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Abstract 10 

Streamflow simulations viaproduced by different hydrological models have different 11 

featuresexhibit distinct characteristics and can provide valuable information after beingwhen 12 

ensembled. WhileHowever, few studies have focused on ensembling simulations viafrom 13 

models with significant structural differences and evaluating them under both temporal and 14 

spatial tests. Here we systematically evaluated and utilized the simulations from two highly 15 

different models with great performances: a purely data-driven long short-term memory 16 

(LSTM) network and a physics-informed machine learning (“differentiable”) HBV 17 

(Hydrologiska Byråns VattenavdelningVattenbalansavdelning) model (δHBV). To effectively 18 

display the features of the two models, multiple forcing datasets are employed and utilized in 19 

two ways.. The results show that the simulations of LSTM and δHBV have distinct features 20 

and complement each other well, leading to better Nash-Sutcliffe model efficiency coefficients 21 

(NSE) and improved high-flow and low-flow metrics across all spatiotemporal tests, compared 22 

to within-class ensembles. Ensembling models trained on a single forcing outperformed a 23 

single model using fused forcings, challenging the paradigm of feeding all available data into 24 

a single data-driven model. Most notably, δHBV significantly enhanced spatial interpolation 25 
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when incorporated into LSTM, and provided even more prominent benefits for spatial 26 

extrapolation where the LSTM-only ensembles degraded significantly, attesting to the value of 27 

the structural constraints in δHBV. These advances set new benchmark records on the well-28 

known CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) 29 

hydrological dataset, reaching median NSE values of ~0.83 for the temporal test (densely 30 

trained scenario), ~0.79 for the ungauged basin test (PUB, Prediction in Ungauged Basins), 31 

and ~0.70 for the ungauged region test (PUR, Prediction in Ungauged Regions). This study 32 

advances our understanding of how various model types, each with distinct mechanisms, can 33 

be effectively leveraged alongside multi-source datasets across diverse scenarios.  34 
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 35 

Highlights 36 

● Combining LSTM and δHBV with diverse forcings sets new accuracy benchmarks 37 

● Ensembling models with one forcing outperforms merging forcings as an input 38 

● δHBV and LSTM together always increase NSEs, especially spatial generalization 39 

● δHBV provides valuable spatial constraints in the deterministic ensemble simulations 40 

● δHBV and LSTM have different error characteristics that can be offset in an ensemble 41 

 42 

Keywords 43 

Streamflow simulation, differentiable model, deep learning, hybrid modeling, multi-source 44 

fusion 45 

 46 

1. Introduction 47 

Streamflow, a critical component of the global hydrosphere, profoundly influences both 48 

human society and natural ecosystems (Lins and Slack, 1999). Accurate simulation and 49 

prediction of streamflow yield numerous benefits, including improved flood prevention 50 

strategies (Brunner et al., 2021). Hydrological models serve as indispensable tools for 51 

achieving this objective and can be traditionally categorized into two types: data-driven models 52 

(Feng et al., 2020; Kratzert et al., 2018; Liu et al., 2024; Nearing et al., 2024)(Feng et al., 2020; 53 

Kratzert et al., 2018; Liu et al., 2024; Nearing et al., 2024) and process-based (or physically-54 

based) models (Newman et al., 2017; Paul et al., 2021). Data-driven models, exemplified by 55 

long short-term memory (LSTM) (Feng et al., 2020; Kratzert et al., 2018) and transformer (Liu 56 

et al., 2024) networks, excel in learning patterns from multi-source data (Li et al., 2023b, 2024; 57 

Liu et al., 2022; Nearing et al., 2024)(Li et al., 2023b, 2024; Liu et al., 2022; Nearing et al., 58 

2024) and generally achieve high performance. However, they often lack interpretability and 59 
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may not resolve extreme values very well (Li et al., 2020a; Song et al., 2025).(Li et al., 2020a; 60 

Song et al., 2025b). Conversely, process-based models, derived deductively from physical laws 61 

or conceptualized views of natural systems, offer insights into internal hydrological processes 62 

but may exhibit weaker performance due to structural inadequacies (Li et al., 2020a; Zhang et 63 

al., 2019).  64 

To combine the benefits and counteract the weaknesses of these two kinds of models, 65 

many efforts have been made to incorporate physical constraints and structures into data-driven 66 

models to align with fundamental physical principles, such as mass and water balances (Bandai 67 

and Ghezzehei, 2021; Wang et al., 2020; Xie et al., 2021). The most seamless integration uses 68 

neural networks to provide parameterizations or missing process representations for process-69 

based models (Aboelyazeed et al., 2023; Bindas et al., 2024; Feng et al., 2022; Jiang et al., 70 

2020; Kraft et al., 2022; Rahmani et al., 2023; Song et al., 2024b; Tsai et al., 2021). These 71 

differentiable models (Shen et al., 2023) connect (flexible amounts of) prior physical 72 

knowledge to neural networks, and have displayed many advantages, including improved 73 

computational efficiency and prediction of untrained variables (Tsai et al., 2021), spatial 74 

generalization (Feng et al., 2023b), and representation of extremes (Song et al., 2025).(Song et 75 

al., 2025b). However, it is also unclear whether current differentiable models, e.g., δHBV, the 76 

Hydrologiska Byråns Vattenbalansavdelning (HBV) model implemented within a 77 

differentiable framework  (Feng et al., 2023b; Shen et al., 2023; Song et al., 2025)(Feng et al., 78 

2023b; Shen et al., 2023; Song et al., 2025b), have unique bias characteristics that are 79 

associated with the process-based parts of their structures that cannot be reduced once the 80 

equations are prescribed. 81 

Orthogonal to such efforts are ensemble simulations (Yu et al., 2024), which combine 82 

many members with different biases and uncertainties to mitigate their respective biases in 83 

deterministic predictions. Many previous studies have tried ensemble methods to improve 84 
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streamflow (Clark et al., 2016; Zounemat-Kermani et al., 2021) based on many factors, like 85 

initial conditions (e.g., initial weights and biases in LSTM (Kratzert et al., 2018)), data used 86 

for parameterization (Feng et al., 2021), and objective functions (Lin et al., 2024). These 87 

studies generally use one model to generate the differences among the ensemble members. 88 

Furthermore, some studies (Dion et al., 2021; Solanki et al., 2025) have utilized simulations 89 

from multiple different models but are limited to process-based models and resulted, resulting 90 

in ensemble simulations that are better than each individual member. Thus far, however, most 91 

studies focushave focused on the simulations from only similar models or model types, and 92 

little work has tested an ensemble across the boundary of model types, especiallyparticularly 93 

between data-driven, process-based, and hybrid models, especially on a large number of 94 

samples. Presumably, if each model has its own unique bias, data-driven and process-based 95 

models are likely to exhibit greater differences due to their inherently distinct characteristics. 96 

It remains unclear whether ensembling across model types should bring benefits to 97 

deterministic predictions. Furthermore, grounded in the process-based model, the differentiable 98 

process-based hydrological model, such as δHBV, significantly enhances performance 99 

compared to traditional process-based models, while on the other hand introducing greater 100 

uncertainty regarding its potential benefits when ensembled. Moreover, previous studies have 101 

primarily focused on evaluating ensemble simulations for temporal predictions. However, 102 

streamflow simulation under spatial extrapolation scenarios presents greater challenges, and 103 

findings from temporal tests may not be directly applicable in this context. 104 

It is known that the performance of any type of hydrologic model heavily depends on the 105 

quality of input data, particularly meteorological forcing data (Bell and Moore, 2000; Yao et 106 

al., 2020), and other inputs, like the uncertainties of initial conditions, can be mitigated via 107 

warming up (Yu et al., 2019). While independent forcing datasets excel in certain aspects, they 108 

each carry different error characteristics (Beck et al., 2017; Behnke et al., 2016; Newman et al., 109 
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2019) and accordingly affect the hydrological models in different ways. In order to fully display 110 

the different features between LSTM and δHBV, multiple forcing datasets could be considered. 111 

Given the utilization of multiple forcing datasets, one could choose to use data fusion to 112 

combine them into a single coherent model input (Kratzert et al., 2021; Sawadekar et al., 2025), 113 

or to pass each forcing dataset through a model and then afterwards combine the multiple 114 

outputs in an ensemble. It is not clear which approach is more beneficial. 115 

Considering the knowledge gaps discussed above, we sought to answer several research 116 

questions: 117 

1. Will a cross-model-type ensemble of LSTM and δHBV improve deterministic 118 

streamflow prediction more than a within-class ensemble? 119 

2. Is it better to use multiple forcings in one model or to ensemble multiple models, each 120 

with a different forcing input? 121 

3. Do process-based equations bring unique value to an ensemble, especially in terms of 122 

spatial generalizability? 123 

The remainder of this paper is structured as follows: Sect. 2 outlines the hydrological data 124 

and models used in this study, as well as the experimental design. Results and discussions are 125 

presented in Sect. 3, with conclusions provided in Sect. 4. 126 

 127 

2. MaterialMaterials and Methodsmethods 128 

2.1. The CAMELS hydrologic dataset 129 

The Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) dataset 130 

(Addor et al., 2017) is widely employed for hydrological model evaluation and community 131 

benchmarking. The CAMELS dataset encompasses 671 basins distributed across the 132 

conterminous United States, with basin sizes ranging from 1 to 25,800 km² (median: 335 km²). 133 

This standardized and publicly available dataset serves as a benchmark for evaluating various 134 
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hydrological models, with LSTM models trained on this dataset often serving as a reference 135 

point for comparing other models (Kratzert et al., 2021). CAMELS provides basin-scale data, 136 

including streamflow observations and static basin attributes, as well as forcing datasets from 137 

three independent sources: Daymet (Thornton et al., 1997), North American Land Data 138 

Assimilation System (NLDAS) (Xia et al., 2012), and Maurer (Maurer et al., 2002). Each of 139 

the three meteorological forcing datasets operates at a daily temporal resolution, encompassing 140 

precipitation, temperature, vapor pressure, and surface radiation variables, with daily 141 

temperature extrema of NLDAS and Maurer supplemented from Kratzert et al. (2021). These 142 

three meteorological forcing datasets have methodological distinctions in spatial resolution, 143 

data generation approaches, and temporal processing (Behnke et al., 2016; Kratzert et al., 2021). 144 

Exemplary plots illustrating the differences among the three meteorological forcing datasets 145 

are provided in Appendix B. These features can lead to dataset-specific error characteristics 146 

and make them valuable for displaying the distinct features of different model types. All model 147 

inputs used in this study are detailed in Table C1. 148 

 149 

2.2. Long short-term memory 150 

As one kind of deep learning algorithm, long short-term memory (LSTM) (Hochreiter and 151 

Schmidhuber, 1997) has unique structures like hidden states and gates activated by the tanh 152 

and sigmoid functions (Li et al., 2023a), respectively. These features enable LSTM to excel in 153 

streamflow simulation tasks (Feng et al., 2020; Kratzert et al., 2018; Nearing et al., 2024)(Feng 154 

et al., 2020; Kratzert et al., 2018; Nearing et al., 2024). In the current benchmark framework, 155 

LSTM models are trained using dynamic atmospheric forcings and static basin attributes as 156 

inputs, with streamflow as the target output, making it perform well in both temporal and spatial 157 

tests (Figure 1a). In this work, for cross-group comparability, we used the LSTM model and 158 

its hyperparameters as reported in Kratzert et al. (2021).  159 
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 160 

