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Streamflow simulations waproduced by different hydrological models have—different

featuresexhibit distinct characteristics and can provide valuable information afterbeingwhen

ensembled. WhileHowever, few studies have focused on ensembling simulations wtafrom

models with significant structural differences and evaluating them under both temporal and
spatial tests. Here we systematically evaluated and utilized the simulations from two highly
different models with great performances: a purely data-driven long short-term memory
(LSTM) network and a physics-informed machine learning (“differentiable”) HBV

(Hydrologiska Byrans VattenavdelningVattenbalansavdelning) model (SHBV). To effectively

display the features of the two models, multiple forcing datasets are employed-and-utilized-in
tweo—ways-. The results show that the simulations of LSTM and dHBV have distinct features
and complement each other well, leading to better Nash-Sutcliffe model efficiency coefficients
(NSE) and improved high-flow and low-flow metrics across all spatiotemporal tests, compared
to within-class ensembles. Ensembling models trained on a single forcing outperformed a
single model using fused forcings, challenging the paradigm of feeding all available data into

a single data-driven model. Most notably, SHBV significantly enhanced spatial interpolation
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when incorporated into LSTM, and provided even more prominent benefits for spatial
extrapolation where the LSTM-only ensembles degraded significantly, attesting to the value of
the structural constraints in SHBV. These advances set new benchmark records on the well-
known CAMELS (Catchment Attributes and Meteorology for Large-sample Studies)
hydrological dataset, reaching median NSE values of ~0.83 for the temporal test (densely
trained scenario), ~0.79 for the ungauged basin test (PUB, Prediction in Ungauged Basins),
and ~0.70 for the ungauged region test (PUR, Prediction in Ungauged Regions). This study
advances our understanding of how various model types, each with distinct mechanisms, can

be effectively leveraged alongside multi-source datasets across diverse scenarios.
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o Combining LSTM and SHBV with diverse forcings sets new accuracy benchmarks -
e Ensembling models with one forcing outperforms merging forcings as an input

e JHBYV and LSTM together always increase NSEs, especially spatial generalization

e JHBV provides valuable spatial constraints in the deterministic ensemble simulations

e OHBYV and LSTM have different error characteristics that can be offset in an ensemble
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1. Introduction
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Streamflow, a critical component of the global hydrosphere, profoundly influences both
human society and natural ecosystems (Lins and Slack, 1999). Accurate simulation and
prediction of streamflow yield numerous benefits, including improved flood prevention
strategies (Brunner et al., 2021). Hydrological models serve as indispensable tools for

achieving this objective and can be traditionally categorized into two types: data-driven models

(Feng et al., 2020

Kratzert et al., 2018; Liu et al., 2024; Nearing et al., 2024) and process-based (or physically-

based) models (Newman et al., 2017; Paul et al., 2021). Data-driven models, exemplified by
long short-term memory (LSTM) (Feng et al., 2020; Kratzert et al., 2018) and transformer (Liu

et al., 2024) networks, excel in learning patterns from multi-source data (Li-etal;2023b,2024;

Livetal;2022: Nearingetal52024)(Li et al.. 2023b, 2024: Liu et al., 2022: Nearing et al.

2024) and generally achieve high performance. However, they often lack interpretability and
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may not resolve extreme values very well (Ei-et-al;2020a:-Senget-al2025)(Li et al., 2020a;
Song etal., 2025b). Conversely, process-based models, derived deductively from physical laws
or conceptualized views of natural systems, offer insights into internal hydrological processes
but may exhibit weaker performance due to structural inadequacies (Li et al., 2020a; Zhang et
al., 2019).

To combine the benefits and counteract the weaknesses of these two kinds of models,
many efforts have been made to incorporate physical constraints and structures into data-driven
models to align with fundamental physical principles, such as mass and water balances (Bandai
and Ghezzehei, 2021; Wang et al., 2020; Xie et al., 2021). The most seamless integration uses
neural networks to provide parameterizations or missing process representations for process-
based models (Aboelyazeed et al., 2023; Bindas et al., 2024; Feng et al., 2022; Jiang et al.,
2020; Kraft et al., 2022; Rahmani et al., 2023; Song et al., 2024b; Tsai et al., 2021). These
differentiable models (Shen et al.,, 2023) connect (flexible amounts of) prior physical
knowledge to neural networks, and have displayed many advantages, including improved
computational efficiency and prediction of untrained variables (Tsai et al., 2021), spatial
generalization (Feng et al., 2023b), and representation of extremes (Senget-al2025).(Song et
al., 2025b). However, it is also unclear whether current differentiable models, e.g., SHBV, the
Hydrologiska Byrans Vattenbalansavdelning (HBV) model implemented within a

differentiable framework

(Feng et al.,

2023b; Shen et al., 2023; Song et al., 2025b), have unique bias characteristics that are

associated with the process-based parts of their structures that cannot be reduced once the
equations are prescribed.

Orthogonal to such efforts are ensemble simulations (Yu et al., 2024), which combine
many members with different biases and uncertainties to mitigate their respective biases in

deterministic predictions. Many previous studies have tried ensemble methods to improve
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85  streamflow (Clark et al., 2016; Zounemat-Kermani et al., 2021) based on many factors, like
86  Iinitial conditions (e.g., initial weights and biases in LSTM (Kratzert et al., 2018)), data used
87  for parameterization (Feng et al., 2021), and objective functions (Lin et al., 2024). These
88  studies generally use one model to generate the differences among the ensemble members.
89  Furthermore, some studies (Dion et al., 2021; Solanki et al., 2025) have utilized simulations
90  from multiple different models but are limited to process-based models-and-+resutted, resulting
91 in ensemble simulations that are better than each individual member. Thus far, however, most
92  studies feeushave focused on-the simulations from only similar models or model types, and
93  little work has tested an ensemble across the boundary of model types, espeeiatiyparticularly
94  between data-driven, process-based, and hybrid models, especially on a large number of
95  samples. Presumably, if each model has its own unique bias, data-driven and process-based
96  models are likely to exhibit greater differences due to their inherently distinct characteristics.
97 It remains unclear whether ensembling across model types should bring benefits to
98  deterministic predictions. Furthermore, grounded in the process-based model, the differentiable
99  process-based hydrological model, such as dHBV, significantly enhances performance
100 compared to traditional process-based models, while on the other hand introducing greater
101  uncertainty regarding its potential benefits when ensembled. Moreover, previous studies have
102 primarily focused on evaluating ensemble simulations for temporal predictions. However,
103 streamflow simulation under spatial extrapolation scenarios presents greater challenges, and
104  findings from temporal tests may not be directly applicable in this context.
105 It is known that the performance of any type of hydrologic model heavily depends on the
106  quality of input data, particularly meteorological forcing data (Bell and Moore, 2000; Yao et
107  al., 2020), and other inputs, like the uncertainties of initial conditions, can be mitigated via
108  warming up (Yu et al., 2019). While independent forcing datasets excel in certain aspects, they

109  each carry different error characteristics (Beck et al., 2017; Behnke et al., 2016; Newman et al.,
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110 2019) and accordingly affect the hydrological models in different ways. In order to fully display
111 the different features between LSTM and 6HBV, multiple forcing datasets could be considered.
112 Given the utilization of multiple forcing datasets, one could choose to use data fusion to
113 combine them into a single coherent model input (Kratzert et al., 2021; Sawadekar et al., 2025),
114 or to pass each forcing dataset through a model and then afterwards combine the multiple
115 outputs in an ensemble. It is not clear which approach is more beneficial.

116 Considering the knowledge gaps discussed above, we sought to answer several research

117  questions:

118 1. Will a cross-model-type ensemble of LSTM and SHBV improve deterministic <~ Formatted: Outline numbered + Level: 1 + Numbering Style:

1,2,3,... + Start at: 1 + Alignment: Left + Aligned at: 0.25"
.. e + Indent at: 0.5"

119 streamflow prediction more than a within-class ensemble?

120 2. Is it better to use multiple forcings in one model or to ensemble multiple models, each

121 with a different forcing input?

122 3. Do process-based equations bring unique value to an ensemble, especially in terms of

123 spatial generalizability?

124 The remainder of this paper is structured as follows: Sect. 2 outlines the hydrological data

125  and models used in this study, as well as the experimental design. Results and discussions are

126  presented in Sect. 3, with conclusions provided in Sect. 4.

127

128 2. MaterialMaterials and Methedsmethods, - /[ Formatted: Font color: Auto
\\\\[ Formatted: Font color: Auto

129  2.1.-Fhe CAMELS hydrologic dataset *{ Formatted: Font color: Auto

130 The Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) dataset

131 (Addor et al., 2017) is widely employed for hydrological model evaluation and community
132 benchmarking. The CAMELS dataset encompasses 671 basins distributed across the
133 conterminous United States, with basin sizes ranging from 1 to 25,800 km? (median: 335 km?).

134 This standardized and publicly available dataset serves as a benchmark for evaluating various
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135  hydrological models, with LSTM models trained on this dataset often serving as a reference
136 point for comparing other models (Kratzert et al., 2021). CAMELS provides basin-scale data,
137  including streamflow observations and static basin attributes, as well as forcing datasets from
138  three independent sources: Daymet (Thornton et al., 1997), North American Land Data
139 Assimilation System (NLDAS) (Xia et al., 2012), and Maurer (Maurer et al., 2002). Each of
140  the three meteorological forcing datasets operates at a daily temporal resolution, encompassing
141  precipitation, temperature, vapor pressure, and surface radiation variables, with daily
142 temperature extrema of NLDAS and Maurer supplemented from Kratzert et al. (2021). These
143 three meteorological forcing datasets have methodological distinctions in spatial resolution,
144  data generation approaches, and temporal processing (Behnke et al., 2016; Kratzert et al., 2021).
145  Exemplary plots illustrating the differences among the three meteorological forcing datasets
146  are provided in Appendix B. These features can lead to dataset-specific error characteristics
147  and make them valuable for displaying the distinct features of different model types. All model

148  inputs used in this study are detailed in Table C1.

