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Abstract: Vapor pressure deficit (VPD) is increasingly recognized as the primary15

driver of uncertainty in future global evapotranspiration (E) trends. Accurately16

characterizing the spatiotemporal dynamics of VPD and clarifying its mechanisms of17

influence on terrestrial E are crucial for improving water-use efficiency, optimizing18

ecosystem structure and function, and addressing the challenges of global climate19

change. Previous studies, however, have largely concentrated on the physiological20

regulation of vegetation transpiration (Et) at the micro scale. Here, we integrate21

multi-source remote sensing products and reanalysis datasets spanning 1981–2020 to22

quantitatively disentangle the contributions of VPD to E and assess its role in shaping23

global terrestrial evapotranspiration. Our results demonstrate that: (1) across 60.7% of24

the global land surface, E increased with rising VPD, while in arid regions with25

limited soil moisture the effect was generally weak; (2) VPD regulates E primarily by26

modulating Et, with elevated VPD directly enhancing transpiration; (3) the regulation27

of E by VPD exhibits a clear climatic gradient: arid zones (1.31 kPa) > humid zones28

(0.32 kPa), and the tropical (0.79 kPa) > temperate (0.68 kPa) > cold (0.28 kPa) >29
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polar (0.07 kPa). By elucidating the dominant pathways and regional heterogeneity of30

VPD–E interactions at the global scale, this study strengthens the mechanistic31

understanding of the coupled warming–atmospheric aridity–water flux system. These32

findings provide quantitative constraints for predicting terrestrial water-cycle changes33

under global warming and offer scientific evidence to support targeted climate34

adaptation strategies worldwide.35
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1. Introduction37

Vapor Pressure Deficit (VPD) is rising at an unprecedented rate and has become38

one of the core variables driving land drying and vegetation moisture stress under39

climate warming (Hermann et al., 2024). As a combined measure of temperature and40

relative humidity (Shih et al., 2025), the increase of VPD directly reflects the stronger41

atmospheric demand for water, which in turn strongly influences stomatal42

conductance, photosynthetic rate, and vegetation evapotranspiration (Chai et al., 2025;43

Miner et al., 2017). Many studies have shown that VPD has become a key variable44

linking the carbon–water cycle, ecosystem water use efficiency, and extreme climate45

events such as heat waves and droughts (Hermann et al., 2024). Under global46

warming, terrestrial ecosystems are facing “dual stress”: on the one hand, rising VPD47

intensifies water shortage; on the other hand, traditional climate models struggle to48

reproduce its nonlinear feedbacks, thereby creating substantial uncertainty in49

predicting future carbon–water cycle trends (Kim and Johnson, 2025). Therefore, a50

clear understanding of how VPD changes regulate global evapotranspiration is not51

only of scientific value but also of great practical significance for ecosystem52

adaptation to climate change.53

Although higher global CO₂ concentrations should theoretically improve54

vegetation water use efficiency (WUE) (Peters et al., 2018), recent studies combining55

FLUXNET flux observations with machine learning have shown that global WUE has56

tended to level off since 2000. This slowdown is mainly due to the “asymmetric effect”57

of VPD on photosynthesis and evapotranspiration (ET)—while VPD promotes ET, it58

suppresses carbon assimilation, thus offsetting the CO₂ fertilization effect (F. Li et al.,59
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2023). In non-peatland areas, higher VPD generally limits vegetation growth and60

reduces carbon sink capacity. However, in high-water-level environments such as61

peatlands, this effect may be weakened or even reversed by the “open water strategy”62

(Chen et al., 2023; Yuan et al., 2019). Together, these findings highlight that VPD is63

not only a driver of ET but also an important regulator in the carbon–water coupling64

process. Yet, the spatial differences in the global VPD–ET relationship and its driving65

mechanisms remain poorly understood, and the specific pathways through which66

VPD operates under multi-factor interactions are still unclear.67

In recent years, empirical research on the relationship between VPD and68

evapotranspiration has steadily expanded. At the microscopic scale, there is a daily lag69

between vegetation transpiration and VPD, with the size of the lag depending on the70

radiation–VPD delay. Both plant and soil water potential are key factors regulating71

this lagged ET–VPD relationship, especially when soil moisture declines (Zhang et al.,72

2014). At the macroscopic scale, in arid regions, the persistent rise in VPD combined73

with soil drought restricts evapotranspiration, causing vegetation wilting and74

ecosystem degradation (Wang et al., 2025). By contrast, in tropical rainforests where75

soil water is relatively abundant, although higher VPD induces stomatal closure, leaf76

renewal during the dry season can boost short-term carbon sequestration (Kumagai et77

al., 2009; Lebrija-Trejos et al., 2023). These contrasting responses indicate that the78

influence of VPD on evapotranspiration is shaped by climate zones, soil water79

availability, vegetation types, and even human activities (Zhuang et al., 2021).80

Therefore, understanding the nonlinearities, threshold effects, and multi-factor81

interactions in this relationship has become a major challenge in Earth system science82

(Hsu and Dirmeyer, 2021). Although some studies have tried to explain this83

relationship using statistical or process-based models, the lack of quantitative84

identification of VPD pathways remains a key limitation for improving predictive85

capability.86

Against this background, this study explores how VPD influences87

evapotranspiration across different land surfaces and climate zones worldwide.88

Specifically, we used VPD and ET data derived from multiple remote sensing sources89
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to examine the global response of ET to VPD changes from 1981 to 2020. The90

research focuses on the following scientific questions: (1) How does VPD influence91

global terrestrial ET? (2) How does VPD affect the spatial and temporal heterogeneity92

of global ET? (3) What are the implications of the rapid rise of VPD under global93

warming for land–atmosphere feedbacks? Addressing these questions will not only94

improve our understanding of the mechanisms by which VPD regulates ET but also95

provide a stronger basis for developing targeted global climate adaptation strategies.96

