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1. Abstract  16 

Elevation gradients are generally characterized by a steady reduction in temperature with 17 

altitude, resulting in differences in growth conditions that often produce clear patterns of 18 

vegetation zonation. A south-north transect of the central Himalayas spans from a tropical 19 

climate in the south to alpine conditions in the north, offering an opportunity to 20 

investigate the relative roles of abiotic stress and competitive interactions in shaping 21 

plant community assembly. We hypothesise a shift from vegetation composition and 22 

productivity being characterised by realised niches, defined by competitive interactions 23 

at lower elevations, to physiological niches, shaped by stress (freezing temperature) at 24 

higher elevations. To investigate how these niche transitions influence community 25 

dynamics and ecosystem processes, we used a dynamic vegetation model with regional 26 

plant functional types (PFTs) parameterised with trait data, including allometric 27 

relationships. The model effectively captured spatial and temporal variability in 28 

vegetation structure and productivity along the gradient, with simulated patterns closely 29 

matching observed vegetation zonation across the transect. The establishment and 30 

performance of the PFTs were dependent on their climatic niche and the local abundance 31 

of competing PFTs, with persistence shaped by specific traits and adaptation strategies. 32 

At low elevations, where competitive interactions dominate, tropical shade-intolerant 33 

raingreen and tropical shade-tolerant evergreen PFTs dominated carbon mass 34 

production and vegetation cover. In contrast, shorter stature, evergreen phenology, and 35 

cold-tolerant types were favoured at high elevations, reflecting reduced interspecific 36 
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competition and physiological adaptation to low temperature stress. Along the elevation 37 

gradient, PFT functional diversity declined with elevation, but evenness in composition 38 

increased. Conversely, low-elevation communities supported higher functional diversity, 39 

yet vegetation structure and function (e.g., LAI, FPC, and carbon mass) were dominated 40 

by a few competitively superior PFTs. We conclude that vegetation dynamics along the 41 

temperature gradient are governed by a trade-off between competitive ability and stress 42 

tolerance, as reflected in shifts in structure, composition, and productivity, which are 43 

shaped by environmental conditions, functional traits, and adaptive strategies of the 44 

vegetation.  45 

  46 

Keywords: Elevation gradient, temperature, competition, community composition, 47 

Himalayas, traits, dynamic vegetation model. 48 

 49 

2. Introduction  50 
Elevation gradients are characterized by rapid changes in climatic conditions, 51 

particularly a decline in temperature with altitude (Zhu et al., 2022). With rising 52 

elevation, temperature changes predictably in accordance with the ‘lapse rate’, creating 53 

differences in growth conditions, which may be further exaggerated by small-scale 54 

variations in precipitation, topography, aspect, exposure, geology, soil types, and 55 

biogeochemical processes governing nutrient cycling and resource availability. These 56 

variations in growth conditions act as environmental filters (stress factors) (Asner et al., 57 

2014; De Frenne et al., 2013; Zhu et al., 2022) which influence ecological processes and 58 

interactions that give rise to emergent eco-evolutionary patterns such as niche 59 

differentiation, functional trait distribution, plant strategies, and competitive exclusion 60 

(Asner et al., 2014; Mun oz Mazo n et al., 2020). Distinct community composition and 61 

structure may result, with clear vegetation zonation shaped by the interplay of 62 

environmental filtering and competition interaction along the gradient.  63 

 64 

Temperature gradients are among the most influential environmental axes shaping 65 

vegetation patterns globally. The Himalayas provide a striking example of this, with 66 

distinct zonation observed from the tropical lowlands in the south to the alpine 67 

conditions in the north. Cooler and wetter conditions at higher elevations, and hot with 68 

seasonally dry conditions at low elevations, play a significant role in shaping the 69 
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composition and survival of plant species (Ma ren et al., 2015). Additionally, competition 70 

for light, space, and soil resources drives vegetation function, diversity, and species 71 

composition along the elevation gradient (Maharjan et al., 2021; Thakur & Chawla, 2019), 72 

creating a biotic filter that results in different vegetation zones, community composition, 73 

and plant diversity (species richness and evenness). The combined effects of these abiotic 74 

and biotic filters on vegetation across elevations are reflected in differences in functional 75 

traits, growth strategies of vegetation, and community composition at different positions 76 

along the gradient (Midolo et al., 2019; Silva et al., 2023). As a result, vegetation at higher 77 

elevations often exhibits thicker leaves and frost tolerance adaptations such as reduced 78 

leaf area, increased epidermal thickness, and increased antifreeze proteins (Satyakam et 79 

al., 2022). In contrast, lower elevation species have larger leaves with higher specific leaf 80 

area (SLA), larger and wider branching patterns, and fast growth rates to take advantage 81 

of abundant resources and warm temperatures (Shah et al., 2019; Sigdel et al., 2022). 82 

Despite these clear vegetation patterns, the relative contributions of trait-mediated 83 

competitive interactions and adaptation to stress on vegetation structure, composition, 84 

and productivity remain poorly understood along the Himalayas' elevation gradient.  85 

 86 

The complex interaction between growth conditions and vegetation functional traits, and 87 

their role in structural dynamics and competitive interactions along this gradient, can be 88 

effectively captured by incorporating characteristic plant traits into dynamic vegetation 89 

models (DVMs) (De Paula et al., 2021; Sitch et al., 2003; Smith et al., 2014). By encoding 90 

the traits and response mechanisms of real-world vegetation for different plant functional 91 

types (PFTs) in these models and demonstrating agreement between modelled and 92 

observed vegetation structural and functional characteristics along the gradient, we may 93 

disentangle the environmental and community dynamic drivers of ecosystem 94 

productivity. DVMs represent vegetation as groups of functionally similar species, 95 

represented as PFTs, which share similar traits (morphological, ecophysiological, and life 96 

history characteristics) and climatic niches (bioclimatic limits for establishment or 97 

survival). Distinct traits and life history strategies, encoded as PFT parameters, influence 98 

their performance and interactions in model simulations, reflecting functional trade-offs 99 

in the adaptations of species that affect their performance when growing under different 100 

environmental conditions (Dí az et al., 2016; Pierce et al., 2013).  101 

 102 
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We tested how plant strategies reflected in their traits, competition, and interactions with 103 

environmental factors collectively shape vegetation structure, composition, and 104 

productivity along the Himalayas elevation gradient. We employed an individual-based 105 

dynamic vegetation model, LPJ-GUESS (Smith et al., 2001, 2014), to simulate structural, 106 

compositional, and functional variability along a south-north transect of the central 107 