149 *"*“*"‘[ Formatted: Line spacing: Double

150  2.2. Long short-term memory

151 As one kind of deep learning algorithm, long short-term memory (LSTM) (Hochreiter and
152 Schmidhuber, 1997) has unique structures like hidden states and gates activated by the tanh
153  and sigmoid functions (Li et al., 2023a), respectively. These features enable LSTM to excel in

154  streamflow simulation tasks

(Feng

155  etal., 2020; Kratzert et al., 2018; Nearing et al., 2024). In the current benchmark framework,

156  LSTM models are trained using dynamic atmospheric forcings and static basin attributes as
157  inputs, with streamflow as the target output, making it perform well in both temporal and spatial
158  tests (Figure la). In this work, for cross-group comparability, we used the LSTM model and

159 its hyperparameters as reported in Kratzert et al. (2021).
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2.3. Differentiable HBV model (6HBV)

The Hydrologiska Byrans Vattenbalansavdelning (HBV) model is a parsimonious bucket-
type hydrologic model that simulates various hydrological variables, including snow water
equivalent, soil water, groundwater storage, evapotranspiration, quick flow, baseflow, and total
streamflow (Aghakouchak and Habib, 2010; Beck et al., 2020; Bergstrom, 1976, 1992).
Recently demonstrated differentiable HBV (8HBV) model (Feng et al., 2023b; Shen et al.,
2023; Song et al., 2024b) incorporates deep neural networks for both regionalized
parameterization and missing process representations within a differentiable programming
framework that supports “end-to-end” training (Figure 1b). This innovation enables SHBV to
effectively learn from data while obeying physical laws, resulting in high-level performance
for streamflow simulations. From the perspective of process-based modeling, LSTM is a
regionalized parameter provider that leverages the autocorrelated nature of its inputs to impose

an implicit spatial constraint on the generated parameters.

fromoHBV10-In this study, we used HBV1.1p (Song et al., 2024b, 2025b), which is an

updated version of SHBV1.0 (Feng et al., 2022, 2023b)-The-main-improvementis-the-addition

. The main improvement is the addition of a capillary rise module, which enhances the

characterization of low flows. Other modifications include three modifications to address high-

flow simulation challenges: the use of three dynamic parameters (y, £, k) (Song et al., 2025b);

the removal of log-transform normalization for precipitation; and the adoption of the

"{ Formatted: Header
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185  normalized squared-error loss function (Frame et al., 2022; Kratzert et al., 2021; Song et al.

186  2025a, b; Wilbrand et al., 2023). We also maintain dynamic parameters during warm-u

187  periods. Although this provides only marginal benefits and increases computational costs, it

188  vyields a more realistic representation and reduces uncertainties associated with initial

189  conditions. The basic equations in SHBV are as follows:

0 = LSTM,, (%, Agter) (1) «—{ Formatted Table
Q = HBV(x,0) 2)
Wopt = argmin,, (L(Q,Q")) 3)

190  where 6 are the dynamic or static physical parameters, w denotes the weights and biases of
191 LSTM, x includes the basin-averaged meteorological forcings, such as precipitation, mean

192 temperature, and potential evapotranspiration, with X representing their normalized versions.

193  Similarly, Ay, consists of normalized observable basin-averaged attributes, encompassing _ A Formatted: Highlight

194  basin area, topography, climate, soil texture, land cover, and geology (Table C1). Precipitation
195  and mean temperature are from CAMELS, while potential evapotranspiration is calculated
196  based on the Hargreaves (1994) method using mean, maximum, and minimum temperatures
197  along with basin latitudes, all from data described in sect. 2.1. Q and Q™ are the streamflow
198  simulations (model outputs) and observations (as provided in CAMELS)), respectively. HBV
199  is implemented on PyTorch so it is programmatically differentiable: all steps store information
200 related to gradient calculations during backpropagation, allowing this model to be trained
201  together with neural networks in an end-to-end fashion. More details about differentiable HBV
202  can be found in previous studies (Feng et al., 2022; Song et al., 2024b). The details of some
203  particularly relevant HBV processes are described in Appendix A.

204

’205 2.4. Experimental Desigadesign
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06 In this study, we trained the two models #-highlyof very different types (LSTM and SHBV?}
07  wusing), each with one of three meteorological forcing datasets (Daymet, NLDAS, and Maurer),
208  resulting in six corresponding streamflow simulations (Figure 1c) for each different test
209  scenario (see sect. 2.5 for additional information). The training processes of LSTM and sHBV
’210 followed Kratzert et al. (2021) and Feng et al. (2023b), respectively. Test results and
211  performance metrics for all models are reported for the 531-basin subset that excludes those
212 with areas larger than 2,000 km? or with more than a 10% discrepancy between different basin
’213 area calculation methods (Newman et al., 2017).
214 To generate ensembles, we tested various weighting strategies and ultimately employed
215  averaging to combine the six single-forcing, single-model-type simulations, as it yielded the
216  best performance. To better describe various combinations including cross-model ensembles,
217  these simulations were categorized into six groups (Table 1). A shorthand notation is used
218  throughout the remainder of this work to describe the forcing datasets and ensembles. Daymet,
219  NLDAS, and Maurer are abbreviated as superscripts 1, 2, and 3, respectively. The + symbol is
’220 used to group model types being ensembled, while superscript clustering (e.g., '* or '2%) is used
221  to group the meteorological forcing types being ensembled, with parentheses indicating that
222 the superscripts apply to all model types within. For example, (LSTM + §HBV)23 could be
223 explicitly written as LSTM* + LSTM? + LSTM? + §HBV' + §HBV? + SHBV3. To compare
224 two different strategies to utilize the multiple meteorological forcing datasets and to benchmark
225  against the previously highest performance, we additionally trained a single LSTM model using
26  all three forcing datasets as simultaneous inputs as done by Kratzert et al. (2021), -referred to
27  as LSTM™!! (the last row in Table 1).

28
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Figure 1. (a) The LSTM structure, (b) the SHBYV structure, and (c) the framework to generate

the six individual ensemble members of the streamflow simulations, in which different colors

of arrow lines denote the different meteorological forcing datasets (also denoted as 1, 2, 3)

respectively.
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236  Table 1. (a) The six groups of streamflow simulations, and (b) the streamflow simulation via
E37 LSTM based on a different strategy-to-utilize, in which three meteorological forcing datasets

38 were combined as a single set of inputs (Kratzert et al., 2021). Superscripts 1, 2, and 3 denote

239  Daymet, NLDAS, and Maurer, respectively. The ensemble across forcings (“ef”’) superscript
240  indicates an ensemble of model simulations, each of which uses a different single

241 meteorological forcing, e.g., LSTM'? means the average of LSTM' and LSTM.

(a) Six Groups of Streamflow Simulations %..,..,..{ Formatted Table
Group Name Group Members
LSTM LSTM!, LSTM?, LSTM?
SHBV SHBV', SHBV?, SHBV?
LSTM+8HBV (LSTM+38HBV)!, (LSTM+3HBV)?, (LSTM+5HBV)?
LSTM®f LSTM'?, LSTM"3, LSTM?}, LSTM'?
SHBV*! SHBV'?, SHBV', SHBV?, SHBV'%,
(LSTM+3HBV)*f (LSTM+3HBV)'2, (LSTM+8HBV)"?, (LSTM+3HBV)?,
(LSTM+SHBV)'%3
| (b) Using forcing datasets as simultaneous inputs to an LSTM
| Streamflow Model Type Meteorological Forcing Dataset
Simulation
‘ LSTM™d LSTM Daymet, NLDAS, Maurer
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2.5. Evaluation Seenariosscenarios and Criteriacriteria

The above cases were comprehensively evaluated for performance in temporal
extrapolation (Feng et al., 2022; Kratzert et al., 2018), as well as two types of spatial
generalization: prediction in ungauged basins (PUB) (Feng et al., 2023b; Kratzert et al., 2019),

and prediction in ungauged regions (PUR) (Feng et al., 2021, 2023b):

e Temporal Test: Models were trained using data from all basins and tested across*"*"*"{

different periods.

e PUB Test: Models were trained on randomly selected subsets from all basins and
tested on the remaining basins during the same time period.

e PUR Test: Different from the PUB test, basins were grouped into continuous regions,
one of which was selected to comprise the group of testing basins while the others
were used for training.

Temporal generalization is generally considered to be the easiest of these tests. In terms
of spatial generalization, which approximates data-sparse scenarios, the PUB test is an example
of spatial interpolation, whereas the PUR test involves spatial extrapolation. The PUR test is
widely regarded as the most challenging and may therefore produce findings that differ
significantly from those in other scenarios. In this study, all basins were divided into 10

spatially stratified groups for the PUB test and 7 fully disjoint regional groups for the PUR test

(Table 2) in the same way as Feng et al. (2023b). The spatial extent of the 7 regions for the
PUR test is also shown in Figure 3(c1-c2).- Therefore, we conducted 10 rounds for the PUB
test and 7 rounds for the PUR test, with a different group held out for testing in each round.

Model performance was evaluated after concatenating the test results for all basins.

Formatted: Outline numbered + Level: 1 + Numbering Style:
Bullet + Aligned at: 0.33" + Indent at: 0.58"




< ‘[ Formatted: Header

267  Table 2. Differences of temporal, PUB, and PUR tests.
Test Training Testing <~ Formatted Table
Scenario Basin Time Basin Time
Temporal All? 1980-1995° All 1995-2010
PUB Random nine-tenths 1980-1999 Holdout® 1995-1999
PUR Random six of seven regions | 1980-1999 Holdout 1995-1999

268  “OHBV training followed Feng et al. (2023b) using all 671 CAMELS basins, while LSTM
269  training followed Kratzert et al (2021) using the selected 531-basin subset. Test results and
270  performance metrics for all models are reported for the 531 basins.

271 PEach hydrological year spans from October Ist to September 30th of the following year.

272 “In the PUB and PUR tests, models are run for 10 and 7 rounds, respectively, with the group
273 held out for testing changed in each round. The simulation performance was evaluated after
274 concatenating the test results for all basins.

