
Editor # 
 
The manuscript has received two excellent reviews, both providing a positive assessment. The reviewers 
are asking for a number of clarifications and additional detail in places, which should be considered 
before publication. 
 
We sincerely appreciate the editor’s positive assessment and the constructive suggestions from both 
reviewers. In response, we have revised the manuscript accordingly, adding the requested clarifications 
and additional details as suggested. 
 
In addition to these revisions, we have adjusted the model results using more order-consistent random 
seeds in the temporal tests. This change has almost no effect on model performance, further confirming 
the stability of the ensemble benefits, but improves the logical consistency of the study. 
 
 
 
Reviewer #1 
General comments 
This paper comprehensible evaluates the performance of different ensembles based on LSTM and HBV 
models, and three different forcing datasets, across CAMELS catchments. The ensembles are evaluated in 
terms of a temporal test, a prediction in ungauged basins test (PUB), and a prediction in ungauged 
regions test (PUR). The main conclusion is that the data-driven LSTM and process-based HBV ensemble 
improves NSE, particularly for PUB and PUR tests. 
 
Overall, the manuscript is well-structured and clearly conveys its main point. Please find below some 
comments and suggestions. 
 
Thanks for the positive comments. 
 
Specific comments 
1. L150 and L240-L244: Please explicitly indicate which features (static and dynamic) are used by the 
LSTM model or at least refer to Appendix C. Are static characteristics of the catchment also used during 
the PUB and PUR tests? Is it the case that for PUB the model does not use previous streamflow 
observations to generate the predictions? Or does PUB only refer to the model being tested at basins not 
used during training? 
 
Regarding the question “Please explicitly indicate which features (static and dynamic) are used by the 

LSTM model or at least refer to Appendix C”, thanks for your suggestions. The static and dynamic 
attributes for LSTM are utilized as the same as Kratzert's studies (Kratzert et al., 2022), as shown in Table 

R1. We have revised Table C1 of the original manuscript to specify the inputs for LSTM and 𝛿HBV, 
respectively. 

Regarding the question “Are static characteristics of the catchment also used during the PUB and PUR 

tests?”, yes. These static characteristics of the catchment are also used during the PUB and PUR tests.  



Regarding the question “Is it the case that for PUB the model does not use previous streamflow 
observations to generate the predictions?”, yes. For all three kinds of tests, streamflow observations are 
not included in the inputs and are only used to calibrate the model. 
Regarding the question “does PUB only refer to the model being tested at basins not used during 
training?” -- yes, exactly. As described in Section 2.5 of the manuscript, we first divided all basins into 
10 subsets. The model was then trained and evaluated over 10 rounds, each time holding out one subset 
for testing while using the remaining basins for training. After completing all rounds, the test results from 
all basins were concatenated to evaluate overall performance. Therefore, in each round of evaluation, the 
test basins were strictly excluded from the training process. 
 
 
Table R1. Full names for the abbreviations of dynamic data (all but streamflow are “forcings”) and static 
basin attributes used as the LSTM model inputs and outputs. All variables and their values are provided in 
the CAMELS dataset (Addor et al., 2017) except for the NLDAS and Maurer daily temperature extrema, 
which are from Kratzert et al. (2021). 