Himalayas spanning from a tropical seasonal climate in the lowlands to alpine conditions. 108 

Our approach leverages empirical data on vegetation traits and life history strategies 109 

along the same gradient. The simulated PFTs were defined based on empirical data on 110 

vegetation traits and life history strategies for major species and taxa found along the 111 

Himalayan transect. By comparing simulated outcomes with field observations, we 112 

evaluate how well the mechanisms embedded in the model explain spatial patterns in 113 

structure, composition, and function variability. We also examine species richness and 114 

evenness as emergent properties of functional composition, reflecting how changing 115 

growth conditions influence diversity. Overall, this study illustrates the complex interplay 116 

between growth conditions, traits, and competitive dynamics, thereby enhancing our 117 

understanding of the ecological processes that shape plant communities along the 118 

elevation gradient of the central Himalayas.  119 

3. Methods  120 
3.1 Study site 121 
The study focuses on a species-rich elevation gradient of the central Himalayas (Figure 122 

1). Along the gradient, temperature decreases by approximately 6.5 OC per vertical 123 

kilometer, reflecting the standard lapse rate, where the average annual temperature in the 124 

tropical zone is 28 OC and around 10 OC in the alpine region (MoFSC, 2016; Poudel et al., 125 

2020). Nearly 80% of the total annual rainfall occurs during the monsoon (June to 126 

September) (Maharjan et al., 2021), where average annual rainfall ranges from 165 mm 127 

(northern end of the gradient, i.e., Trans-Himalayan region) to 5244 mm (1550-2000 m 128 

altitude) in the lower and middle part of the gradient (Luitel et al., 2020; Poudel et al., 129 

2020). Precipitation peaks at around 1000 m altitude asl and then rapidly decreases with 130 

an increase in elevation (Luitel et al., 2020; Poudel et al., 2020). Vegetation follows the 131 

temperature patterns ranging from tropical (24 OC) to temperate forests and to colder 132 

sub-alpine vegetation (6.9 OC) (Shrestha et al., 2015), where growth condition varies 133 

significantly due to variations in temperature and precipitation patterns. Within a 134 

horizontal span of 100 km along the gradient, 160 different tree species were recorded in 135 
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a plot-level survey conducted in forest areas, where vegetation composition and 136 

dominance changes with elevation (DFRS, 2015; Pokhrel and Sherpa, 2020). 137 

 138 

 139 

Figure 1: Map of the study area with major global Biomes (data source: Olson et al., 2001), 140 

Forest types (data source: https://rds.icimod.org/), trait data observed sites (Maharjan 141 

et al., 2021), and simulated grids along the elevation gradient of the central Himalayas. 142 

 143 

3.2 Vegetation model description and customization 144 

The Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) is a process-based 145 

dynamic vegetation model used for simulating and predicting ecosystem responses to 146 

environmental changes at the regional or global level based on local, neighbourhood-147 

scale interactions among simulated plants (Smith et al., 2001, 2014). It represents 148 

generalized ecophysiological processes such as photosynthesis, autotrophic (plant) and 149 

heterotrophic (soil) respiration, carbon, water, and nitrogen cycling. The model adopts 150 

gap dynamics theory (Bugmann et al., 1996; Scherstjanoi et al., 2014) to simulate tree 151 

population dynamics emerging from the balance of plant establishment, growth, and 152 

mortality (De Paula et al., 2021; Sitch et al., 2003; Smith et al., 2001). The model is applied 153 

across a continuous geographic grid. Vegetation in each grid cell is represented as a 154 
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mixture of PFTs whose potential distribution in climate space is governed by bioclimatic 155 

envelopes for the establishment and survival. Within its bioclimatic envelope, the 156 

presence and abundance of a PFT are additionally subject to vegetation dynamics 157 

determined by the interactions between co-occurring individuals of other PFTs and the 158 

cascading effects on carbon assimilation and allocation, reproduction, and survival of 159 

individuals co-occurring within replicate local patches, nominally 0.1 ha in size. The 160 

overall vegetation of a grid cell is aggregated across multiple patches (here 15), 161 

representing random samples of the wider landscape of the grid cell. PFT-specific 162 

parameters and growth strategies determine performance under different climates, CO2 163 

concentrations, and stages of vegetation development. The model accounts for structural 164 

responses to competitive and environmental conditions through adaptive allometric 165 

relations (DBH-Height, DBH-Crown Area, DBH-Crown Volume) and a dynamic bole height 166 

scheme for each cohort. This allows allometric scaling and carbon allocation to respond 167 

dynamically to the competition (crowding) conditions defined by the availability of 168 

photosynthetically active radiation (Paudel et al., Unpublished).  169 

 170 

To represent the diversity of vegetation composition along the Himalayan elevation 171 

gradient, we modified the following features to customize the model for application to 172 

our study area.  173 

• The default model has 12 PFTs, defined to represent the dominant biomes of the 174 

world. For this study, we defined a new set of regional tree PFTs tailored to local 175 

conditions using a multivariate clustering approach. These PFTs represented 176 

major hypothesised strategies and adaptation mechanisms employed by 177 

vegetation to cope with competition (biotic stress) and harsh climatic conditions 178 