2.3. Differentiable HBV model (δHBV) 161 

The Hydrologiska Byråns Vattenbalansavdelning (HBV) model is a parsimonious bucket-162 

type hydrologic model that simulates various hydrological variables, including snow water 163 

equivalent, soil water, groundwater storage, evapotranspiration, quick flow, baseflow, and total 164 

streamflow (Aghakouchak and Habib, 2010; Beck et al., 2020; Bergström, 1976, 1992). 165 

Recently demonstrated differentiable HBV (δHBV) model (Feng et al., 2023b; Shen et al., 166 

2023; Song et al., 2024b) incorporates deep neural networks for both regionalized 167 

parameterization and missing process representations within a differentiable programming 168 

framework that supports “end-to-end” training (Figure 1b). This innovation enables δHBV to 169 

effectively learn from data while obeying physical laws, resulting in high-level performance 170 

for streamflow simulations. From the perspective of process-based modeling, LSTM is a 171 

regionalized parameter provider that leverages the autocorrelated nature of its inputs to impose 172 

an implicit spatial constraint on the generated parameters.  173 

In this study, we used δHBV1.1p (Song et al., 2024b, 2025) which is an updated version 174 

from δHBV1.0 In this study, we used δHBV1.1p (Song et al., 2024b, 2025b), which is an 175 

updated version of δHBV1.0 (Feng et al., 2022, 2023b). The main improvement is the addition 176 

of a capillary rise module, which enhances the characterization of low flows. Other 177 

modifications include the use of three dynamic parameters during the warm-up, training, and 178 

test periods, the removal of log-transform normalization for precipitation, and the adoption of 179 

NSE as the loss function for model training. The basic equations in δHBV are as follows:  180 

. The main improvement is the addition of a capillary rise module, which enhances the 181 

characterization of low flows. Other modifications include three modifications to address high-182 

flow simulation challenges: the use of three dynamic parameters (γ, β, 𝑘଴) (Song et al., 2025b); 183 

the removal of log-transform normalization for precipitation; and the adoption of the 184 
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normalized squared-error loss function (Frame et al., 2022; Kratzert et al., 2021; Song et al., 185 

2025a, b; Wilbrand et al., 2023). We also maintain dynamic parameters during warm-up 186 

periods. Although this provides only marginal benefits and increases computational costs, it 187 

yields a more realistic representation and reduces uncertainties associated with initial 188 

conditions. The basic equations in δHBV are as follows: 189 

 𝜃 = 𝐿𝑆𝑇𝑀௪(𝑥, 𝐴௔௧௧௥)   (1) 

 𝑄 = 𝐻𝐵𝑉(𝑥, 𝜃)   (2) 

 𝑊௢௣௧ = 𝑎𝑟𝑔𝑚𝑖𝑛௪(𝐿(𝑄, 𝑄∗)) (3) 

where θ are the dynamic or static physical parameters, w denotes the weights and biases of 190 

LSTM, x includes the basin-averaged meteorological forcings, such as precipitation, mean 191 

temperature, and potential evapotranspiration, with 𝑥 representing their normalized versions. 192 

Similarly, 𝐴௔௧௧௥  consists of normalized observable basin-averaged attributes, encompassing 193 

basin area, topography, climate, soil texture, land cover, and geology (Table C1). Precipitation 194 

and mean temperature are from CAMELS, while potential evapotranspiration is calculated 195 

based on the Hargreaves (1994) method using mean, maximum, and minimum temperatures 196 

along with basin latitudes, all from data described in sect. 2.1. Q and 𝑄∗ are the streamflow 197 

simulations (model outputs) and observations (as provided in CAMELS), respectively. HBV 198 

is implemented on PyTorch so it is programmatically differentiable: all steps store information 199 

related to gradient calculations during backpropagation, allowing this model to be trained 200 

together with neural networks in an end-to-end fashion. More details about differentiable HBV 201 

can be found in previous studies (Feng et al., 2022; Song et al., 2024b). The details of some 202 

particularly relevant HBV processes are described in Appendix A. 203 

 204 

2.4. Experimental Designdesign 205 
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In this study, we trained the two models in highlyof very different types (LSTM and δHBV) 206 

using), each with one of three meteorological forcing datasets (Daymet, NLDAS, and Maurer), 207 

resulting in six corresponding streamflow simulations (Figure 1c) for each different test 208 

scenario (see sect. 2.5 for additional information). The training processes of LSTM and δHBV 209 

followed Kratzert et al. (2021) and Feng et al. (2023b), respectively. Test results and 210 

performance metrics for all models are reported for the 531-basin subset that excludes those 211 

with areas larger than 2,000 km² or with more than a 10% discrepancy between different basin 212 

area calculation methods (Newman et al., 2017).  213 

To generate ensembles, we tested various weighting strategies and ultimately employed 214 

averaging to combine the six single-forcing, single-model-type simulations, as it yielded the 215 

best performance. To better describe various combinations including cross-model ensembles, 216 

these simulations were categorized into six groups (Table 1). A shorthand notation is used 217 

throughout the remainder of this work to describe the forcing datasets and ensembles. Daymet, 218 

NLDAS, and Maurer are abbreviated as superscripts 1, 2, and 3, respectively. The + symbol is 219 

used to group model types being ensembled, while superscript clustering (e.g., 12  or 123) is used 220 

to group the meteorological forcing types being ensembled, with parentheses indicating that 221 

the superscripts apply to all model types within. For example, (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)ଵଶଷ could be 222 

explicitly written as 𝐿𝑆𝑇𝑀ଵ + 𝐿𝑆𝑇𝑀ଶ + 𝐿𝑆𝑇𝑀ଷ + 𝛿𝐻𝐵𝑉ଵ + 𝛿𝐻𝐵𝑉ଶ + 𝛿𝐻𝐵𝑉ଷ. To compare 223 

two different strategies to utilize the multiple meteorological forcing datasets and to benchmark 224 

against the previously highest performance, we additionally trained a single LSTM model using 225 

all three forcing datasets as simultaneous inputs as done by Kratzert et al. (2021),  referred to 226 

as LSTMmulti (the last row in Table 1).  227 

  228 
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 230 

Figure 1. (a) The LSTM structure, (b) the 𝛿HBV structure, and (c) the framework to generate 231 

the six individual ensemble members of the streamflow simulations, in which different colors 232 

of arrow lines denote the different meteorological forcing datasets (also denoted as 1, 2, 3) 233 

and the arrow line styles (solid and dashed lines) indicate the LSTM and 𝛿HBV models,), 234 

respectively. 235 
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Table 1. (a) The six groups of streamflow simulations, and (b) the streamflow simulation via 236 

LSTM based on a different strategy to utilize, in which three meteorological forcing datasets 237 

were combined as a single set of inputs (Kratzert et al., 2021). Superscripts 1, 2, and 3 denote 238 

Daymet, NLDAS, and Maurer, respectively. The ensemble across forcings (“ef”) superscript 239 

indicates an ensemble of model simulations, each of which uses a different single 240 

meteorological forcing, e.g., LSTM12 means the average of LSTM1 and LSTM2. 241 

(a) Six Groups of Streamflow Simulations 

Group Name Group Members 

LSTM LSTM1, LSTM2, LSTM3 

δHBV δHBV1, δHBV2, δHBV3 

LSTM+δHBV (LSTM+δHBV)1, (LSTM+δHBV)2, (LSTM+δHBV)3 

LSTMef LSTM12, LSTM13, LSTM23, LSTM123 

δHBVef δHBV12, δHBV13, δHBV23, δHBV123, 

(LSTM+δHBV)ef (LSTM+δHBV)12, (LSTM+δHBV)13, (LSTM+δHBV)23, 

(LSTM+δHBV)123 

(b) Using forcing datasets as simultaneous inputs to an LSTM 

Streamflow 
Simulation 

Model Type Meteorological Forcing Dataset 

LSTMmulti LSTM Daymet, NLDAS, Maurer 

 242 

  243 
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2.5. Evaluation Scenariosscenarios and Criteriacriteria 244 

The above cases were comprehensively evaluated for performance in temporal 245 

extrapolation (Feng et al., 2022; Kratzert et al., 2018), as well as two types of spatial 246 

generalization: prediction in ungauged basins (PUB) (Feng et al., 2023b; Kratzert et al., 2019), 247 

and prediction in ungauged regions (PUR) (Feng et al., 2021, 2023b): 248 

● Temporal Test: Models were trained using data from all basins and tested across 249 

different periods. 250 

● PUB Test: Models were trained on randomly selected subsets from all basins and 251 

tested on the remaining basins during the same time period. 252 

● PUR Test: Different from the PUB test, basins were grouped into continuous regions, 253 

one of which was selected to comprise the group of testing basins while the others 254 

were used for training. 255 

Temporal generalization is generally considered to be the easiest of these tests. In terms 256 

of spatial generalization, which approximates data-sparse scenarios, the PUB test is an example 257 

of spatial interpolation, whereas the PUR test involves spatial extrapolation. The PUR test is 258 

widely regarded as the most challenging and may therefore produce findings that differ 259 

significantly from those in other scenarios. In this study, all basins were divided into 10 260 

spatially stratified groups for the PUB test and 7 fully disjoint regional groups for the PUR test 261 

(Table 2) in the same way as Feng et al. (2023b). The spatial extent of the 7 regions for the 262 

PUR test is also shown in Figure 3(c1-c2).  Therefore, we conducted 10 rounds for the PUB 263 

test and 7 rounds for the PUR test, with a different group held out for testing in each round. 264 

Model performance was evaluated after concatenating the test results for all basins. 265 

  266 
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Table 2. Differences of temporal, PUB, and PUR tests. 267 

Test 

Scenario 

Training Testing 

Basin Time Basin Time 

Temporal Alla 1980-1995b All 1995-2010 

PUB Random nine-tenths 1980-1999 Holdoutc 1995-1999 

PUR Random six of seven regions 1980-1999 Holdout 1995-1999 

aδHBV training followed Feng et al. (2023b) using all 671 CAMELS basins, while LSTM 268 

training followed Kratzert et al (2021) using the selected 531-basin subset. Test results and 269 

performance metrics for all models are reported for the 531 basins. 270 
bEach hydrological year spans from October 1st to September 30th of the following year. 271 
cIn the PUB and PUR tests, models are run for 10 and 7 rounds, respectively, with the group 272 

held out for testing changed in each round. The simulation performance was evaluated after 273 

concatenating the test results for all basins. 274 

 275 

We repeated all the simulations with three different random seeds. Therefore, all the 276 

simulations come from a total of (2×3+1)×(1+10+7)×3 trained models. The first factor 277 

represents the models: two model types (LSTM and δHBV) trained separately with each of the 278 

three forcing datasets, along with 𝐿𝑆𝑇𝑀௠௨௟௧௜, a single model instance trained using all three 279 

forcing datasets simultaneously. The second factor accounts for the three types of tests 280 

(temporal, PUB, and PUR tests), and the last for the three random seeds. With respect to 281 

random seeds, we present two variations in the results, which are visually depicted in Figure 282 

C1. The results without “seed” as a subscript represent the average metric values from multiple 283 

streamflow simulations, each generated from a single model implementation, along with the 284 

corresponding uncertainties, visualized using error bars. The results marked with “seed” as a 285 

subscript are based on the average of multiple streamflow simulations conducted with different 286 

random seeds. In terms of computational cost, training LSTM (30 epochs) and δHBV (50 287 

epochs) for temporal testing under a single meteorological forcing dataset takes approximately 288 
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5 and 21 hours, respectively, using a single NVIDIA Tesla V100 GPU. 289 

