Editor #

The manuscript has received two excellent reviews, both providing a positive assessment. The reviewers
are asking for a number of clarifications and additional detail in places, which should be considered
before publication.

We sincerely appreciate the editor’s positive assessment and the constructive suggestions from both
reviewers. In response, we have revised the manuscript accordingly, adding the requested clarifications
and additional details as suggested.

In addition to these revisions, we have adjusted the model results using more order-consistent random
seeds in the temporal tests. This change has almost no effect on model performance, further confirming
the stability of the ensemble benefits, but improves the logical consistency of the study.

Reviewer #1

General comments

This paper comprehensible evaluates the performance of different ensembles based on LSTM and HBV
models, and three different forcing datasets, across CAMELS catchments. The ensembles are evaluated in
terms of a temporal test, a prediction in ungauged basins test (PUB), and a prediction in ungauged
regions test (PUR). The main conclusion is that the data-driven LSTM and process-based HBV ensemble
improves NSE, particularly for PUB and PUR tests.

Overall, the manuscript is well-structured and clearly conveys its main point. Please find below some
comments and suggestions.

Thanks for the positive comments.

Specific comments

1. L150 and L240-L244: Please explicitly indicate which features (static and dynamic) are used by the
LSTM model or at least refer to Appendix C. Are static characteristics of the catchment also used during
the PUB and PUR tests? Is it the case that for PUB the model does not use previous streamflow
observations to generate the predictions? Or does PUB only refer to the model being tested at basins not
used during training?

Regarding the question “Please explicitly indicate which features (static and dynamic) are used by the
LSTM model or at least refer to Appendix C”, thanks for your suggestions. The static and dynamic
attributes for LSTM are utilized as the same as Kratzert's studies (Kratzert et al., 2022), as shown in Table
R1. We have revised Table C1 of the original manuscript to specify the inputs for LSTM and §6HBV,
respectively.

Regarding the question “Are static characteristics of the catchment also used during the PUB and PUR
tests?”, yes. These static characteristics of the catchment are also used during the PUB and PUR tests.



Regarding the question “/s it the case that for PUB the model does not use previous streamflow
observations to generate the predictions?”, yes. For all three kinds of tests, streamflow observations are
not included in the inputs and are only used to calibrate the model.
Regarding the question “does PUB only refer to the model being tested at basins not used during
training?” -- yes, exactly. As described in Section 2.5 of the manuscript, we first divided all basins into
10 subsets. The model was then trained and evaluated over 10 rounds, each time holding out one subset
for testing while using the remaining basins for training. After completing all rounds, the test results from
all basins were concatenated to evaluate overall performance. Therefore, in each round of evaluation, the
test basins were strictly excluded from the training process.

Table R1. Full names for the abbreviations of dynamic data (all but streamflow are “forcings™) and static
basin attributes used as the LSTM model inputs and outputs. All variables and their values are provided in
the CAMELS dataset (Addor et al., 2017) except for the NLDAS and Maurer daily temperature extrema,

which are from Kratzert et al. (2021).

Type Abbreviation Full name Unit
Dynamic prep Precipitation mm/day
forcings tmax Maximum air temperature °C
tmin Minimum air temperature °C
srad Shortwave radiation W/m?
vp Water vapor pressure pa
Streamflow normalized by basin area (q_vol /
1 area_gages2) mm/day
Static p_mean Mean daily precipitation mm/day
basin pet_mean Mean daily potential evapotranspiration mm/day
attributes frac_snow Fraction of precipitation falling as snow -
aridity Rate of mean values of potential )
evapotranspiration and precipitation
high_prec_freq Frequency of high precipitation days days/year
high_prec_dur Average duration of high precipitation events days
low_prec freq Frequency of dry days days/year
low prec dur Average duration of dry periods days
elev_mean Catchment mean elevation m
slope_mean Catchment mean slope m/km
area gages?2 Catchment area (GAGES-II estimate) km?

frac_forest

Fraction of catchment area having land cover

identified as forest




lai_max

Maximum monthly mean of the leaf area index

Difference between the maximum and

lai_diff o ) -
minimum monthly mean of the leaf area index
Maximum monthly mean of the green
gvf max ) -
vegetation
Difference between the maximum and
gvf diff minimum monthly mean of the green -
vegetation fraction

soil depth pelletier Depth to bedrock m
soil_depth_statsgso Soil depth m

soil_porosity Volumetric soil porosity -

soil_conductivity Saturated hydraulic conductivity cm/hr

max_water _content Maximum water content m

sand_frac Fraction of soil which is sand -

silt_frac Fraction of soil which is silt -

clay frac Fraction of soil which is clay -

Fraction of the catchment area as carbonate
carbonate rocks frac ) -
sedimentary rocks

geol permeability Subsurface permeability m?