(abiotic stress) along the elevation gradient. Tree PFT parameters and their 179 

derivation are further discussed in Section 3.3 below. Both C3 and C4 grass PFTs 180 

with default parameter values (defined for the global level) were retained for 181 

simulations (Peng et al., 2024).  182 

• Bioclimatic limits (mean minimum and maximum temperature for the 20 years of 183 

coldest month for establishment and survival; mean minimum warmest month 184 

temperature for establishment) control each PFT's establishment and survival in 185 

a given grid cell. The model defines these limits for global biomes ranging from 186 

tropical to boreal ecosystems. For this study, four climatic limits are defined: 187 
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tropical, subtropical, temperate, and alpine. Climatic ranges for our study were 188 

adopted from Jackson (1994) and modified based on the ranges recorded by 189 

Maharjan et al. (2021).  190 

 191 

3.3 Data Sources for model input and parameterisation 192 
The CRU-JRA (v2.4.5d) global gridded climate dataset was downscaled to 3 km spatial 193 

resolution using bicubic interpolation (Latombe et al., 2018) and used as climate-forcing 194 

data for our model simulations. The CRU-JRA is a gridded daily dataset with 0.5°×0.5°  195 

spatial resolution from 2001 to 2022 (Araghi and Martinez, 2024). We used monthly 196 

mean air temperature, precipitation, wind speed, incoming solar radiation, specific 197 

humidity, number of wet days, and minimum and maximum temperature as inputs. All 198 

variables except for precipitation were interpolated to daily values; for precipitation, the 199 

monthly sum was divided equally across the number of wet days per month. Soil 200 

properties and the atmospheric nitrogen deposition rates (Lamarque et al., 2013) were 201 

configured using 0.5°×0.5° spatial resolution. Annual atmospheric CO2 concentration data 202 

from NOAA (1901- 022) are used as input data (Friedlingstein et al., 2023).  203 

 204 

Trait values of the 31 most abundant tree species - based on the frequency of observation 205 

and total carbon contribution identified by Maharjan et al. (2021) were compiled from 206 

Maharjan et al. (2021), Jackson (1994), and Thakur & Phulara (2014). Tree allometry data 207 

(DBH, total tree height, crown radius, crown height) were compiled from the Tallo 208 

database (a global tree allometry and crown architecture database) (Jucker et al., 2022) 209 

and BADD (a biomass and allometry database for woody plants) (Falster et al., 2015). 210 

Elevation data across the simulated grid was extracted from Earth Resources Observation 211 

and Science (EROS) Center (2000) and was used for plotting simulated outputs.  212 

 213 

A divisive hierarchical clustering approach was used to group tree species into distinct 214 

PFTs based on similarities in traits and life-history strategies. We clustered tree species 215 

into 13 functional groups based on their dominant temperature range (tropical, sub-216 

tropical, temperate or alpine), leaf phenology (evergreen, raingreen, summergreen, 217 

broadleaved, and conifers), life history strategies (growing fast and slow, late and early 218 

successional species), shade requirement (shade tolerant, intermediate tolerant and 219 

intolerant); drought resistance class (drought tolerance, drought sensitive), as well as 220 
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traits such as wood density and total tree height (Supplementary Table 1). The resultant 221 

PFTs are designed to represent the functional diversity required to simulate structure, 222 

composition, and productivity along the elevation gradient.  223 

 224 

The following parameters were updated for each tree PFT: leaf phenology, drought 225 

tolerance, wood density, SLA, shade tolerance, leaf longevity, and leaf turnover rate (Table 226 

1). The values of these parameters, compiled from the sources mentioned above, were 227 

averaged across species included in the PFTs emerging from the clustering procedure 228 

described above. In the model, shade tolerance is linked to life history strategies, which 229 

influence growth, reproduction, and survival of PFTs across different light environments. 230 

Here, parameters and their values (Supplementary Table 2), as defined by Hickler et al. 231 

(2004), were adapted in model simulation to represent these dynamics. Similarly, 232 

quantile regression was used to estimate allometric scaling parameters (DBH relative to 233 

height, DBH relative to crown area, and DBH relative to crown volume) under three 234 

different stand crowding conditions (5%, 50% and 95%), allowing us to evaluate 235 

structural response to competition and their influence on ecosystem dynamics.  236 

 237 

Table 1: Tree PFTs and parameter values used for simulation, including bioclimatic limits, 238 

Shade tolerance parameters and their values, and allometric relations (see 239 

Supplementary Table 1 & 2 for details). 240 

PFTs  Parameters 
Leaf 
phenology 

Leaf 
longevity 
(years) 

Shade 
tolerance 

Wood 
density 
(kgC m-3) 

SLA 
(m2 
kgC-1) 

Leaf Turnover 
(fraction/year) 

Alpine broadleaved 
evergreen (ABE) 

evergreen 2 intolerant 273 13 0.5 

Alpine needleleaved 
(ANE) 

evergreen 3 tolerant 280 9 0.33 

Temperate 
summergreen 
(TeBSG) 

summergr
een 

0.5 intolerant 265 18 1 

Temperate 
broadleaved shade 
tolerant evergreen 
(TeBEt) 

 
evergreen 

2 Tolerant 281 15 0.5 

Temperate 
broadleaved shade 
intolerant evergreen 
(TeIBE)  

evergreen 2 intolerant 282 15 0.5 

Temperate 
needleleaved 
(TeNE) 

evergreen 3 intolerant 235 18 0.33 
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PFTs  Parameters 
Leaf 
phenology 

Leaf 
longevity 
(years) 

Shade 
tolerance 

Wood 
density 
(kgC m-3) 

SLA 
(m2 
kgC-1) 

Leaf Turnover 
(fraction/year) 

Sub-tropical 
needleleaved 
(STrNE) 

evergreen 3 intolerant 210 10 0.33 

Sub-tropical rain 
green (STrRG) 

raingreen 0.5 intolerant 200 25 1 

Sub-tropical shade-
tolerant evergreen 
(STrIBE) 

evergreen 1 intermediate 265 20.85 1 

Sub-tropical 
broadleaved 
evergreen (STrBE) 

evergreen 2 tolerant 145 17 0.5 

Tropical 
broadleaved shade-
tolerant (TrBE) 

evergreen 2 tolerant 290 22 05 

Tropical 
Summergreen 
(TrBSG) 

summergr
een 

0.5 intolerant 247 21 1 

Tropical 
broadleaved 
raingreen (TrBRG) 

 raingreen 1 intolerant 245 18 1 

 241 

3.4 Simulation protocol and model validation 242 

Using the aforementioned forcing data and PFTs parameterized with traits, the model was 243 

run with 15 patches in each grid cell of 1000 m2, simulating the period from 1901 to 2022. 244 

