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Abstract. Soil carbon sequestration refers to the process of capturing atmospheric carbon through plant photosynthesis and

storing it in soil as organic carbon. The primary mechanism for carbon sequestration is via organic carbon molecules adsorbing

onto mineral surfaces of the soil’s fine fraction (clay + silt ≤ 20 µm), forming mineral-associated organic carbon (MAOC).

Soil has a finite capacity to stabilise and sequester organic carbon, known as carbon saturation capacity, which depends on

the proportion of reactive minerals in the soil. The difference between the current MAOC content and the carbon saturation5

capacity is referred to as the organic carbon saturation deficit (Cdef ) or sequestration potential. Fourier-transformed (FTIR)

mid-infrared (mid-IR) spectroscopy can simultaneously measure soil properties relevant to carbon stabilisation, organic carbon

functional groups, clay and iron-oxide mineralogy and particle size. Therefore, we hypothesise that mid-IR spectroscopy can

effectively and accurately estimate Cdef . Thus, we aim to (i) develop spectroscopic models to estimate the MAOC and Cdef

of 482 Australian topsoil samples, (ii) model MAOC and Cdef using mid-IR spectra and an interpretable machine learning,10

and (ii) interpret the MAOC and Cdef models using the explainable artificial intelligence (AI) algorithm SHapley Additive

exPlanations (SHAP). Using frontier line analysis, we fitted a function to the upper envelope of the MAOC vs clay + silt

relationship to derive Cdef . We recorded mid-IR spectra of the samples and used the regression trees method CUBIST to model

MAOC content and Cdef . We interpreted these models by examining the regression trees and using SHAP. The models were

unbiased and estimated MAOC content with R2 of 0.86 and RMSE of 2.77 (g/kg soil), and Cdef with R2 of 0.89 and RMSE15

of 3.72 (g/kg soil). Model interpretation revealed Cdef estimates relied on negative interactions with absorptions from organic

matter functional groups and positive interactions with absorptions from clay minerals. Our results show that mid-IR spectra

can effectively estimate MAOC and soil Cdef , offering a rapid and cost-effective method for assessing and monitoring this

critical soil function.

1 Introduction20

Soil organic carbon (C) sequestration refers to the process by which plants capture atmospheric C through photosynthesis

and store it in the soil. The United Nations Framework Convention on Climate Change (UNFCCC) has identified soil C

sequestration as a critical, nature-based process for withdrawing atmospheric carbon dioxide (CO2) (UNFCCC, 2019). Soil

organic C sequestration also improves soil health, food and nutritional security, water quality, biodiversity, and elemental
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recycling (Lal et al., 2015). Thus, it is crucial to estimate the amount of C soil stores and how much it could store in the25

future to advance our scientific understanding of C cycling. This understanding will provide the foundation for land managers

to develop practices that enhance C sequestration and for policymakers to formulate climate change adaptation strategies.

However, estimating the soil C saturation deficit rapidly, cost-effectively, and scientifically remains a challenge.

Soil C from plants begins as particulate organic C (POC). Over time, soil microorganisms consume this POC, while some are

broken down into smaller molecules. Some of these molecules are protected from further decomposition through adsorption30

onto mineral particles, forming mineral-associated organic carbon (MAOC) and providing protection within soil microaggre-

gates (Hassink and Whitmore, 1997; Six et al., 2002; Beare et al., 2014). Soils with higher silt and clay content have a larger

mineral surface area and a greater capacity to adsorb and stabilise C. Hassink (1997) found a positive linear relationship be-

tween the proportion of clay and silt (particles <20 µm) and the amount of C in this fraction. This relationship has been used

to estimate the soil’s maximum capacity to stabilise C (Hassink, 1997), referred to as the C saturation capacity (Csat). The35

difference between actual MAOC content and Csat is known as the C saturation deficit (Cdef ) or C sequestration potential.