We calculated several well-established performance metrics: Nash-Sutcliffe model 290 

efficiency coefficient (NSE) (Nash and Sutcliffe, 1970), Kling-Gupta model efficiency 291 

coefficient (KGE) (Kling et al., 2012), percent bias (PBIAS), and root-mean-square error 292 

(RMSE). We also considered RMSE values for high (top 2% “peak” flow, highRMSE), low 293 

(bottom 30% “low” flow, lowRMSE), and mid-range (the remaining flow, midRMSE) flow 294 

conditions (Yilmaz et al., 2008). These metrics were computed for each basin and aggregated 295 

into error bars and cumulative density functions (CDFs). Detailed descriptions of these metrics 296 

and their calculations are available in Table C2. For brevity, the main text primarily reports 297 

NSE values, and other metric values are provided in Appendixes D and E. For brevity, the main 298 

text primarily reports NSE values, and other metric values are provided in Appendices D and 299 

E. Furthermore, we use the spread values (Li et al., 2021; Reichle and Koster, 2003) to 300 

investigate ensemble variability and explore model complementarity. Detailed descriptions of 301 

these metrics and their calculations are available in Table C2. 302 

 303 

3. Results and Discussiondiscussion 304 

3.1. Temporal extrapolation 305 

For the temporal test, in which models were trained and tested on the same basins but in 306 

different time periods, we found that cross-model-type ensembles noticeably surpassed the 307 

within-class ensembles when other conditions were the same, with small uncertainties (as 308 

shown by the error bars in Figure 2).. With a single forcing dataset, the median NSE was 309 

elevated from ~0.735 for LSTM to ~0.79 with δHBV added, though δHBV performance was 310 

similar to LSTM (~0.74 under Daymet). Even after LSTM achieved very high performance 311 

when its simulations, each derived separately from different meteorological forcing datasets, 312 

were ensembled (ef = 123, ~0.808), adding δHBV still improved the results to ~0.818. This 313 
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finding was robust for all different combinations of the tested meteorological forcing datasets. 314 

Conversely, adding LSTM also helped to improve δHBV ensembles. These results highlight 315 

the benefits of the cross-model-type ensemble framework, and indicate distinct simulation 316 

features viafor each model type. LSTM is a data-driven method that has low bias and large 317 

variance. Errors with dataData errors (Li et al., 2020b), different sampling strategies (Nai et al., 318 

2024), or even different weight initializations (Narkhede et al., 2022) can lead to substantively 319 

different outcomes. On the other handConversely, δHBV may have a smaller variance but a 320 

larger bias due to the fixed HBV formulation (Moges et al., 2016) for some scenarios like low 321 

flows (Feng et al., 2023b; Song et al., 2024b) or in basins with significant water uses (Song et 322 

al., 2024a)(Song et al., 2024a). These errors with varying characteristics from different model 323 

classes can partially offset each other in an ensemble. On a side note, δHBV models seem more 324 

reliant on the quality of the forcing data, as shown in Figure 2. δHBV with the Maurer and 325 

NLDAS forcing datasets generally performs worse than it does with Daymet that, which has 326 

lower biases. However, even in those cases, the combination of LSTM and δHBV was still 327 

better than LSTM alone, attesting to the robustness of these benefits.  328 

 329 

 330 
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 332 

Figure 2. Median NSE values for 531 CAMELS basins, indicating model and ensemble 333 

performances for (a) temporal, (b) prediction in ungauged basin (PUB), and (c) prediction in 334 

ungauged region (PUR) tests. Different simulations are represented by variously-shaped and 335 

-colored points, and are organized by ensemble group, listed along the x-axis: LSTM, 336 

𝛿𝐻𝐵𝑉δHBV, LSTM+δHBV, and their “ensemble forcing” counterparts, 𝐿𝑆𝑇𝑀௘௙, 𝛿𝐻𝐵𝑉௘௙, 337 

and (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)௘௙ . 𝐿𝑆𝑇𝑀௠௨௟௧௜  is a single LSTM model trained directly on all three 338 

forcing datasets at once. The superscript “ef” denotes the forcing datasets involved in each 339 

ensemble (choices of 1 for Daymet, 2 for NLDAS, and 3 for Maurer), while the “+” connects 340 

the model types used within an ensemble. The x-axis group and subscript “seed” indicate that 341 

simulation results were averaged based on three different random seeds (see Figure C1). Other 342 

points without “seed”, along with their corresponding error bars, are derived from the 343 

averages of metrics computed over repeated runs with three different random seeds. The error 344 

bar indicates one standard deviation above and below the average value for each simulation. 345 

 346 
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 347 

 348 

Figure 3. Scatter plots comparing the performance differences between hydrological models 349 

for the basins where LSTM outperformed δHBV (the basins where δHBV outperformed are not 350 

shown in this plot). The x-axis represents the NSE differences between 𝐿𝑆𝑇𝑀ଵ and 𝛿𝐻𝐵𝑉ଵ 351 

(𝐿𝑆𝑇𝑀ଵ - 𝛿𝐻𝐵𝑉ଵ), while the y-axis shows the NSE differences between 𝛿𝐻𝐵𝑉ଵଶଷ and 𝛿𝐻𝐵𝑉ଵ 352 

(𝛿𝐻𝐵𝑉ଵଶଷ- 𝛿𝐻𝐵𝑉ଵ). Points are color-coded according to the NSE values of 𝛿𝐻𝐵𝑉ଵ. The 353 

correlation coefficient (CORR) and p values between the x-axis values and the y-axis values, 354 

along with the median NSE value of 𝛿𝐻𝐵𝑉ଵ (𝑁𝑆𝐸௠௘ௗ ) on these basins, are also noted. We 355 

note that NSE is not additive and should in generalgenerally not be subtracted. Here the 356 

purpose is only to confirm that basins where LSTM outperforms δHBV also tend to be those 357 

that benefit from the ensemble of forcings.  358 

 359 

In the lower-performing basins where LSTM1 had advantages over δHBV1, the ensemble 360 

of meteorological forcings δHBV123 also tended to be higher than δHBV1 (Figure 3), 361 

suggesting that forcing quality was a significant reason behind the underperformance of δHBV1 362 

in these basins. Similar patterns were also observed when analyzing RMSEδHBV2 and δHBV3 363 



 

21 

Formatted: Header

values (Figure D1 and Figure D2). These basins previously contributed to LSTM’s cumulative 364 

distribution function of NSE diverging from that of δHBV1 at the low end (Feng et al., 2022). 365 

Forcing errors can exist in the form of systematic timing errors, low or high bias for larger 366 

events, etc., which can be difficult for the mass-balanced conceptual HBV1 structure to adapt 367 

to these errors. Because the ensemble of forcings tends to suppress the errors in each forcing 368 

source, part of the advantages of δHBV123 over δHBV1 can be attributed to reducing forcing 369 

bias or timing errors. Since the advantages of LSTM1 over δHBV1 also tend to occur with these 370 

same basins, this also explains how LSTM1 surpasses δHBV1 in some basins with poorer-371 

quality forcings. In contrast to δHBV, LSTM has the innate ability to shift information in time 372 

and moderately adjust the input scale. Moving from temporal validation to PUB to PUR 373 

scenarios, the advantages of diverse forcing datasets appear to diminish, as evidenced by the 374 

decreasing ratio of points above versus below the diagonal line, since the forcing error patterns 375 

remembered by LSTM may not generalize well in space (discussed in more detail in sect. 3.2). 376 

 377 

Ensembling streamflow simulations from different meteorological forcing datasets 378 

demonstrates certain advantages over the previous approach of simultaneously sending 379 

multiple forcings into an MLa data-driven model like LSTM (Kratzert et al., 2021). 380 

Ensembling LSTM simulations each using a single forcing dataset (𝐿𝑆𝑇𝑀ଵଶଷ) resulted in an 381 

NSE value of 0.8082, higher than that of 0.7974 from feeding multiple forcing datasets into a 382 

single LSTM (𝐿𝑆𝑇𝑀௠௨௟௧௜ ). This difference was more pronounced in the cross-model-type 383 

ensemble, after including δHBV, compared to the previous within-class ensemble, and 384 

particularly notable for the spatial generalization tests (to be discussed in more detail in Sect. 385 

3.2), with specific metric values provided in Tables D1-D5. These results indicate that the 386 

trained LSTM in 𝐿𝑆𝑇𝑀௠௨௟௧௜  may be overfitted to the significant redundant information in 387 

these three forcing datasets, and that only LSTM cannot fully exploit the information hidden 388 
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in the multiple forcing datasets. Training separate ensemble members via different nonlinear 389 

hydrological processes, on the other hand, seems to allow different bias features to emerge with 390 

separate forcing datasets, accordingly mitigating them during the subsequent ensembling 391 

process. 392 

 393 

 394 
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 395 

Figure 4. Spatial distributions of NSE values over 531 basins. Subplots are arranged in rows, 396 

indicating (a) temporal, (b) PUB, and (c) PUR test results, and columns, denoting (1) NSE 397 

values from (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)௦௘௘ௗ
ଵଶଷ  and (2) the differences between these NSE values and those 398 

of 𝐿𝑆𝑇𝑀ଵ (models using only forcing 1, Daymet). For 𝐿𝑆𝑇𝑀ଵ, each NSE value reported was 399 

the average of three NSE values from three simulations using three different random seeds. 400 

The seven continuous regions used to divide up basins for the PUR test are outlined and 401 

numbered in the PUR test maps. 402 

 403 

Our most diverse ensemble, (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)௦௘௘ௗ
ଵଶଷ + 𝐿𝑆𝑇𝑀௦௘௘ௗ

௠௨௟௧௜, achieved a median NSE 404 

value of ~0.83, surpassing the ~0.82 benchmark set by 𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜  (Table D4). This 405 

advancement was achieved through random seed variation and cross-model-type ensembling. 406 

The performance of (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)ଵଶଷ ensemble proved more robust than 𝐿𝑆𝑇𝑀௠௨௟௧௜, with 407 

only a slight boost when we incorporated random seeds, i.e., (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)௦௘௘ௗ
ଵଶଷ . Notably, 408 

the derived (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)௦௘௘ௗ
ଵଶଷ  ensemble outperformed 𝐿𝑆𝑇𝑀ଵ  across almost all basins 409 
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(Figure 4). Further incorporation of 𝐿𝑆𝑇𝑀௠௨௟௧௜  into this framework, especially when using 410 

multiple random seeds, (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)௦௘௘ௗ
ଵଶଷ + 𝐿𝑆𝑇𝑀௦௘௘ௗ

௠௨௟௧௜ , yielded the best overall 411 

performance. Here, the margin over the previous benchmark was small in the temporal test. 412 

However, as we will show in sect. 3.2, the previous benchmark, 𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜, lacked robustness, 413 

exhibited greater deficiencies in spatial generalization, and negatively impacted ensemble 414 

simulations.  415 

When we changed the number of random seeds from 3 to 10, we found that although all 416 

model and ensemble performances slightly increased,  the gaps between them did not change 417 

much (Figure 5 and Table D5). In particular, the gap between (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)௦௘௘ௗ
ଵଶଷ +418 

𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜  and (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)௦௘௘ௗ

ଵଶଷ  or 𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜  remained unchanged. This indicates that 419 

the benefits from more random seeds rapidly become marginal, and our results based on 3 420 

random seeds were sufficiently robust. For LSTMs alone, different random seeds displayed 421 

higher variation, and ensembling them led to greater improvement than ensembling 422 

(𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)ଵଶଷ  with additional random seeds. It was noteworthy that while the 423 

(𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)ଵଶଷ  ensemble generally showed the lowest RMSE values, it did not always 424 

show the best high flow performance, as indicated by highRMSE (Tables D1-D4). After 425 

incorporating the 𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜ variant into(𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)௦௘௘ௗ

ଵଶଷ + 𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜ , overall RMSE 426 

and highRMSE both improved. Nevertheless, this ensemble did not always obtain the best 427 

values in other metrics like low flow (lowRMSE) and requires further improvement.  428 

 429 
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 430 

 431 

Figure 5. Cumulative distribution function (CDF) curves based on temporal test results for 432 

𝐿𝑆𝑇𝑀௠௨௟௧௜ , (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)ଵଶଷ, and  [(𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)ଵଶଷ + 𝐿𝑆𝑇𝑀௠௨௟௧௜] . The solid lines 433 

(with “seed”) denote the results with 10 random seeds while the corresponding dashed and 434 
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translucent lines denote the performances of their individual members each based on one 435 

random seed. 436 

 437 

3.2. Spatial generalization 438 

It is clear that cross-model-type ensembling and the incorporation of δHBV significantly 439 

improved prediction in ungauged basins (PUB) or regions (PUR), mitigating the difficulty of 440 

spatial generalization (Figure 2b - 2c). In particular, the previous record-holder for temporal 441 

test performance, 𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜ , incurred large drops in the PUB and PUR tests, once again 442 

reminding us of the limitations of LSTM in spatial generalization. Given the same forcings, 443 

δHBV-only individual simulations or ensembles consistently outperformed LSTM-only 444 

counterparts in the PUR test. Furthermore, adding δHBV to the same-model-type LSTM 445 

ensembles improved median NSE by 0.02-0.03 for PUB. The role of δHBV became even more 446 

prominent in the harder PUR tests, with an increased gap (0.04-0.07), e.g., LSTM123 (median 447 

NSE ~0.656) and (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)ଵଶଷ (median NSE ~0.701). The increased significance of 448 

δHBV is also illustrated by the optimized weights shown in Figure E1. The weights are , which 449 

were estimated viausing a genetic algorithm using thewith streamflow observations duringfrom 450 

the test periods. Here the estimatedThese weights are presented solely used to displayillustrate 451 

the relative contributions of the different ensemble components. The significantly different 452 

spatial distribution patterns of these weights among different test scenarios also indicate the 453 

differences among temporal, PUB, and PUR tests (Figures E2-E3). The performance of 454 

(𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)ଵଶଷ improved compared to 𝐿𝑆𝑇𝑀௠௨௟௧௜  whether or not we employed multiple 455 

random seeds to form an ensemble. As such, we can conclude that the inclusion of a 456 

differentiable process-based model like δHBV in an ensemble is a systematic way to reduce 457 

the risks of failed generalizations of LSTM.  458 

Utilizing a cross-model-type ensemble led to widespread improvements over LSTM-only 459 

ensembles, with the exception of a few scattered basins for each temporal  (Figure 4-a2), PUB 460 
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(Figure 4-b2), and PUR (Figure 4-c2) test. The most significant improvements due to the 461 

ensemble were concentrated on the center of the Great Plains along with the midwestern US, 462 

while the eastern US was moderately improved, suggesting data uncertainty is a larger issue in 463 

the central and midwestern US. The Great Plains have historically had poor performance for 464 

all kinds of models (Mai et al., 2022) and even the ensemble model had NSE values of only 465 

0.3-0.4 for many of the basins there, although this still marked significant improvements over 466 

LSTM1 (Figure 4-a2, -b2, -c2). Some western basin NSE values were elevated by more than 467 

0.15 for the temporal test (Figure 4-a2) and even more for PUB and PUR. Meteorological 468 

stations are generally sparse on the Great Plains, and an ensemble seems to be an effective way 469 

to leverage the different forcing datasets that are available. The poor performances in some 470 

basins highlight some remaining deficiencies in current models, which clearly cannot fully 471 

consider the heterogeneities of different basins; thus, multiscale formulations that resolve such 472 

heterogeneities may have advantages (Song et al., 2024a)(Song et al., 2024a). 473 

To investigate why ensembles outperformed single-model, single-forcing approaches, we 474 

compared their temporal, PUB, and PUR test simulation time series against observations for 475 

531 basins (Figure 6). Analysis of averaged hydrological year data revealed that while 476 

individual ensemble members using single-source forcing datasets performed similarly for 477 

easily simulated periods, they showed significant divergence during challenging periods, 478 

particularly peak flows. This divergence stems from distinct systematic errors inherent to 479 

different model types and forcing datasets. Notably, LSTM-based simulations alone proved 480 

insufficient in generating adequate spread to capture these divergent points. A key finding was 481 

that δHBV exhibited markedly different variation patterns compared to LSTM, and its 482 

inclusion substantially increased the ensemble spread. By averaging individual model outputs 483 

and stabilizing uncertainties, ensemble simulations achieved effective and robust performance 484 

across all conditions, which can be shown via the metric highRMSE and lowRMSE values in 485 
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Tables D1-D4.  This highlights the critical importance of comprehensive training for each 486 

ensemble member, including diverse forcing inputs, full-period model calibration, and rigorous 487 

hyperparameter tuning, to enable the development of ensure that each member develops 488 

distinct characteristics in theirsimulation behaviors. These differences allow the ensemble to 489 

better represent a range of hydrological responses, particularly under extreme or uncertain 490 

conditions. By capturing complementary strengths and compensating for individual 491 

weaknesses, such well-trained ensemble members collectively enhance the robustness and 492 

accuracy of streamflow simulations, ultimately enhancing ensemble performance. 493 

 494 
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 495 
Figure 6. Comparisons between multi-basin-averaged streamflow observations and 496 

simulations across 531 basins. The time series points are displayed at four-day intervals for 497 

clarity and conciseness. Ensemble members based on the same model (LSTM or δHBV) but 498 

driven by different forcing datasets are shown in the same color to highlight the differences 499 

between models more clearly. 500 

 501 

3.3 Ensemble variability and robustness analysis  502 

Although δHBV (median spread 0.61) exhibits lower spreads than LSTM (mean spread 503 

0.72), their combination increases the ensemble spreads, thereby enhancing diversity (Figure 504 

7). This pattern holds across the temporal, PUB, and PUR tests. Ensemble effectiveness 505 

depends on the diversity of model behaviors and their distinct error characteristics. 506 

Consequently, larger spreads contribute to greater ensemble benefits. Figure D3 further 507 

demonstrates that δHBV+LSTM exhibits larger spreads than LSTM in most basins. 508 
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 509 
Figure 7. Spread values (Table C2) of each model for LSTM, δHBV, and LSTM + δHBV due 510 

to different meteorological forcings and random seeds across temporal, PUB, and PUR tests. 511 

 512 

As the warming signal is already clear across most basins under any forcing across the 513 

periods of simulation (Figure D4), the models’ strong performance in the temporal test suggests 514 

decent extrapolation capability under warming scenarios. It is often questioned whether data-515 

driven models like LSTM lose accuracy under stronger climate drift, but no substantially 516 

warmed dataset is available to test this. Benchmarks suggest LSTM captures 15-year trends 517 

well in temporal tests, but less so in data-sparse scenarios (Feng et al., 2023b). Introducing a 518 

10% precipitation perturbation (multiplying precipitation by 1.1) slightly reduced performance 519 

for both models as expected (Figures D5a and D5b), but ensemble benefits remained robust 520 

across models despite the perturbation.  521 

Training sample size, dynamic parameter choices, and lookback windows all have limited 522 

impact on our conclusions. δHBV shows limited sensitivity to sample size, with similar results 523 

when trained on 531 versus 671 basins (Figure D5c). Regarding parameter uncertainties, fixing 524 

one δHBV parameter (𝑘଴) as static increased structural errors and reduced performance (Figure 525 

D5d), yet ensemble benefits remained robust. For LSTM, alternative window sizes of 182 and 526 
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730 days were tested, with the default 365-day window yielding optimal performance (Figure 527 

D5e). Importantly, variations in the lookback window had only minor effects on model 528 

performance, underscoring the robustness of ensemble benefits. 529 

 530 

3.4. Further discussion 531 

Based on our results, we identified several avenues for future research directions. First, 532 

while we have explored various weighting strategies and found that averaging yields the best 533 

performance yet, we believe that dynamic or adaptive weighting schemes could further enhance 534 

performance in future studies. It is also demonstrated by Table E1 that estimated uneven 535 

weights can significantly improve simulation performance. Moreover, within specific basins, 536 

the estimated weights of different components are often highly imbalanced, as evidenced by 537 

the spatial distribution of optimized weights (Figures E2-E3). Some potential feasible ways 538 

include using the simulations from these individual individually-trained models as inputs of a 539 

data-driven model (Solanki et al., 2025), and making the weight estimation and the ensemble 540 

member training simultaneously.  541 

 Both LSTM and δHBV models exhibit limitations in regions with significant 542 

anthropogenic impacts like dam presence, as well as arid climatic and significantly 543 

heterogeneous geological conditions. These regions are mainly located in the midwestern and 544 

western CONUS, where high evaporation conditions (Heidari et al., 2020, Figure 2) and 545 

numerous dams (Ryan Bellmore et al., 2017, Figure 1) coincide with complex water use 546 

processes (Wada et al., 2016, Figure 11) that current models cannot simulate well. Together, 547 

these factors suggest that anthropogenic influence is likely an important driver of poor model 548 

performance. Further improvements may include incorporating additional data that capture 549 

these factors like capacity-to-runoff ratio (Ouyang et al., 2021)(Ouyang et al., 2021) or 550 

integrating specialized modules, such as reservoirs (Hanazaki et al., 2022; West et al., 2025). 551 

Compared with LSTM, δHBV is more sensitive to precipitation biases. For example, the 552 



 

32 

Formatted: Header

differences between δHBV simulations under different forcing datasets were generally larger 553 

than those for LSTM, and δHBV using the Daymet forcing dataset showed largely better 554 

performance than with the other two forcing datasets, which indicates that δHBV may not be 555 

able to fit different forcing datasets well. Therefore, many potential structural optimizations 556 

can be implemented to improve δHBV. Our analysis provided corroborating evidence that 557 

forcing error is an important reason why LSTM can outperform δHBV in the temporal test for 558 

some basins, although such patterns may not generalize well in space. A meteorological forcing 559 

data correction module can be developed in the future to account for timing and magnitude 560 

errors in precipitation. Moreover, ensemble simulations may face challenges when 561 

computational resources are limited and calculations are performed sequentially. However, we 562 

remain optimistic about these challenges, as the processes can be addressed by leveraging 563 

parallel computing with multiple GPUs, benefiting from ongoing advancements in 564 

computational powerEnsemble simulations may face challenges when computational resources 565 

are constrained, particularly for large-scale or real-time applications. Nevertheless, we remain 566 

optimistic about overcoming these challenges due to several promising solutions. These 567 

include tailoring the hydrological model by simplifying less relevant components to specific 568 

simulation objectives (Clark et al., 2015; Kraft et al., 2022) and cloud-based computing 569 

infrastructures that offer scalable, on-demand resource allocation (He et al., 2024; Leube et al., 570 

2013). Importantly, the majority of computational costs are incurred during model training. In 571 

practice, ensemble members are typically pre-trained by different research or application 572 

groups (Bodnar et al., 2025; Nearing et al., 2024; Song et al., 2025a), enabling direct reuse of 573 

these well-trained models and significantly improving computational efficiency. 574 