275

276 We repeated all the simulations with three different random seeds. Therefore, all the
277  simulations come from a total of (2x3+1)x(1+10+7)x3 trained models. The first factor
278  represents the models: two model types (LSTM and SHBV) trained separately with each of the
279  three forcing datasets, along with LSTM™"_ a single model instance trained using all three
280  forcing datasets simultaneously. The second factor accounts for the three types of tests
281  (temporal, PUB, and PUR tests), and the last for the three random seeds. With respect to
282  random seeds, we present two variations in the results, which are visually depicted in Figure
283  Cl. The results without “seed” as a subscript represent the average metric values from multiple
284  streamflow simulations, each generated from a single model implementation, along with the
285  corresponding uncertainties, visualized using error bars. The results marked with “seed” as a

86  subscript are based on the average of multiple streamflow simulations conducted with different

87  random seeds. In terms of computational cost, training LSTM (30 epochs) and SHBV_(50

88  epochs) for temporal testing under a single meteorological forcing dataset takes approximately

15
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5 and 21 hours, respectively, using a single NVIDIA Tesla V100 GPU.

We calculated several well-established performance metrics: Nash-Sutcliffe model
efficiency coefficient (NSE) (Nash and Sutcliffe, 1970), Kling-Gupta model efficiency
coefficient (KGE) (Kling et al., 2012), percent bias (PBIAS), and root-mean-square error
(RMSE). We also considered RMSE values for high (top 2% “peak” flow, highRMSE), low
(bottom 30% “low” flow, lowRMSE), and mid-range (the remaining flow, midRMSE) flow
conditions (Yilmaz et al., 2008). These metrics were computed for each basin and aggregated

into error bars and cumulative density functions (CDFs). Detailed-deseriptions-of these-metries

~For brevity, the main

text primarily reports NSE values, and other metric values are provided in Appendices D and

E. Furthermore, we use the spread values (Li et al., 2021; Reichle and Koster, 2003) to

investigate ensemble variability and explore model complementarity. Detailed descriptions of

these metrics and their calculations are available in Table C2.

3. Results and Biseussiondiscussion,

—‘{ Formatted: Header
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3.1. Temporal extrapolation

For the temporal test, in which models were trained and tested on the same basins but in
different time periods, we found that cross-model-type ensembles noticeably surpassed the
within-class ensembles when other conditions were the same, with small uncertainties {as
shown by the error bars in Figure 2).. With a single forcing dataset, the median NSE was
elevated from ~0.735 for LSTM to ~0.79 with 6HBV added, though SHBV performance was
similar to LSTM (~0.74 under Daymet). Even after LSTM achieved very high performance
when its simulations, each derived separately from different meteorological forcing datasets,

were ensembled (ef = 123, ~0.808), adding SHBV still improved the results to ~0.818. This

\\[ Formatted: Font color: Auto
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314  finding was robust for all different combinations of the tested meteorological forcing datasets.
315  Conversely, adding LSTM also helped to improve SHBV ensembles. These results highlight
B16  the benefits of the cross-model-type ensemble framework; and indicate distinct simulation
B17  features viafor each model type. LSTM is a data-driven method that has low bias and large
B18  variance. Errers-with-dataData errors (Li et al., 2020b), different sampling strategies (Nai et al.,
319 2024), or even different weight initializations (Narkhede et al., 2022) can lead to substantively
B20  different outcomes. On-the-other-handConversely, SHBV may have a smaller variance but a
321  larger bias due to the fixed HBV formulation (Moges et al., 2016) for some scenarios like low
322  flows (Feng et al., 2023b; Song et al., 2024b) or in basins with significant water uses (Seng-et

B23  al520248)(Song et al., 2024a). These errors with varying characteristics from different model

324 classes can partially offset each other in an ensemble. On a side note, SHBV models seem more

B25  reliant on the quality of the forcing data, as shown in Figure 2. SHBV with the Maurer and

B26  NLDAS forcing datasets generally performs worse than it does with Daymet-that, which has

327  lower biases. However, even in those cases, the combination of LSTM and dHBV was still
328  better than LSTM alone, attesting to the robustness of these benefits.

329
330
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333 Figure 2. Median NSE values for 531 CAMELS basins, indicating model and ensemble
334 performances for (a) temporal, (b) prediction in ungauged basin (PUB), and (c) prediction in
335  ungauged region (PUR) tests. Different simulations are represented by variously-shaped and
336  -colored points, and are organized by ensemble group, listed along the x-axis: LSTM,
F37 SHBV.OHBYV, LSTM+JHBYV, and their “ensemble forcing” counterparts, LSTM®' SHBV S,
338 and (LSTM + SHBV)®/. LSTM™t s g single LSTM model trained directly on all three
339 forcing datasets at once. The superscript “ef” denotes the forcing datasets involved in each
340  ensemble (choices of 1 for Daymet, 2 for NLDAS, and 3 for Maurer), while the “+” connects
341  the model types used within an ensemble. The x-axis group and subscript “seed” indicate that
342 simulation results were averaged based on three different random seeds (see Figure C1). Other
343 points without “seed”, along with their corresponding error bars, are derived from the
344 averages of metrics computed over repeated runs with three different random seeds. The error

345  bar indicates one standard deviation above and below the average value for each simulation.
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Figure 3. Scatter plots comparing the performance differences between hydrological models
for the basins where LSTM outperformed 0HBYV (the basins where 0HBV outperformed are not
shown in this plot). The x-axis represents the NSE differences between LSTM* and SHBV*
(LSTM* - SHBV?), while the y-axis shows the NSE differences between SHBV*?3 and SHBV*
(SHBV123_ §HBV'). Points are color-coded according to the NSE values of SHBV?'. The
correlation coefficient (CORR) and p values between the x-axis values and the y-axis values,
along with the median NSE value of SHBV?' (NSE,,.q) on these basins, are also noted. We
note that NSE is not additive and should in—eeneralgenerally not be subtracted. Here the
purpose is only to confirm that basins where LSTM outperforms 0HBV also tend to be those

that benefit from the ensemble of forcings.

In the lower-performing basins where LSTM! had advantages over SHBV'!, the ensemble
of meteorological forcings SHBV!® also tended to be higher than SHBV' (Figure 3),
suggesting that forcing quality was a significant reason behind the underperformance of SHBV'!

in these basins. Similar patterns were also observed when analyzing RMSESHBV” and SHBV®
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’364 values (Figure D1 and Figure D2). These basins previously contributed to LSTM’s cumulative
365  distribution function of NSE diverging from that of SHBV' at the low end (Feng et al., 2022).
366  Forcing errors can exist in the form of systematic timing errors, low or high bias for larger
367  events, etc., which can be difficult for the mass-balanced conceptual HBV! structure to adapt
368  to these errors. Because the ensemble of forcings tends to suppress the errors in each forcing
369  source, part of the advantages of SHBV'2* over SHBV! can be attributed to reducing forcing
370  bias or timing errors. Since the advantages of LSTM! over SHBV! also tend to occur with these
371  same basins, this also explains how LSTM! surpasses SHBV! in some basins with poorer-
372 quality forcings. In contrast to SHBV, LSTM has the innate ability to shift information in time
373  and moderately adjust the input scale. Moving from temporal validation to PUB to PUR
374  scenarios, the advantages of diverse forcing datasets appear to diminish, as evidenced by the
375  decreasing ratio of points above versus below the diagonal line, since the forcing error patterns
376  remembered by LSTM may not generalize well in space (discussed in more detail in sect. 3.2).
377

378 Ensembling streamflow simulations from different meteorological forcing datasets
379  demonstrates certain advantages over the previous approach of simultaneously sending
’380 multiple forcings into an—Mla data-driven model like LSTM (Kratzert et al., 2021).
381  Ensembling LSTM simulations each using a single forcing dataset (LST M23) resulted in an
382  NSE value of 0.8082, higher than that of 0.7974 from feeding multiple forcing datasets into a
383  single LSTM (LSTM™®t) This difference was more pronounced in the cross-model-type
384  ensemble, after including SHBV, compared to the previous within-class ensemble, and
385  particularly notable for the spatial generalization tests (to be discussed in more detail in Sect.
386  3.2), with specific metric values provided in Tables D1-D5. These results indicate that the
387  trained LSTM in LSTM™“ may be overfitted to the significant redundant information in

388  these three forcing datasets, and that only LSTM cannot fully exploit the information hidden
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389  in the multiple forcing datasets. Training separate ensemble members via different nonlinear
390 hydrological processes, on the other hand, seems to allow different bias features to emerge with
391  separate forcing datasets, accordingly mitigating them during the subsequent ensembling

392 process.
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Figure 4. Spatial distributions of NSE values over 531 basins. Subplots are arranged in rows,
indicating (a) temporal, (b) PUB, and (c) PUR test results, and columns, denoting (1) NSE
values from (LSTM + SHBV)123, and (2) the differences between these NSE values and those
of LSTM* (models using only forcing 1, Daymet). For LSTM?*, each NSE value reported was
the average of three NSE values from three simulations using three different random seeds.
The seven continuous regions used to divide up basins for the PUR test are outlined and

numbered in the PUR test maps.

Our most diverse ensemble, (LSTM + §HBV)123, + LSTMT*Y! achieved a median NSE
value of ~0.83, surpassing the ~0.82 benchmark set by LSTM™UY¥ (Table D4). This
advancement was achieved through random seed variation and cross-model-type ensembling.
The performance of (LSTM + SHBV)'?3 ensemble proved more robust than LSTM™* | with

123

only a slight boost when we incorporated random seeds, i.e., (LSTM + 6HBV);z54. Notably,

the derived (LSTM + SHBV)123, ensemble outperformed LSTM?' across almost all basins
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410  (Figure 4). Further incorporation of LSTM™* into this framework, especially when using
411  multiple random seeds, (LSTM + SHBV)!23; + LSTMI™Ut | vyielded the best overall
412 performance. Here, the margin over the previous benchmark was small in the temporal test.
413  However, as we will show in sect. 3.2, the previous benchmark, LSTM, S’;‘Zé”, lacked robustness,
414  exhibited greater deficiencies in spatial generalization, and negatively impacted ensemble
415  simulations.