Subsequent studies, such as Six et al. (2002), also found a direct relationship between MAOC and the amount of clay and

silt in soil, further recognising that this relationship depends on the reactivity of the clay minerals in the soil. Many researchers

have since used such linear relationships to estimate Csat. Feng et al. (2013) found this approach underestimated Csat and

proposed a boundary line method as an alternative, fitting a line to the upper tenth percentile of the data in the MAOC vs40

clay and silt relationship. More recently, the relationship has been fitted with quantile regression through the 90th percentile of

the data (Georgiou et al., 2022). However, these methods underestimate Csat by fitting through the data rather than capturing

the maximum values. To address this shortcoming, Viscarra Rossel et al. (2024b) proposed using a bootstrapped frontier

lines analysis that fits an envelope to the maximum values of the relationship between MAOC and the soil’s fine fraction,

thereby preventing underestimation of the soil’s C storage capacity and providing estimates of the uncertainty. Additionally,45

considering the maximum attainable C storage under a given environment (CAmax) approaches maximum asymptotically

(Ingram and Fernandes, 2001; Viscarra Rossel et al., 2024b), the frontier line approach better reflects CAmax by showing the

asymptotic increase in soil C storage capacity with increasing soil clay and silt content (Viscarra Rossel et al., 2024b).

Establishing a reliable estimate of CAmax and Cdef using the methods above requires many soil samples with measured

MAOC and clay plus silt content. Measuring MAOC involves fractionating soil to isolate the C in the≤ 50µm soil fraction and50

then measuring the organic C content (Poeplau et al., 2018). Fourier-transformed (FT-IR) mid-infrared (mid-IR) spectroscopy

offers a faster, more cost-effective, and repeatable alternative. It measures soil composition by capturing interactions between

mid-IR wavelengths and the vibrations of bonds in soil molecules, providing data on a soil’s organic and mineral composition

(Viscarra Rossel et al., 2022). These spectra have been used to estimate organic and inorganic C, clay, sand and silt contents,

cation exchange capacity and other chemical, physical and biological properties through calibration that relates the measured55

soil properties to their spectra (Soriano-Disla et al., 2014).

Mid-IR spectra serve as an integrative ‘molecular fingerprint’ of the soil, reflecting its mineralogy, organic matter, and phys-

ical properties (Viscarra Rossel et al., 2006), which directly determine a soil’s biological activity, soil structure and ultimately

the ability to sequester C (Wiesmeier et al., 2019). Baldock et al. (2019) estimated the C saturation deficit (Cdef ) of New
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Zealand soils using pedotransfer functions derived from the quantile regression approach, modelling Cdef with mid-IR spectra60

through partial least squares regression (PLSR), showing good predictability. Similarly, Karunaratne et al. (2024) estimated

the Cdef of Australian soils using the quantile regression approach and modelled it with mid-IR spectra coupled with PLSR,

also achieving good predictability. We did not find other research that estimates Cdef using soil spectra. We hypothesise that

mid-IR spectra, combined with explainable machine learning, can be used to estimate soil MAOC content and Cdef while also

providing insights into how the model uses spectral absorption features to identify the soil constituents important for prediction.65

Thus, we aimed to:

1. Develop spectroscopic models to estimate the MAOC content and the Cdef of Australian soils using mid-IR spectra with

the regression trees algorithm CUBIST;

2. Interpret these models by analysing the CUBIST rulesets and SHapley Additive exPlanations (SHAP) values to understand

how the absorptions of soil organic and inorganic constituents affected model prediction.70

2 Methods

2.1 Soil samples

We used 488 topsoil samples from 275 sites across Australia (Figure 1). The soils were sampled from three depth layers (0–

10 cm, 10–20 cm and 20–30 cm). All soil orders from the Australian soil classification were present apart from Anthroposol

and Organosol (Teng et al., 2018). Kandosols were the most abundant soil type, followed by Tenosols and Calcarosols, Chro-75

mosols and Vertosols, while Rudosols, Dermodols, Kurosols, Ferrosols, and Podosols were present in smaller numbers. Three

Hydrosols were excluded from further analysis due to the distinct C storage mechanisms in anoxic soils (Six et al., 2023).

The sampling area spans the main Köppen-Geiger climate zones (Beck et al., 2018), with most of the samples collected

from arid hot deserts, with smaller proportions from arid hot steppes and tropical savannahs. Samples were primarily collected

from areas with minimal human impact, particularly nature conservation sites, native vegetation grazing lands, and other80

minimally used areas. Only a small proportion of samples came from production or intensive land use. The vegetation at

sampling sites was diverse, encompassing 24 major vegetation groups, with eucalyptus woodlands being the most common

type (Commonwealth of Australia, 2020). Most samples were taken from native vegetation or natural bare land, with the rest

from non-native vegetation or cleared land (ABARES, 2022).