For this work, we did not create a δHBVmulti model (in the same vein as LSTMmulti) using 575 

all forcings as an input to a single model, since a similar experiment has already been conducted 576 

by Sawadekar et al. (2025). We also did not examine “seed” combinations of a δHBVmulti as 577 
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we believed they would not result in a significant performance boost (unlike that seen with 578 

LSTMmulti), because LSTM has high variability and low bias, while δHBV has lower variance 579 

and potentially higher bias. As a result, random seeds would likely not create large enough 580 

perturbations for δHBV and wouldn’t bring the benefits seen with 𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜. To achieve an 581 

equivalent perturbation level for δHBV, it may be necessary to incorporate multiple distinct 582 

hydrological models, such as SAC-SMA, PRMS, and GR4J, similar to the approach 583 

implemented in the Framework for Understanding Structural Errors (FUSE) (Clark et al., 2008). 584 

Work is ongoing to create a combination of a series of differentiable process-based models, 585 

which is expected to produce a further improved ensemble with great interpretability. Given 586 

the success of cross-model-type ensembles shown in this work, we also encourage further 587 

exploration of ensemble simulations involving models with other distinct mechanisms.  588 

 589 

4. Summary and Conclusionsconclusions 590 

This study comprehensively analyzes ensemble combinations of two advanced model 591 

types (LSTM and δHBV), each with distinct mechanisms, for streamflow simulation across 592 

531 basins in the US. Three meteorological forcing datasets (Daymet, NLDAS, and Maurer) 593 

are employed to fully capture the characteristics of the two models, and their applications in 594 

two different ways are also tested.. Their applications are also tested in two distinct ways: (1) 595 

by feeding all diverse forcing datasets simultaneously into a single LSTM model, and (2) by 596 

ensembling the outputs of multiple LSTM models, each trained separately using a single 597 

forcing dataset. The performance of ensemble simulations was evaluated under three distinct 598 

testing scenarios (temporal, PUB, and PUR tests), surpassing the previous highest 599 

performances. Our findings enhance the understanding of how to effectively utilize diverse 600 

model types and multi-source datasets to improve streamflow simulations. The principal 601 

conclusions are: 602 
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(1) Cross-model-type ensembles (LSTM+δHBV) consistently outperformed single-603 

model approaches across all test scenarios, setting new performance benchmarks on 604 

the CAMELS dataset. These ensembles demonstrated the complementarity of data-605 

driven (LSTM) and physics-informed (δHBV) approaches in capturing diverse 606 

hydrological behaviors. 607 

(2) Ensembling models trained on different forcing datasets proved more effective than 608 

using multiple forcing datasets as simultaneous inputs to a single model. This suggests 609 

that separate training allows each model to capture unique features contained in each 610 

forcing dataset, which can then be effectively leveraged in the ensemble. 611 

(3) δHBV provided significant benefits to ensemble simulations on spatial generalization. 612 

Ensembling LSTM with δHBV showed increasing benefits as generalization 613 

challenges increased, from temporal to spatial interpolation (PUB) to spatial 614 

extrapolation (PUR) tests. This underscores the value of physics-informed constraints 615 

in improving model transferability to ungauged basins and regions. 616 

(4) While ensemble methods significantly improved overall performance, they did not 617 

fully mitigate consistent deficiencies in certain challenging areas (e.g., regions with 618 

high dam density or heterogeneous hydrogeological conditions). This indicates areas 619 

for future model development. 620 

These findings have important implications for hydrological modeling and water 621 

resources management. The improved accuracy and spatial generalization of our ensemble 622 

approach can enhance streamflow predictions, benefiting water resources planning and 623 

management, particularly in data-scarce regions. Our results also suggest that future 624 

hydrological model development should focus on combining data-driven and physics-based 625 

approaches to improve model generalizability across diverse conditions. The superior 626 

performance of ensembling models with different forcing datasets over using merged forcings 627 
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as a single input highlights the risk of indiscriminately feeding all available data into one data-628 

driven model. While computational demands certainly require consideration, the potential 629 

improvements in prediction accuracy offer significant value for both research and operational 630 

applications. Future work should focus on refining these ensemble techniques, addressing 631 

model limitations in challenging regions, and exploring ensemble implementation in 632 

operational settings.  633 
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Code and data availability 634 

The source codes and datasets utilized in this study are publicly accessible through the 635 

following repositories: The δHBV modeling framework, including all computational scripts 636 

and documentation, is hosted on Zenodo (https://doi.org/10.5281/zenodo.7091334) (Feng et al., 637 

2023a), with an updated version and comprehensive software release scheduled upon 638 

manuscript acceptance. The implementation of the LSTM architecture is accessible through 639 

Zenodo (https://doi.org/10.5281/zenodo.6326394) (Kratzert et al., 2022). The CAMELS 640 

hydrometeorological dataset, which provides the foundational basin characteristics and time 641 

series data used in our analysis, can be obtained via https://dx.doi.org/10.5065/D6MW2F4D 642 

(Addor et al., 2017; Newman and Clark, 2014). 643 
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Appendix A: Detailed processes of HBV employed in this study. 902 

The Hydrologiska ByransByråns Vattenbalansavdelning (HBV) model (Aghakouchak 903 

and Habib, 2010; Beck et al., 2020; Bergström, 1976, 1992) is a simple but effective bucket-904 

type hydrologic model that simulates hydrologic variables including snow water equivalent, 905 

soil water, groundwater storage, evapotranspiration, quick flow, baseflow, and total streamflow. 906 

In the following texts, we describe these processes in detail by equations, in which uppercase 907 

letters indicate state variables, and lowercase letters indicate model parameters. In general, the 908 

water balance is developed based on Equation (S1). 909 

𝐸𝑃 − 𝐴𝐸 − 𝑄௧ = 𝑆𝑁 + 𝑆𝑀 + 𝑈𝑅 + 𝐿𝑅 + 𝐿𝐴𝐾𝐸 (S1)

where 𝐸𝑃  is effective precipitation, 𝐴𝐸  is the actual evapotranspiration, 𝑄௧  is the total 910 

simulated runoff, 𝑆𝑁 is snow, 𝑆𝑀 is soil water storage, 𝑈𝑅 is the upper reservoir water level, 911 

𝐿𝑅 is the lower reservoir water level, and 𝐿𝐴𝐾𝐸 is the lake level (omitted in this study). First, 912 

EP is separated into liquid (RN) and solid (SN) components based on the temperature (T) 913 

relative to the threshold temperature (tt) as 914 

𝑅𝑁 = 𝐸𝑃 𝑖𝑓 𝑇 ≥ 𝑡𝑡 (S2)

𝑆𝑁 = 𝐸𝑃 𝑖𝑓 𝑇 < 𝑡𝑡 (S3)

Snow (SN) accumulates in the snowpack (SNP), while the snowmelt (SNM) is calculated using 915 

a temperature-dependent melt rate (cfm). The snowmelt (SNM) is limited to the available 916 

snowpack (SNP), and any excess melt contributes to meltwater (MW) as 917 

𝑆𝑁𝑃 = 𝑆𝑁𝑃 + 𝑆𝑁 (S4)

𝑆𝑁𝑀 = ൝

𝑆𝑁𝑃 𝑐𝑓𝑚 ∙ (𝑇 − 𝑡𝑡) ≥ 𝑆𝑁𝑃

𝑐𝑓𝑚 ∙ (𝑇 − 𝑡𝑡) 𝑇 ≥ 𝑡𝑡, 𝑐𝑓𝑚 ∙ (𝑇 − 𝑡𝑡)
0 𝑇 < 𝑡𝑡

< 𝑆𝑁𝑃 (S5)

𝑀𝑊 = 𝑀𝑊 + 𝑆𝑁𝑀 (S6)

𝑆𝑁𝑃 = 𝑆𝑁𝑃 − 𝑆𝑁𝑀 (S7)

Some of this meltwater (MW) refreezes based on a refreezing parameter (cfr) and the 918 

temperature difference from the threshold, returning to the snowpack (SNP). The amount of 919 

refrozen water is labeled as FRZ. 920 

𝑅𝐹𝑍 = ൝

𝑀𝑊 𝑐𝑓𝑟 ∙ 𝑐𝑓𝑚 ∙ (𝑡𝑡 − 𝑇) ≥ 𝑀𝑊

𝑐𝑓𝑟 ∙ 𝑐𝑓𝑚 ∙ (𝑡𝑡 − 𝑇) 𝑇 < 𝑡𝑡, 𝑐𝑓𝑟 ∙ 𝑐𝑓𝑚 ∙ (𝑡𝑡 − 𝑇) < 𝑀𝑊
0 𝑇 ≥ 𝑡𝑡

 (S8)

𝑆𝑁𝑃 = 𝑆𝑁𝑃 + 𝑅𝐹𝑍 (S9)

𝑀𝑊 = 𝑀𝑊 − 𝑅𝐹𝑍 (S10)

The remaining meltwater (MW) that exceeds the snowpack's holding capacity (cwh) contributes 921 
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to soil infiltration (IF), and the rest remains in the meltwater (MW) storage as 922 

𝐼𝐹 = ቄ
𝑀𝑊 − 𝑐𝑤ℎ ∗ 𝑆𝑁𝑃 𝑀𝑊 − 𝑐𝑤ℎ ∗ 𝑆𝑁𝑃 ≥ 0

0 𝑀𝑊 − 𝑐𝑤ℎ ∗ 𝑆𝑁𝑃 < 0
 (S11)

𝑀𝑊 = 𝑀𝑊 − 𝐼𝐹 (S12)

The fraction of soil moisture relative to the field capacity (fc) determines the soil wetness, 923 

which modulates the amount of water recharged into the soil (SP). Then soil moisture (SM) is 924 

updated based on the infiltration of meltwater (IF), rain (RN), and the amount of recharged 925 

water (SP) as 926 

𝑆𝑃 = ൬
𝑆𝑀

𝑓𝑐
൰

ఉ

∙  (𝐼𝐹 + 𝑅𝑁) (S13)

𝑆𝑀 = 𝑆𝑀 + 𝐼𝐹 + 𝑅𝑁 − 𝑆𝑃 (S14)

The excess water, above the field capacity (𝐼𝐹ௗ௜௥), is calculated and subsequently removed from 927 

the soil moisture storage as 928 

𝐼𝐹ௗ௜௥ = ൜
𝑆𝑀 − 𝑓𝑐 𝑖𝑓 𝑆𝑀 ≥ 𝑓𝑐

0 𝑖𝑓 𝑆𝑀 < 𝑓𝑐
 (S15)

𝑆𝑀 = 𝑆𝑀 − 𝐼𝐹ௗ௜௥ (S16)

Actual evapotranspiration (AE) is determined by an evaporation factor (PEC), which depends 929 

on the soil moisture, a shape parameter (𝜆), a parameter (lp), and field capacity (fc) for 930 

evapotranspiration. This factor limits the actual evapotranspiration (AE) to both the potential 931 

evapotranspiration (PE) and the available soil moisture. 932 

𝑃𝐸𝐶 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧൬

𝑆𝑀

𝑙𝑝 ∙ 𝑓𝑐
൰

ఒ

𝑖𝑓 0 ≤  ൬
𝑆𝑀

𝑙𝑝 ∙ 𝑓𝑐
൰

ఒ

< 1

0 𝑖𝑓 𝑆 ൬
𝑆𝑀

𝑙𝑝 ∙ 𝑓𝑐
൰

ఒ

< 0

1 𝑖𝑓 𝑆 ൬
𝑆𝑀

𝑙𝑝 ∙ 𝑓𝑐
൰

ఒ

≥ 1

 (S17)