416 When we changed the number of random seeds from 3 to 10, we found that although all
’417 model and ensemble performances slightly increased, -the gaps between them did not change
418  much (Figure 5 and Table D5). In particular, the gap between (LSTM + SHBV)123, +

419 LSTMMUH and (LSTM + SHBV)1Z, or LSTM™UH remained unchanged. This indicates that

“20  the benefits from more random seeds rapidly become marginal, and our results based on 3

#21  random seeds were sufficiently robust. For LSTMs alone, different random seeds displayed

M22  higher variation, and ensembling them led to greater improvement than ensembling

U23  (LSTM + §HBV)'?3_with additional random seeds. It was noteworthy that while the

424 (LSTM + 6HBV)'?® ensemble generally showed the lowest RMSE values, it did not always
425  show the best high flow performance, as indicated by highRMSE (Tables D1-D4). After
426  incorporating the LSTMIY! variant into(LSTM + SHBV)123, + LSTMIY!, overall RMSE
427  and highRMSE both improved. Nevertheless, this ensemble did not always obtain the best
428  values in other metrics like low flow (lowRMSE) and requires further improvement.

429
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(with “seed”) denote the results with 10 random seeds while the corresponding dashed and
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435  translucent lines denote the performances of their individual members each based on one
436  random seed.

437

438  3.2. Spatial generalization

439 It is clear that cross-model-type ensembling and the incorporation of SHBV significantly
440  improved prediction in ungauged basins (PUB) or regions (PUR), mitigating the difficulty of
441  spatial generalization (Figure 2b - 2c). In particular, the previous record-holder for temporal
442 test performance, LSTMT¥Y incurred large drops in the PUB and PUR tests, once again
443  reminding us of the limitations of LSTM in spatial generalization. Given the same forcings,
444  5HBV-only individual simulations or ensembles consistently outperformed LSTM-only
445  counterparts in the PUR test. Furthermore, adding 6HBV to the same-model-type LSTM
446  ensembles improved median NSE by 0.02-0.03 for PUB. The role of SHBV became even more
447  prominent in the harder PUR tests, with an increased gap (0.04-0.07), e.g., LSTM!?? (median
448  NSE ~0.656) and (LSTM + §HBV)123 (median NSE ~0.701). The increased significance of
449  SHBV is also illustrated by the optimized weights shown in Figure E1-The-weights-are-, which
450  were estimated vtausing a genetic algorithm using thewith streamflow observations duringfrom
AS1  the test periods. Here-the-estimatedThese weights are presented solely used-to displayillustrate

U52  the relative contributions of the different ensemble components. The significantly different

453  spatial distribution patterns of these weights among different test scenarios also indicate the
454  differences among temporal, PUB, and PUR tests (Figures E2-E3). The performance of
455 (LSTM + 6HBV)'?? improved compared to LSTM™*! whether or not we employed multiple
456  random seeds to form an ensemble. As such, we can conclude that the inclusion of a
457  differentiable process-based model like SHBV in an ensemble is a systematic way to reduce
458  therisks of failed generalizations of LSTM.

459 Utilizing a cross-model-type ensemble led to widespread improvements over LSTM-only

’460 ensembles, with the exception of a few scattered basins for each temporal -(Figure 4-a2), PUB
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461  (Figure 4-b2), and PUR (Figure 4-c2) test. The most significant improvements due to the
462  ensemble were concentrated on the center of the Great Plains along with the midwestern US,
463  while the eastern US was moderately improved, suggesting data uncertainty is a larger issue in
464  the central and midwestern US. The Great Plains have historically had poor performance for
465  all kinds of models (Mai et al., 2022) and even the ensemble model had NSE values of only
466  0.3-0.4 for many of the basins there, although this still marked significant improvements over
467  LSTM! (Figure 4-a2, -b2, -c2). Some western basin NSE values were elevated by more than
468  0.15 for the temporal test (Figure 4-a2) and even more for PUB and PUR. Meteorological
169  stations are generally sparse on the Great Plains, and an ensemble seems to be an effective way
470  to leverage the different forcing datasets that are available. The poor performances in some
A71  basins highlight some remaining deficiencies in current models, which clearly cannot fully

472  consider the heterogeneities of different basins; thus, multiscale formulations that resolve such

173  heterogeneities may have advantages (Seng-etal;2024a)(Song et al., 2024a).

474 To investigate why ensembles outperformed single-model, single-forcing approaches, we
475  compared their temporal, PUB, and PUR test simulation time series against observations for
476 531 basins (Figure 6). Analysis of averaged hydrological year data revealed that while
477  individual ensemble members using single-source forcing datasets performed similarly for
478  easily simulated periods, they showed significant divergence during challenging periods,
479  particularly peak flows. This divergence stems from distinct systematic errors inherent to
480  different model types and forcing datasets. Notably, LSTM-based simulations alone proved

81 insufficient in generating adequate spread to capture these divergent points. A-key-finding-was

82

83 ad—By averaging individual model outputs

484  and stabilizing uncertainties, ensemble simulations achieved effective and robust performance

485  across all conditions, which can be shown via the metric highRMSE and lowRMSE values in
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U86  Tables D1-D4. -This highlights the critical importance of comprehensive training for each

87  ensemble member, including diverse forcing inputs, full-period model calibration, and rigorous

U88  hyperparameter tuning, to enablethedevelopment-of-ensure that each member develops

K89  distinct characteristies—n-theirsimulation behaviors. These differences allow the ensemble to

H90  better represent a range of hydrological responses, particularly under extreme or uncertain

1ol conditions. By capturing complementary strengths and compensating for individual

92  weaknesses, such well-trained ensemble members collectively enhance the robustness and

“93  accuracy of streamflow simulations;ultimately-enhaneingensemble-performance.
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Figure 6. Comparisons between multi-basin-averaged streamflow observations and
simulations across 531 basins. The time series points are displayed at four-day intervals for

clarity and conciseness._Ensemble members based on the same model (LSTM or dHBV) but

driven by different forcing datasets are shown in the same color to highlight the differences

between models more clearly.
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3.3 Ensemble variability and robustness analysis Formatted: Justified, Indent: First line: 0.33

Although SHBV (median spread 0.61) exhibits lower spreads than LSTM (mean spread

0.72), their combination increases the ensemble spreads, thereby enhancing diversity (Figure

7). This pattern holds across the temporal, PUB, and PUR tests. Ensemble effectiveness

depends on the diversity of model behaviors and their distinct error characteristics.

Consequently, larger spreads contribute to greater ensemble benefits. Figure D3 further

demonstrates that SHBV+LSTM exhibits larger spreads than LSTM in most basins.
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509
510  Figure 7. Spread values (Table C2) of each model for LSTM, 0HBV, and LSTM + 0HBYV due

511 to different meteorological forcings and random seeds across temporal, PUB, and PUR tests.

512

513 As the warming signal is already clear across most basins under any forcing across the

14  periods of simulation (Figure D4), the models’ strong performance in the temporal test suggests

515  decent extrapolation capability under warming scenarios. It is often questioned whether data-

516  driven models like LSTM lose accuracy under stronger climate drift, but no substantially

517  warmed dataset is available to test this. Benchmarks suggest LSTM captures 15-year trends

518  well in temporal tests, but less so in data-sparse scenarios (Feng et al., 2023b). Introducing a

519  10% precipitation perturbation (multiplying precipitation by 1.1) slightly reduced performance

520  for both models as expected (Figures D5a and D5b), but ensemble benefits remained robust

521 across models despite the perturbation.

522 Training sample size, dynamic parameter choices, and lookback windows all have limited

523  impact on our conclusions. SHBV shows limited sensitivity to sample size, with similar results

524  when trained on 531 versus 671 basins (Figure D5¢). Regarding parameter uncertainties, fixing

525  one HBV parameter (k) as static increased structural errors and reduced performance (Figure

526  DS5d), yet ensemble benefits remained robust. For LSTM., alternative window sizes of 182 and
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730 days were tested, with the default 365-day window vielding optimal performance (Figure

D5e). Importantly, variations in the lookback window had only minor effects on model

performance, underscoring the robustness of ensemble benefits.

3.4. Further discussion

Based on our results, we identified several avenues for future research-directions. First,
while we have explored various weighting strategies and found that averaging yields the best
performance yet, we believe that dynamic or adaptive weighting schemes could further enhance
performance in future studies. It is also demonstrated by Table E1 that estimated uneven
weights can significantly improve simulation performance. Moreover, within specific basins,
the estimated weights of different components are often highly imbalanced, as evidenced by
the spatial distribution of optimized weights (Figures E2-E3). Some potential feasible ways
include using the simulations from these individual-individually-trained models as inputs of a
data-driven model (Solanki et al., 2025), and making the weight estimation and the ensemble
member training simultaneously.