Type Abbreviation Full name Unit 

Dynamic 

forcings  

prcp Precipitation mm/day 

tmax Maximum air temperature °C 

tmin Minimum air temperature °C 

srad Shortwave radiation W/m2 

vp Water vapor pressure pa 

q 
Streamflow normalized by basin area (q_vol / 

area_gages2) 
mm/day 

Static 

basin 

attributes 

p_mean Mean daily precipitation mm/day 

pet_mean Mean daily potential evapotranspiration mm/day 

frac_snow Fraction of precipitation falling as snow - 

aridity 
Rate of mean values of potential 

evapotranspiration and precipitation 
- 

high_prec_freq Frequency of high precipitation days days/year 

high_prec_dur Average duration of high precipitation events days 

low_prec_freq Frequency of dry days days/year 

low_prec_dur Average duration of dry periods days 

elev_mean Catchment mean elevation m 

slope_mean Catchment mean slope m/km 

area_gages2 Catchment area (GAGES-II estimate) km2 

frac_forest 
Fraction of catchment area having land cover 

identified as forest  
- 



lai_max Maximum monthly mean of the leaf area index - 

lai_diff 
Difference between the maximum and 

minimum monthly mean of the leaf area index 
- 

gvf_max 
Maximum monthly mean of the green 

vegetation 
- 

gvf_diff 

Difference between the maximum and 

minimum monthly mean of the green 

vegetation fraction 

- 

soil_depth_pelletier Depth to bedrock m 

soil_depth_statsgso Soil depth m 

soil_porosity Volumetric soil porosity  - 

soil_conductivity Saturated hydraulic conductivity cm/hr 

max_water_content Maximum water content m 

sand_frac Fraction of soil which is sand - 

silt_frac Fraction of soil which is silt - 

clay_frac Fraction of soil which is clay - 

carbonate_rocks_frac 
Fraction of the catchment area as carbonate 

sedimentary rocks 
- 

geol_permeability Subsurface permeability m2 

 

 
 
2. Table 2: Is it possible to draw any conclusions about the skill of the models to extrapolate to a warmer 
climate based on the temporal test? I assume that the period 1995-2010 is warmer than 1980-1995. 
 
Thanks for the suggestions. We have compared the temperature changes from the training to the test 
periods, as shown in Figure R1. The results show that most basins are getting warmer, and these models 
can also get satisfactory performances, which indicates that these models can extrapolate at least modestly 
their performances under a warmer climate. Note that it is an often asked question for purely data-driven 
models like LSTM to lose accuracy if the drift is stronger. The issue is that there was a lack of a 
“substantially warmed” real dataset to assess this behavior. Previous benchmarks suggest the 15-year-
scale trend to be accurately captured in the temporal test by LSTM, and more poorly captured for PUR 
(Feng et al., 2023). We have added these discussions in Section 3.3 of the revised manuscript to describe 
this finding. 
 



 
Figure R1. Boxplot of relative temperature differences between the test and training periods, calculated as 

(Test − Training) / Training. Each box represents the distribution of normalized temperature changes 

across basins for a specific meteorological forcing dataset: Daymet, NLDAS, and Maurer. Positive values 

indicate warming in the test period relative to the training period. 

 
3. Table 2: What would happen if you were to train HBV using only the same 531-basin subset as for the 
LSTM instead of the 671 basins? 
 
Thanks for the question. We tested this by conducting the temporal experiments using only the 531-basin 
subset for the δHBV model. The results were largely similar to those obtained using all 671 basins shown 
in Figures R2-R3, indicating that the impact of reducing the training set size is limited in this context. We 
have incorporated some discussions about this in the revised manuscript. 
 
We believe that training the δHBV model on the full 671-basin dataset is still beneficial, as the physical 
constraints inherent in the model allow it to make more effective use of available data, even when data 
quality is somewhat limited. That said, the added value from including the additional 140 basins appears 
to be marginal, and the choice of training on 531 versus 671 basins does not substantially affect the 
overall model performance. 
 



 
Figure R2. Comparison of δHBV simulations trained on 671 versus 531 basins across performance metrics 

(a)–(g), with test cases distinguished by varying x-axis labels. 

 



 
Figure R3. Comparison of NSE spatial distributions for δHBV models trained on 671 versus 531 basins 

across different meteorological forcing datasets. 

 
 
4. It could be useful to also provide similar plots to Fig. 3 in the appendix where HBV2 and HBV3 are 
used instead of HBV1. 
 
Thanks for the suggestions. We have plotted Figures R4 and R5 based on 𝛿HBV2 and 𝛿HBV3, and they 
show similar results, consistent with the conclusions. We have revised the manuscript accordingly. 
 