𝐴𝐸 = ൜
𝑃𝐸 ⋅ 𝑃𝐸𝐶 𝑖𝑓 𝑆𝑀 ≥ 𝑃𝐸 ⋅ 𝑃𝐸𝐶

𝑆𝑀 𝑖𝑓 𝑆𝑀 < 𝑃𝐸 ⋅ 𝑃𝐸𝐶
 (S18)

𝑆𝑀 = 𝑆𝑀 − 𝐴𝐸 (S19)

Capillary rise (CP) from the lower soil zone (SLZ)  is governed by a parameter (c), which 933 

determines the amount of water moving upward based on the soil moisture content. This 934 

capillary flow replenishes the soil moisture, while groundwater interactions occur through 935 

recharge processes in the upper (SUZ) and lower (SLZ) groundwater zones.  936 
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𝐶𝑃 =

⎩
⎨

⎧ 𝑆𝐿𝑍 𝑖𝑓 𝑆𝐿𝑍 < 𝑐 ∙ 𝑆𝐿𝑍 ⋅ ൬1 −
𝑆𝑀

𝑓𝑐
൰

𝑐 ∙ 𝑆𝐿𝑍 ⋅ ൬1 −
𝑆𝑀

𝑓𝑐
൰ 𝑖𝑓 𝑆𝐿𝑍 ≥ 𝑐 ∙ 𝑆𝐿𝑍 ⋅ ൬1 −

𝑆𝑀

𝑓𝑐
൰

 (S20)

𝑆𝑀 = 𝑆𝑀 + 𝐶𝑃 (S21)

𝑆𝐿𝑍 = ൜
𝑆𝐿𝑍 − 𝐶𝑃 𝑖𝑓 𝑆𝐿𝑍 ≥ 𝐶𝑃

0 𝑖𝑓 𝑆𝐿𝑍 < 𝐶𝑃
 (S22)

Excess recharge (SP and 𝐼𝐹ௗ௜௥) from the soil enters the upper zone, where it either percolates 937 

to the lower zone (PERC) based on a constant rate (prc) or contributes to direct runoff (𝑄଴) 938 

when it exceeds the upper zone threshold (uzl). The generated flow is modeled using 939 

parameters (𝑘଴, 𝑘ଵ, 𝑘ଶ) governing flow from the upper and lower zones. Each of these flows 940 

contributes to runoff (𝑄଴, 𝑄ଵ, 𝑄ଶ), and their respective contributions to streamflow (𝑄௧) are 941 

modeled over time. 942 

𝑆𝑈𝑍 = 𝑆𝑈𝑍 + 𝑆𝑃 + 𝐼𝐹ௗ௜௥ (S23)

𝑃𝐸𝑅𝐶 = ൜
𝑝𝑟𝑐 𝑖𝑓 𝑆𝑈𝑍 ≥ 𝑝𝑟𝑐
𝑆𝑈𝑍 𝑖𝑓 𝑆𝑈𝑍 < 𝑝𝑟𝑐

 (S24)

𝑆𝑈𝑍 = 𝑆𝑈𝑍 − 𝑃𝐸𝑅𝐶 (S25)

𝑄଴ = ൜
𝑘଴ ∙ (𝑆𝑈𝑍 − 𝑢𝑧𝑙) 𝑖𝑓 𝑆𝑈𝑍 ≥ 𝑢𝑧𝑙

0 𝑖𝑓 𝑆𝑈𝑍 < 𝑢𝑧𝑙
 (S26)

𝑆𝑈𝑍 = 𝑆𝑈𝑍 − 𝑄଴ (S27)

𝑄ଵ = 𝑆𝑈𝑍 ∙ 𝑘ଵ (S28)

𝑆𝑈𝑍 = 𝑆𝑈𝑍 − 𝑄ଵ (S29)

𝑆𝐿𝑍 = 𝑆𝐿𝑍 + 𝑃𝐸𝑅𝐶 (S30)

𝑄ଶ = 𝑆𝐿𝑍 ∙ 𝑘ଶ (S31)

𝑆𝐿𝑍 = 𝑆𝐿𝑍 − 𝑄ଶ (S32)

𝑄௧ = 𝑄଴ + 𝑄ଵ + 𝑄ଶ (S33)

 943 

Finally, a routing module (Feng et al., 2022) is used to process 𝑄௧  to produce the final 944 

streamflow output (𝑄௧
∗). This module with two parameters (𝜃ఈ, 𝜃ఛ) assumes a gamma function 945 

for the unit hydrograph and convolves the unit hydrograph with the runoff as, 946 

 947 

𝑄௧
∗ = න 𝜉(𝑠: 𝜃ఈ , 𝜃ఛ)

௧௠௔௫

଴

⋅ 𝑄(𝑡 − 𝑠)𝑑𝑠 (S34)
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𝜉(𝑠: 𝜃ఈ , 𝜃ఛ) =
1

𝛤(𝜃ఈ)𝜃ఛ
ఏഀ

𝑡ఏഀିଵ𝑒
ି

௧
ఏഓ (S35)

 948 
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Appendix B: Illustrated differences among the three meteorological forcing datasets 951 

 952 
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 953 

Figure B1. Probability density distributions of precipitation and temperature across three 954 

meteorological forcing datasets. 955 

 956 

 957 



 

53 

Formatted: Header

 958 

 959 

Figure B2. Illustrated temporal variations of precipitation and temperature in a basin across 960 
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three meteorological forcing datasets. 961 
 962 

  963 
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Appendix C: Details of model inputs, ensemble frameworks, and evaluations 964 

Table C1. Full names for the abbreviations of dynamic data (all but streamflow are “forcings”) 965 

and static basin attributes used as model inputs and outputs. All variables and their values are 966 

provided in the CAMELS dataset (Addor et al., 2017) except for the NLDAS and Maurer daily 967 

temperature extrema, which are from Kratzert et al. (2021). Potential evapotranspiration and 968 

normalized streamflow were calculated for the purposes ofin this work, using CAMELS data. 969 

The number in parentheses specifies model usage: 1 denotes use in the LSTM model, and 2 970 

denotes use in the 𝛿HBV model. 971 

Type Abbreviation Full name Unit 

Dynamic 

data  

prcp (1,2) Precipitation mm/day 

pet (2) 

Potential evapotranspiration (calculated in 

this work using the Hargreaves equation 

and CAMELS data) 

mm/day 

tmean (2) Mean air temperature °C 

tmax (1) Maximum air temperature °C 

tmin (1) Minimum air temperature °C 

 dayl Day length s/day 

srad (1) Shortwave radiation W/m2 

vp (1) Water vapor pressure pa 

q_vol Volumetric streamflow ft3/s 

q (1,2) 
Streamflow normalized by basin area 

(q_vol / area_gages2) 
mm/day 

Static 

basin 

attributes 

p_mean (1,2) Mean daily precipitation mm/day 

pet_mean (1,2) Mean daily potential evapotranspiration mm/day 

p_seasonality (2) Seasonality and timing of precipitation - 

frac_snow (1,2) Fraction of precipitation falling as snow - 

aridity (1,2) 
Rate of mean values of potential 

evapotranspiration and precipitation 
- 

high_prec_freq (1,2) Frequency of high precipitation days days/year 

high_prec_dur (1,2) 
Average duration of high precipitation 

events 
days 

low_prec_freq (1,2) Frequency of dry days days/year 
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low_prec_dur (1,2) Average duration of dry periods days 

elev_mean (1,2) Catchment mean elevation m 

slope_mean (1,2) Catchment mean slope m/km 

area_gages2 (1,2) Catchment area (GAGES-II estimate) km2 

frac_forest (1,2) 
Fraction of catchment area having land 

cover identified as forest  
- 

lai_max (1,2) 
Maximum monthly mean of the leaf area 

index 
- 

lai_diff (1,2) 

Difference between the maximum and 

minimum monthly mean of the leaf area 

index 

- 

gvf_max (1,2) 
Maximum monthly mean of the green 

vegetation 
- 

gvf_diff (1,2) 

Difference between the maximum and 

minimum monthly mean of the green 

vegetation fraction 

- 

dom_land_cover_frac 

(2) 

Fraction of the catchment area associated 

with the dominant land cover 
- 

dom_land_cover (2) Dominant land cover type - 

root_depth_50 (2) 

Root depth at 50th percentile, extracted 

from a root depth distribution based on the 

International Geosphere‐Biosphere 

Programme (IGBP) land cover 

m 

soil_depth_pelletier 

(1,2) 
Depth to bedrock m 

soil_depth_statsgso 

(1,2) 
Soil depth m 

soil_porosity (1,2) Volumetric soil porosity  - 

soil_conductivity 

(1,2) 
Saturated hydraulic conductivity cm/hr 

max_water_content 

(1,2) 
Maximum water content m 
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sand_frac (1,2) Fraction of soil which is sand - 

silt_frac (1,2) Fraction of soil which is silt - 

clay_frac (1,2) Fraction of soil which is clay - 

geol_class_1st (2) 
Most common geologic class in the 

catchment basin 
- 

geol_class_1st_frac 

(2) 

Fraction of the catchment area associated 

with its most common geologic class 
- 

geol_class_2nd (2) 
Second most common geologic class in the 

catchment basin 
- 

geol_class_2nd_frac 

(2) 

Fraction of the catchment area associated 

with its 2nd most common geologic class 
- 

carbonate_rocks_frac 

(1,2) 

Fraction of the catchment area as carbonate 

sedimentary rocks 
- 

geol_porosity (2) Subsurface porosity - 

geol_permeability 

(1,2) 
Subsurface permeability m2 

 972 

  973 
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 974 

 975 

Figure C1. Ensemble frameworks to generate metrics for ensembles named without (solid 976 

arrows) and with (dashed arrows) “seed” as a subscript. 977 
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Table C2. Evaluation metrics. 978 

Statistic Equation* Range Optimal Value 

NSE 𝑁𝑆𝐸 = 1 −
∑ (𝑂௜ − 𝑆௜)

ଶ௡
௜ୀଵ

∑ (𝑂௜ − 𝜇௢)ଶ௡
௜ୀଵ

 -∞ to 1.0 1.0 

KGE 

𝐾𝐺𝐸 = 1 −

ඥ(𝑟 − 1)ଶ + (𝛽 − 1)ଶ + (𝛾 − 1)ଶ, 

 𝛽 =
ఓೄ

ఓೀ
, 𝛾 =

஼௏ೄ

஼௏ೀ
=

ఙೄ/ఓೄ

ఙೀ/ఓೀ
 

-∞ to 1.0 1.0 

PBIAS 
∑ (𝑂௜ − 𝑆௜)௡

௜ୀଵ

∑ 𝑂௜
௡
௜ୀଵ

× 100 -∞ to ∞ 0.0 

RMSE ඩ
1

𝑛
෍(𝑂௜ − 𝑆௜)ଶ

௡

௜ୀଵ

 0.0 to ∞ 0.0 

spread ඩ
1

𝑛

1

𝑒
 ෍ ෍(𝑆௜,௝ − 𝜇ௌ,௜)ଶ

௘

௝ୀଵ

௡

௜ୀଵ

 0.0 to ∞ None 

* S is a streamflow simulation; O is the corresponding observation; n is the number of total S 979 

or O; e is the number of ensemble members; r is the linear Pearson correlation between S and O; 980 

𝛽  is the mean bias; and 𝛾  is the variability bias. The mean and standard deviation of 981 

simulations are denoted as 𝜇ௌ and 𝜎ௌ, respectively, and 𝜇ை and 𝜎ை are the mean and standard 982 

deviation of the observations. 983 

  984 
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Table C2 (continued). Evaluation metrics. 985 