-Both LSTM and SHBV models exhibit limitations in regions with significant
anthropogenic impacts like dam presence, as well as arid climatic and significantly

heterogeneous geological conditions. These regions are mainly located in the midwestern and

western CONUS. where high evaporation conditions (Heidari et al., 2020, Figure 2) and

numerous dams (Ryan Bellmore et al., 2017, Figure 1) coincide with complex water use

processes (Wada et al., 2016, Figure 11) that current models cannot simulate well. Together,

these factors suggest that anthropogenic influence is likely an important driver of poor model

performance. Further improvements may include incorporating additional data that capture

these factors like capacity-to-runoff ratio (Ouyang—et-al;—202H(Ouyang et al., 2021) or

integrating specialized modules, such as reservoirs (Hanazaki et al., 2022; West et al., 2025).
Compared with LSTM, dHBV is more sensitive to precipitation biases. For example, the
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differences between SHBV simulations under different forcing datasets were generally larger
than those for LSTM, and dHBV using the Daymet forcing dataset showed largely better
performance than with the other two forcing datasets, which indicates that SHBV may not be
able to fit different forcing datasets well. Therefore, many potential structural optimizations
can be implemented to improve SHBV. Our analysis provided corroborating evidence that
forcing error is an important reason why LSTM can outperform 6HBYV in the temporal test for
some basins, although such patterns may not generalize well in space. A meteorological forcing

data correction module can be developed in the future to account for timing and magnitude

errors in precipitation. Mereever,—ensemble—simulations—may—face—challenges—when

computational pewerEnsemble simulations may face challenges when computational resources

are constrained, particularly for large-scale or real-time applications. Nevertheless, we remain

optimistic about overcoming these challenges due to several promising solutions. These

include tailoring the hydrological model by simplifying less relevant components to specific

simulation objectives (Clark et al., 2015; Kraft et al., 2022) and cloud-based computing

infrastructures that offer scalable, on-demand resource allocation (He et al., 2024; Leube et al.,

2013). Importantly, the majority of computational costs are incurred during model training. In

practice, ensemble members are typically pre-trained by different research or application

groups (Bodnar et al., 2025; Nearing et al., 2024; Song et al., 2025a), enabling direct reuse of

these well-trained models and significantly improving computational efficiency.,
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For this work, we did not create a SHBV™! model (in the same vein as LSTM™!%) using
all forcings as an input to a single model, since a similar experiment has already been conducted

by Sawadekar et al. (2025). We also did not examine “seed” combinations of a SHBV™!!i a5
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we believed they would not result in a significant performance boost (unlike that seen with
LSTM™!) because LSTM has high variability and low bias, while SHBV has lower variance
and potentially higher bias. As a result, random seeds would likely not create large enough
perturbations for SHBV and wouldn’t bring the benefits seen with LSTM™Y!, To achieve an
equivalent perturbation level for SHBV, it may be necessary to incorporate multiple distinct

hydrological models, such as SAC-SMA, PRMS, and GRA4J, similar to the approach

implemented in the Framework for Understanding Structural Errors (FUSE) (Clark et al., 2008).

Work is ongoing to create a combination of a series of differentiable process-based models,
which is expected to produce a further improved ensemble with great interpretability. Given
the success of cross-model-type ensembles shown in this work, we also encourage further

exploration of ensemble simulations involving models with other distinct mechanisms.

4. Summary and Ceneclusionsconclusions,
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This study comprehensively analyzes ensemble combinations of two advanced model
types (LSTM and SHBV), each with distinct mechanisms, for streamflow simulation across
531 basins in the US. Three meteorological forcing datasets (Daymet, NLDAS, and Maurer)
are employed to fully capture the characteristics of the two models;and-theirapphieations-in

two-different-ways-are-alse-tested-. Their applications are also tested in two distinct ways: (1)

by feeding all diverse forcing datasets simultaneously into a single LSTM model, and (2) by

ensembling the outputs of multiple LSTM models, each trained separately using a single

forcing dataset. The performance of ensemble simulations was evaluated under three distinct
testing scenarios (temporal, PUB, and PUR tests), surpassing the previous highest
performances. Our findings enhance the understanding of how to effectively utilize diverse
model types and multi-source datasets to improve streamflow simulations. The principal

conclusions are:
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’603 (1) Cross-model-type ensembles (LSTM+SHBV) consistently outperformed single-<——| Formatted: Indent: Hanging: 0.27", Outline numbered +
Level: 1 + Numbering Style: 1,2, 3, ... + Startat: 1 +

604 model approaches across all test scenarios, setting new performance benchmarks on e A el e R L

605 the CAMELS dataset. These ensembles demonstrated the complementarity of data-

606 driven (LSTM) and physics-informed (SHBV) approaches in capturing diverse

607 hydrological behaviors.

’608 (2) Ensembling models trained on different forcing datasets proved more effective than

609 using multiple forcing datasets as simultaneous inputs to a single model. This suggests

610 that separate training allows each model to capture unique features contained in each

611 forcing dataset, which can then be effectively leveraged in the ensemble.

’612 (3) dHBYV provided significant benefits to ensemble simulations on spatial generalization.

613 Ensembling LSTM with SHBV showed increasing benefits as generalization

614 challenges increased, from temporal to spatial interpolation (PUB) to spatial

615 extrapolation (PUR) tests. This underscores the value of physics-informed constraints

616 in improving model transferability to ungauged basins and regions.

’617 (4) While ensemble methods significantly improved overall performance, they did not

618 fully mitigate consistent deficiencies in certain challenging areas (e.g., regions with

619 high dam density or heterogeneous hydrogeological conditions). This indicates areas

620 for future model development.

621 These findings have important implications for hydrological modeling and water

622  resources management. The improved accuracy and spatial generalization of our ensemble
623  approach can enhance streamflow predictions, benefiting water resources planning and
624  management, particularly in data-scarce regions. Our results also suggest that future
625  hydrological model development should focus on combining data-driven and physics-based
626  approaches to improve model generalizability across diverse conditions. The superior

627  performance of ensembling models with different forcing datasets over using merged forcings
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629
630
631

632

’633

as a single input highlights the risk of indiscriminately feeding all available data into one data-
driven model. While computational demands certainly require consideration, the potential
improvements in prediction accuracy offer significant value for both research and operational
applications. Future work should focus on refining these ensemble techniques, addressing
model limitations in challenging regions, and exploring ensemble implementation in

operational settings.

35

< ‘[ Formatted: Header




635

636

637

638

639

640

641

642

043

644

645

646

0647

048

649

650

651

052

653

0654

655

656

657

‘—‘—"{ Formatted: Header

/{ Formatted: Font color: Auto

Author-eontributions /{ Formatted: Font color: Auto

Competinginterests /{ Formatted: Font color: Auto

#éﬂeﬂedﬁﬂ% /{ Formatted: Font color: Auto

36



0662

663

0664

065

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

0681

082

683

“—“{ Formatted: Header

/{ Formatted: Font color: Auto

37




684

685

686

687

688

689

690

691

692

693

0694

695

696

697

698

699

700

701

702

703

705

706

707

708

38

"-‘{ Formatted: Header




709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

"-‘{ Formatted: Header

39



734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

40

"-‘{ Formatted: Header




759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

41

"-‘{ Formatted: Header




784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

"-‘{ Formatted: Header

42



809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

"-‘{ Formatted: Header

43



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

44

"-‘{ Formatted: Header




859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

"-‘{ Formatted: Header

45



884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

000

001

"-‘{ Formatted: Header

46



| “+ ‘[ Formatted: Header

02  Appendix A: Detailed processes of HBV employed in this study. ///[ Formatted: Font color: Auto
03 The Hydrologiska ByransByrans Vattenbalansavdelning (HBV) model (Aghakouchak

904  and Habib, 2010; Beck et al., 2020; Bergstrom, 1976, 1992) is a simple but effective bucket-
905  type hydrologic model that simulates hydrologic variables including snow water equivalent,
906  soil water, groundwater storage, evapotranspiration, quick flow, baseflow, and total streamflow.
907 In the following texts, we describe these processes in detail by equations, in which uppercase
908 letters indicate state variables, and lowercase letters indicate model parameters. In general, the

909  water balance is developed based on Equation (S1).

EP—AE — Q; =SN+SM + UR + LR + LAKE (S1) +"*"*"{ Formatted Table

910  where EP is effective precipitation, AE is the actual evapotranspiration, Q, is the total
911 simulated runoff, SN is snow, SM is soil water storage, UR is the upper reservoir water level,
912 LR is the lower reservoir water level, and LAKE is the lake level (omitted in this study). First,
913  EP is separated into liquid (RN) and solid (SN) components based on the temperature (7)
914  relative to the threshold temperature (#/) as

RN =EPIifT >tt (S2) *"*“*"‘[ Formatted Table

SN=EPifT<tt (S3)
15 Snow (SN) accumulates in the snowpack (SNP), while the snowmelt (SNM) is calculated using
916  a temperature-dependent melt rate (cfin). The snowmelt (SNM) is limited to the available
917  snowpack (SNP), and any excess melt contributes to meltwater (MW) as

SNP = SNP + SN (S4) *"*“*"‘[ Formatted Table
SNP cfm- (T —tt) = SNP
SNM ={cfm-(T—tt) T =tt,cfm- (T —tt) <SNP (85)
0 T <tt
MW = MW + SNM (S6)
SNP = SNP — SNM (§7)

918  Some of this meltwater (MW) refreezes based on a refreezing parameter (cfi) and the
919  temperature difference from the threshold, returning to the snowpack (SNP). The amount of
920  refrozen water is labeled as FRZ.

Mw cfr-cfm-(tt —T) = MW
RFZ =Jcfr-cfm-(tt—T) T <ttcfr-cfm-(tt—T) <MW (S8) <~ Formatted Table
0 T=>tt
SNP = SNP + RFZ (S9)
MW = MW — RFZ (S10)

921  The remaining meltwater (M) that exceeds the snowpack's holding capacity (cwh) contributes
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922 to soil infiltration (/F), and the rest remains in the meltwater (MW) storage as

IF = {MW - C\a/h * SNP %% : Exz I gl]:]/i z 8 (Sl 1) $_,,..7._[ Formatted Table
MW = MW — IF (S12)

23 The fraction of soil moisture relative to the field capacity (fc) determines the soil wetness,
924  which modulates the amount of water recharged into the soil (SP). Then soil moisture (SM) is
925  updated based on the infiltration of meltwater (/F), rain (RN), and the amount of recharged
926  water (SP) as

SM\F
SP = <f_) . ([F + RN) (813) *"*“*"{ Formatted Table
c
SM = SM + IF + RN — SP (S14)

927  The excess water, above the field capacity (IF,;,), is calculated and subsequently removed from

928  the soil moisture storage as

SM — fc if SM = fc

IFgir = { 0 if SM < fc (S15) *"*“*"‘[ Formatted Table

SM = SM — IFy;, (S16)

929  Actual evapotranspiration (4E) is determined by an evaporation factor (PEC), which depends
930  on the soil moisture, a shape parameter (1), a parameter (/p), and field capacity (fc) for
931  evapotranspiration. This factor limits the actual evapotranspiration (4E) to both the potential

932  evapotranspiration (PE) and the available soil moisture.