 

Figure R4. Scatter plots comparing the performance differences between hydrological models for the basins 

where LSTM outperformed δHBV (the basins where δHBV outperformed are not shown in this plot). The 

x-axis represents the NSE differences between 𝐿𝑆𝑇𝑀ଶ and 𝛿𝐻𝐵𝑉ଶ (𝐿𝑆𝑇𝑀ଶ - 𝛿𝐻𝐵𝑉ଶ), while the y-axis 

shows the NSE differences between 𝛿𝐻𝐵𝑉ଵଶଷ and 𝛿𝐻𝐵𝑉ଶ (𝛿𝐻𝐵𝑉ଵଶଷ- 𝛿𝐻𝐵𝑉ଶ). Points are color-coded 

according to the NSE values of 𝛿𝐻𝐵𝑉ଶ. The correlation coefficient (CORR) and p values between the x-

axis values and the y-axis values, along with the median NSE value of 𝛿𝐻𝐵𝑉ଶ (𝑁𝑆𝐸௠௘ௗ ) on these basins, 

are also noted. 

 

 

Figure R5. Scatter plots comparing the performance differences between hydrological models for the basins 

where LSTM outperformed δHBV (the basins where δHBV outperformed are not shown in this plot). The 

x-axis represents the NSE differences between 𝐿𝑆𝑇𝑀ଷ and 𝛿𝐻𝐵𝑉ଷ (𝐿𝑆𝑇𝑀ଷ - 𝛿𝐻𝐵𝑉ଷ), while the y-axis 

shows the NSE differences between 𝛿𝐻𝐵𝑉ଵଶଷ and 𝛿𝐻𝐵𝑉ଷ (𝛿𝐻𝐵𝑉ଵଶଷ- 𝛿𝐻𝐵𝑉ଷ). Points are color-coded 

according to the NSE values of 𝛿𝐻𝐵𝑉ଷ. The correlation coefficient (CORR) and p values between the x-

axis values and the y-axis values, along with the median NSE value of 𝛿𝐻𝐵𝑉ଷ (𝑁𝑆𝐸௠௘ௗ ) on these basins, 

are also noted. 

 



 
 
5. Fig. 4 and L439-L454: Can you expand on potential reasons for the lower model-skill in midwestern 
and western basins? Is human management of streamflow an important factor here, despite being 
CAMELS basins? 
 
Thanks for the suggestions. We have directly compared the spatial patterns of performance with the 
spatial distributions of evaporation, the dam number, and water use. We found that over the midwestern 
and western CONUS, there are also high evaporation climate conditions (Figure 2 of (Heidari et al., 
2020), shown here as Figure R6) and a large number of dams (Figure 1 of (Ryan Bellmore et al., 2017), 
shown here as Figure R7), which tend to have complex water use processes that cannot be simulated via 
the models (Figure 11 of (Wada et al., 2016), shown here as Figure R8). All these factors indicate that 
anthropogenic influence can be an important factor that causes the model to perform poorly. And these 
factors have been implicitly expressed in lines 486-490 in Section 3.4 of the original manuscript. Based 
on your suggestions, these sentences have been revised to be clearer. 
 

 
Figure R6. Maps of current (a) aridity index and (b) evaporative index for the baseline period (1986–2015) 

from (Heidari et al., 2020). 

 

 
Figure R7. Distribution of dams in the contiguous U.S. from the corrected figure of (Ryan Bellmore et al., 

2017). 

 



 

 
Figure R8. Water Stress Index for 2010 calculated at a 6 min spatial resolution from (Wada et al., 2016) 

 
 
6. Fig. 5: Please clarify. L399-L401 says there is a small difference when using 3 or 10 seeds, but Fig. 5 
shows the difference between individual seeds and using 10 seeds. It is interesting to note in Fig. 5 that 
LSTMmulti with 10 seeds achieves a similar skill as (LSTM + HBV)123 at least for the temporal test. This 
could also be an important conclusion. 
 
Thanks for the comments. It is true that LSTM, after ensembling different random seeds, increases much 
higher compared with the individual component and other ensemble strategies. But here, we want to show 
that there are smaller differences between ensembling 3 random seeds and ensembling 10 seeds. Specific 
metric values of the LSTM model with different random seeds can be found in Table D4 and Table D5 
(0.81992 (3 seeds) v.s. 0.82425 (10 seeds)). We also implicitly describe the boost performance 

improvement of 𝐿𝑆𝑇𝑀௦௘௘ௗ
௠௨௟௧௜ and owe it to the instability of LSTM simulations in the original manuscript 

as, “The performance of (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)ଵଶଷ ensemble proved more robust than 𝐿𝑆𝑇𝑀௠௨௟௧௜, with only a 

slight boost when we incorporated random seeds, i.e., (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)௦௘௘ௗ
ଵଶଷ . ” in lines 390-391. Based on 

your suggestions, we have added some sentences to make it clearer in Section 3.1 of the revised 



manuscript, “For LSTMs alone, different random seeds displayed higher variation, and ensembling them 
led to greater improvement than ensembling (𝐿𝑆𝑇𝑀 + 𝛿𝐻𝐵𝑉)ଵଶଷ with additional random seeds. ” 
 