Statistic Range Optimal Value 

NSE -∞ to 1.0 1.0 

KGE -∞ to 1.0 1.0 

PBIAS -∞ to ∞ 0.0 

RMSE 0.0 to ∞ 0.0 

* S is a streamflow simulation; O is the corresponding observation; n is the number of total S 986 

or O; r is the linear Pearson correlation between S and O; 𝛽 is the mean bias; and 𝛾 is the 987 

variability bias. The mean and standard deviation of simulations are denoted as 𝜇ௌ and 𝜎ௌ , 988 

respectively, and 𝜇ை and 𝜎ை are the mean and standard deviation of the observations.989 
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Appendix D: Additional details on model performance 991 

 992 

 993 

 994 

Figure D1. Scatter plots comparing the performance differences between hydrological models. 995 

for the basins where LSTM outperformed δHBV (the basins where δHBV outperformed are not 996 

shown in this plot). The x-axis represents the RMSENSE differences between 𝐿𝑆𝑇𝑀ଵ𝑀ଶ and 997 

𝛿𝐻𝐵𝑉ଵ𝛿𝐻𝐵𝑉ଶ  ( 𝐿𝑆𝑇𝑀ଵ𝑀ଶ  - 𝛿𝐻𝐵𝑉ଵ𝛿𝐻𝐵𝑉ଶ ), while the y-axis shows the RMSENSE 998 

differences between 𝛿𝐻𝐵𝑉ଵଶଷ  and 𝛿𝐻𝐵𝑉ଵ𝛿𝐻𝐵𝑉ଶ  (𝛿𝐻𝐵𝑉ଵଶଷ -𝛿𝐻𝐵𝑉ଵ  𝛿𝐻𝐵𝑉ଶ ). Points are 999 

color-coded according to the RMSENSE values of 𝛿𝐻𝐵𝑉ଵ𝛿𝐻𝐵𝑉ଶ. The correlation coefficient 1000 

(CORR) and p values between the x-axis values and the y-axis values, along with the median 1001 

NSE valuesvalue of 𝛿𝐻𝐵𝑉ଵ (𝑅𝑀𝑆𝐸௠௘ௗ𝛿𝐻𝐵𝑉ଶ (𝑁𝑆𝐸௠௘ௗ ) on these basins, are also noted.  1002 

 1003 
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 1004 

Figure D2. Scatter plots comparing the performance differences between hydrological models 1005 

for the basins where LSTM outperformed δHBV (the basins where δHBV outperformed are not 1006 

shown in this plot). The x-axis represents the NSE differences between 𝐿𝑆𝑇𝑀ଷ and 𝛿𝐻𝐵𝑉ଷ 1007 

(𝐿𝑆𝑇𝑀ଷ - 𝛿𝐻𝐵𝑉ଷ), while the y-axis shows the NSE differences between 𝛿𝐻𝐵𝑉ଵଶଷ and 𝛿𝐻𝐵𝑉ଷ 1008 

(𝛿𝐻𝐵𝑉ଵଶଷ- 𝛿𝐻𝐵𝑉ଷ). Points are color-coded according to the NSE values of 𝛿𝐻𝐵𝑉ଷ. The 1009 

correlation coefficient (CORR) and p values between the x-axis values and the y-axis values, 1010 

along with the median NSE value of 𝛿𝐻𝐵𝑉ଷ (𝑁𝑆𝐸௠௘ௗ ) on these basins, are also noted. 1011 

 1012 

 1013 

 1014 
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 1015 
Figure D3. Spatial distributions of model spread values increase from δHBV and LSTM to the 1016 

LSTM+δHBV ensemble across temporal, PUB, and PUR tests. 1017 

 1018 

 1019 

 1020 

 1021 
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 1022 
Figure D4. Boxplot of relative temperature differences between the test and training periods, 1023 

calculated as (Test − Training) / Training. Each box represents the distribution of normalized 1024 

temperature changes across basins for a specific meteorological forcing dataset: Daymet, 1025 

NLDAS, and Maurer. Positive values indicate warming in the test period relative to the training 1026 

period. 1027 

 1028 

 1029 

 1030 

 1031 
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 1032 
Figure D5. Simulation performance (NSE) under the temporal test: (a) LSTM model with and 1033 

without a 10% precipitation error (precipitation × 1.1); (b) δHBV model with and without a 1034 

10% precipitation error; (c) δHBV model trained on 671 versus 531 basins; (d) δHBV model 1035 

with 3 versus 2 dynamic parameters; (e) δHBV model using time steps of 365, 182, and 730 1036 

days. Individual and ensemble groups are distinguished along the x-axis. Ensemble benefits 1037 

are indicated by the gap between columns of the same color within each panel—columns 1–7 1038 

correspond to individual LSTM or δHBV groups, and the last two columns correspond to 1039 

LSTM+δHBV ensembles. 1040 

 1041 

  1042 
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Table D1. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high 1043 

(highRMSE), and middle (midRMSE) flows based on 531 basins under the temporal test. The 1044 

values are the mean of three simulations run with different random seeds. 1045 

Temporal Number Daymet NLDAS Maurer 

LSTM 

NSE 0.735639 0.736301 0.717337 

KGE 0.789375 0.782555 0.760575 

RMSE 1.21088 1.19847 1.27723 

PBIAS 4.04818 5.99486 1.58911 

lowRMSE 0.0596913 0.0602381 0.0545577 

highRMSE 2.70508 2.89684 2.97028 

midRMSE 0.196039 0.210022 0.219922 

δHBV 

NSE 
0.7416417

39688 

0.7197767

1903 

0.7291427

27669 

KGE 
0.7695227

7033 

0.7339837

30753 

0.7604537

62022 

RMSE 
1.1786418

752 

1.2686426

239 

1.2208923

193 

PBIAS 

4.658985.

07898 

-

0.2289251

4449 

3.1474265

263 

lowRMSE 
0.0598199

060906 

0.0646098

063581 

0.0627206

063466 

highRMSE 2.6918684 3.1519513 2.7162968
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79 011 45 

midRMSE 
0.2287312

26595 

0.2450142

45242 

0.2307252

30125 

LSTM+δHBV 

NSE 
0.7878717

87545 

0.7931687

94053 

0.7916377

90903 

KGE 
0.7963227

94412 

0.7836127

8383 

0.7847547

86854 

RMSE 
1.0760407

77 

1.0674607

16 

1.0692107

141 

PBIAS 
4.8257259

065 

3.0815330

53 

3.1984145

501 

lowRMSE 
0.0599687

059955 

0.0593688

059565 

0.0541188

054838 

highRMSE 
2.6966570

216 

2.8224588

511 

2.6942569

633 

midRMSE 
0.2042612

0394 

0.2184982

14726 

0.2143252

12514 
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Table D1 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low 1049 

(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the 1050 

temporal test. The values are the mean of three simulations run with different random seeds. 1051 

Temporal Number Daymet+NLDAS Daymet+Maurer NLDAS+Maurer All 

LSTM 

NSE 0.781275 0.791158 0.792144 0.808176 

KGE 0.800955 0.795026 0.794441 0.803476 

RMSE 1.09103 1.06374 1.06701 1.01395 

PBIAS 5.17159 3.34362 4.5305 4.48263 

lowRMSE 0.0636155 0.0582563 0.0566306 0.0613625 

highRMSE 2.70218 2.71366 2.78962 2.67803 

midRMSE 0.194849 0.199809 0.206653 0.197469 

δHBV 

NSE 
0.786118786562 0.77093977012 0.777651776938 0.79445579

4796 

KGE 
0.772697773732 0.776781778557 0.767756768854 0.77669277

834 

RMSE 
1.0798408362 1.1267112584 1.1087810875 1.05808061

18 

PBIAS 
1.8596291507 4.2627828194 1.791342.03584 2.59063710

21 

lowRMSE 
0.0627661061667 0.0597778060679 0.0623739062765 0.06178630

61539 

highRMSE 
2.9427493961 2.730547394 2.8758388758 2.84511849

94 
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midRMSE 
0.231981230576 0.219738220743 0.228451230272 0.23013622

8375 

LSTM+δHBV 

NSE 
0.8108811825 0.810476809964 0.812144811316 0.81866818

907 

KGE 
0.79586797564 0.796202797635 0.78608878735 0.79425779

4936 

RMSE 
1.016201938 1.0167601755 1.025150314 1.00077000

67 

PBIAS 
4.1307714594 4.0809623333 3.2645819652 3.89728809

6 

lowRMSE 
0.0599350603 0.0575384058022 0.0558506057882 0.05818690

59221 

highRMSE 
2.7613375275 2.6864267122 2.7824281393 2.71392706

06 

midRMSE 
0.208476207637 0.207761205965 0.213433213191 0.20858220

7905 
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Table D2. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high 1053 

(highRMSE), and middle (midRMSE) flows based on 531 basins under the PUB test. The values 1054 

are the mean of three simulations run with different random seeds. 1055 

PUB Number Daymet NLDAS Maurer 

LSTM 

NSE 0.702636 0.695496 0.694156 

KGE 0.693998 0.677438 0.6909 

RMSE 1.31714 1.3394 1.34233 

PBIAS 0.669018 0.283106 0.936582 

lowRMSE 0.087648 0.088393 0.086873 

highRMSE 4.2852 4.49292 4.16042 

midRMSE 0.354458 0.364921 0.368124 

δHBV 

NSE 0.706809 0.670636 0.682998 

KGE 0.703137 0.66566 0.686912 

RMSE 1.35541 1.41185 1.37942 

PBIAS 1.49234 -2.43395 0.291966 

lowRMSE 0.0798196 0.0808967 0.0846775 

highRMSE 4.21648 4.49582 4.18003 

midRMSE 0.335159 0.351271 0.356903 

LSTM+δHBV NSE 0.74227 0.723778 0.72202 
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KGE 0.715931 0.690154 0.707292 

RMSE 1.24887 1.278 1.26697 

PBIAS 1.27863 -0.599778 0.903464 

lowRMSE 0.0816748 0.0795686 0.0825691 

highRMSE 4.08432 4.23483 3.94929 

midRMSE 0.327459 0.33851 0.347169 

 1056 

 1057 
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Table D2 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low 1059 

(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the 1060 

PUB test. The values are the mean of three simulations run with different random seeds. 1061 

PUB Number Daymet+NLDAS Daymet+Maurer NLDAS+Maurer All 

LSTM 

NSE 0.757853 0.749151 0.753136 0.768181 

KGE 0.713319 0.720099 0.716497 0.727143 

RMSE 1.18251 1.22254 1.19718 1.15026 

PBIAS 0.320396 0.931656 0.766216 0.970047 

lowRMSE 0.0875191 0.0864129 0.0835341 0.0874717 

highRMSE 4.1296 4.06602 4.17217 4.0061 

midRMSE 0.334683 0.349856 0.342819 0.333534 

δHBV 

NSE 0.748916 0.734052 0.733955 0.757749 

KGE 0.699768 0.714323 0.69436 0.714048 

RMSE 1.26852 1.27637 1.27244 1.23229 

PBIAS 0.0446112 1.212 -1.04135 0.201809 

lowRMSE 0.0808293 0.0792486 0.0814476 0.0808359 

highRMSE 4.19575 3.97788 4.21623 4.07419 

midRMSE 0.311826 0.33668 0.339257 0.318165 

LSTM+δHBV NSE 0.780625 0.764866 0.767761 0.785833 
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KGE 0.719781 0.725373 0.715982 0.723972 