2.2 Soil fractionation85

Soil samples were fractionated through physical granulometric separation. The samples were dispersed in deionised water using

an ultrasonic probe (Sonics VCX 500 Sonicator, Newtown, Connecticut) with an energy output of 500 J ml−1 for 200 seconds

(Walden et al., 2023). After dispersion, the samples were fractionated using an automated wet sieving apparatus (Analysette 3

Pro, Fritsch GmbH, IdarOberstein, Germany) with 250 µm and 50 µm sieves. The resulting soils were in three size fractions:

macroaggregates (2000–250 µm), microaggregates (250–50 µm), and the fine fraction (≤ 50 µm). The fractionated samples90
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Figure 1. Location of sampling points.

were then oven-dried at 60◦C overnight and ground to approximately ≤ 80 µm, before the organic C content of each size

fraction was measured using an elemental analyser (SoliTOC Cube, Elementar Analysensysteme, Hanau, Germany). The

organic C content of the fine fraction, representing MAOC, was recorded in grams per kilogram of whole soil.

2.3 mid-IR spectroscopy

The whole soils (sieved to ≤ 2 mm) were air-dried before fine grinding to ≈< 80 µm. The mid-IR spectra of the finely ground95

samples were measured with a diffuse reflectance infrared Fourier transform (DRIFT) spectrometer (Bruker-Invenio HTS-XT,

Massachusetts, United States). Spectra were recorded from 4000–450 cm−1 with a spectral resolution of 4 cm−1 and measuring

64 scans per sample. The spectrometer was calibrated with a gold standard before measuring each sample plate with 23 samples

(Bruker, Massachusetts, United States). Reflectance spectra were recorded in log 1
R (apparent absorbance).

2.3.1 Silt + clay content100

The silt and clay content of the whole soil was determined using mid-IR spectroscopic modelling with CUBIST Viscarra Rossel

and Webster (2012). The silt % model has an R2 value of 0.84 with a concordance of 0.92, and the clay % model has an R2

value of 0.90 with a concordance of 0.95. The estimated silt and clay content in % was combined for further analysis.
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2.4 Frontier lines and calculation of Cdef

The MAOC content of samples displayed a log-normal distribution. We performed a loge transformation on the MAOC content105

and removed three outliers that were more than 1.5 times the interquartile range. We proceeded with the analysis of the

remaining 482 samples from 270 sites.

We fitted a monotonically increasing and concave frontier line (Parmeter and Racine, 2013) to the relationship between

log(MAOC) and clay + silt content of the samples using the smooth, non-parametric frontier line analysis with the R package

SNFA (McKenzie, 2022). We calculated the CAmax and Cdef following the approach described in Viscarra Rossel et al.110

(2024a). Each point on the frontier line represents the maximum attainable amount of MAOC that soil could store for a

particular clay and silt content.

To enable the estimation of uncertainty, we performed 100 non-parametric bootstrap resamples to fit the frontier lines,

keeping samples from the same site together during resampling to prevent data leakage. We then averaged all 100 frontier line

fits made on the bootstraps. The Cdef was calculated as the difference between the estimated mean frontier line and the MAOC115

content. We also computed the uncertainties of our frontier line estimate by calculating the 95% confidence limits. All values

were then back-transformed to their original units for the spectroscopic modelling.

2.5 Spectroscopic modelling

The mid-IR spectra were interpolated to 32 cm−1 wavenumber intervals to reduce the inherent collinearity of the spectra. Since

mid-IR spectra are highly colinear and contain broad absorption features, we interpolated the spectra to 32 cm−1 to reduce the120

redundant information passed into the machine learning model (Deiss et al., 2020). Visual checks confirmed relevant absorp-

tion features remained distinguishable at this resolution. We also checked Cdef model performance using spectra interpolated

to 8 cm−1, 16 cm−1, 24 cm−1 and 32 cm−1 resolutions and found no significant difference between these resolutions. Pre-

processing consisted of an initial offset correction, standard normal variate (SNV) transformation, and a final offset correction

to address the shift introduced by the SNV transformation. Spectral regions that were either featureless (4000 to 3746 cm−1)125

or containing distracting features from noise and artefacts from water and CO2 (2370 to 2082 cm−1) were removed before

modelling.