A spin-up of 500 years, recycling the first 30 years of the observed climate data set, was 245 

performed to achieve an initial steady state for vegetation structure. We ran LPJ-GUESS in 246 

cohort mode (Smith et al., 2001, 2014), using the BLAZE fire model to account for the 247 

impacts of weather-related fire disturbances on vegetation structure (Rabin et al., 2017) 248 

and applied a generic return interval of 100 years for patch-destroying disturbances, 249 

following Pugh et al.(2019).  250 

 251 

We implemented a neighbour removal experiment in the model to assess the effects of 252 

competitive neighbour individuals and PFTs on the performance of the selected PFTs 253 

(Monteux et al., 2024). Individuals of all other woody PFTs except the PFT of interest were 254 

removed from the simulation after model year 1950. C3 grass or C4 grass forming the 255 

understory of the woody stand was retained. However, to allow the ecosystem to re-256 

equilibrate and account for the effects caused by removing neighbours, we allowed target 257 

PFTs to grow for another 50 years (i.e., model year 2000) until the ecosystem recovered 258 

and productivity stabilized according to the prevailing environmental conditions.  259 
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 260 

We used Bi & Zhou (2022)'s gross primary productivity (GPP), produced using the leaf 261 

light use efficiency model from 2010 to 2020 (DRYAD), to compare with simulated GPP 262 

from 2010 to 2020 along the elevation gradient. Plot level above-ground carbon biomass 263 

data by Khanal & Boer (2023) estimated from the national forest inventory was compared 264 

with simulated patch-level carbon biomass from the model. Similarly, the bole height 265 

(height up to the first branch) measured and elevation range recorded by Maharjan et al. 266 

(2021) along the studied gradient were compared with simulated values to evaluate the 267 

model's ability to capture structure and compositional variability.  268 

 269 

3.5 Competition index and rank abundance curve (RAC) of FPC for evenness 270 

An index of competition was calculated for each PFT to quantify the effects of neighbour 271 

removal on the performance of the target PFT. The target PFT’s performance was 272 

evaluated using simulated carbon mass production from 2000 to 2020 with and without 273 

competition. The competition index (CI) was calculated using the index matrices 274 

approach of Avolio et al. (2019) and Brooker & Kikvidze (2008) with modifications. We 275 

modified the equation by Avolio et al. (2019) and Brooker & Kikvidze (2008) to more 276 

intuitively represent each PFT's optimum competitive capacity relative to potentially co-277 

occurring woody PFTs. A CI value of 1 indicates no effect from competitors, while a value 278 

close to 0 indicates a significant impact from the competitor’s presence.  279 

  280 

𝐶𝐼𝑖 = [1 −
𝐶𝑚𝑎𝑠𝑠−𝑁𝑖− 𝐶𝑚𝑎𝑠𝑠+𝑁𝑖

𝑀𝑎𝑥 (𝐶𝑚𝑎𝑠𝑠−𝑁𝑖,𝐶𝑚𝑎𝑠𝑠+𝑁𝑖)
] …………………. (Equ i) 281 

where CI is the competition index in year i, Cmass-N and Cmass+N are the carbon masses 282 

of the target PFTs in the presence (+N) and absence (-N) of a competitor in year i.  283 

 284 

The rank abundance curve (RAC) of relative foliar projective cover (FPC) of each tree PFT 285 

present in a grid cell was used to quantify species evenness, defined as similarity in local 286 

abundances among PFTs along the elevation gradient. Following Avolio et al. (2019), 287 

Smith & Wilson (1996) and Whittaker (1965), the natural logarithm of relative FPC was 288 

plotted against the inverse of PFT rank, and a regression between rank and log FPC was 289 

used to calculate the slope of the curve in each grid point using simulated FPC from 2000 290 

to 2022. The slope of the RAC was used as a robust (independent of species richness) 291 

measure of evenness by Smith & Wilson (1996). A steeper slope would indicate greater 292 
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dominance by one or a few PFTs relative to other co-occurring PFTs, while a flatter slope 293 

indicates greater evenness. Evenness was plotted against elevation to examine the 294 

patterns of change in evenness in relation to changes in growth conditions. Similarly, the 295 

number of PFTs in each latitude band was used as an indicator of functional richness, 296 

representing the diversity of ecological strategies.  We hypothesise that with an increase 297 

in elevation, evenness increases due to reduced competition, and the abundance of PFTs 298 

decreases as environmental stress limits species adaptations in higher elevations.  299 

 300 

4. Results  301 

4.1 Spatial variability in productivity and structure along the gradient  302 

Simulated annual GPP showed strong agreement with GPP estimated by Bi and Zhou et 303 

al. (2022) using the leaf light use efficiency model, both displaying a gradual increase in 304 

productivity up to approximately 2500 meters. In both datasets, at the northern end of 305 

the gradient, annual GPP decreased sharply as temperature declined, with some grids 306 

having very low productivity (GPP value close to zero) (Figure 2). These patterns align 307 

with shortening of productive seasons and decreasing temperature in alpine zones, 308 

reflecting a shift from productive lower elevations to physiological constraints 309 

(Supplementary Figures 2 & 3 for monthly GPP) at higher elevations.  310 

 311 
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 312 
Figure 2: Simulated annual GPP (0.03°) and annual GPP from the DRYAD database (0.05°) 313 

from 2010 to 2020 across grids along the elevation gradient of the Himalayas. 314 

 315 

Simulated above-ground biomass at the patch level closely matched observed plot-level 316 

above-ground biomass in the forest area across the gradient, indicating that the model 317 

effectively captures spatial variability in carbon mass distribution (Figure 3). However, in 318 

the northern regions of the gradient, where Rhododendron PFTs dominate, the model 319 

underestimated the observed biomass (Figure 3). In contrast, the model slightly 320 

overestimated above-ground carbon biomass in the mid-latitude range (27.4 – 28.0 oN), 321 

corresponding to areas with higher PFT abundance. This mid-elevation peak in biomass 322 

accumulation, followed by a decline at higher elevation, suggests increasing physiological 323 

constraints under alpine conditions. Notably, the patch-level above-ground biomass did 324 

not show any patterns with the simulated age of the patch. In some simulated grids, young 325 

patches exhibited higher above-ground carbon productivity compared to older ones, 326 

suggesting that trait-based responses and environmental conditions have a stronger 327 

influence on productivity than patch age.    328 
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 329 