2. Table 2: Is it possible to draw any conclusions about the skill of the models to extrapolate to a warmer
climate based on the temporal test? I assume that the period 1995-2010 is warmer than 1980-1995.

Thanks for the suggestions. We have compared the temperature changes from the training to the test
periods, as shown in Figure R1. The results show that most basins are getting warmer, and these models
can also get satisfactory performances, which indicates that these models can extrapolate at least modestly
their performances under a warmer climate. Note that it is an often asked question for purely data-driven
models like LSTM to lose accuracy if the drift is stronger. The issue is that there was a lack of a
“substantially warmed” real dataset to assess this behavior. Previous benchmarks suggest the 15-year-
scale trend to be accurately captured in the temporal test by LSTM, and more poorly captured for PUR
(Feng et al., 2023). We have added these discussions in Section 3.3 of the revised manuscript to describe
this finding.
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Figure R1. Boxplot of relative temperature differences between the test and training periods, calculated as
(Test — Training) / Training. Each box represents the distribution of normalized temperature changes
across basins for a specific meteorological forcing dataset: Daymet, NLDAS, and Maurer. Positive values

indicate warming in the test period relative to the training period.

3. Table 2: What would happen if you were to train HBV using only the same 53 1-basin subset as for the
LSTM instead of the 671 basins?

Thanks for the question. We tested this by conducting the temporal experiments using only the 531-basin
subset for the SHBV model. The results were largely similar to those obtained using all 671 basins shown
in Figures R2-R3, indicating that the impact of reducing the training set size is limited in this context. We
have incorporated some discussions about this in the revised manuscript.

We believe that training the SHBV model on the full 671-basin dataset is still beneficial, as the physical
constraints inherent in the model allow it to make more effective use of available data, even when data
quality is somewhat limited. That said, the added value from including the additional 140 basins appears
to be marginal, and the choice of training on 531 versus 671 basins does not substantially affect the
overall model performance.
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Figure R2. Comparison of 0HBYV simulations trained on 671 versus 531 basins across performance metrics

(a)—(g), with test cases distinguished by varying x-axis labels.
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Figure R3. Comparison of NSE spatial distributions for 0HBV models trained on 671 versus 531 basins

across different meteorological forcing datasets.

4. It could be useful to also provide similar plots to Fig. 3 in the appendix where HBV2 and HBV3 are

used instead of HBV 1.

Thanks for the suggestions. We have plotted Figures R4 and RS based on §HBV?2 and §HBV3, and they
show similar results, consistent with the conclusions. We have revised the manuscript accordingly.
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Figure R4. Scatter plots comparing the performance differences between hydrological models for the basins
where LSTM outperformed 0HBYV (the basins where 0HBV outperformed are not shown in this plot). The
x-axis represents the NSE differences between LSTM? and SHBV? (LSTM? - SHBV?), while the y-axis
shows the NSE differences between SHBV?3 and SHBV? (SHBV'23- SHBV?). Points are color-coded
according to the NSE values of SHBV?. The correlation coefficient (CORR) and p values between the x-
axis values and the y-axis values, along with the median NSE value of SHBV? (NSE,,.q ) on these basins,

are also noted.
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Figure R5. Scatter plots comparing the performance differences between hydrological models for the basins
where LSTM outperformed 0HBYV (the basins where 0HBV outperformed are not shown in this plot). The
x-axis represents the NSE differences between LSTM3 and SHBV 3 (LSTM?® - SHBV3), while the y-axis
shows the NSE differences between SHBV?3 and SHBV3 (SHBV'23- SHBV3). Points are color-coded
according to the NSE values of SHBV 3. The correlation coefficient (CORR) and p values between the x-
axis values and the y-axis values, along with the median NSE value of SHBV 3 (NSE, .4 ) on these basins,

are also noted.