We modelled the MAOC and the estimated Cdef with CUBIST. CUBIST is a rule-based regression tree algorithm (Quinlan

et al., 1992; Wang and Witten, 1997). CUBIST creates a tree structure, with branches as a series of "if-then" conditions, then

reduced into rules. Each CUBIST rule corresponds to a subset of the data that satisfies the rule’s condition. For each rule, a linear130

regression model is fit to the data using relevant predictors (Kuhn et al., 2012). CUBIST balances accurate predictions and model

interpretability through its rule-based structure. CUBIST is tuned by two parameters: committees and neighbours. The number

of committees specifies the number of ensembles contributing to the final prediction, with more committees typically improving

performance but reducing interpretability, and the number of neighbours specifies how many nearest-neighbours of a sample

CUBIST uses to adjust its rule-based predictions. Viscarra Rossel and Webster (2012) described the method for spectroscopic135

modelling. In our experiments, since our goal was to understand which spectral regions influence predictions and how they
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relate to soil properties, we prioritised model interpretability by using only one committee to retain model transparency without

the added complexity of ensemble averaging. We optimised the best number of neighbours to be used by testing all numbers

from 0 to 9. Model fitting and validation were carried out using 10-fold leave-site-out cross-validation, where the 275 sampling

sites were randomly assigned to 10 folds to ensure all samples from the same site and the three depth layers were kept together140

within the same fold. We assessed the models based on their coefficient of determination (R2), Lin’s concordance correlation

coefficient (CCC) (Lin, 1989) and the root mean squared error (RMSE).

We propagated the uncertainty of the frontier line fitting and the CUBIST modelling. From the 100 frontier line fits made

with the bootstraps, we derived the upper and lower 95% confidence intervals (CI) for the frontier line fit and calculated the

upper and lower limit of Cdef . The upper and lower limits of Cdef were also modelled with CUBIST following the same method145

described above.

2.6 Interpretation

To interpret the models, we extracted each CUBIST rule from the MAOC and Cdef models to analyse their rule partitioning.

For the MAOC model, we examined the distribution of MAOC values within each rule, while for the Cdef model, we analysed

the distributions of both MAOC and Cdef values within each rule. For the linear models in each CUBIST rule, we examined the150

wavenumber corresponding to specific absorptions of soil constituents and their coefficients. For the Cdef model, we took an

additional step and calculated the SHAP (SHapley Additive exPlanations) values for each sample for each linear model of the

CUBIST rules. The SHAP values are used to explain the outputs of machine learning models. SHAP is based on game theory

(Shapley, 1953) and assigns an importance value to each feature (in our case, absorptions at specific wavenumbers) in a model.

Features with positive SHAP values had a positive impact on the prediction, while those with negative values had a negative155

impact. The magnitude measures the strength of the effect.

All statistical analyses were performed using R (R Core Team, 2024).

3 Results

3.1 The maximum attainable MAOC storage, the MAOC deficit and C sequestration potential

Our samples represent a wide geographical area in Australia (Figure 1) with large variations in MAOC content and texture160

(Table 1). The MAOC content ranges from 0.27 g/kg soil to 50.04 g/kg soil, while silt content ranges from 0.54% to 31.81%,

and clay content ranges from 2.34% to 54.25% (Table 1). The frontier line estimates the maximum C that can be stored in their

current environments over their range of clay + silt contents for all 482 samples, with their 95% confidence intervals shown in

Figure 2. The frontier line increases with increasing clay + silt content to around 20%–45%, after which the rate of increase

slows. The CAmax ranges from 4.8 g/kg soil to 45.66 g/kg soil with a mean of 32.4 g/kg soil (Table 1). The Cdef ranges from165

none to 45.05 g/kg soil with a mean of 25.95 g/kg soil (Table 1).
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Table 1. Summary statistics