Figure 3: Simulated above-ground carbon mass per patch (2010-2015) with the age of the 330 

patch (in years) and observed above-ground carbon mass per plot in forest areas along 331 

the elevation gradient of the Himalayas. 332 

 333 

Similar to productivity and biomass, vegetation structural attributes also varied along the 334 

elevation gradient. Simulated leaf area index (LAI) for tree PFTs increases gradually along 335 

the gradient from around 5 m2 m-2 to around 8 m2 m-2, primarily due to the presence of 336 

evergreen PFTs at higher elevations, whose LAI remains constant throughout the year.  Six 337 

PFTs contribute the most to LAI, each with varying zones (elevational range) of 338 

dominance. In the southern part of the gradient, two PFTs - tropical broadleaved 339 

raingreen and tropical broadleaved evergreen - exhibit higher PFT-specific LAI. Sub-340 

tropical needle-leaved PFTs form maximum LAI in mid-latitude (~3.2 m2 m-2), followed 341 

by alpine evergreen broadleaved (~ 4 m2 m-2) in higher elevation. C4 and C3 grasses 342 

contribute significantly to LAI along the gradient, with C3 grasses being dominant in cold 343 

regions, with an LAI of 3.2 m2 m-2 (Figure 4).   344 

https://doi.org/10.5194/egusphere-2025-4821
Preprint. Discussion started: 20 November 2025
c© Author(s) 2025. CC BY 4.0 License.



14 
 

 345 

Figure 4: Boxplot of Simulated LAI by PFTs and line plot of LAI (line represents mean LAI 346 

for each PFT and dots representing LAI at simulated grid across latitude) across the 347 

elevation gradient by PFTs. 348 

 349 

The comparison of simulated (2010-2015) and measured bole heights shows that both 350 

follow the same patterns, although the model exhibits more pronounced variability 351 

across most PFTs (Figure 5). It shows that bole height varies with PFTs, with tropical 352 

broad-leaved raingreen (TrBRG) having a large bole height, followed by temperate shade-353 

intolerant evergreen (TeIBE) (Figure 5). The overall mean bole height remains similar up 354 

to the temperate zone (approximately up to 3500 m), after which it decreases sharply, 355 

particularly in the upslope alpine zone, where bole heights remain smaller (Figure 5). 356 

This overall pattern of taller bole height at lower elevation likely reflects intensive 357 

competition for light, where individuals grow taller to avoid shading. In contrast, the 358 

decline in bole height in higher elevations is consistent with both physiological 359 

constraints and adaptive strategies that favour short bole height under alpine conditions. 360 

 361 
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 362 

Figure 5: Boxplot of simulated and observed bole height (median with ranges and 363 

outliers) and bole height for PFTs (dot denoting the bole height of each cohort of PFTs 364 

simulated in the grid), along with the mean bole height (red line) across PFTs along the 365 

elevation gradient. 366 

 367 

4.3 PFT performance and competition index along the elevation gradient  368 

The result indicates that the total carbon mass production depends on both the 369 

abundance of PFTs' and their location within the elevation range. It shows that total 370 

carbon mass production at the ecosystem level is highest in lower elevations (around 371 

1000 m), where climatic conditions supported a balanced contribution to productivity 372 

from broadleaved evergreen, deciduous trees, and conifers (Supplementary Figure 4 for 373 

total carbon mass production along the elevation). In lower elevations, tropical 374 

broadleaved raingreen PFTs had the maximum carbon mass, whereas temperate shade-375 

intolerant evergreen PFTs had the maximum carbon mass production in temperate 376 

regions. In colder areas, where only two tree PFTs were adaptive within their prescribed 377 

bioclimatic limits, alpine broadleaved evergreens (Rhododendron species) have the 378 

maximum contribution to carbon mass production. These findings highlight that PFTs' 379 

composition and their contribution to carbon mass production are driven by their 380 

climatic niche (elevational range) and adaptive capacity to existing climatic and 381 

competition conditions (Figure 6).  382 

https://doi.org/10.5194/egusphere-2025-4821
Preprint. Discussion started: 20 November 2025
c© Author(s) 2025. CC BY 4.0 License.



16 
 

 383 

Figure 6: Carbon mass production by each PFT along the latitude (the inset figure shows 384 

the PFTs’ distribution ranges recorded by Maharjan et al., (2021) in the elevation 385 

gradient).  386 

 387 

The mean CI plotted against latitude shows that removing competitors had different 388 

levels of impact on PFT performance in carbon mass production (Figure 7). PFTs’ 389 

responses without competition differ within and outside their dominant climatic range. 390 

In their dominant growth regions, TrBRG and ABE were least impacted by the presence 391 

of neighbours, with CI values over 0.9 (Figure 7). In the lower elevation range, the 392 

presence of temperate PFTs was more random, and their performance was not enhanced 393 

by neighbour removal. For example, the CI values of TeIBE, TeBSG, and TeBEt were higher 394 

(~0.9), suggesting similar performance with and without competitors (Figure 7). In 395 

general, subtropical PFTs highly benefited from competitor removal in the model (Figure 396 

7). There were no clear patterns and associations of PFTs’ CI with average annual 397 

temperature, as PFTs' performance depends on climatic niche and neighbours' presence 398 

(Figure 7).  399 
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 400 

Figure 7: Mean competitive index of PFTs and mean annual temperature (green line) with 401 

standard deviation of temperature in the last 30 years (green shaded area) along the 402 

elevation gradient.  403 

 404 

4.4 Community composition and evenness along the elevation gradient 405 

The simulated results show that PFT composition and dominance change with elevation 406 

and associated temperature, where the number of PFTs decreases with an increase in 407 

elevation. In lower elevations, three PFTs - tropical broadleaved raingreen, tropical 408 

broadleaved evergreen, and C4 grass - dominate despite over ten PFTs in that area. At the 409 

higher end of the gradient, alpine needle-leaved and alpine evergreen broadleaved form 410 

tree crown cover, where C3 grass dominance increases with elevation, reaching up to 70% 411 

in FPC. Sub-tropical needleleaved and temperate shade-intolerant evergreen PFTs 412 

dominate the mid-elevation range, showing variability in PFT composition and 413 

distribution along the gradient. In the mid-elevation gradient, an area dominated by sub-414 

tropical and temperate PFTs, PFT composition changes more frequently than the 415 

gradient's other ends (Figure 8).  416 
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 417 