5. Fig. 4 and L439-L454.: Can you expand on potential reasons for the lower model-skill in midwestern
and western basins? Is human management of streamflow an important factor here, despite being
CAMELS basins?

Thanks for the suggestions. We have directly compared the spatial patterns of performance with the
spatial distributions of evaporation, the dam number, and water use. We found that over the midwestern
and western CONUS, there are also high evaporation climate conditions (Figure 2 of (Heidari et al.,
2020), shown here as Figure R6) and a large number of dams (Figure 1 of (Ryan Bellmore et al., 2017),
shown here as Figure R7), which tend to have complex water use processes that cannot be simulated via
the models (Figure 11 of (Wada et al., 2016), shown here as Figure R8). All these factors indicate that
anthropogenic influence can be an important factor that causes the model to perform poorly. And these
factors have been implicitly expressed in lines 486-490 in Section 3.4 of the original manuscript. Based
on your suggestions, these sentences have been revised to be clearer.
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Figure R6. Maps of current (a) aridity index and (b) evaporative index for the baseline period (1986-2015)
from (Heidari et al., 2020).
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Figure R7. Distribution of dams in the contiguous U.S. from the corrected figure of (Ryan Bellmore et al.,
2017).
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Figure RS. Water Stress Index for 2010 calculated at a 6 min spatial resolution from (Wada et al., 2016)

6. Fig. 5: Please clarify. L399-1L401 says there is a small difference when using 3 or 10 seeds, but Fig. 5
shows the difference between individual seeds and using 10 seeds. It is interesting to note in Fig. 5 that
LSTM™" with 10 seeds achieves a similar skill as (LSTM + HBV)'? at least for the temporal test. This
could also be an important conclusion.

Thanks for the comments. It is true that LSTM, after ensembling different random seeds, increases much
higher compared with the individual component and other ensemble strategies. But here, we want to show
that there are smaller differences between ensembling 3 random seeds and ensembling 10 seeds. Specific
metric values of the LSTM model with different random seeds can be found in Table D4 and Table D5
(0.81992 (3 seeds) v.s. 0.82425 (10 seeds)). We also implicitly describe the boost performance
improvement of LSTM™YY! and owe it to the instability of LSTM simulations in the original manuscript
as, “The performance of (LSTM + §HBV)'?3 ensemble proved more robust than LSTM™* yith only a
slight boost when we incorporated random seeds, i.e., (LSTM + SHBV)123,.” in lines 390-391. Based on

seed*
your suggestions, we have added some sentences to make it clearer in Section 3.1 of the revised



manuscript, “For LSTMs alone, different random seeds displayed higher variation, and ensembling them
led to greater improvement than ensembling (LSTM + §HBV)123 with additional random seeds. ”

7. Fig. 6: Suggestion to have LSTM models with shades of one color and HBV models with shades of a
different color to better highlight the differences between LSTM and HBV mentioned in L461-L464.

Thanks for the suggestions. We replotted the figure accordingly as shown in Figure R9 here.
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Figure RY9. Comparisons between multi-basin-averaged streamflow observations and simulations across
531 basins. The time series points are displayed at four-day intervals for clarity and conciseness. Ensemble
members based on the same model (LSTM or 6HBV) but driven by different forcing datasets are shown in

the same color to highlight the differences between models more clearly.

8. L467-L469: Suggestion to extend the sentence to clarify what is meant here.

Thanks for the suggestion. We have revised the original sentence



“This highlights the critical importance of comprehensive training for each ensemble member to enable
the development of distinct characteristics in their streamflow simulations, ultimately enhancing ensemble
performance.” in Section 3.2 of the original manuscript as,

“This highlights the critical importance of comprehensive training for each ensemble member, including
diverse forcing inputs, full-period model calibration, and rigorous hyperparameter tuning, to ensure that
each member develops distinct simulation behaviors. These differences allow the ensemble to better
represent a range of hydrological responses, particularly under extreme or uncertain conditions. By
capturing complementary strengths and compensating for individual weaknesses, such well-trained
ensemble members collectively enhance the robustness and accuracy of streamflow simulations.”