Mean SD Min Q0.25 Median Q0.75 Max Skew

Silt% 10.93 7.48 0.54 4.73 9.49 16.31 31.81 0.63

Clay% 20.79 11.16 2.34 11.84 18.68 29.39 54.25 0.49

MAOC (g/kg soil) 6.52 7.32 0.27 2.07 4.17 7.88 50.04 2.79

CAmax (g/kg soil) 32.76 10.52 5.29 26.84 36.15 41.24 45.80 -0.89

Cdef (g/kg soil) 26.31 11.22 0.00 19.15 28.59 35.65 45.17 -0.64

Note: SD = Standard Deviation, Min = Minimum, Q0.25 = Lower 25% quartiles, Med = Me-

dian, Q0.75 = Upper 25% quartiles, Max = Maximum, Skew = Skewness.

Figure 2. Frontier lines and its 95% confidence interval fitted using all 482 samples.

7

https://doi.org/10.5194/egusphere-2025-4828
Preprint. Discussion started: 14 October 2025
c© Author(s) 2025. CC BY 4.0 License.



3.2 Spectroscopic modelling of MAOC content

The CUBIST model predicts MAOC with an RMSE of 2.77 g/kg soil, is unbiased with R2 of 0.86, and CCC of 0.91 Table 2,

Figure 3 b). The model partitions the data into four rule sets, corresponding to different MAOC content levels, which increase

from Rule 1 to Rule 4 (Figure 3a). Samples in Rule 1 have the least MAOC and are not significantly different from Rule 2170

(Figure 3 a). Rule 3 samples have significantly more MAOC than Rule 1 but are not significantly different from Rule 2 (Figure

3 a). Rule 4 samples have significantly more MAOC than all other rules and exhibit the largest spread (Figure 3 a).

Table 2. Tuning parameters and model statistics for MAOC and Cdef CUBIST models.

Committee Neighbor RMSE (g/kg soil) R2 CCC

MAOC 1 8 2.77 0.86 0.91

Mean Cdef 1 5 3.72 0.89 0.94

Cdef upper 95% CI 1 4 4.13 0.85 0.92

Cdef lower 95% CI 1 9 3.74 0.91 0.95

Note: RMSE = Root mean square error, CCC = Lin’s concordance correlation coeffi-

cient, CI = Confidence interval.

The mean Mid-IR spectra of the samples of the four rule sets show overall consistent patterns, with differences in absorption

intensities at 3700–3500 cm−1, 2946–2850 cm−1, 1986–1794 cm−1, and 1634–1300 cm−1) (Figure 3, c). Specifically, the

mean spectrum of rule 4 has the highest absorption in the 2946–2850 cm−1 region associated with organic C (C–H vibrations175

of Alkyl CH2), corresponding to having the highest MAOC content (Figure 3, a, c). The wavenumbers selected for each of

the four rules’ linear models differ, although there is some overlap. All rules use wavenumbers between 2946–2850 cm−1,

organic C–H vibrations of Alkyl CH2 groups (Nguyen et al., 1991) and near 2515 cm−1 associated with carbonate (Nguyen

et al., 1991) though the specific selections vary (Figure 3, c). Rule 1 exhibits densely distributed wavenumbers across both

these regions with high coefficient values. Rule 3 shows a similarly dense distribution, concentrated primarily in the 2946–180

2850 cm−1 region, with large coefficient values. In contrast, Rule 2 displays more sparsely distributed wavenumbers across

both regions, while Rule 4 uses only a few select wavenumbers around 2946–2850 cm−1. Rules 1, 2, and 3 use the region

between 1986–1794 cm−1, associated with quartz, with the coefficients in rule 2 having the largest magnitude (Figure 3, c).

Rule 4 uniquely includes absorptions at the 3750 cm−1 region, associated with the hydroxyl stretching vibrations of clay

minerals (Nguyen et al., 1991); and between 1762–1634 cm−1, associated with amide C=O bond (Volkov et al., 2021), as well185

as wavenumbers around 1154 cm−1, which correspond to the SiO2 lattice (Spitzer and Kleinman, 1961) and C-OH stretch of

aliphatic O–H (Senesi et al., 2003) (Figure 3, c).
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Figure 3. CUBIST model result for MAOC. (a) The distribution of MAOC content for each CUBIST rule and Tukey’s HSD between each