 
7. Fig. 6: Suggestion to have LSTM models with shades of one color and HBV models with shades of a 
different color to better highlight the differences between LSTM and HBV mentioned in L461-L464. 
 
Thanks for the suggestions. We replotted the figure accordingly as shown in Figure R9 here. 
 

 
Figure R9. Comparisons between multi-basin-averaged streamflow observations and simulations across 

531 basins. The time series points are displayed at four-day intervals for clarity and conciseness. Ensemble 

members based on the same model (LSTM or δHBV) but driven by different forcing datasets are shown in 

the same color to highlight the differences between models more clearly. 

 
 
 
8. L467-L469: Suggestion to extend the sentence to clarify what is meant here. 
 
Thanks for the suggestion. We have revised the original sentence 



“This highlights the critical importance of comprehensive training for each ensemble member to enable 
the development of distinct characteristics in their streamflow simulations, ultimately enhancing ensemble 
performance.” in Section 3.2 of the original manuscript as, 
“This highlights the critical importance of comprehensive training for each ensemble member, including 
diverse forcing inputs, full-period model calibration, and rigorous hyperparameter tuning, to ensure that 
each member develops distinct simulation behaviors. These differences allow the ensemble to better 
represent a range of hydrological responses, particularly under extreme or uncertain conditions. By 
capturing complementary strengths and compensating for individual weaknesses, such well-trained 
ensemble members collectively enhance the robustness and accuracy of streamflow simulations.” 
 
Minor comments and technical corrections 
 
1. L13: Replace “while” for “however”. 
 
Thanks, revised. 
 
2. L20: Suggest deleting “utilized in two ways”. Here it just raises the question which two ways? Also in 
L526 it would be good to explicitly mention the “two ways”. 
 
Thanks for the suggestions. We have deleted the “utilized in two ways” in the Abstract section.  
As for “Also in L526 it would be good to explicitly mention the “two ways”.” in the conclusion section, 
we have revised the original words as, 
“Three meteorological forcing datasets (Daymet, NLDAS, and Maurer) are employed to fully capture the 
characteristics of the two models. Their applications are also tested in two distinct ways: (1) by feeding all 
diverse forcing datasets simultaneously into a single LSTM model, and (2) by ensembling the outputs of 
multiple LSTM models, each trained separately using a single forcing dataset.” 
 
3. L177-L179: Are all modifications to HBV1.0 of similar importance? Or can it be said which of them 
are more important? 
 
Thanks for the insightful comment. We are very cautious to make modifications, and to determine these 
modifications, we have evaluated various structural changes across multiple studies using diverse 
datasets. Each modification targets specific aspects of model improvement, and most contribute 
significantly to overall performance. 
 
To address high-flow simulation challenges, we implemented three key modifications: the use of three 
dynamic parameters (γ, β, 𝜃௄଴) during training and testing periods; the removal of log-transform 
normalization for precipitation; and the adoption of the normalized squared-error loss function.  
 
Our recent study (Song et al., 2025b) shows that δHBV1.1p with three dynamic parameters (γ, β, 𝑘଴) 
outperforms the two-parameter version (γ, β). The dynamic shape coefficient (β) and evapotranspiration 
coefficient (γ) capture the nonlinear relationships between surface soil moisture and effective rainfall, as 
well as evapotranspiration. The dynamic 𝑘଴ parameter reflects variable water release rates influenced by 
changing groundwater levels, bank and wetland storage, and other factors. By remaining small during 



low-flow periods and increasing during peak-flow events, dynamic 𝑘଴ allows the upper soil layer to retain 
more moisture before extreme events, thereby enhancing peak-flow contributions.. 
 
