weights are
841  normalized by the maximum weight within each ensemble group. These weights are used
842 exclusively for qualitatively analyzing the relative contributions of different ensemble members,
843 with higher values indicating larger relative contributions.
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Figure E2. Spatial distributions of weights of the LSTM and dHBV models, estimated by a
genetic algorithm based on streamflow observations during the test periods. The weights are
normalized by the maximum weight within each ensemble group. These weights are used
exclusively for qualitatively analyzing the relative contributions of different ensemble members,

with higher values indicating larger relative contributions.
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Figure E3. Spatial distributions of weights of the Daymet, NLDAS, and Maurer meteorological
forcing datasets, estimated by a genetic algorithm based on streamflow observations during
the test periods. The weights are normalized by the maximum weight within each ensemble
group. These weights are used exclusively for qualitatively analyzing the relative contributions

of different ensemble members, with higher values indicating larger relative contributions.
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862  Table El. Comparisons of metric values between averaged ensemble simulations and
863  optimized weighted simulations, estimated using a genetic algorithm based on streamflow
864  observations during the test periods. The results highlight the potential for further

865  improvements in ensemble simulations.

866

Temporal Averaged Optimized weighted
INSE 0.821444 0.844303212
KGE 0.795317 0.829996445
RMSE 0.99455 0.920954559

Temporal [PBIAS 3.99009 3.252278013
lowRMSE 0.059782 0.057137161
highRMSE 2.7279 2.451194907
midRMSE 0.209943 0.183127162
INSE 0.793673 0.842396015
KGE 0.726188 0.79571295
RMSE 1.12957 0.987170488

PUB PBIAS 0.370674 1.023040859
lowRMSE 0.0834234 0.079807878
highRMSE 3.89363 3.030715903
midRMSE 0.323045 0.285110115
INSE 0.705154 0.790796063

PUR KGE 0.651538 0.746396324
RMSE 1.30377 1.13058149




867
868

PBIAS -0.283645 0.273698787
lowRMSE 0.100525 0.093595304
highRMSE 4.74889 3.665495069
midRMSE 0.406797 0.351694421
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Code and data availability
The source codes and datasets utilized in this study are publicly accessible through the
following repositories: The SHBV modeling framework, including all computational scripts

and documentation, is hosted on Zenodo (https://doi.org/10.5281/zenodo.7091334) (Fengetal;

2023a)(Feng et al., 2023a), with an updated version and comprehensive software release

scheduled upon manuscript acceptance. The implementation of the LSTM architecture is

accessible through Zenodo (https://doi.org/10.5281/zen0do.6326394) Kratzert—et—als

2022)(Kratzert et al., 2022). The CAMELS hydrometeorological dataset, which provides the

foundational basin characteristics and time series data used in our analysis, can be obtained via

https://dx.doi.org/10.5065/D6MW2F4D (Adderetal; 2047 Newman-and Clark,2044)(Addor

etal.,2017; Newman and Clark, 2014). The streamflow simulations produced in this study will

be made available on Zenodo upon acceptance of the manuscript.
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