Minor comments and technical corrections
1. L13: Replace “while” for “however”.
Thanks, revised.

2. L20: Suggest deleting “utilized in two ways”. Here it just raises the question which two ways? Also in
L526 it would be good to explicitly mention the “two ways”.

Thanks for the suggestions. We have deleted the “utilized in two ways” in the Abstract section.

199

As for “Also in L526 it would be good to explicitly mention the “two ways”.” in the conclusion section,
we have revised the original words as,

“Three meteorological forcing datasets (Daymet, NLDAS, and Maurer) are employed to fully capture the
characteristics of the two models. Their applications are also tested in two distinct ways: (1) by feeding all
diverse forcing datasets simultaneously into a single LSTM model, and (2) by ensembling the outputs of

multiple LSTM models, each trained separately using a single forcing dataset.”

3. L177-L179: Are all modifications to HBV 1.0 of similar importance? Or can it be said which of them
are more important?

Thanks for the insightful comment. We are very cautious to make modifications, and to determine these
modifications, we have evaluated various structural changes across multiple studies using diverse
datasets. Each modification targets specific aspects of model improvement, and most contribute
significantly to overall performance.

To address high-flow simulation challenges, we implemented three key modifications: the use of three
dynamic parameters (y, £, Ok) during training and testing periods; the removal of log-transform
normalization for precipitation; and the adoption of the normalized squared-error loss function.

Our recent study (Song et al., 2025b) shows that SHBV 1.1p with three dynamic parameters (y, S, kq)
outperforms the two-parameter version (y, ). The dynamic shape coefficient (5) and evapotranspiration
coefficient (y) capture the nonlinear relationships between surface soil moisture and effective rainfall, as
well as evapotranspiration. The dynamic k, parameter reflects variable water release rates influenced by
changing groundwater levels, bank and wetland storage, and other factors. By remaining small during



low-flow periods and increasing during peak-flow events, dynamic k, allows the upper soil layer to retain
more moisture before extreme events, thereby enhancing peak-flow contributions..

The elimination of log-transform normalization for precipitation, paired with the adoption of the
normalized squared-error (NSE) loss function, synergistically enhances model performance. By removing
log-transform normalization, the model becomes more sensitive to high precipitation events, thus better
capturing high-flow conditions. Simultaneously, the normalized squared-error loss function amplifies the
impact of significant deviations in peak flows, further improving the model’s ability to predict high-flow
events effectively (Frame et al., 2022; Kratzert et al., 2021; Song et al., 2025a, b; Wilbrand et al., 2023).

In contrast, maintaining dynamic parameters during warm-up periods offers marginal benefits while
increasing computational costs. However, it provides a more realistic representation and mitigates
potential uncertainties from initial conditions.

Following the feedback, we have revised and expanded the descriptions in Section 2.3 to enhance clarity.
4. Table 2: Isn’t there more recent data for PUB and PUR? Why are they trained only until 19997

Thanks for the question. All three tests (temporal, PUB, and PUR) are conducted using the same
underlying dataset. However, due to differences in testing strategies, the computational cost for PUB and
PUR is significantly higher than for the temporal test. Specifically, each complete evaluation requires 10
runs for PUB and 7 runs for PUR. Based on prior studies (Feng et al., 2021, 2023; Kratzert et al., 2019)
and to balance computational efficiency with the objectives of our analysis, we limited the training period
to data up to 1999. This choice allows us to preserve the core evaluation goals while keeping the
computational demand manageable.

5. Figure Bl1. Xlabel on right panels should be temperature (C), correct?

Thanks for pointing it out. It has been replotted (Figure R10) and has been added in the revised
manuscript.
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forcing datasets.

Reviewer #2

The manuscript presents an innovative ensemble strategy that combines a differentiable process-based
model (60HBV) with a data-driven Long Short-Term Memory (LSTM) model, further diversified through
the application of multiple meteorological forcing datasets. The approach is evaluated across a wide
range of generalization scenarios (temporal extrapolation, PUB, and PUR) using the CAMELS dataset.
Although the paper is well-written and the main ideas are clearly communicated, it would benefit from
additional details in the methods and a deeper discussion of model complementarity and limitations.