Figure 8: PFTs distribution and composition by fractional projective cover along the 418 

elevation gradient (inset figure shows the PFTs distribution ranges recorded by Maharjan 419 

et al., 2021 in the elevation gradient). 420 

 421 

The RAC coefficient value, calculated for each simulated grid using the FPC value of trees, 422 

shows that PFT's evenness increases rapidly along the elevation gradient starting from 423 

mid-elevation (after 2000 m) (Figure 9). As latitude increases, PFT abundance decreases 424 

significantly, from a maximum of 10 PFTs in lower elevations to just 2 in higher elevations 425 

(Figure 9). In the high PFT abundance area, the competition was higher, reflected by the 426 

competitive dominance of a few PFTs (Supplementary figure 5). For example, tropical 427 

broadleaved raingreen, tropical broadleaved evergreen in lower elevation, sub-tropical 428 

conifers, and subtropical intermediate shade tolerant broadleaves in the mid-elevation 429 

range (Supplementary figure 5). These patterns suggest a symmetrical competition for 430 

light and nutrients at lower elevation despite richness in species composition. In contrast, 431 

regions with low PFT abundance exhibited higher evenness (coefficient value close to 0), 432 

indicating reduced competition and a stronger role of environmental filtering. Here, plant 433 

adaptation to temperature and soil nutrient limitation becomes the primary driver of 434 

vegetation structure and composition. A more detailed breakdown of PFT-specific FPC 435 
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distributions and dominance patterns along the elevation gradient is provided in 436 

Supplementary Figure 5.  437 

 438 

 439 

Figure 9: PFTs evenness (RAC coefficient) across latitude with the number of PFTs 440 

(present) in each simulated grid. 441 

 442 

Deciduousness and shade tolerance are two dominant plant adaptation mechanisms of 443 

vegetation along the elevation gradient. The proportion of shade-tolerant species 444 

distribution decreases with elevation. Intermediate shade tolerance (Schima wallichii) 445 

has maximum FPC in the mid-elevation ranges (1200 - 2500 m), suggesting that these 446 

elevation ranges offer a balance in light and temperature conditions, favouring flexible 447 

growth strategies. The deciduous broadleaved species form dominant crown coverage in 448 

lower elevation, their contribution to FPC decreases with increased elevation, where cold 449 

temperature limit their performance. Evergreen conifer's contribution to FPC increases 450 

with an increase in elevation up to 4500 m, i.e., up to where Pinus species mostly grow 451 

(Figure 10). At the cold end of the gradient, the alpine broadleaved evergreen, especially 452 

Rhododendron, contributes the maximum in FPC. The dominance of evergreen trees at 453 

higher elevations reflects an adaptation strategy to cold climates, where year-round leaf 454 
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retention allows for rapid photosynthetic response to short favourable growing periods. 455 

Notably, around 1000 m elevation (Figure 10), both shade tolerance and deciduousness 456 

exhibit high evenness in PFT distribution, indicating a transitional zone where multiple 457 

plant adaptation strategies coexist due to overlapping ecological niches shaped by 458 

complex interaction between plant traits and environmental conditions.   459 

 460 

 461 

Figure 10: Distribution and composition of PFTs adaptation strategies (shade tolerance 462 

and deciduousness) and grasses (line represents mean and bar represents standard 463 

deviation) along the elevation gradient.  464 

 465 

5. Discussion  466 

We evaluated the complex interaction between growth conditions, PFT abundance, 467 

productivity, and competitive interactions by simulating these assumed factors and their 468 

interdependent dynamics along the Himalayan elevation gradient. As expected, our model 469 

predicted shifts in ecosystem structure, composition, and productivity along the 470 

Himalayan elevational gradient, driven by shifting interactions between climatic 471 

conditions, especially temperature and nutrient availability, and plant adaptation 472 

strategies. Competition between co-occurring PFTs in crowded stands influenced the 473 

emergent composition and productivity, particularly at lower elevations, where warmer 474 

temperature and higher resource availability allowed species to occupy their realised 475 

niches. In contrast, colder and nutrient-limited conditions at higher elevations 476 

constrained community composition and structure to a few cold-tolerant species with 477 

short bole heights, operating within their physiological niches, resulting in more even but 478 
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less diverse stands. These patterns support our hypothesis that vegetation structures, 479 

composition, and productivity along the elevation gradient are structured by a shift from 480 

realised niches, defined by competitive interactions at lower elevations, to physiological 481 

niches, shaped by stress (freezing temperature) at higher elevations.  482 

 483 

The model reliably reproduced key ecological patterns along the elevation gradient, with 484 

strong agreement between simulated outcomes and observations or independent 485 

reconstructed variables, supporting the plausibility of the results and the underlying 486 

mechanisms. Simulated GPP decreased with elevation, in agreement with the estimate 487 

from the leaf light use efficiency model by Bi & Zhou (2022), reflecting the dependency of 488 

GPP on temperature and growing-season length. This decline aligned with the 489 

distribution of cold-tolerant PFTs such as Rhododendron (ABE) and Coniferous species 490 