The elimination of log-transform normalization for precipitation, paired with the adoption of the 
normalized squared-error (NSE) loss function, synergistically enhances model performance. By removing 
log-transform normalization, the model becomes more sensitive to high precipitation events, thus better 
capturing high-flow conditions. Simultaneously, the normalized squared-error loss function amplifies the 
impact of significant deviations in peak flows, further improving the model’s ability to predict high-flow 
events effectively (Frame et al., 2022; Kratzert et al., 2021; Song et al., 2025a, b; Wilbrand et al., 2023). 
 
In contrast, maintaining dynamic parameters during warm-up periods offers marginal benefits while 
increasing computational costs. However, it provides a more realistic representation and mitigates 
potential uncertainties from initial conditions. 
 
Following the feedback, we have revised and expanded the descriptions in Section 2.3 to enhance clarity. 
 
4. Table 2: Isn’t there more recent data for PUB and PUR? Why are they trained only until 1999? 
 
Thanks for the question. All three tests (temporal, PUB, and PUR) are conducted using the same 
underlying dataset. However, due to differences in testing strategies, the computational cost for PUB and 
PUR is significantly higher than for the temporal test. Specifically, each complete evaluation requires 10 
runs for PUB and 7 runs for PUR. Based on prior studies (Feng et al., 2021, 2023; Kratzert et al., 2019) 
and to balance computational efficiency with the objectives of our analysis, we limited the training period 
to data up to 1999. This choice allows us to preserve the core evaluation goals while keeping the 
computational demand manageable. 
 
5. Figure B1. Xlabel on right panels should be temperature (C), correct? 
 
Thanks for pointing it out. It has been replotted (Figure R10) and has been added in the revised 
manuscript. 
 



 

Figure R10. Probability density distributions of precipitation and temperature across three meteorological 

forcing datasets. 

 
 
Reviewer #2 
The manuscript presents an innovative ensemble strategy that combines a differentiable process-based 
model (δHBV) with a data-driven Long Short-Term Memory (LSTM) model, further diversified through 
the application of multiple meteorological forcing datasets. The approach is evaluated across a wide 
range of generalization scenarios (temporal extrapolation, PUB, and PUR) using the CAMELS dataset. 
Although the paper is well-written and the main ideas are clearly communicated, it would benefit from 
additional details in the methods and a deeper discussion of model complementarity and limitations. 
 
Thanks for the positive comments and constructive suggestions. We have revised the manuscript 
accordingly. Please find our point-by-point responses below. 
 
Strength 
 



The proposed ensemble framework is conceptually strong and offers a well-justified combination of 
complementary data and algorithmic modeling paradigms. 
The study is well evaluated across well-defined training protocols and temporal-spatial splits, which 
improves confidence in its generalizability. 
The use of multiple data sources for meteorological forcings addresses input uncertainty better than 
traditional single-source modeling. 
The results, specifically the finding that δHBV improves spatial generalization, have clear implications 
for prediction in ungauged regions. 
 
Thanks for the positive comments. 
 
Weakness 
 
Interpretability: While the δHBV model’s performance is shown to be beneficial in spatial generalization, 
the underlying reasons for this complementarity (e.g., structural constraints, parameter smoothness) are 
not deeply explored. A discussion of how each model contributes to ensemble diversity would strengthen 
the scientific value of the work. 
 
We thank the reviewer for this insightful comment regarding model interpretability and the 
complementarity between LSTM and δHBV within the ensemble framework. We fully agree that a deeper 
understanding of the relative contributions of each model would enhance the scientific value of our study. 
Besides this, we have also dug deeper and examine cases where the errors of LSTM and δHBV cancel 
each other. 
 

 
Figure R11. Spread values of each model for LSTM, δHBV, and LSTM + δHBV due to different 

meteorological forcings and random seeds across temporal, PUB, and PUR tests. 

 



 

 
Figure R12. Spatial distributions of model spread values increase from δHBV and LSTM to the 

LSTM+δHBV ensemble across temporal, PUB, and PUR tests. 

 
 
 
 
 
 



 
Figure R13. Distributions of observation–simulation pairs from LSTM and δHBV models along the 1:1 line 

across temporal, PUB, and PUR tests. Percentages of pairs lying above the 1:1 line for both models are 

also indicated. 