Thanks for the positive comments and constructive suggestions. We have revised the manuscript
accordingly. Please find our point-by-point responses below.

Strength



The proposed ensemble framework is conceptually strong and offers a well-justified combination of
complementary data and algorithmic modeling paradigms.

The study is well evaluated across well-defined training protocols and temporal-spatial splits, which
improves confidence in its generalizability.

The use of multiple data sources for meteorological forcings addresses input uncertainty better than
traditional single-source modeling.

The results, specifically the finding that SHBV improves spatial generalization, have clear implications

Jor prediction in ungauged regions.
Thanks for the positive comments.
Weakness

Interpretability: While the SHBV model’s performance is shown to be beneficial in spatial generalization,
the underlying reasons for this complementarity (e.g., structural constraints, parameter smoothness) are
not deeply explored. A discussion of how each model contributes to ensemble diversity would strengthen

the scientific value of the work.

We thank the reviewer for this insightful comment regarding model interpretability and the
complementarity between LSTM and 6HBV within the ensemble framework. We fully agree that a deeper
understanding of the relative contributions of each model would enhance the scientific value of our study.
Besides this, we have also dug deeper and examine cases where the errors of LSTM and dHBYV cancel

each other.
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Figure RI11. Spread values of each model for LSTM, 6HBV, and LSTM + O0HBV due to different

meteorological forcings and random seeds across temporal, PUB, and PUR tests.
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Figure RI2. Spatial distributions of model spread values increase from OHBV and LSTM to the
LSTM~+0HBY ensemble across temporal, PUB, and PUR tests.
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also indicated.

Since the benefits of the different ensemble members to the deterministic precision have been displayed
in the original manuscript, we have conducted additional analyses in terms of ensemble variability as
suggested. Specifically, we use the spread values (Li et al., 2021; Reichle and Koster, 2003), which are
widely adopted to quantify ensemble variability, to further explore model complementarity. The spread
value is calculated as follows,

n
11
Spread = |——
ne
i=1 j=1
Where n is the number of simulated days, e is the number of ensemble members, and S is the simulations

of each ensemble member, yg indicates the average of values.

Figure R11 presents the boxplots of spread values for ensemble simulations using random seed variations
with LSTM, 6HBV, and the combined LSTM + dHBYV, across the temporal, PUB, and PUR test settings.
We observe that the overall spread increases from temporal to PUB and PUR tests, reflecting growing
uncertainty. Notably, SHBV consistently exhibits lower spread values than LSTM across all tests,
indicating its higher stability. This aligns with our prior discussion: HBV tends to constrain the learnable
function space, thus having lower variability and potentially higher bias. This difference stems from their
structural characteristics—dHBYV is governed by more rigid physical constraints, which limit unrealistic
dynamics and enhance stability, while LSTM is more flexible and capable of capturing patterns that may
not be explicitly represented in physical models, such as human influences or unmodeled processes. The
combination of both models (LSTM + dHBYV) yields greater spread values, indicating enhanced ensemble
diversity. This suggests that the two models offer complementary strengths—LSTM contributes
flexibility and capacity to represent data-driven nuances, while SHBV anchors the ensemble with
physically constrained behavior.



Figure R12 illustrates the spatial distributions of spread increase resulting from incorporating LSTM and
OHBYV, respectively, and further supports our previous analysis. Incorporating LSTM leads to an increase
in spread values across all basins, reflecting its higher variability. In contrast, the SHBV model,
characterized by stronger physical constraints and generally lower variability, results in a decrease in
spread values for many basins. However, SOHBV still contributes to a spread increase in most northern
basins and gradually leads to spread increases in a larger number of basins across the CONUS. This
suggests notable differences in simulated streamflow behavior between LSTM and 6HBV, largely
attributable to their distinct model structures. Figure R13 reveals relatively limited differences between
the streamflow behaviors simulated by LSTM and 6HBV, with LSTM generally producing higher
streamflow estimates than SHBV. A more systematic investigation of these differences would be valuable
in future studies.

