
Response to referee 1

We thank the editor and referee for their comments and reviews. Below, we respond

to each comment (in blue text and preceded by Authors:).

Referee

Comment General comments: Based on national scale soil samplings, this

manuscript proved the potential of implementing mid-IR spectra and

machine-learning for MAOC and C deficit prediction. The results show that the

CUBIST models for both MAOC and C deficit prediction have good performance,

advocating their future application. They also make these models interpretable by

matching absorption features of the mid-IR spectra and coefficients in models among

different modeling rules. Nevertheless, several issues raised during my review which I

think should be addressed before publication.

The investigation of model interpretability should be modified. Since the SHAP

values coincide with the regression coefficients of the CUBIST rules, there is large

redundancy between the SHAP analysis and that of CUBIST rules demonstration. In

other words, the interpretation that positive SHAP values had a positive impact on

the model prediction also applies to that of coefficient values in multivariate

regression. The authors should demonstrate the additive value of the SHAP analysis.

In addition, if the authors manage to do so, then they should also perform the SHAP

analysis on MAOC prediction model. Otherwise, the authors should declare the

reason why they only perform the SHAP analysis on C deficit prediction model. In

addition, the so-called interpretability stops by pointing out impactful wavenumber

and its chemical identity. The interpretability should involve more explanatory

descriptions. For instances, in line 259, “absorptions for quartz and other minerals in

the fingerprint region were also important in the models, but negatively affected the

estimates”. What did this result tell us? Is that because the relatively larger amount

of quartz likely indicates a sandy texture of soils, thus indicating less mineral
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capacity and likely low C deficit?

Authors: We thank the reviewer for these comments on model interpretability. We

agree that, in linear models, signed coefficients and SHAP values can convey similar

information about the average direction of effect. However, in our CUBIST

implementation, regression coefficients are defined by rules that apply to subsets of

the data, whereas SHAP values quantify each wavenumber’s contribution to the

prediction for each individual sample. In our context, the two diagnostics are

therefore not redundant. Regression coefficients summarise the average effect of a

wavenumber within a given rule, while SHAP values provide instance–level

attributions that reveal how the same wavenumber can contribute differently across

samples depending on their full spectral and covariate context [Shapley, 1953]. This

is illustrated in Figure 6, where the magnitude and spread of SHAP contributions for

key wavenumbers differ from those inferred from the rule coefficients alone,

highlighting sample-specific effects that are not apparent from the rule-based

coefficients.

Regarding the scope of the SHAP analysis, our primary objective in this study is

to model and interpret the carbon deficit (Cdef), with the MAOC model serving as a

supporting component in deriving Cdef . For this reason, we focused the main-text

SHAP analysis on the Cdef model. In response to the reviewer’s suggestion, we will

now include an analogous SHAP analysis for the MAOC prediction model in the

Supplementary Information, and cross-reference it in the main text, so that readers

can assess whether influential wavenumbers and their signs are consistent across both

models.

We agree that interpretability should extend beyond listing important

wavenumbers to providing ecological and pedological explanations. We thought we

had done that, but we will revise thoroughly to ensure we do! The negative SHAP

values associated with quartz-related absorptions in the fingerprint region indicate

that, all else being equal, spectra dominated by quartz and other primary minerals
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tend to be associated with lower predicted Cdef . This is consistent with the

interpretation that higher quartz content reflects coarser-textured, sandier soils with

lower specific surface area and reduced capacity to stabilise mineral-associated

organic carbon. Conversely, lower quartz and stronger absorptions linked to clay

minerals and organo–mineral complexes are associated with higher predicted Cdef , in

line with greater mineral capacity for sorption and stabilisation. We will clarify this

interpretation in the revised text, so that the SHAP patterns are explicitly linked to

soil texture, mineral surface area, and mineral-associated C storage capacity.

Comment The discussion section should be modified in several aspects. First, the

authors stated that the spectroscopic approach enables many more measurements

than conventional methods, enhancing our understanding of how MAOC and C

deficit vary in the soil in space and time. However, the approach that this study

implemented still involved destructive samplings over large geographical scale, which

still belong to conventional methods. In other words, in order to monitor C deficit

dynamics over time, researchers need long-term large-scale samplings to get the new

mid-IR spectra from soils, even they have built the CUBIST models. Therefore, the

statement will be a better fit for spectroscopic approaches which use spectra from

non-destructive remote sensing techniques, i.e. spectra from satellites, even though

the model accuracy of these studies tends to be lower than this study. If insist using

the statement mentioned above, the authors should point out the potential that

laboratory-based spectroscopic approaches can help improve the performance of that

of remote sensing spectroscopic approaches. Second, the authors pointed out that the

frontier line approach can have a more accurate estimate of MAOC maximum

capacity than that of quantile regression in discussion part. However, Shi et al

(doi.org/10.1016/j.geoderma.2025.117181) has implemented a local approach for the

quantile regression method, which has the merit of avoiding under- or

over-estimations. The authors should incorporate Shi’s study into the discussion

section and modify the relevant statements.
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Authors: We thank the reviewer for the comments on the Discussion. We agree that

the mid-IR spectroscopy implemented in this study still relies on destructive soil

sampling and laboratory measurements, and therefore differs fundamentally from

non-destructive satellite-based remote sensing. Our intention was not to imply that

mid-IR spectroscopy eliminates the need for sampling, but rather to emphasise that,

once a representative calibration set has been analysed, laboratory mid-IR

spectroscopy allows MAOC and related C fractions to be estimated for far larger

numbers of samples than would be feasible with conventional wet-chemical

fractionation and combustion methods, which are labour-intensive, time-consuming,

and costly. We will clarify this point in the revised Discussion.