A A
{a;ﬁ) ifOSQ;xJ <1

A
PEC = 4‘ 0 ifS (lpsj\jfc) <0 (817) *"*“*"‘[ Formatted Table
| AL A>1
\ 75 (5re) 2
_ (PE-PEC if SM = PE - PEC
AE_{ SM if SM < PE - PEC (S18)
SM = SM — AE (S19)

033  Capillary rise (CP) from the lower soil zone (SLZ)- is governed by a parameter (c), which
934  determines the amount of water moving upward based on the soil moisture content. This
935  capillary flow replenishes the soil moisture, while groundwater interactions occur through

936  recharge processes in the upper (SUZ) and lower (SLZ) groundwater zones.
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siz-(1 SM iFsLz>c-SLz - (1 SM \ / Formatted: Font color: Auto
LC . ' (A _F) lfA =¢ N ' ( _“F) | [Formatted: Font color: Auto
\[ Formatted: Font color: Auto
SM = SM +CP (SZI) Formatted: Font color: Auto
SLZ — CP if SLZ = CP \ Formatted: Font color: Auto

SLZ = { . $22) | :

0 if SLZ <CP (522) \ \ \{ Formatted: Font color: Auto

\
Excess recharge (SP and IFy;,) from the soil enters the upper zone, where it either percolates \ 1\ [ Formatted: Font color: Auto

to the lower zone (PERC) based on a constant rate (prc) or contributes to direct runoff (Q,)

when it exceeds the upper zone threshold (uz/). The generated flow is modeled using

[ Formatted:

: Font color: Auto

: Font color: Auto

o0 JC 0 0 U U U U 0 U U U

parameters (kq, kq, k;) governing flow from the upper and lower zones. Each of these flows k\{ Formattedf E :zz 2:21 izz
contributes to runoff (Q,, @1, @), and their respective contributions to streamflow (Q;) are \\:\\‘\{ Formatte d; Font Color; i
modeled over time. \\\ [ Formatted Table
SUZ = SUZ + SP + IFay (529 \} hormated: Fortcolor At
Ponc= {5z i suz < N —
SUZ = SUZ — PERC (S25) \\{ Formatted: Font color: Auto
k- (SUZ—uzl) if SUZ > uzl Formatted: Font colorf Auto
Qo = { 0 if SUZ < uzl (S26) Formatted: Font color: Auto
SUZ = SUZ — Q, (827
Q, =SUZ -k, (S28)
SUZ =SUZ - Q, (829)
SLZ = SLZ + PERC (S30)
0, = SLZ -k, (S31)
SLZ = SLZ — Q, (832)
Qe=0Qo+0:+0Q; (833)

Finally, a routing module (Feng et al., 2022) is used to process Q; to produce the final
streamflow output (Q;). This module with two parameters (8,, 6;) assumes a gamma function

for the unit hydrograph and convolves the unit hydrograph with the runoff as,

tmax

Q; = f £(s: 0,,6,) - Q(t — 5)ds (S34)
0
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Appendix B: Illustrated differences among the three meteorological forcing datasets
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954  Figure Bl. Probability density distributions of precipitation and temperature across three
955 meteorological forcing datasets.
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961  three meteorological forcing datasets.
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Appendix C: Details of model inputs, ensemble frameworks, and evaluations
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Table C1. Full names for the abbreviations of dynamic data (all but streamflow are “forcings”)

and static basin attributes used as model inputs_and outputs. All variables and their values are

provided in the CAMELS dataset (Addor et al., 2017) except for the NLDAS and Maurer daily

temperature extrema, which are from Kratzert et al. (2021). Potential evapotranspiration and
normalized streamflow were calculated for-the-prposes-eofin this work, using CAMELS data.

The number in parentheses specifies model usage: 1 denotes use in the LSTM model, and 2

denotes use in the SHBV model.

55

Type Abbreviation Full name Unit «—— { Formatted Table
Dynamic prep.(1.2) Precipitation mm/day
data Potential evapotranspiration (calculated in
pet (2) this work using the Hargreaves equation mm/day
and CAMELS data)
tmean (2) Mean air temperature °C
tmax (1) Maximum air temperature °C
tmin_(1) Minimum air temperature °C
dayt Day-longth siday
srad_(1) Shortwave radiation W/m?
vp.(1) Water vapor pressure pa
q_vol Volumetric streamflow ft3/s
w(2) Streamflow normalized by basin area mm/day
(q_vol / area_gages?2)
Static p_mean (1.2) Mean daily precipitation mm/day
basin pet_mean (1.2) Mean daily potential evapotranspiration mm/day
attributes p_seasonality (2) Seasonality and timing of precipitation -
frac_snow (1.2) Fraction of precipitation falling as snow -
aridity (1) Rate of mean values of potential )
evapotranspiration and precipitation
high prec freq (1.2) Frequency of high precipitation days days/year
Average duration of high precipitation
high prec dur (1.2) days
events
low_prec_freq (1.2) Frequency of dry days days/year
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low_prec _dur (1.2)

Average duration of dry periods

days

elev_mean (1.2)

Catchment mean elevation

slope_mean (1.2)

Catchment mean slope

m/km

area_gages2 (1.2)

Catchment area (GAGES-II estimate)

frac_forest (1.2)

Fraction of catchment area having land

cover identified as forest

lai_max (1.2)

Maximum monthly mean of the leaf area

index

lai_diff (1.2)

Difference between the maximum and
minimum monthly mean of the leaf area

index

gvf max (1.2)

Maximum monthly mean of the green

vegetation

gvf diff (1.2)

Difference between the maximum and
minimum monthly mean of the green

vegetation fraction

dom land cover frac

@

Fraction of the catchment area associated

with the dominant land cover

dom_land cover (2)

Dominant land cover type

root_depth_50 (2)

Root depth at 50" percentile, extracted
from a root depth distribution based on the
International Geosphere-Biosphere

Programme (IGBP) land cover

soil_depth_pelletier

Depth to bedrock
(1.2)
soil_depth_statsgso )
Soil depth
(1.2)
soil_porosity (1.2) Volumetric soil porosity

soil_conductivity

1.2

Saturated hydraulic conductivity

cm/hr

max_water_content

(1.2)

Maximum water content
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sand_frac (1.2)

Fraction of soil which is sand

silt_frac (1,2)

Fraction of soil which is silt

clay frac (1.2)

Fraction of soil which is clay

geol class Ist (2)

Most common geologic class in the

catchment basin

geol class_1st frac

2

Fraction of the catchment area associated

with its most common geologic class

geol _class 2nd (2)

Second most common geologic class in the

catchment basin

geol class 2nd _frac

Fraction of the catchment area associated

2) with its 2nd most common geologic class
carbonate rocks frac | Fraction of the catchment area as carbonate
(1.2) sedimentary rocks
geol_porosity (2) Subsurface porosity
geol_p;rrzablhty Subsurface permeability 2
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: : Intermediate
Simulation Variable Output

: without seed

\

_— —4 Average _—— NSE : with seed

074

Intermediate

Simulation Variable Output

: without seed

976  Figure Cl. Ensemble frameworks to generate metrics for ensembles named without (solid

977  arrows) and with (dashed arrows) “seed” as a subscript.
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978 Table C2. Evaluation metrics.

Statistic Equation* Range Optimal Value Inserted Cells
Inserted Cells
n (0; —S.)?
NSE NSE=1— ;;1(;1)2 -0t0 1.0 1.0
i=1(0; — 1o)
KGE=1—
KGE Jor=D2+ B -1+ - 1)?, -010 1.0 1.0
_ ks . _CVs _ os/ks
b= #o’y CVp  oo/ko
n 0. —S.
PBIAS % x 100 -0 t0 00 0.0
i=1 0;
1 n
RMSE _Z(Oi —5)? 0.0 to o 0.0
n
=1
1 1 n e
spread e (Sij — Us,i)? 0.0to o None
i=1j=1

79 *Sis a streamflow simulation; O is the corresponding observation; n is the number of total S

9

|980 or Oy e is the number of ensemble members: r is the linear Pearson correlation between S and O;
981 B is the mean bias; and y is the variability bias. The mean and standard deviation of
982  simulations are denoted as us and os, respectively, and ugy and oy are the mean and standard

983  deviation of the observations.
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Appendix D: Additional details on model performance ///[ Formatted: Font color: Auto
1.0 1.0 1.0
(a) temperal CORR = 0.82 (b) PUB CORR = 0.31 (c) PUR CORR = 0.31
-—<> 0.8 - p value = 0.000 0.8 1B p value = 0000 0.8 ne78 p value = 0.000
m . . .
I . . - .
I os 3 0.6 0.6 - a
+ Lot $F .® “e o oo
o 0.4 PR 0.4 . .| o0a P
"‘> o & .‘ . ®ho e o oz
m 02 B O Jmmdnd 0.2 : - 0.2 ?‘v‘ ".’..'.. e .
': e |° o S ry g
I - . jo° L "
@ 00 e —ba 0.0 ies 0.0 3 et g AT =37
-0.2 —0.2 e = —0.2 . ° >
0.00 025 0.50 0.75 1.00 0.00 025 050 0.75 1.00 0.00 0.25 050 0.75 1.00
| R | || | |
0.00 1.82 3.63 545 7.26 0.00 229 459 6.8 9.18 0.00 225 450 6.75 9.00
6HBV! RMSEneg=1.25 SHBV! RMSE peg=1.42 6HBV! RMSE eg=1.55
-LSTM!+6HBV!
1.0 1.0 1.0
(a) temperal CORR = 0.996 (b) PUB CORR = 0.74 (c) PUR CORR = 0.80
N> 0.8 n=203 p value = 0000 0.8 k142 p value = 0000 0.8 n=103 , » p \:alue =.0 00
a o . o e .
T 06 . 0.6 S 0.6 .
0 o & . P . s
m 04 -t 0.4 " P 0.4 .
L~ & i - y . ° ? y e o
5 0.2 ST 0.2 B 0.2 S .
‘% .' Lo T e .
0:0 n=116 | 90 5 . n=1a7 | 001 n=94
-0.2 :

0.00 0.25 0.50 0.75 1.00-_0'2 0.00 0.25 0.50 0.75 1.060'2 0.00 0.25 0.50 0.75 1.00

T T | S |
0.00 022 0.45 0.67 0.89 0.00 0.22 0.44 0.66 0.88 0.00 021 0.42 062 0.83
6HBV2 NSE yeq=0.70 SHBV2 NSE eq=0.65 SHBV2 NSE peg=0.51

LSTMZ2-6HBV?