CUBIST rule. (b) The correlation between observed and predicted MAOC of the CUBIST model, coloured by CUBIST rules. (c) The coefficient

of each linear model for each CUBIST rule is plotted over the mean spectra of each CUBIST rule. (b) The correlation between observed and

predicted MAOC of the CUBIST model coloured by CUBIST rules.
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3.3 Spectral modelling of the organic C deficit (Cdef )

The model predicts Cdef with an RMSE of 3.72 g/kg soil, R2 of 0.89, and CCC of 0.94 while also being unbiased (Table 2,

Figure 4 c). The model partitions the data into 3 rule sets, and the linear models of each CUBIST rule also show good precision190

(Table 3).

Rule 1 includes samples with the lowest Cdef and the highest MAOC content, representing samples that have smaller

C sequestration potential, as these samples contain more MAOC (Figure 4 a, b). Rule 2 represents samples with intermediate

Cdef , and contain little MAOC and clay and silt content, representing coarser-textured soils with more C sequestration potential

than samples in rule 1 because they hold less MAOC (Figure 4 a, b). Rule 3 includes samples with high Cdef , low MAOC195

content and the most clay and silt content. Since these samples contain the finest particles, their capacity is largest and is thus

undersaturated with C relative to their potential (Figure 4 a, b).

Table 3. Model statistics for each linear model of the CUBIST rules in the mean Cdef CUBIST model.

RMSE (g/kg soil) R2 CCC

Rule 1 5.03 0.81 0.90

Rule 2 2.25 0.94 0.97

Rule 3 1.58 0.90 0.95

Note: RMSE = Root mean square error, CCC

= Lin’s concordance correlation coefficient.

The three rule sets show similar overall mean spectral patterns but with distinct differences in absorption intensities at

key regions, including 2946–2850 cm−1 associated with organic C, 1986–1794 cm−1 associated with SiO2 overtone and

combination bands, and 1538–1218 cm−1) region associated with various organic and mineral absorptions (Figure 4 d). The200

wavenumbers selected for the models in each CUBIST rule are generally consistent, with the magnitude of the coefficient

decreasing from rule 1 to rule 3 (Figure4, d). In the 2946–2850 cm−1 region, associated with organic C–H vibrations of

Alkyl CH2 groups (Nguyen et al., 1991), rule 1 has a greater average absorption compared to rule 2 and rule 3. This pattern

corresponds to samples in rule 1 having the most MAOC content (Figure 4, b, d). All three CUBIST rules use wavenumbers

within and near this region, and their coefficients are large. Rule 1 has the largest coefficients, followed by rules 2 and 3.205

Thus, rule 1 has the lowest Cdef followed by rule 2 and 3 (Figure 4, b, d). The absorption near 2515 cm−1 due to carbonates

shows more prominent absorption in rule 3. In the region near 1986–1794 cm−1), which is due to the overtones of Si-O

vibrations(Volkov et al., 2021), absorption intensity decreases from rule 2 to rule 1 to rule 3, corresponding to decreasing sand

content and increasing clay and silt content (Figure 4, d). All three rules have prominent absorption at and near 1634 cm−1,

which are associated with amide, carboxylate and carboxylic acid (Nguyen et al., 1991; Tanykova et al., 2021), aromatic –C=C–210

stretch (Du et al., 2014) HO–H stretch (Kronenberg et al., 1994), N–H bend, C=O stretch (Volkov et al., 2021) and absorbed

water (Max and Chapados, 2009) (Figure 4, d). In the fingerprint region (1550–450 cm−1), the band assignments are more
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Figure 4. CUBIST model result for Cdef , showing the CUBIST rules separation, including the distribution of (a) Cdef and (b) MAOC content

for each CUBIST rule and Tukey’s HSD between each CUBIST rule. Along with (c) the correlation between observed and predicted Cdef of

the CUBIST model coloured by CUBIST rules, and (d) the coefficient of each linear model for each CUBIST rule plotted over the mean spectra

of each CUBIST rule.
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Figure 5. The correlation between observed and predicted Cdef of the CUBIST model coloured by CUBIST rules, as well as the observed and

predicted Cdef estimated from the upper 95% CI and lower 95% CI of the frontier line fit.

challenging due to significant overlaps between mineral and organic absorptions (). The region from 1538 to 1218 cm−1, likely

associated with quartz minerals as well as organic matter (Volkov et al., 2021), is more prominent in rule 2 and rule 1, and lower

in rule 3 (Figure 4, d). Rule 3 exhibits proportionally larger coefficients for wavenumbers in the fingerprint region because of215

low organic C content and high fine mineral particle content (Figure 4, b, d).