 
 
Since the benefits of the different ensemble members to the deterministic precision have been displayed 
in the original manuscript, we have conducted additional analyses in terms of ensemble variability as 
suggested. Specifically, we use the spread values (Li et al., 2021; Reichle and Koster, 2003), which are 
widely adopted to quantify ensemble variability, to further explore model complementarity. The spread 
value is calculated as follows, 
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Where n is the number of simulated days, e is the number of ensemble members, and S is the simulations 
of each ensemble member, 𝜇ௌ indicates the average of values. 
 
Figure R11 presents the boxplots of spread values for ensemble simulations using random seed variations 
with LSTM, δHBV, and the combined LSTM + δHBV, across the temporal, PUB, and PUR test settings. 
We observe that the overall spread increases from temporal to PUB and PUR tests, reflecting growing 
uncertainty. Notably, δHBV consistently exhibits lower spread values than LSTM across all tests, 
indicating its higher stability. This aligns with our prior discussion: δHBV tends to constrain the learnable 
function space, thus having lower variability and potentially higher bias. This difference stems from their 
structural characteristics—δHBV is governed by more rigid physical constraints, which limit unrealistic 
dynamics and enhance stability, while LSTM is more flexible and capable of capturing patterns that may 
not be explicitly represented in physical models, such as human influences or unmodeled processes. The 
combination of both models (LSTM + δHBV) yields greater spread values, indicating enhanced ensemble 
diversity. This suggests that the two models offer complementary strengths—LSTM contributes 
flexibility and capacity to represent data-driven nuances, while δHBV anchors the ensemble with 
physically constrained behavior. 



Figure R12 illustrates the spatial distributions of spread increase resulting from incorporating LSTM and 
δHBV, respectively, and further supports our previous analysis. Incorporating LSTM leads to an increase 
in spread values across all basins, reflecting its higher variability. In contrast, the δHBV model, 
characterized by stronger physical constraints and generally lower variability, results in a decrease in 
spread values for many basins. However, δHBV still contributes to a spread increase in most northern 
basins and gradually leads to spread increases in a larger number of basins across the CONUS. This 
suggests notable differences in simulated streamflow behavior between LSTM and δHBV, largely 
attributable to their distinct model structures. Figure R13 reveals relatively limited differences between 
the streamflow behaviors simulated by LSTM and δHBV, with LSTM generally producing higher 
streamflow estimates than δHBV. A more systematic investigation of these differences would be valuable 
in future studies. 
 
Following the reviewer’s suggestion, we have incorporated these analyses and discussions about the 
ensemble spread in Section 3.3 of the revised manuscript. 
 
  
 
Robustness and Sensitivity Analysis: The paper lacks an explicit assessment of how ensemble 
performance responds to errors or biases in the forcing datasets or uncertainty in model parameters. 
Including even a limited robustness analysis would improve confidence in the ensemble’s reliability. 
Additionally, the authors should consider running one or two experiments to understand whether 
changing the size of the lookback window (i.e., the number of historical timesteps) for the LSTMs 
impacted the overall performance of the ensemble. 
 
 
Thanks for the suggestions. Based on them, we conducted several experiments using temporal tests to 
demonstrate the robustness of ensemble benefits under various factors, including precipitation errors, 
parameter uncertainties in the δHBV model, and hyperparameter uncertainties in the LSTM model. 
 
Regarding sensitivity to the forcing datasets, we ran the δHBV and LSTM models under a temporal test, 
both without and with a precipitation error introduced by multiplying precipitation by 0.1, to examine 
differences across ensemble groups. The results, shown in Figures R14 and R15, indicate that although 
the performance of both LSTM and δHBV decreases when the precipitation error is introduced, the 
decrease is not substantial, demonstrating a certain degree of robustness to precipitation errors and some 
capacity of both models to adapt to such errors. Interestingly, LSTM and δHBV respond differently to 
this type of precipitation error: for LSTM, the error tends to reduce ensemble performance mainly under 
low and high flow regimes, whereas for δHBV, the reduction is more pronounced under low and middle 
flow regimes. These differences reflect the fact that LSTM does not need to respect mass balance and can 
adjust precipitation up or down internally, but has trouble learning the contrast, while δHBV needs to 
distort the low flow to capture the high flows. Despite these differences, the ensemble benefits remain 
significant and robust when comparing different ensemble groups and assessing the impact of 
precipitation errors. 
 