RMSE 1.14924 1.17659 1.16881 1.13591 

PBIAS 0.186062 0.881644 0.405548 0.565489 

lowRMSE 0.0805946 0.0814251 0.0817114 0.0826379 

highRMSE 3.97373 3.86834 3.88 3.91692 

midRMSE 0.313708 0.324777 0.324089 0.323671 

 1062 
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Table D3. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high 1064 

(highRMSE), and middle (midRMSE) flows based on 531 basins under the PUR test. The values 1065 

are the mean of three simulations run with different random seeds. 1066 

PUR Number Daymet NLDAS Maurer 

LSTM 

NSE 0.578365 0.546217 0.56164 

KGE 0.557788 0.559986 0.567231 

RMSE 1.59111 1.63626 1.5833 

PBIAS -0.575328 -2.77709 -0.623183 

lowRMSE 0.124837 0.118971 0.118695 

highRMSE 5.42346 5.38886 5.05212 

midRMSE 0.498133 0.498442 0.471744 

δHBV 

NSE 0.622278 0.592306 0.59161 

KGE 0.638818 0.601338 0.620877 

RMSE 1.57189 1.61191 1.63628 

PBIAS 1.27223 -1.60075 1.62709 

lowRMSE 0.10142 0.102975 0.101075 

highRMSE 5.07706 5.16093 4.99602 

midRMSE 0.447879 0.474516 0.439697 

LSTM+δHBV NSE 0.644398 0.618255 0.635444 
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KGE 0.627481 0.605237 0.615883 

RMSE 1.46185 1.5153 1.48393 

PBIAS -0.269697 -0.719505 0.197859 

lowRMSE 0.105146 0.100944 0.106272 

highRMSE 4.95749 4.99478 4.78638 

midRMSE 0.431456 0.4575 0.426126 
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Table D3 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low 1069 

(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the 1070 

PUR test. The values are the mean of three simulations run with different random seeds. 1071 

PUR Number Daymet+NLDAS Daymet+Maurer NLDAS+Maurer All 

LSTM 

NSE 0.634398 0.636369 0.626939 0.656228 

KGE 0.59844 0.600371 0.605007 0.612858 

RMSE 1.4434 1.43416 1.43009 1.38042 

PBIAS -0.547128 -0.687947 -0.865748 -0.543918 

lowRMSE 0.118989 0.120228 0.115004 0.117728 

highRMSE 5.03277 5.02434 4.84415 4.74281 

midRMSE 0.462923 0.455257 0.453912 0.449598 

δHBV 

NSE 0.672839 0.644732 0.661231 0.684685 

KGE 0.653841 0.65646 0.6515 0.66205 

RMSE 1.43224 1.50803 1.48604 1.43376 

PBIAS 0.564363 1.55134 -0.156553 0.956961 

lowRMSE 0.0975783 0.0984076 0.100773 0.100807 

highRMSE 4.83843 4.81176 4.72529 4.71255 

midRMSE 0.447828 0.431252 0.433688 0.432018 

LSTM+δHBV NSE 0.685032 0.680872 0.679321 0.700814 
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KGE 0.638788 0.647826 0.646782 0.649999 

RMSE 1.35303 1.3873 1.36795 1.3185 

PBIAS -0.0150729 0.406127 -0.135091 -0.0232668 

lowRMSE 0.103284 0.101814 0.104528 0.102916 

highRMSE 4.80178 4.72583 4.70024 4.70713 

midRMSE 0.426819 0.411727 0.41573 0.41081 
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Table D4. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high 1074 

(highRMSE), and middle (midRMSE) flows based on 531 basins under the temporal, PUB, and 1075 

PUR tests of 𝐿𝑆𝑇𝑀௠௨௟௧௜ , (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)ଵଶଷ + 𝐿𝑆𝑇𝑀௠௨௟௧௜  , their “seed” version, and 1076 

(𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)௦௘௘ௗ
ଵଶଷ . 1077 

Test Metric 𝐿𝑆𝑇𝑀௠௨௟௧௜ 
(𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)ଵଶଷ

+ 𝐿𝑆𝑇𝑀௠௨௟௧௜  

Temporal 

NSE 0.797448 0.82321 

KGE 0.811064 0.810248 

RMSE 1.05987 0.983168 

PBIAS 3.95241 4.08594 

lowRMSE 0.056221 0.05702 

highRMSE 2.7089 2.58881 

midRMSE 0.183526 0.192442 

PUB 

NSE 0.750605 0.782727 

KGE 0.71469 0.734731 

RMSE 1.20586 1.11509 

PBIAS 0.475674 0.706777 

lowRMSE 0.0861127 0.0836 

highRMSE 4.13615 3.83009 

midRMSE 0.347562 0.326814 
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PUR 

NSE 0.623755 0.68923 

KGE 0.593757 0.633971 

RMSE 1.47379 1.31221 

PBIAS -2.6737 -1.38119 

lowRMSE 0.112434 0.107646 

highRMSE 4.98202 4.59232 

midRMSE 0.501807 0.436811 
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Table D4 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low 1079 

(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the 1080 

temporal, PUB, and PUR tests of 𝐿𝑆𝑇𝑀௠௨௟௧௜ , (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)ଵଶଷ + 𝐿𝑆𝑇𝑀௠௨௟௧௜  , their “seed” 1081 

version, and (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)௦௘௘ௗ
ଵଶଷ . 1082 

Test Metric (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)௦௘௘ௗ
ଵଶଷ  𝐿𝑆𝑇𝑀௦௘௘ௗ

௠௨௟௧௜
(𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)௦௘௘ௗ

ଵଶଷ

+ 𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜   

Temporal 

NSE 0.821444 0.81992 0.829385 

KGE 0.795317 0.82078 0.812581 

RMSE 0.99455 1.00908 0.967779 

PBIAS 3.99009 4.09469 4.08882 

lowRMSE 0.059782 0.057346 0.057015 

highRMSE 2.7279 2.62815 2.58384 

midRMSE 0.209943 0.183656 0.195557 

PUB 

NSE 0.793673 0.781175 0.790921 

KGE 0.726188 0.736191 0.739284 

RMSE 1.12957 1.13079 1.09176 

PBIAS 0.370674 1.13671 0.869057 

lowRMSE 0.083423 0.084038 0.085728 

highRMSE 3.89363 3.93473 3.79505 

midRMSE 0.323045 0.329772 0.325627 
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PUR 

NSE 0.705154 0.665723 0.701504 

KGE 0.651538 0.614649 0.64373 

RMSE 1.30377 1.3727 1.2851 

PBIAS -0.283645 -2.74069 -1.39149 

lowRMSE 0.100525 0.111229 0.108121 

highRMSE 4.74889 4.88127 4.58344 

midRMSE 0.406797 0.473783 0.432447 
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Table D5. Median NSE values based on ten different random seeds during the temporal test. 1084 

Each number (1 through 10) represents metric values calculated for an individual simulation 1085 

based on only one random seed. “Seed” indicates metric values calculated by averages of these 1086 

ten simulations based on different random seeds, while “mean” denotes the average of metrics 1087 

from 1-10 individual simulations (visualized in Figure C1). 1088 

Number 𝐿𝑆𝑇𝑀௠௨௟௧௜  (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)ଵଶଷ (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)ଵଶଷ + 𝐿𝑆𝑇𝑀௠௨௟௧௜   

1 0.797742 0.818436 0.82315 

2 0.795312 0.820188 0.823559 

3 0.799291 0.818097 0.822922 

4 0.796388 0.818251 0.821791 

5 0.791192 0.818285 0.820132 

6 0.795691 0.81966 0.823268 

7 0.795912 0.821511 0.82352 

8 0.796625 0.81831 0.825204 

9 0.794062 0.804959 0.816497 

10 0.796066 0.817122 0.82169 

Seed 0.82425 0.822528 0.832197 

Mean 0.795828 0.817482 0.822173 
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Appendix E: Intuitive visualization of the relative contributions of ensemble members 1090 

based on optimized weights 1091 

 1092 
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 1093 

Figure E1. Weights of six components across 531 basins, estimated basin-by-basin using a 1094 

genetic algorithm based on streamflow observations during the test periods. The weights are 1095 

normalized by the maximum weight within each ensemble group. These weights are used 1096 

exclusively for qualitatively analyzing the relative contributions of different ensemble members, 1097 

with higher values indicating larger relative contributions. 1098 

 1099 
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 1100 

 1101 

Figure E2. Spatial distributions of weights of the LSTM and δHBV models, estimated by a 1102 
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genetic algorithm based on streamflow observations during the test periods. The weights are 1103 

normalized by the maximum weight within each ensemble group. These weights are used 1104 

exclusively for qualitatively analyzing the relative contributions of different ensemble members, 1105 

with higher values indicating larger relative contributions. 1106 

 1107 

 1108 

 1109 

 1110 

Figure E3. Spatial distributions of weights of the Daymet, NLDAS, and Maurer meteorological 1111 

forcing datasets, estimated by a genetic algorithm based on streamflow observations during 1112 

the test periods. The weights are normalized by the maximum weight within each ensemble 1113 

group. These weights are used exclusively for qualitatively analyzing the relative contributions 1114 
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of different ensemble members, with higher values indicating larger relative contributions. 1115 

 1116 

 1117 

  1118 
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Table E1. Comparisons of metric values between averaged ensemble simulations and 1119 

optimized weighted simulations, estimated using a genetic algorithm based on streamflow 1120 

observations during the test periods. The results highlight the potential for further 1121 

improvements in ensemble simulations. 1122 

 1123 

 Temporal Averaged Optimized weighted 

Temporal 

NSE 
0.8214439128214
44 

0.844303212 

KGE 
0.7953174957953
17 

0.829996445 

RMSE 
0.9945500829945
5 

0.920954559 

PBIAS 
3.9900945919900
9 

3.252278013 

lowRMSE 
0.0597816160597
82 

0.057137161 

highRMSE 2.727901337279 2.451194907 

midRMSE 
0.2099426320994
3 

0.183127162 

PUB 

NSE 0.793673 0.842396015 

KGE 0.726188 0.79571295 

RMSE 1.12957 0.987170488 

PBIAS 0.370674 1.023040859 

lowRMSE 0.0834234 0.079807878 

highRMSE 3.89363 3.030715903 

midRMSE 0.323045 0.285110115 

PUR 
NSE 0.705154 0.790796063 

KGE 0.651538 0.746396324 
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RMSE 1.30377 1.13058149 

PBIAS -0.283645 0.273698787 

lowRMSE 0.100525 0.093595304 

highRMSE 4.74889 3.665495069 

midRMSE 0.406797 0.351694421 
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Code and data availability 1127 

The source codes and datasets utilized in this study are publicly accessible through the 1128 

following repositories: The δHBV modeling framework, including all computational scripts 1129 

and documentation, is hosted on Zenodo (https://doi.org/10.5281/zenodo.7091334) (Feng et al., 1130 

2023a), with an updated version and comprehensive software release scheduled upon 1131 

manuscript acceptance. The implementation of the LSTM architecture is accessible through 1132 

Zenodo (https://doi.org/10.5281/zenodo.6326394) (Kratzert et al., 2022). The CAMELS 1133 

hydrometeorological dataset, which provides the foundational basin characteristics and time 1134 

series data used in our analysis, can be obtained via https://dx.doi.org/10.5065/D6MW2F4D 1135 

(Addor et al., 2017; Newman and Clark, 2014). The streamflow simulations produced in this 1136 

study will be made available on Zenodo upon acceptance of the manuscript. 1137 
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