The model statistics of the CUBIST models of Cdef estimated from the upper and lower 95% CI of CAmax are shown in

Table 2. The model for the Cdef estimated with the lower 95% CI of the frontier line performs better than the model estimated

with the upper 95% CI. This can be attributed to the upper 95% CI of the frontier line having higher uncertainty than the lower

95% CI. Specifically, the upper uncertainty of the frontier line fit is high around 25% clay + silt content due to the low sample220

number (Figure 2). The uncertainty of Cdef estimated from CUBIST models of Cdef calculated from the upper CI and lower

CI of the CAmax is shown in Figure 5.

3.4 Cdef model interpretaion with SHAP

The SHAP contribution of spectral absorption at each wavenumber for the linear model of each CUBIST rule is shown in Figure

6. The SHAP values coincide with the regression coefficients of the CUBIST rules (Figure 6). The regression coefficients and225
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SHAP values are consistent, as large coefficients exhibit strong SHAP model contributions. Rule 1 shows strong contributions

primarily from organic C features, and rule 2 displays a similar pattern but with more contributions from the fingerprint region.

For rule 3, there is a relatively stronger contribution from the absorptions in the double bonds region (including absorption from

quartz and the region associated with amide overlapping with other absorptions), and the fingerprint regions have a relatively

stronger contribution (Figure 6).230

The SHAP values indicate positive and negative contributions from spectral regions associated with characteristic absorption

of clay minerals, organic matter, and quartz (Figure 6). Generally, peaks associated with organic C have a negative model

contribution with an increase in absorbance, while the troughs have a positive contribution with increasing absorbance (Figure

6). Similarly, absorptions associated with clay minerals, quartz and silicate have a positive model contribution, while the

troughs have a negative contribution (Figure 6).235

4 Discussion

Our findings support the hypothesis that mid-IR spectra, combined with machine learning and enhanced by SHAP analysis for

interpretability, can accurately estimate soil MAOC content 2) and Cdef (Table 2) by elucidating the contribution of specific

mid-IR absorptions.

Our results demonstrate that combining soil spectroscopy with machine learning offers a rapid, cost-effective, and robust240

method for estimating MAOC and Cdef . The spectroscopic approach enables many more measurements than conventional

methods, enhancing our understanding of how MAOC and Cdef vary in the soil in space and time (Angers et al., 2011). This

approach could also provide essential data for soil biogeochemical and Earth System models, improving their initialisation,

validation and ongoing development (Stewart et al., 2007; Georgiou et al., 2022; Abramoff et al., 2022; Vereecken et al., 2016).

Given that C storage is a key soil function for maintaining soil health (Lal, 2016; Lehmann et al., 2020), our findings highlight245

how the current state and potential for C sequestration can be rapidly and cost-effectively measured as part of soil health

assessment (Vogel et al., 2019). This aligns with growing evidence that soil spectra, when combined with machine learning,

can model soil functions, going beyond the prediction of individual soil properties (Cohen et al., 2006; Elliott et al., 2007;

Cécillon et al., 2009; Viscarra Rossel et al., 2010; Maynard and Johnson, 2018; Deiss et al., 2023).

Two other studies estimated soil Cdef using mid-IR spectroscopic modelling Karunaratne et al. (2024); Baldock et al.250

(2019). Unlike these studies, which used quantile regressions to estimate Cdef , our approach avoids under- or over-estimations

(of Cdef ) using bootstrapped frontier lines that more accurately capture the relationship between MAOC and clay + silt content

(Viscarra Rossel et al., 2024a). Additionally, the spectroscopic Cdef model was developed using CUBIST, which offers good

predictability and interpretability, effectively handling non-linearities, and is advantageous compared to linear methods like

PLSR. Unlike the earlier studies, we also propagated the uncertainties from the frontier lines fits and the CUBIST models to our255

final predictions.

