
Reviewer #2 
The manuscript presents an innovative ensemble strategy that combines a differentiable process-based 
model (δHBV) with a data-driven Long Short-Term Memory (LSTM) model, further diversified through 
the application of multiple meteorological forcing datasets. The approach is evaluated across a wide 
range of generalization scenarios (temporal extrapolation, PUB, and PUR) using the CAMELS dataset. 
Although the paper is well-written and the main ideas are clearly communicated, it would benefit from 
additional details in the methods and a deeper discussion of model complementarity and limitations. 
 
Thanks for the positive comments and constructive suggestions. We will revise the manuscript 
accordingly. Please find our point-by-point responses below. 
 
Strength 
 
The proposed ensemble framework is conceptually strong and offers a well-justified combination of 
complementary data and algorithmic modeling paradigms. 
The study is well evaluated across well-defined training protocols and temporal-spatial splits, which 
improves confidence in its generalizability. 
The use of multiple data sources for meteorological forcings addresses input uncertainty better than 
traditional single-source modeling. 
The results, specifically the finding that δHBV improves spatial generalization, have clear implications 
for prediction in ungauged regions. 
 
Thanks for the positive comments. 
 
Weakness 
 
Interpretability: While the δHBV model’s performance is shown to be beneficial in spatial generalization, 
the underlying reasons for this complementarity (e.g., structural constraints, parameter smoothness) are 
not deeply explored. A discussion of how each model contributes to ensemble diversity would strengthen 
the scientific value of the work. 
 
We thank the reviewer for this insightful comment regarding model interpretability and the 
complementarity between LSTM and δHBV within the ensemble framework. We fully agree that a deeper 
understanding of the relative contributions of each model would enhance the scientific value of our study. 
Besides this, we also plan to dig deeper and examine cases where the errors of LSTM and dHBV cancel 
each other. 
 



 
Figure R1. Boxplots of the spread values of simulations based on LSTM,  δHBV, and LSTM + δHBV with 

different meteorological forcings and random seeds across temporal, PUB, and PUR tests. 

 
 



 
Figure R2. Spatial distributions of spread increase from δHBV and LSTM to the LSTM+δHBV ensemble 

across temporal, PUB, and PUR tests. 

 
 
 
 
 
 



 
Figure R3. Distributions of observation–simulation pairs from LSTM and δHBV models along the 1:1 line 

across temporal, PUB, and PUR tests. Percentages of pairs lying above the 1:1 line for both models are 

also indicated. 

 
 
Since the benefits of the different ensemble members to the deterministic precision have been displayed in 
the original manuscript, we have conducted additional analyses in terms of ensemble variability as 
suggested. Specifically, we use the spread values (Li et al., 2021; Reichle and Koster, 2003), which are 
widely adopted to quantify ensemble variability, to further explore model complementarity. The spread 
value is calculated as follows, 
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Where n is the number of simulated days, r is the number of ensemble members, and S is the simulations 
of each ensemble member,  indicates the average of values. ()
 
Figure R1 presents the boxplots of spread values for ensemble simulations using random seed variations 
with LSTM, δHBV, and the combined LSTM + δHBV, across the temporal, PUB, and PUR test settings. 
We observe that the overall spread increases from temporal to PUB and PUR tests, reflecting growing 
uncertainty. Notably, δHBV consistently exhibits lower spread values than LSTM across all tests, 
indicating its higher stability. This aligns with our prior discussion: δHBV tends to constrain the learnable 
function space, thus having lower variability and potentially higher bias. This difference stems from their 
structural characteristics—δHBV is governed by more rigid physical constraints, which limit unrealistic 
dynamics and enhance stability, while LSTM is more flexible and capable of capturing patterns that may 
not be explicitly represented in physical models, such as human influences or unmodeled processes. The 
combination of both models (LSTM + δHBV) yields greater spread values, indicating enhanced ensemble 
diversity. This suggests that the two models offer complementary strengths—LSTM contributes flexibility 
and capacity to represent data-driven nuances, while δHBV anchors the ensemble with physically 
constrained behavior. 

https://www.zotero.org/google-docs/?2K0ATf


Figure R2 illustrates the spatial distributions of spread increase resulting from incorporating LSTM and 
δHBV, respectively, and further supports our previous analysis. Incorporating LSTM leads to an increase 
in spread values across all basins, reflecting its higher variability. In contrast, the δHBV model, 
characterized by stronger physical constraints and generally lower variability, results in a decrease in 
spread values for many basins. However, δHBV still contributes to a spread increase in most northern 
basins and gradually leads to spread increases in a larger number of basins across the CONUS. This 
suggests notable differences in simulated streamflow behavior between LSTM and δHBV, largely 
attributable to their distinct model structures. Figure R3 reveals relatively limited differences between the 
streamflow behaviors simulated by LSTM and δHBV, with LSTM generally producing higher streamflow 
estimates than δHBV. A more systematic investigation of these differences would be valuable in future 
studies. 
 
Following the reviewer’s suggestion, we will incorporate these analyses and discussions about the 
ensemble spread in the revised manuscript. 
 
  
 
Robustness and Sensitivity Analysis: The paper lacks an explicit assessment of how ensemble 
performance responds to errors or biases in the forcing datasets or uncertainty in model parameters. 
Including even a limited robustness analysis would improve confidence in the ensemble’s reliability. 
Additionally, the authors should consider running one or two experiments to understand whether 
changing the size of the lookback window (i.e., the number of historical timesteps) for the LSTMs 
impacted the overall performance of the ensemble. 
 