We also acknowledge that satellite-based spectroscopic approaches can provide

truly non-destructive, repeated observations at very large spatial scales. However,

optical remote sensing is restricted to the soil surface (millimtetres), is strongly

affected by vegetation cover, soil moisture, and atmospheric variability, and lacks the

spectral resolution and sensitivity of laboratory mid-IR spectroscopy for resolving the

mineral and organic functional groups that govern MAOC and Cdef. Moreover, any

satellite-based estimation of Cdef would require extensive ground truthing and

calibration against laboratory measurements. To avoid over-stating our contribution,

we will soften the wording in the Discussion and explicitly state that our

laboratory-based spectroscopic framework is primarily intended to support

high-throughput MAOC and Cdef estimation on sampled soils, and that such

laboratory models can in future underpin and improve the calibration and validation

of remote-sensing-based approaches.

We thank the reviewer for pointing us to the work of Shi et al. (2025). Their

study reduces under- and over-estimation of carbon sequestration potential by using

local quantile regressions on spectrally defined, mineralogically similar subsets of the

data, rather than a single global quantile relationship. This local approach is an

important advance that better respects spatial and mineralogical heterogeneity. At
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the same time, quantile regression, whether global or local, still fits a parametric

relationship through the upper portion of the MAOC–(clay + silt) distribution, so

that some observed values can lie above the fitted line and the implied MAOC

capacity continues to increase linearly with increasing fine fraction

In contrast, the frontier-line approach we adopt explicitly estimates the upper

envelope of the MAOC–(clay + silt) relationship under current environmental

conditions and quantifies the associated uncertainty. This upper-envelope formulation

inherently prevents observed values from lying above the estimated capacity line and

allows the frontier to level off at high clay + silt contents, reflecting finite organic

inputs and diminishing stabilisation efficiency, for example where rainfall limits plant

production. As a result, frontier-line analysis reduces both underestimation (by

targeting the effective upper boundary rather than an internal quantile) and

overestimation (by avoiding unconstrained extrapolation at high clay + silt),

providing more realistic estimates of attainable MAOC storage under prevailing

climate and mineralogical constraints. We will revise the Discussion to (i)

acknowledge the contribution of local quantile regression approaches such as Shi et al.

(2025), (ii) clarify how the frontier-line method relates to and extends these efforts,

and (iii) focus on the specific advantages of the frontier-line formulation for

estimating effective MAOC capacity.

Comment The particle size of clay and silt content and of fine fraction in soil

fractionation are methodologically mismatched, which induced errors. The mineral

capacity between soil particles under 20 µm and 50 µm are different. Because these

two sets of soil minerals have different structure in their components. For instance,

the 50 µm set might constitute more quartz, feldspar, and 1:1 type clay mineral,

which have lower C absorption capacity than that of 2:1 type clay mineral. Thus, the

C absorption capacity of soil minerals partitioned by 20 or 50 micrometers cannot

represent each other. Using 20 µm clay and silt content to capture MAOC maximum

capacity corresponding to 50 µm fractionation protocols does not robustly reflect the
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relationship. There might be a few options for improvement: changing the model for

clay and silt prediction, laboratory work for clay and silt content, or at least

acknowledging this limitation in the discussion.

Authors: We thank the reviewer for raising this methodological point. We measured

MAOC as soil organic C in the ≤50 µm fraction, whereas clay and silt contents were

defined using the Australian particle-size classification (clay ¡2 µm, silt 2–20 µm, fine

sand 20–200 µm). We agree that the ≤20 µm clay + silt fraction is not

mineralogically equivalent to the ≤50 µm fraction, and that this mismatch can

introduce error into the empirical relationship between MAOC and fine fraction

because the 20–50 µm size range can contain additional primary minerals (e.g. quartz,

feldspar) and 1:1 clays with lower C sorption capacity than finer 2:1 clays and oxides.

Both the ≤50 µm MAOC fraction and the 2–20 µm particle-size classes follow

established, standardised methods for soil fractionation and texture analysis used in

Australian and international studies, and our approach is consistent with recent

national-scale work on soil C fractions [Walden et al., 2025].

We considered alternative options, including re-estimating fine fractions directly

from laboratory particle-size analyses and developing new models specifically

targeting a ≤50 µm definition. However, for this national-scale dataset, the available

particle-size information is most consistently reported according to the ¡2 and 2–20

µm classes, and re-fractionation of all samples was not feasible within the scope of

the present study. We therefore used ≤20 µm as an operational proxy for the

mineral-associated fraction, while recognising that it does not fully capture the

mineralogical composition of the ≤50 µm MAOC fraction.