The MAOC and Cdef models relied on spectral regions related to organic functional groups such as the C-H groups near

2900 and 2800cm−1, the amide group near 1725cm−1 and 1:1 and 2:1 clay minerals, which provide surfaces for organic matter
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Figure 6. The mean spectra, key spectral assignment, and the SHAP contribution of the spectral regions used in each linear model of each

CUBIST rule. A positive SHAP value indicates a positive contribution to a model with increased absorbance, whereas a negative SHAP value

indicates a negative contribution with increased absorbance. The magnitude of SHAP indicates the strength of the contribution. The SHAP

values are plotted over the pre-processed spectra of each rule set. The SHAP values are coloured by the normalised absorbance value at each

wavenumber, ranging from -1 (lowest absorbance at each wavenumber) to 1 (highest absorbance at each wavenumber).
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adsorption. Absorptions for quartz and other minerals in the fingerprint region were also important in the models, but negatively

affected the estimates. The Cdef model drew from information on C already present in the soil, which contributed negatively260

to the model, and soil mineralogy, which provides information on what the soil minerals could potentially adsorb, contributing

positively to the model.

CUBIST offers an advantage over other machine learning models due to its interpretability. As a tree-based algorithm, it

can be locally interpreted, unlike other algorithms that are limited to global-level interpretation (Viscarra Rossel and Webster,

2012). SHAP values provided additional interpretation, allowing us to not only know how each wavelength contributes to265

the model and how strongly they contributed to it but also show what direction an increase or decrease in absorbance affects

the model, thus identifying which and how soil constituents (clay minerals, quartz, and organic C) significantly contribute to

determining MAOC and Cdef (Wadoux, 2023). Nevertheless, given the heterogeneous nature of soil composition, overlapping

absorptions make it challenging to differentiate between molecular vibrations, particularly in the fingerprint region. Like other

regression tree methods, CUBIST can be sensitive to strong collinearity, potentially leading to model instability and overfitting270

(Viscarra Rossel and Webster, 2012; Kuhn, 2013). To minimise the effect of collinearity in our modelling, we interpolated the

spectra to a resolution of 32 cm−1 (see Methods section).

This study extends beyond previous research, which predominantly focuses on agricultural land use, by incorporating sam-

ples from various other ecosystems. The samples span Australia’s main Köppen-Geiger climate zones, 24 major vegetation

groups, and 11 of the 14 Australian soil classification orders (Isbell et al., 2016). We excluded hydrosol with different C stabil-275

isation dynamics. Future work will include more samples with a larger representation of soils for developing site-specific Cdef

estimates.

Our method facilitates efficient data acquisition, providing an effective approach to help farmers and land managers gain

the insights needed to assess the current and potential for carbon sequestration on their land. Identifying regions and soil types

where increasing organic C storage is feasible enables more targeted resource allocation and informed decision-making.280

While our study pertains to Australian soils, the principles of applying mid-IR spectroscopy and machine learning to estimate

MAOC and Cdef are applicable across various land uses, soil types, and climatic conditions. This provides the rapid assessment

capability needed to scale soil carbon initiatives for monitoring soil organic carbon and its potential contribution to climate

adaptation and mitigation targets under the Paris Agreement and the UN Sustainable Development Goals. The method’s ability

to support large-scale monitoring of C sequestration potential also makes it relevant to soil carbon credit systems such as the285

Australian Carbon Credit Units (ACCU) scheme.

5 Conclusions

We demonstrated that mid-IR spectroscopy combined with machine learning could effectively estimate soil MAOC content

(RMSE = 2.77 g/kg soil, R2 = 0.86, CCC = 0.91) and Cdef (RMSE = 3.72 g/kg soil, R2 = 0.89, CCC = 0.94). We interpreted

CUBIST, confirming the contributions to the models from functional groups related to organic functional groups, clay miner-290

als, and quartz, reflecting existing soil organic C, soil mineralogy, particle size distribution, and surface area available for C
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adsorption, which are critical for estimating MAOC and Cdef . Our approach contributes to understanding the analysis of C

sequestration potential with mid-IR spectroscopy and machine learning, helping the development of rapid and cost-effective

soil C sequestration assessment and monitoring.
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