Figure D1. Scatter plots comparing the performance differences between hydrological models-
for the basins where LSTM outperformed OHBV (the basins where SHBV outperformed are not
shown in this plot). The x-axis represents the RMSENSE differences between LSTMEM? and
SHBVESHBV? ( LSTMEM? - SHBVESHBV? ), while the y-axis shows the RMSENSE
differences between SHBV'?3 and SHBVESHBV? (SHBV?3-SHBVE SHBV?). Points are
color-coded according to the RMSENSE values of SHBVESHBV?. The correlation coefficient

(CORR) and p values between the x-axis values and the y-axis values, along with the median

NSE veluesvalue of SHBVE(RMSE—26HBV? (NSE,,., ) on these basins, are also noted.
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Figure D2. Scatter plots comparing the performance differences between hydrological models

for the basins where LSTM outperformed 0HBV (the basins where JHBV outperformed are not

shown in_this plot). The x-axis represents the NSE differences between LSTM? and SHBV 3
(LSTM?3 - SHBV3), while the y-axis shows the NSE differences between SHBV %3 and SHBV 3
(5HBV123;5HBV3). Points _are color-coded according to the NSE values of SHBV 3. The

correlation coefficient (CORR) and p values between the x-axis values and the v-axis values,

along with the median NSE value 0f5HBV3_(NSEmed) on these basins, are also noted.
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Figure D3. Spatial distributions of model spread values increase from OHBV and LSTM to the

LSTM+0HBYV ensemble across temporal, PUB, and PUR tests.
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Figure D4. Boxplot of relative temperature differences between the test and training periods,

calculated as (Test — Training) / Training. Each box represents the distribution of normalized

temperature changes across basins for a specific meteorological forcing dataset: Daymet,

NLDAS, and Maurer. Positive values indicate warming in the test period relative to the training

period.
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Figure D5. Simulation performance (NSE) under the temporal test: (a) LSTM model with and

without a 10% precipitation error (precipitation % 1.1); (b) SHBV model with and without a
10% precipitation error; (c) O0HBV model trained on 671 versus 531 basins; (d) 0HBV model

with 3 versus 2 dynamic parameters; (e¢) OHBV model using time steps of 365, 182, and 730

davs. Individual and ensemble groups are distinguished along the x-axis. Ensemble benefits

are indicated by the gap between columns of the same color within each panel—columns 1-7

correspond_to_individual LSTM or 0HBV groups, and the last two columns correspond to

LSTM+0HBYV ensembles.
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1043 Table D1. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high
1044 (highRMSE), and middle (midRMSE) flows based on 531 basins under the temporal test. The

1045 values are the mean of three simulations run with different random seeds.

Temporal Number Daymet NLDAS Maurer
NSE 0.735639 | 0.736301 | 0.717337
KGE 0.789375 | 0.782555 | 0.760575
RMSE 1.21088 1.19847 1.27723
LSTM PBIAS 4.04818 5.99486 1.58911
lowRMSE | 0.0596913 | 0.0602381 | 0.0545577
highRMSE | 2.70508 2.89684 2.97028
midRMSE | 0.196039 | 0.210022 | 0.219922
NSE 07446417 | 0497767 | 0.7294427
39688 1903 27669
0.7695227 | 07339837 | 0.7604537
KGE
7033 30753 62022
11786418 | 1.2686426 | 1.2208923
RMSE
752 239 193
SHBV
4-6589835. - 34474265
PBIAS 07898 0.2289251 263
4449
0.6598199 | 0.6646098 | 0.0627206
lowRMSE
060906 063581 063466
highRMSE | 2.6948684 | 34549513 | 2.7462968
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1046
1047
1048

79 (U8 45
0.2287312 | 0.2450442 | 0.23067252
midRMSE
26595 45242 30125
NSE 078787147 | 0.7931687 | 0.7946377
87545 94053 90903
0.7963227 | 0.7836127 | 0.7847547
KGE
94412 8383 86854
1.0760407 | 1.6674607 | 1.6692107
RMSE
77 16 141
48257259 | 3.0845330 | 3.19841445
LSTM+6HBV PBIAS
065 33 501
0.0599687 | 0.0593688 | 0.0541188
lowRMSE
059955 059565 054838
2.6966570 | 2.8224588 | 2.6942569
highRMSE
216 Sl 633
0.2042612 | 0.2184982 | 0.2143252
midRMSE
0394 14726 12514

68

"{ Formatted: Header




| e *‘[ Formatted: Header

1049  Table DI (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low
1050  (lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the
1051  temporal test. The values are the mean of three simulations run with different random seeds.
1
Temporal Number Daymet+NLDAS | Daymet+Maurer | NLDAS+Maurer |<+— 75;[ Formatted Table
NSE 0.781275 0.791158 0.792144 0.808176
KGE 0.800955 0.795026 0.794441 0.803476
RMSE 1.09103 1.06374 1.06701 1.01395
LST™M PBIAS 5.17159 3.34362 4.5305 4.48263
lowRMSE 0.0636155 0.0582563 0.0566306 0.0613625
highRMSE 2.70218 2.71366 2.78962 2.67803
midRMSE 0.194849 0.199809 0.206653 0.197469
NSE 078618786562 | 0.77093977012 | 0777654776938 | 0.79445579
4796
KGE 0772697773732 | 0776781778557 | 0.767756768854 | 0.77669277
834
1.6798408362 14267412584 14687810875 165808061
RMSE
18
SHBV
1.8596291507 42627828194 +791342.03584 | 2.59063710
PBIAS
21
0.6627661061667 | 0.6597778060679 | 0.6623739062765 | 0.06+78630
lowRMSE
61539
2.9427493961 2730547394 28758388758 | 2.84544849
highRMSE o
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0.231981230576 | 0.219738220743 | 0.228451230272 | 0.23043622
midRMSE
8375
NSE 0.8108811825 | 0.816476809964 | 0.812144811316 | 0.84866818
907
KGE 0.79586797564 | 0796202797635 | 0.78608878735 | 0.79425779
4936
1.646201938 1.6+67601755 1.62515031 1.66077000
RMSE
67
44307714594 4.6809623333 32645819652 | 3.89728809
LSTM+SHBV | PBIAS .
0.6599350603 | 0.0575384058022 | 0.0558506057882 | 0.65848690
lowRMSE
59221
27613375275 26864267122 27824281393 | 2.74392706
highRMSE
06
0.208476207637 | 0.207764205965 | 0.243433213191 | 0.20858220
midRMSE o0
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1053 Table D2. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high
1054 (highRMSE), and middle (midRMSE) flows based on 531 basins under the PUB test. The values

1055  are the mean of three simulations run with different random seeds.

PUB Number Daymet | NLDAS | Maurer <~ Formatted Table

NSE 0.702636 | 0.695496 | 0.694156

KGE 0.693998 | 0.677438 0.6909

RMSE 1.31714 1.3394 1.34233

LST™M PBIAS 0.669018 | 0.283106 | 0.936582

lowRMSE | 0.087648 | 0.088393 | 0.086873

highRMSE 4.2852 4.49292 4.16042

midRMSE | 0.354458 | 0.364921 | 0.368124

NSE 0.706809 | 0.670636 | 0.682998

KGE 0.703137 | 0.66566 | 0.686912

RMSE 1.35541 1.41185 1.37942

SHBV PBIAS 1.49234 | -2.43395 [ 0.291966

lowRMSE | 0.0798196 | 0.0808967 | 0.0846775

highRMSE | 4.21648 4.49582 4.18003

midRMSE | 0.335159 | 0.351271 | 0.356903

LSTM+3HBV NSE 0.74227 | 0.723778 | 0.72202
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KGE 0.715931 | 0.690154 | 0.707292
RMSE 1.24887 1.278 1.26697
PBIAS 1.27863 | -0.599778 | 0.903464

lowRMSE | 0.0816748 | 0.0795686 | 0.0825691
highRMSE | 4.08432 4.23483 3.94929
midRMSE | 0.327459 | 0.33851 | 0.347169
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1059  Table D2 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low
1060  (lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the

1061  PUB test. The values are the mean of three simulations run with different random seeds.

PUB Number Daymet+NLDAS | Daymet+Maurer | NLDAS+Maurer +"*"A{ Formatlted Table
NSE 0.757853 0.749151 0.753136 0.768181
KGE 0.713319 0.720099 0.716497 0.727143
RMSE 1.18251 1.22254 1.19718 1.15026
LSTM PBIAS 0.320396 0.931656 0.766216 0.970047
lowRMSE 0.0875191 0.0864129 0.0835341 0.0874717
highRMSE 4.1296 4.06602 4.17217 4.0061
midRMSE 0.334683 0.349856 0.342819 0.333534
NSE 0.748916 0.734052 0.733955 0.757749
KGE 0.699768 0.714323 0.69436 0.714048
RMSE 1.26852 1.27637 1.27244 1.23229
SHBV PBIAS 0.0446112 1.212 -1.04135 0.201809
lowRMSE 0.0808293 0.0792486 0.0814476 0.0808359
highRMSE 4.19575 3.97788 4.21623 4.07419
midRMSE 0.311826 0.33668 0.339257 0.318165
LSTM+SHBV NSE 0.780625 0.764866 0.767761 0.785833
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KGE 0.719781 0.725373 0.715982 0.723972
RMSE 1.14924 1.17659 1.16881 1.13591
PBIAS 0.186062 0.881644 0.405548 0.565489

lowRMSE 0.0805946 0.0814251 0.0817114 0.0826379
highRMSE 3.97373 3.86834 3.88 3.91692
midRMSE 0.313708 0.324777 0.324089 0.323671
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1064  Table D3. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high
1065  (highRMSE), and middle (midRMSE) flows based on 531 basins under the PUR test. The values

1066  are the mean of three simulations run with different random seeds.