(ANE) found in higher elevations, consistent with the National Forest Inventory, which 491 

identifies that Rhododendron and Abies are the two most dominant species in higher 492 

elevations of the Himalayas (DFRS, 2015). Although the model does not represent 493 

detailed soil chemistry, the presence of these PFTs in the simulation aligns with their 494 

known adaptation mechanisms to high pH and low nutrients, characterized by a wide 495 

distribution range. Conifers and Rhododendron species are native to the Himalayan range 496 

and exhibit a wide physiological niche space that allows adaptation in high pH and low 497 

nutrient soil from temperate to alpine (sub-alpine) habitats (Thakur et al., 2024). The 498 

simulated results showed that the above-ground carbon biomass gradually increases 499 

before a significant decline with elevation (temperature) due to climatic stress, which is 500 

consistent with the patterns reported by Thakur et al. (2024). The higher estimation of 501 

observed values at the higher elevation could arise from variability in topographic factors 502 

that create favourable microclimatic conditions for the growth of Rhododendron and Abies 503 

forests, particularly in deep gorges and on southern aspects. The Himalayas region is 504 

characterized by a unique environmental condition where temperature and soil water 505 

availability vary on a short spatial scale (Thakur & Chawla, 2019; Tito et al., 2020) 506 

resulting in structural diversity and competitive dynamics, allowing certain PFTs to 507 

extend their realised niche beyond broader patterns along the gradient. 508 

 509 

Vegetation structure along the elevation gradient was significantly impacted by the 510 

environmental conditions. In lower elevations, where climatic conditions are more 511 
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favourable and soil nutrients are abundant, PFTs tend to exhibit higher bole heights as a 512 

strategy to maximize light interception, avoid asymmetric competition for light, and 513 

reduce shading for competitors. Additionally, taller bole height of trees in these 514 

conditions may result from a trade-off, where some resources are allocated away from 515 

other parts, such as stem and branch development. Pokhrel and Sherpa (2020) also found 516 

that tree height, DBH, and above-ground biomass are significantly associated with 517 

elevation along the elevation gradient of the central Himalayas. With the increase in 518 

altitude, tree growth declines, and light competition also declines, where trees tend to 519 

have similar basal area and total tree height (Coomes and Allen, 2007). In contrast, LAI 520 

increased with an increase in elevation. In higher elevations, an increase in LAI was 521 

associated with the abundance of evergreen vegetation (Figure 5 & 10), especially 522 

Rhododendron and Abies species. Rhododendron presence in higher elevations is linked 523 

with survival strategies, including heat dissipation to avoid damage by excessive radiation 524 

in warm seasons and physiological mechanisms such as increasing intercellular fluid 525 

concentration and using reactive oxygen to withstand chilling temperatures (Li et al., 526 

2022). However, these strategies are explicitly not represented in our model. Additionally, 527 

traits such as reduced height, smaller individual leaf area, lower SLA, and trade-offs in 528 

vessel diameter and density could also facilitate the wide distribution of Rhododendron 529 

species (Pandey et al., 2021).  530 

 531 

The simulated vegetation community exhibited a distinct shift in compositional patterns 532 

across the elevation gradient. In lower elevations, the coexistence of a large number of 533 

PFTs resulted in higher functional diversity, likely due to favourable growth conditions, as 534 

the presence of large PFTs within their physiological niches led to higher competitive 535 

dominance by a few PFTs. Among 10 different PFTs, Shorea robusta (PFT-TrBRG) emerged 536 

as the dominant climax species at the lower elevations, showing consistency with national 537 

forest inventory data, which shows that Shorea robusta and its associated species, such as 538 

Terminalia alata, Mollunthous philippines, and Lagerstroemina parviflora, are the most 539 

common and productive in terms of biomass in the southern part of the central Himalayas 540 

(DFRS, 2015). Its competitive dominance and higher productivity were associated with 541 

drought and fire resistance (Gautam and Devoe, 2006). In contrast, higher elevations 542 

supported only a few PFTs (Supplementary Figure 5), with community composition 543 

shaped by abiotic stress such as low temperature and short growing seasons (Figure 7).  544 
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Ahmad et al. (2025) also stated that functional diversity is higher in lower elevation, even 545 

though species richness and phylogenetic diversity are higher in mid-elevation across the 546 

Himalayas. This pattern is broadly consistent with the stress-gradient hypothesis, which 547 

posits that abiotic stress dominates in harsher conditions, and competition is more 548 

influential in a benign environment (Bertness and Callaway, 1994). Additionally, the 549 

simulated PFTs composition is consistent with Mid-domain effects (Colwell and Lees, 550 

2000; Smith and Wilson, 1996) with a large number of PFT peaks at the intermediate 551 

elevation range (1000- 2000 m), likely due to geometric constraints on range overlap 552 

(Figures 6, 8, and 10). The overall species composition pattern showed a monotonic 553 

decrease in species richness and diversity with increasing elevation gradient, with higher 554 

heterogeneity and the presence of unique species adapted to extreme climatic conditions 555 

(Sekar et al., 2024). At the lower end of the gradient, with more seasonal rainfall and dry 556 

conditions, the vegetation was characterized by lower evenness and higher competitive 557 

dominance, as PFTs relied on realised niche occupation (Figure 8).  558 

 559 

The PFTs’ performance and dominance along the gradient depended on the climatic 560 

condition and their allometric relations. Overall, tropical broadleaved raingreen (TrBRG) 561 

was the most productive, followed by temperate evergreen (TeIBE) and alpine evergreen 562 

(ABE) across the elevation gradient. This result is consistent with the national forest 563 

inventory report, which states that Shorea robusta (37.83 ton ha-1), Quercus species 564 

(46.09 ton ha-1), and Rhododendron species (11.22 ton ha-1) are the most productive 565 

species in Nepal, with significant contributions from Pinus species (DFRS, 2015). Khanal 566 

et al. (2024) also concluded that species growth and carbon mass production depends on 567 

the wood density and size-density relation. Rhododendron (ABE) demonstrated wide 568 

niche space, and Shorea robusta (TrBRG), with its strong climatic niche and role climax 569 

vegetation, illustrates how PFT performance is shaped by the climatic niche at the 570 

elevations in which the species occurs. The results show that competitive dominance was 571 

not visible in higher elevations, with no individual PFTs becoming dominant. Similar to 572 

our finding, Naud et al. (2019) also highlighted that no individual species becomes 573 

dominant with increased altitude when species richness decreases, which is similar in the 574 