Because many Australian soils have relatively low silt contents and a large

proportion of the fine fraction is in the clay size range, the practical impact of the

20–50 µmm gap on estimated mineral surface area may be smaller in some regions

than in silt-rich soils elsewhere; however, without direct measurements of the 20–50

µmm sub-fraction, we cannot quantify this effect.
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In the revised Discussion, we will explicitly acknowledge this methodological

inconsistency and note that it may contribute to both scatter and potential bias in

our estimated MAOC–(clay + silt) relationships. We will also emphasise that future

work should, where possible, align the operational definitions of fine fractions used for

MAOC measurement and for particle-size characterisation (e.g. by directly measuring

and modelling ≤50 µm or ≤53 µm silt + clay fractions) to better reflect the true

mineral capacity for C stabilisation.

Minor comments:

Comment Line 41: Instead of fitting 90th quantile regression, Georgiou et al used

95th quantile regression. Please check.

Authors: Thanks they indeed used 95th quantile. We will correct this in the

manuscript.

Comment Line 116: Did this back-transformation be performed during uncertainty

analysis? Since the authors used logarithm when fitting the frontier line, the upper

and lower uncertainty intervals would be different between that undergone first

calculating intervals then back-transformation, and that undergone first

back-transformation then calculating intervals. Please clarify.

Authors: In line 116 and 117 we did specify the back transformation was performed

after the uncertainty calculation. We will make this more obvious to the reader in the

revision.

Comment Line 124: What specific are the offset corrections? SNV transformation is

well-known in spectroscopic area, while offset correction tend to be a series of

mathematical operation on the spectra. Please clarify or at least provide reference.

Authors: The offset correction we applied here was simply subtracting its smallest

value (minus 0.01) from all its measurements, so every spectrum’s lowest point aligns

just above zero, which removes background bias caused by ambient light or imperfect

calibration, making all spectra comparable on the same baseline. We will clarify this

in the method section.
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Comment Line 174-176: The result is not intuitive. It is hard to tell whether

samples in Rule 3 have higher absorption in the 2946-2850 cm-1 region than that of

Rule 4, given the scale of the y-axis in the two plots are not consistent. Could the

authors please make this comparison more intuitive, thus better supporting the

statement?

Authors: Thank you for pointing this out. We will revise Figure 3 to make sure the

spectra for each rules are plotted on the same scale.

Comment Line 255: The authors mentioned they have propagated the uncertainties

from the frontier lines fits and the CUBIST models to our final predictions. Do the

uncertainties of the frontier line fits have anything to do with the uncertainty of C

deficit CUBIST model? Because the latter is demonstrated with parameters like

RMSE only for C deficit model not its upper or lower 95% confidence intervals

CUBIST models. There is a mismatch between the grey areas in Figure 5 and

statistical parameters of the C deficit CUBIST model, indicating there is no

propagation of the intervals to the final C deficit prediction. Please clarify.

We thank the reviewer for highlighting this point about uncertainty propagation.

Our intention was not to imply that we combined the frontier-line and CUBIST

uncertainties into a single scalar summary (e.g. a single RMSE that incorporates

both), but rather that we quantified and presented uncertainty from both modelling

steps that contribute to Cdef .

Specifically, there are two sources of uncertainty in our framework: (1) the

non-parametric frontier-line fit of MAOC against clay + silt, for which we estimate

upper and lower 95% confidence limits, and (2) the CUBIST model used to predict

Cdef from mid-IR spectra, for which we report standard performance metrics,

including RMSE, based on cross-validation. Both sources affect the final Cdef

estimates because the frontier line defines the target Cdef values that CUBIST

learns, and variation of the frontier within its confidence limits leads to different Cdef

targets and hence different predictions.
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The grey envelopes in Figure 5 do not represent the RMSE of the Cdef CUBIST

model, but the range of Cdef predictions obtained when CUBIST is applied to the

upper and lower 95% confidence limits of the frontier-line fit. In other words, the grey

area reflects the propagated effect of uncertainty in the frontier-line estimates on the

Cdef predictions, whereas the RMSE reported for the Cdef model quantifies the

predictive error for the mean (best-estimate) Cdef values. We will clarify this

explicitly in the revised text and figure caption to avoid any ambiguity.

We acknowledge that a fully joint treatment of uncertainty (e.g. providing formal

prediction intervals that simultaneously incorporate both frontier-line and CUBIST

model uncertainty for each prediction) would require more complex statistical

analysis and is beyond the scope of this initial study. Nevertheless, we believe that

presenting (i) confidence limits for the frontier-line capacity estimates and (ii)

cross-validated performance metrics for the Cdef CUBIST model, together with the

grey envelopes showing how frontier-line uncertainty propagates to Cdef predictions,

provides a transparent account of the main uncertainty sources in our approach.
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