 
Thank you for the suggestions. Based on them, we conducted several experiments using temporal tests to 
demonstrate the robustness of ensemble benefits under various factors, including precipitation errors, 
parameter uncertainties in the δHBV model, and hyperparameter uncertainties in the LSTM model. 
 
Regarding sensitivity to the forcing datasets, we ran the δHBV and LSTM models under a temporal test, 
both without and with a precipitation error introduced by multiplying precipitation by 0.1, to examine 
differences across ensemble groups. The results, shown in Figures R4 and R5, indicate that although the 
performance of both LSTM and δHBV decreases when the precipitation error is introduced, the decrease 
is not substantial, demonstrating a certain degree of robustness to precipitation errors and some capacity 
of both models to adapt to such errors. Interestingly, LSTM and δHBV respond differently to this type of 
precipitation error: for LSTM, the error tends to reduce ensemble performance mainly under low and high 
flow regimes, whereas for δHBV, the reduction is more pronounced under low and middle flow regimes. 
These differences reflect the fact that LSTM does not need to respect mass balance and can adjust 
precipitation up or down internally, but has trouble learning the contrast, while δHBV needs to distort the 
low flow to capture the high flows. Despite these differences, the ensemble benefits remain significant 
and robust when comparing different ensemble groups and assessing the impact of precipitation errors. 
 



 
Figure R4. Simulation performance under the temporal test using the LSTM model with and without a 

precipitation error equal to 0.1 times the precipitation, compared across metrics (a)–(g). 

 



 
Figure R5. Simulation performance under the temporal test using the δHBV model with and without a 

precipitation error equal to 0.1 times the precipitation, compared across metrics (a)–(g). 

 
 
Similar results are observed in cases investigating the effects of parameter uncertainties in δHBV (Figure 
R6) and hyperparameter uncertainties in LSTM (Figure R7). Regarding parameter uncertainties, we 
additionally ran a case using the δHBV model with fewer dynamic parameters—reducing the number 
from three in the benchmark case to two—by fixing the infiltration rate parameter K0 as static to assess 
the resulting performance changes, which may reduce δHBV’s ability to represent dynamic water release 
processes influenced by changing groundwater levels, bank and wetland storages, and other factors (Song 
et al., 2025b).  This leads to increased structural errors and decreased model performance. Nevertheless, 
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the contribution of δHBV to ensemble simulations remains robust, with ensemble benefits substantially 
outweighing the negative effects of parameter uncertainties. 
 

 
Figure R6. Simulation performance under the temporal test using the δHBV model with 3 and 2 dynamic 

parameters, compared across metrics (a)–(g). 

 
 
Regarding hyperparameter uncertainties in the LSTM model, we focus on a key hyperparameter: the 
lookback window size, as suggested. We treat this parameter as having physical significance related to the 
temporal period rather than a typical hyperparameter. Therefore, we fix the window size to one year (365 
days) to capture a full annual cycle while accounting for interannual variability. To evaluate the impact of 



different window lengths, we include two additional scenarios with 182 and 730 timesteps. As shown in 
Figure R7, the LSTM model with a 365-day window generally achieves better performance across most 
scenarios. However, compared to the overall benefits of the ensemble, this difference is not substantial, 
indicating the robustness of ensemble simulations to variations in this LSTM hyperparameter. 
 
 

 
Figure R7. Simulation performance under the temporal test using the δHBV model on the time steps of 

365, 182, 730, compared across metrics (a)–(g). 

 
 
 



Although it is practically impossible to test the effects of all possible configurations on ensemble benefits, 
we expect these benefits to remain robust against other factors to some extent, based on the representative 
results presented. Following the suggestions, we will include these additional cases in the revised 
manuscript to further demonstrate the reliability of our ensemble simulations. 
 
 
Scalability and Practical Deployment: The manuscript does not address the computational or operational 
feasibility of deploying this ensemble framework in practice, especially over large domains or in real-time 
forecasting contexts. A short discussion (1-2 sentences) on this topic would add practical relevance. 
 
We appreciate the reviewer’s suggestion to further discuss the computational and operational feasibility of 
deploying the ensemble framework. This point is partially addressed in Section 3.3 of the original 
manuscript, where we note: 
“Moreover, ensemble simulations may face challenges when computational resources are limited and 
calculations are performed sequentially. However, we remain optimistic about these challenges, as the 
processes can be addressed by leveraging parallel computing with multiple GPUs, benefiting from 
ongoing advancements in computational power.”  
In response to the reviewer’s comment, we plan to expand this discussion as follows: 
“Ensemble simulations may face challenges when computational resources are constrained, particularly 
for large-scale or real-time applications. Nevertheless, we remain optimistic about overcoming these 
challenges due to several promising solutions. These include tailoring the hydrological model by 
simplifying less relevant components to specific simulation objectives (Clark et al., 2015; Kraft et al., 
2022) and cloud-based computing infrastructures that offer scalable, on-demand resource allocation (He 
et al., 2024; Leube et al., 2013). Importantly, the majority of computational costs are incurred during 
model training. In practice, ensemble members are typically pre-trained by different research or 
application groups (Bodnar et al., 2025; Nearing et al., 2024; Song et al., 2025a), enabling direct reuse of 
these well-trained models and significantly improving computational efficiency.” 
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