Following the reviewer’s suggestion, we have incorporated these analyses and discussions about the
ensemble spread in Section 3.3 of the revised manuscript.

Robustness and Sensitivity Analysis: The paper lacks an explicit assessment of how ensemble
performance responds to errors or biases in the forcing datasets or uncertainty in model parameters.
Including even a limited robustness analysis would improve confidence in the ensemble’s reliability.
Additionally, the authors should consider running one or two experiments to understand whether
changing the size of the lookback window (i.e., the number of historical timesteps) for the LSTMs

impacted the overall performance of the ensemble.

Thanks for the suggestions. Based on them, we conducted several experiments using temporal tests to
demonstrate the robustness of ensemble benefits under various factors, including precipitation errors,
parameter uncertainties in the SHBV model, and hyperparameter uncertainties in the LSTM model.

Regarding sensitivity to the forcing datasets, we ran the SHBV and LSTM models under a temporal test,
both without and with a precipitation error introduced by multiplying precipitation by 0.1, to examine
differences across ensemble groups. The results, shown in Figures R14 and R15, indicate that although
the performance of both LSTM and dHBV decreases when the precipitation error is introduced, the
decrease is not substantial, demonstrating a certain degree of robustness to precipitation errors and some
capacity of both models to adapt to such errors. Interestingly, LSTM and 0HBYV respond differently to
this type of precipitation error: for LSTM, the error tends to reduce ensemble performance mainly under
low and high flow regimes, whereas for SHBYV, the reduction is more pronounced under low and middle
flow regimes. These differences reflect the fact that LSTM does not need to respect mass balance and can
adjust precipitation up or down internally, but has trouble learning the contrast, while SHBV needs to
distort the low flow to capture the high flows. Despite these differences, the ensemble benefits remain
significant and robust when comparing different ensemble groups and assessing the impact of
precipitation errors.
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Figure R14. Simulation performance under the temporal test using the LSTM model with and without a 10%

precipitation error (precipitation % 1.1), compared across metrics (a)—(g).
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Figure R15. Simulation performance under the temporal test using the SHBV model with and without a 10%

precipitation error (precipitation % 1.1), compared across metrics (a)—(g).

Similar results are observed in cases investigating the effects of parameter uncertainties in SHBV (Figure

R16) and hyperparameter uncertainties in LSTM (Figure R17). Regarding parameter uncertainties, we

additionally ran a case using the SHBV model with fewer dynamic parameters—reducing the number

from three in the benchmark case to two—by fixing the infiltration rate parameter k as static to assess

the resulting performance changes, which may reduce SHBV’s ability to represent dynamic water release

processes influenced by changing groundwater levels, bank and wetland storages, and other factors (Song
et al., 2025b). This leads to increased structural errors and decreased model performance. Nevertheless,



the contribution of HBV to ensemble simulations remains robust, with ensemble benefits substantially

outweighing the negative effects of parameter uncertainties.
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Figure R16. Simulation performance under the temporal test using the SHBV model with 3 and 2 dynamic

parameters, compared across metrics (a)—(g).

Regarding hyperparameter uncertainties in the LSTM model, we focus on a key hyperparameter: the

lookback window size, as suggested. We treat this parameter as having physical significance related to the

temporal period rather than a typical hyperparameter. Therefore, we fix the window size to one year (365

days) to capture a full annual cycle while accounting for interannual variability. To evaluate the impact of



different window lengths, we include two additional scenarios with 182 and 730 timesteps. As shown in

Figure R17, the LSTM model with a 365-day window generally achieves better performance across most

scenarios. However, compared to the overall benefits of the ensemble, this difference is not substantial,

indicating the robustness of ensemble simulations to variations in this LSTM hyperparameter.
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Figure R17. Simulation performance under the temporal test using the 0HBV model on the time steps of

365, 182, and 730, compared across metrics (a)—(g).



Although it is practically impossible to test the effects of all possible configurations on ensemble benefits,
we expect these benefits to remain robust against other factors to some extent, based on the representative
results presented. Following the suggestions, we have included these additional cases in Section 3.3 of the
revised manuscript to further demonstrate the reliability of our ensemble simulations.