 
Figure R14. Simulation performance under the temporal test using the LSTM model with and without a 10% 

precipitation error (precipitation × 1.1), compared across metrics (a)–(g). 

 



 
Figure R15. Simulation performance under the temporal test using the δHBV model with and without a 10% 

precipitation error (precipitation × 1.1), compared across metrics (a)–(g). 

 
 
Similar results are observed in cases investigating the effects of parameter uncertainties in δHBV (Figure 
R16) and hyperparameter uncertainties in LSTM (Figure R17). Regarding parameter uncertainties, we 
additionally ran a case using the δHBV model with fewer dynamic parameters—reducing the number 
from three in the benchmark case to two—by fixing the infiltration rate parameter 𝑘଴ as static to assess 
the resulting performance changes, which may reduce δHBV’s ability to represent dynamic water release 
processes influenced by changing groundwater levels, bank and wetland storages, and other factors (Song 
et al., 2025b). This leads to increased structural errors and decreased model performance. Nevertheless, 



the contribution of δHBV to ensemble simulations remains robust, with ensemble benefits substantially 
outweighing the negative effects of parameter uncertainties. 
 

 
Figure R16. Simulation performance under the temporal test using the δHBV model with 3 and 2 dynamic 

parameters, compared across metrics (a)–(g). 

 
 
Regarding hyperparameter uncertainties in the LSTM model, we focus on a key hyperparameter: the 
lookback window size, as suggested. We treat this parameter as having physical significance related to the 
temporal period rather than a typical hyperparameter. Therefore, we fix the window size to one year (365 
days) to capture a full annual cycle while accounting for interannual variability. To evaluate the impact of 



different window lengths, we include two additional scenarios with 182 and 730 timesteps. As shown in 
Figure R17, the LSTM model with a 365-day window generally achieves better performance across most 
scenarios. However, compared to the overall benefits of the ensemble, this difference is not substantial, 
indicating the robustness of ensemble simulations to variations in this LSTM hyperparameter. 
 
 

 
Figure R17. Simulation performance under the temporal test using the δHBV model on the time steps of 

365, 182, and 730, compared across metrics (a)–(g). 

 
 
 



Although it is practically impossible to test the effects of all possible configurations on ensemble benefits, 
we expect these benefits to remain robust against other factors to some extent, based on the representative 
results presented. Following the suggestions, we have included these additional cases in Section 3.3 of the 
revised manuscript to further demonstrate the reliability of our ensemble simulations. 
 
 
Scalability and Practical Deployment: The manuscript does not address the computational or operational 
feasibility of deploying this ensemble framework in practice, especially over large domains or in real-
time forecasting contexts. A short discussion (1-2 sentences) on this topic would add practical relevance. 
 
We appreciate the reviewer’s suggestion to further discuss the computational and operational feasibility 
of deploying the ensemble framework. This point is partially addressed in Section 3.4 of the original 
manuscript, where we note: 
“Moreover, ensemble simulations may face challenges when computational resources are limited and 
calculations are performed sequentially. However, we remain optimistic about these challenges, as the 
processes can be addressed by leveraging parallel computing with multiple GPUs, benefiting from 
ongoing advancements in computational power.” 
In response to the reviewer’s comment, we have expanded this discussion for greater clarity, as follows: 
“Ensemble simulations may face challenges when computational resources are constrained, particularly 
for large-scale or real-time applications. Nevertheless, we remain optimistic about overcoming these 
challenges due to several promising solutions. These include tailoring the hydrological model by 
simplifying less relevant components to specific simulation objectives (Clark et al., 2015; Kraft et al., 
2022) and cloud-based computing infrastructures that offer scalable, on-demand resource allocation (He 
et al., 2024; Leube et al., 2013). Importantly, the majority of computational costs are incurred during 
model training. In practice, ensemble members are typically pre-trained by different research or 
application groups (Bodnar et al., 2025; Nearing et al., 2024; Song et al., 2025a), enabling direct reuse of 
these well-trained models and significantly improving computational efficiency.” 
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