PUR Number Daymet | NLDAS | Maurer <~ Formatted Table

NSE 0.578365 | 0.546217 | 0.56164

KGE 0.557788 | 0.559986 | 0.567231

RMSE 1.59111 1.63626 1.5833

LSTM PBIAS -0.575328 | -2.77709 | -0.623183

lowRMSE | 0.124837 | 0.118971 | 0.118695

highRMSE | 5.42346 5.38886 5.05212

midRMSE | 0.498133 | 0.498442 | 0.471744

NSE 0.622278 | 0.592306 | 0.59161

KGE 0.638818 | 0.601338 | 0.620877

RMSE 1.57189 1.61191 1.63628

SHBV PBIAS 1.27223 -1.60075 1.62709

lowRMSE | 0.10142 | 0.102975 | 0.101075

highRMSE | 5.07706 5.16093 4.99602

midRMSE | 0.447879 | 0.474516 | 0.439697

LSTM+3HBV NSE 0.644398 | 0.618255 [ 0.635444
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KGE 0.627481 | 0.605237 | 0.615883
RMSE 1.46185 1.5153 1.48393
PBIAS -0.269697 | -0.719505 | 0.197859

lowRMSE | 0.105146 | 0.100944 | 0.106272
highRMSE | 4.95749 4.99478 4.78638
midRMSE | 0.431456 0.4575 0.426126
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Table D3 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low
(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the

PUR test. The values are the mean of three simulations run with different random seeds.

PUR Number Daymet+NLDAS | Daymet+Maurer | NLDAS+Maurer +"*"A{ Formatlted Table
NSE 0.634398 0.636369 0.626939 0.656228
KGE 0.59844 0.600371 0.605007 0.612858
RMSE 1.4434 1.43416 1.43009 1.38042
LSTM PBIAS -0.547128 -0.687947 -0.865748 -0.543918
lowRMSE 0.118989 0.120228 0.115004 0.117728
highRMSE 5.03277 5.02434 4.84415 4.74281
midRMSE 0.462923 0.455257 0.453912 0.449598
NSE 0.672839 0.644732 0.661231 0.684685
KGE 0.653841 0.65646 0.6515 0.66205
RMSE 1.43224 1.50803 1.48604 1.43376
SHBV PBIAS 0.564363 1.55134 -0.156553 0.956961
lowRMSE 0.0975783 0.0984076 0.100773 0.100807
highRMSE 4.83843 4.81176 4.72529 4.71255
midRMSE 0.447828 0.431252 0.433688 0.432018
LSTM+SHBV NSE 0.685032 0.680872 0.679321 0.700814
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KGE 0.638788 0.647826 0.646782 0.649999

RMSE 1.35303 1.3873 1.36795 1.3185

PBIAS -0.0150729 0.406127 -0.135091 -0.0232668
lowRMSE 0.103284 0.101814 0.104528 0.102916
highRMSE 4.80178 4.72583 4.70024 4.70713
midRMSE 0.426819 0.411727 0.41573 0.41081
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Table D4. Median NSE, KGE, RMSE, PBIAS, and RMSE values under low (lowRMSE), high
(highRMSE), and middle (midRMSE) flows based on 531 basins under the temporal, PUB, and

PUR tests of LSTM™  (LSTM + §HBV)'?% + LSTM™uit! |

(LSTM + SHBV)23,.

Test Metric | LSTM™uit (LSTM + OHBV)™ .
+ LSTM™t
NSE 0.797448 0.82321
KGE 0.811064 0.810248
RMSE 1.05987 0.983168
Temporal PBIAS 3.95241 4.08594
lowRMSE | 0.056221 0.05702
highRMSE 2.7089 2.58881
midRMSE | 0.183526 0.192442
NSE 0.750605 0.782727
KGE 0.71469 0.734731
RMSE 1.20586 1.11509
PUB PBIAS 0.475674 0.706777
lowRMSE | 0.0861127 0.0836
highRMSE | 4.13615 3.83009
midRMSE | 0.347562 0.326814

their “seed” version, and

““ ‘[ Formatted Table
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PUR

NSE 0.623755 0.68923
KGE 0.593757 0.633971
RMSE 1.47379 1.31221
PBIAS -2.6737 -1.38119
lowRMSE | 0.112434 0.107646
highRMSE | 4.98202 4.59232
midRMSE | 0.501807 0.436811
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Table D4 (continued). Median NSE, KGE, RMSE, PBIAS, and RMSE values under low
(lowRMSE), high (highRMSE), and middle (midRMSE) flows based on 531 basins under the
temporal, PUB, and PUR tests of LSTM™*% (LSTM + SHBV)'?3 + LSTM™% | their “seed”
version, and (LSTM + SHBV)23,.

(LSTM + SHBV)!23,
Test Metric | (LSTM + SHBV)1Z, | LSTMTY <——|-{ Formatted Table
+ LSTME

NSE 0.821444 0.81992 0.829385
KGE 0.795317 0.82078 0.812581
RMSE 0.99455 1.00908 0.967779
Temporal | PBIAS 3.99009 4.09469 4.08382
lowRMSE 0.059782 0.057346 0.057015
highRMSE 27279 2.62815 2.58384
midRMSE 0.209943 0.183656 0.195557
NSE 0.793673 0.781175 0.790921
KGE 0.726188 0.736191 0.739284
RMSE 1.12957 1.13079 1.09176
PUB PBIAS 0.370674 1.13671 0.869057
lowRMSE 0.083423 0.084038 0.085728
highRMSE 3.89363 3.93473 3.79505
midRMSE 0.323045 0.329772 0.325627
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PUR

NSE 0.705154 0.665723 0.701504
KGE 0.651538 0.614649 0.64373
RMSE 1.30377 1.3727 1.2851
PBIAS -0.283645 -2.74069 -1.39149
lowRMSE 0.100525 0.111229 0.108121
highRMSE 4.74889 4.88127 4.58344
midRMSE 0.406797 0.473783 0.432447

*"*“*“‘[ Formatted: Indent: First line: 0.33"
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Table D5. Median NSE values based on ten different random seeds during the temporal test.

Each number (1 through 10) represents metric values calculated for an individual simulation

based on only one random seed. “Seed” indicates metric values calculated by averages of these

ten simulations based on different random seeds, while “mean” denotes the average of metrics

from 1-10 individual simulations (visualized in Figure CI).

Number | LSTM™t | (LSTM + SHBV)23 | (LSTM + SHBV)'?3 4 LSTM™t
1 0.797742 | 0.818436 0.82315
2 0.795312 | 0.820188 0.823559
3 0.799291 | 0.818097 0.822922
4 0.796388 | 0.818251 0.821791
5 0.791192 | 0.818285 0.820132
6 0.795691 | 0.81966 0.823268
7 0.795912 | 0.821511 0.82352
8 0.796625 | 0.81831 0.825204
9 0.794062 | 0.804959 0.816497
10 0.796066 | 0.817122 0.82169
Seed 0.82425 0.822528 0.832197
Mean 0.795828 | 0.817482 0.822173

*"*“*"‘[ Formatted Table
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090 Appendix E: Intuitive visualization of the relative contributions of ensemble members /{Formatted: Font color: Auto
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091  based on optimized weights
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Figure E1. Weights of six components across 531 basins, estimated basin-by-basin using a
genetic algorithm based on streamflow observations during the test periods. The weights are

normalized by the maximum weight within each ensemble group. These weights are used

exclusively for qualitatively analyzing the relative contributions of different ensemble members,

with higher values indicating larger relative contributions.
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1102 Figure E2. Spatial distributions of weights of the LSTM and 6HBV models, estimated by a
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genetic algorithm based on streamflow observations during the test periods. The weights are
normalized by the maximum weight within each ensemble group. These weights are used
exclusively for qualitatively analyzing the relative contributions of different ensemble members,

with higher values indicating larger relative contributions.
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Figure E3. Spatial distributions of weights of the Daymet, NLDAS, and Maurer meteorological
forcing datasets, estimated by a genetic algorithm based on streamflow observations during
the test periods. The weights are normalized by the maximum weight within each ensemble

group. These weights are used exclusively for qualitatively analyzing the relative contributions
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of different ensemble members, with higher values indicating larger relative contributions.
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Table E1. Comparisons of metric values between averaged ensemble simulations and

optimized weighted simulations, estimated using a genetic algorithm based on streamflow

observations during the test periods. The results highlight the potential for further

improvements in ensemble simulations.

Temporal Averaged Optimized weighted
NSE LWWM 0.844303212
KGE ?_;—953—1—7-495@ 0.829996445
RMSE (5)994559982% 0.920954559
Temporal [pBIAS 3.999994594% 3.252278013
lowRMSE g_i%%m 0.057137161
highRMSE 2.727901237279 (2.451194907
idRMSE (3).29994%6—3% 0.183127162
NSE 6.793673 0.842396015
KGE 0.726188 0.79571295
RMSE 1.12957 0.987170488
PUB PBIAS 0.370674 1.023040859
lowRMSE 0.0834234 0.079807878
highRMSE 3.89363 3.030715903
midRMSE 0.323045 0.285110115
NSE 0.705154 0.790796063
PUR
KGE 0.651538 0.746396324
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RMSE 1.30377 1.13058149

PBIAS -0.283645 0.273698787
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127  Code and data availability /{ Formatted: Font color: Auto

128 The source codes and datasets utilized in this study are publicly accessible through the

129  following repositories: The SHBV modeling framework, including all computational scripts

130  and documentation, is hosted on Zenodo (https://doi.org/10.5281/zenodo.7091334) (Feng et al.,
131  2023a), with an updated version and comprehensive software release scheduled upon

132  manuscript acceptance. The implementation of the LSTM architecture is accessible through

133  Zenodo (https://doi.org/10.5281/zen0do.6326394) (Kratzert et al., 2022). The CAMELS

134  hydrometeorological dataset, which provides the foundational basin characteristics and time
135  series data used in our analysis, can be obtained via https://dx.doi.org/10.5065/D6MW2F4D

136  (Addor et al., 2017; Newman and Clark, 2014). The streamflow simulations produced in this

137 study will be made available on Zenodo upon acceptance of the manuscript.
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