Himalayas.   575 

 576 
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A range of mechanisms, including deciduousness, shade tolerance, and drought 577 

resistance, contributed to the presence and abundance of PFTS under different 578 

environmental conditions along the gradient in our simulations. In lower elevations, 579 

deciduousness as an adaptation to escape seasonal drought was dominant, whereas, in 580 

higher elevations, cold and shade tolerant PFTs were abundant, reflecting their functional 581 

strategy to adapt to stresses such as cooler temperatures, shorter growing seasons, and 582 

harsher growing conditions. Similarly, allometric traits such as crown dimension-DBH, 583 

height-DBH, and wood density affected competitive interaction and competitive 584 

dynamics. In lower elevations, PFT coverage in the crown showed a clear hierarchy with 585 

the differences in competitive dominance in productivity and FPC. Previous studies have 586 

shown that traits shape the distribution of vegetation (Maharajan et al., 2021), and 587 

competition determines productivity under favourable conditions  (Sauter et al., 2021). 588 

Our study further emphasized that growth conditions, coupled with biotic and abiotic 589 

interactions, and trade-offs between growth and adaptation to multiple stresses drive the 590 

overall ecosystem functioning along the elevation gradient. This is reflected in differences 591 

in productivity and vegetation structure along the elevation gradient, with variation in 592 

species abundance and evenness according to environmental conditions.  593 

 594 

5.1 Limitations  595 

We used high-resolution climate data (3 km) as forcing data to capture heterogeneity in 596 

climatic conditions along the elevation gradient. This approach successfully captured 597 

broad elevational patterns in the dynamics and composition of the ecosystem. However, 598 

the model does not fully capture the variability in microclimatic conditions created by 599 

small-scale topography. This may partially account for the underestimation of above-600 

ground carbon stock, especially in high elevations. With the elevation increase, climatic 601 

heterogeneity amplifies with more diverse climatic conditions (Guan et al., 2024). 602 

Integrating slope and aspect in the model could enhance its ability to characterize 603 

vegetation dynamics and composition dynamics, particularly in mountain regions where 604 

variation in radiation, soil moisture, and temperature across slope orientations plays a 605 

crucial role.  606 

 607 

Even though dynamic vegetation models like LPJ-GUESS integrate competition for space, 608 

light, and soil resources among neighbouring plants, this competitive framework may not 609 
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fully account for how trait-based plasticity alters competitive interactions under different 610 

growth conditions. This can limit the model's ability to capture the full range of ecosystem 611 

dynamics. Integrating the allometric relation defined based on growth (competition) 612 

conditions helped to better characterise above-ground competition for light and space, 613 

whereas competition for below-ground resources, i.e. water and nitrogen in the model, 614 

largely follows proportionately with plant size. In reality, differential root profiles, 615 

including deep water access via tap roots characteristic of certain tree taxa, and other 616 

factors such as mycorrhizal associations or release of root exudates to promote nutrient 617 

mineralisation and uptake are known to predict plant success in environments 618 

characterised by below-ground resource limitations (Freschet et al., 2021). Dynamic root 619 

allocation based on resource availability in different layers is not currently simulated in 620 

LPJ-GUESS. Integrating root trait data, especially the distribution of fine roots in different 621 

soil profiles, root and mycorrhizal association (De Paula et al., 2021), and interlinking 622 

them with soil depth, may better capture below-ground competition processes. The 623 

current version of LPJ-GUESS incorporates a climate-driven prognostic wildfire scheme 624 

(SIMFIRE-BLAZE; Rabin et al., 2017) which impacts the composition, structure, and 625 

dynamics of the vegetation. However, other forms of disturbance, such as wood cutting 626 

and managed fires, herbivory, insect pest impacts, and wind-throw shape vegetation 627 

composition and demography, compounding with the biophysical and ecological 628 

mechanisms included in the model (Brewer, 2011; Grime, 1973; Hall et al., 2012; Laurent 629 

et al., 2017). 630 

 631 

6. Conclusions  632 

After incorporating trait data and allometric relations reflecting regional PFTs from our 633 

Himalayan study region, we successfully reproduced spatial and temporal patterns in 634 

vegetation composition, structure, and productivity along the elevation gradient. Our 635 

model shows that environmental conditions, biotic and abiotic interactions, allometric 636 

relations, and associated functional trade-offs jointly shape ecosystem processes and 637 

drive the competition patterns and adaptation mechanisms of vegetation along the 638 

elevation gradient. At the productive end of the gradient, competitive interactions among 639 

woody PFTs in crowded stands had a strong influence on PFT performance and 640 

abundance. These interactions, together with the realised niches of PFTs, led to reduced 641 

evenness in PFT distribution, as certain PFTs become dominant in different climatic 642 
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conditions. This did not translate into higher PFT richness in the way predicted by 643 

classical niche theory, suggesting favourable environmental conditions may buffer 644 

competitive exclusion and promote species coexistence despite competitive dominance 645 

hierarchies. In contrast, under more stressful conditions, only a few PFTs survive and 646 

grow, exhibiting higher evenness in composition and shorter stature. The increase in 647 

evenness with elevation reflects reduced crowding and weak asymmetric competition, 648 

with the surviving PFTs adapting and persisting by occupying their physiological niches 649 

in response to prevailing abiotic stress, particularly cold and freezing temperatures. Our 650 

findings highlight how variations in climatic conditions, resource availability, the climatic 651 

niche of PFTs, and unique adaptation mechanisms interact with PFT traits and adaptation 652 

strategies to shape vegetation composition patterns and productivity, thereby acting as 653 

overall controls on ecosystem function along the gradient. Further study, integrating 654 

heterogeneity in topographic conditions with different disturbances, along with a 655 

representation of underground competition (especially root profiles and groundwater 656 

dynamics), could enhance our understanding of ecosystem responses to global changes 657 

and extreme events, as well as their adaptation mechanisms in the central Himalayas.  658 

 659 

 660 

Code and Data Availability  661 

The customized LPJ-GUESS version used in this study has been archived in the LPJ-GUESS 662 

Zenodo community [https://doi.org/10.5281/zenodo.17214801]. The forcing data, 663 

simulated output, that reproduce the analyses presented in the manuscript have been 664 

deposited in Zenodo [https://doi.org/10.5281/zenodo.17214851].  665 
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