Scalability and Practical Deployment: The manuscript does not address the computational or operational
feasibility of deploying this ensemble framework in practice, especially over large domains or in real-

time forecasting contexts. A short discussion (1-2 sentences) on this topic would add practical relevance.

We appreciate the reviewer’s suggestion to further discuss the computational and operational feasibility
of deploying the ensemble framework. This point is partially addressed in Section 3.4 of the original
manuscript, where we note:

“Moreover, ensemble simulations may face challenges when computational resources are limited and
calculations are performed sequentially. However, we remain optimistic about these challenges, as the
processes can be addressed by leveraging parallel computing with multiple GPUs, benefiting from
ongoing advancements in computational power.”

In response to the reviewer’s comment, we have expanded this discussion for greater clarity, as follows:
“Ensemble simulations may face challenges when computational resources are constrained, particularly
for large-scale or real-time applications. Nevertheless, we remain optimistic about overcoming these
challenges due to several promising solutions. These include tailoring the hydrological model by
simplifying less relevant components to specific simulation objectives (Clark et al., 2015; Kraft et al.,
2022) and cloud-based computing infrastructures that offer scalable, on-demand resource allocation (He
et al., 2024; Leube et al., 2013). Importantly, the majority of computational costs are incurred during
model training. In practice, ensemble members are typically pre-trained by different research or
application groups (Bodnar et al., 2025; Nearing et al., 2024; Song et al., 2025a), enabling direct reuse of
these well-trained models and significantly improving computational efficiency.”

References:

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes
and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293-5313,
https://doi.org/10.5194/hess-21-5293-2017, 2017.

Bodnar, C., Bruinsma, W. P., Lucic, A., Stanley, M., Allen, A., Brandstetter, J., Garvan, P., Riechert, M.,
Weyn, J. A., Dong, H., Gupta, J. K., Thambiratnam, K., Archibald, A. T., Wu, C.-C., Heider, E., Welling,
M., Turner, R. E., and Perdikaris, P.: A foundation model for the Earth system, Nature, 641, 1180-1187,
https://doi.org/10.1038/s41586-025-09005-y, 2025.

Clark, M. P., Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E.,
Gutmann, E. D., Wood, A. W., Brekke, L. D., Arnold, J. R., Gochis, D. J., and Rasmussen, R. M.: A
unified approach for process-based hydrologic modeling: 1. Modeling concept, Water Resources
Research, 51, 2498-2514, https://doi.org/10/f7db99, 2015.



Feng, D., Lawson, K., and Shen, C.: Mitigating prediction error of deep learning streamflow models in
large data-sparse regions with ensemble modeling and soft data, Geophysical Research Letters, 48,
€2021GL092999, https://doi.org/10.1029/2021GL092999, 2021.

Feng, D., Beck, H., Lawson, K., and Shen, C.: The suitability of differentiable, physics-informed machine
learning hydrologic models for ungauged regions and climate change impact assessment, Hydrology and
Earth System Sciences, 27, 2357-2373, https://doi.org/10.5194/hess-27-2357-2023, 2023.

Frame, J. M., Kratzert, F., Klotz, D., Gauch, M., Shalev, G., Gilon, O., Qualls, L. M., Gupta, H. V., and
Nearing, G. S.: Deep learning rainfall-runoff predictions of extreme events, Hydrology and Earth System
Sciences, 26, 3377-3392, https://doi.org/10.5194/hess-26-3377-2022, 2022.

He, Y., Chen, M., Wen, Y., Duan, Q., Yue, S., Zhang, J., Li, W., Sun, R., Zhang, Z., Tao, R., Tang, W.,
and L, G.: An open online simulation strategy for hydrological ensemble forecasting, Environmental
Modelling & Software, 174, 105975, https://doi.org/10.1016/j.envsoft.2024.105975, 2024.

Heidari, H., Arabi, M., Warziniack, T., and Kao, S.-C.: Assessing shifts in regional hydroclimatic
conditions of U.S. river basins in response to climate change over the 21st century, Earth’s Future, 8,
€2020EF001657, https://doi.org/10.1029/2020EF001657, 2020.

Kraft, B., Jung, M., Kérner, M., Koirala, S., and Reichstein, M.: Towards hybrid modeling of the global
hydrological cycle, Hydrology and Earth System Sciences, 26, 1579-1614, https://doi.org/10.5194/hess-
26-1579-2022, 2022.

Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., and Nearing, G. S.: Toward
improved predictions in ungauged basins: Exploiting the power of machine learning, Water Resources
Research, 55, 11344—11354, https://doi.org/10/gg4cks, 2019.

Kratzert, F., Klotz, D., Hochreiter, S., and Nearing, G. S.: A note on leveraging synergy in multiple
meteorological data sets with deep learning for rainfall-runoff modeling, Hydrology and Earth System
Sciences, 25, 2685-2703, https://doi.org/10.5194/hess-25-2685-2021, 2021.

Kratzert, F., Gauch, M., Nearing, G., and Klotz, D.: NeuralHydrology — A Python library for Deep
Learning research in hydrology, , https://doi.org/10.5281/zenodo.6326394, 2022.

Leube, P. C., de Barros, F. P. J., Nowak, W., and Rajagopal, R.: Towards optimal allocation of computer
resources: Trade-offs between uncertainty quantification, discretization and model reduction,
Environmental Modelling & Software, 50, 97-107, https://doi.org/10.1016/j.envsoft.2013.08.008, 2013.

Li, P., Zha, Y., Shi, L., and Zhong, H.: Identification of the terrestrial water storage change features in the
North China Plain via independent component analysis, Journal of Hydrology: Regional Studies, 38,
100955, https://doi.org/10.1016/j.ejrh.2021.100955, 2021.

Nearing, G., Cohen, D., Dube, V., Gauch, M., Gilon, O., Harrigan, S., Hassidim, A., Klotz, D., Kratzert,
F., Metzger, A., Nevo, S., Pappenberger, F., Prudhomme, C., Shalev, G., Shenzis, S., Tekalign, T. Y.,
Weitzner, D., and Matias, Y.: Global prediction of extreme floods in ungauged watersheds, Nature, 627,
559-563, https://doi.org/10.1038/s41586-024-07145-1, 2024.

Reichle, R. H. and Koster, R. D.: Assessing the impact of horizontal error correlations in background
fields on soil moisture estimation, Journal of Hydrometeorology, 4, 1229-1242,
https://doi.org/10.1175/1525-7541(2003)004<1229:ATIOHE>2.0.CO;2, 2003.



Ryan Bellmore, J., Duda, J. J., Craig, L. S., Greene, S. L., Torgersen, C. E., Collins, M. J., and Vittum,
K.: Status and trends of dam removal research in the United States, WIREs Water, 4, €1164,
https://doi.org/10.1002/wat2.1164, 2017.

Song, Y., Bindas, T., Shen, C., Ji, H., Knoben, W. J. M., Lonzarich, L., Clark, M. P., Liu, J., van
Werkhoven, K., Lamont, S., Denno, M., Pan, M., Yang, Y., Rapp, J., Kumar, M., Rahmani, F., Thébault,
C., Adkins, R., Halgren, J., Patel, T., Patel, A., Sawadekar, K. A., and Lawson, K.: High-resolution
national-scale water modeling is enhanced by multiscale differentiable physics-informed machine
learning, Water Resour. Res., 61, €2024WR038928, https://doi.org/10.1029/2024WR038928, 2025a.

Song, Y., Sawadekar, K., Frame, J. M., Pan, M., Clark, M., Knoben, W. J. M., Wood, A. W., Lawson, K.
E., Patel, T., and Shen, C.: Physics-informed, differentiable hydrologic models for capturing unseen
extreme events, https://doi.org/10.22541/essoar.172304428.82707157/v2, 2025b.

Wada, Y., de Graaf, I. E. M., and van Beek, L. P. H.: High-resolution modeling of human and climate
impacts on global water resources, Journal of Advances in Modeling Earth Systems, 8, 735-763,
https://doi.org/10/f8wgpv, 2016.

Wilbrand, K., Taormina, R., ten Veldhuis, M.-C., Visser, M., Hrachowitz, M., Nuttall, J., and Dahm, R.:
Predicting streamflow with LSTM networks using global datasets, Front. Water, 5,
https://doi.org/10.3389/frwa.2023.1166124, 2023.