2. Data and Methods97

2.1 Data Sources98

Evapotranspiration data used in this study were derived from the Global Land99

Evaporation Amsterdam Model (GLEAM) v4.2a product (https://www.gleam.eu/)100

(Miralles et al., 2025). The GLEAM product not only provides total101

evapotranspiration but also partitions components such as transpiration (Et), bare soil102

evaporation (Eb), and interception evaporation (Ei), and is widely applied in103

quantitative global water cycle research. VPD data were obtained from the monthly104

ERA5 reanalysis available from the official website, with calculations based on air105

temperature (Ta) and dew point temperature (Td). Precipitation data were also106

analyzed on a monthly scale using ERA5. Other variables, including soil moisture,107

total solar radiation, and precipitation, were sourced from ERA5 as well (Copernicus108

Climate Change Service, 2019). Land use data were obtained from the MCD12C1109

version 6.1 product on the Google Earth Engine platform, classifying land use into 17110

categories at a spatial resolution of 0.05° annually (Friedl and Sulla-Menashe, 2022).111

Climate zoning employed the updated Köppen–Geiger classification system by Rubel112

et al. to define climate types for each region (Rubel et al., 2017). Arid regions are113

primarily distributed between 60°N and 60°S and are classified using the aridity index114

into hyper-arid, arid, semi-arid, and dry sub-humid zones (Rohde et al., 2024). Leaf115

Area Index (LAI) data were sourced from the GIMMS V1.2 dataset published in 2023116

(Cao et al., 2023), which demonstrates high overall accuracy and low underestimation,117

validated by in situ LAI measurements and Landsat-derived LAI samples. This118

dataset effectively mitigates satellite orbit drift and sensor degradation effects,119
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providing good temporal consistency and a plausible global vegetation trend around120

the year 2000.121

2.2 Methods122

2.2.1 Trend analysis of raster data based on Theil-Sen slope and Mann-Kendall test123

The Mann-Kendall trend test was used to analyze the changing trends and124

significance of VPD and E globally from 1981 to 2020 (Mann, 1945), and the IL-SEN125

method was used to quantify the magnitudes of the changing trends of the two (Sen,126

1968). This method determines the monotonic trend of a sequence by calculating the127

test statistic S (S 2) and its symbolic function Sgn (formula 3), where β>0 indicates128

that the sequence has an upward trend (S 1). The significance of the trend is evaluated129

by the test statistic Z (S 4), and the Z value is calculated based on S and its Var Var (S)130

(S 5). This method has no strict requirements for the distribution of data and belongs131

to non-parametric test methods. It has been widely used in the analysis of time series132

and can well reflect the changes of VPD and E. The equation is as follows:133

β=Median
xj−xi
j−i  ∀j>i| (1)

Median( )represents the calculation of the median value. When β is greater than134

0，it indicates an increasing trend in the research subject.135

The test statistic S is calculated as follows:136

S=
i=1

n

j=i+1

n

sgn�� xj−xi
(2)

where Sgn() is the sign function, calculated as:137

Sgn xj−xi =
1 xj−xi>0
0 xj−xi=0
−1 xj−xi<0

(3)

The trend significance is evaluated using the test statistic Z, which is computed138

as follows:139

Z=

S

Var S
 S>0

0  S=0
S+1

Var S
 S<0

(4)
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where Var (variance) is computed as:140

Var S =
n n−1 2n+5

18
. (5)

where n represents the number of data points in the sequence.141

When the absolute value of Z exceeds specific thresholds (1.64, 1.96, or 2.58), it142

indicates that the time series passes the significance test at confidence levels of 90%,143

95%, and 99%, respectively. Using a two-tailed trend test, the critical value Z(1-α/2)144

is obtained from the normal distribution table under a given significance level. When145

|Z| ≤ Z(1-α/2), the null hypothesis is accepted, indicating no significant trend; when146

|Z| > Z(1-α/2), the null hypothesis is rejected, indicating a significant trend.147

2.2.2 Estimation of the VPD sensitivity to the E148

Due to the complex bidirectional interactions between local background climate149

and varying E conditions across different scales, this study adopts a moving window150

strategy inspired by the “space-for-time” approach to calculate the sensitivity of E to151

VPD (dE/dVPD) (Y. Li et al., 2023). The core assumption is that the target pixel152

shares the same background climate with neighboring pixels within the moving153

window, so differences in E between the target and comparison pixels are attributed to154

biophysical feedbacks induced by land cover changes. Similarly, under certain155

constraints, we assume VPD is the sole driver of spatial variations in E, allowing the156

estimation of E sensitivity to VPD through spatially adjacent E and VPD data (Li et157

al., 2024). The advantage of this method lies in its exclusion of climate natural158

variability effects on VPD—since pixels with varying VPD values within the moving159

window share the same background climate.160

This study employs the spatial moving window strategy to generate monthly161

dE/dVPD values (Zhao and Feng, 2024). Specifically, for a given target pixel, all162

potential comparison samples are selected from neighboring spatial pixels within the163

moving window, which is set to 5 × 5 km based on previous studies. We further164

establish screening criteria to exclude the influence of land cover differences: selected165

pixels must share the same dominant land cover type as the target pixel, with166
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coverage differences not exceeding 10% according to MODIS land cover data. By167

regressing the differences in E and VPD between all comparison pixels and the target168

pixel, the sensitivity for the target pixel is obtained. In this process, the nonparametric169

Theil–Sen’s slope estimator is applied to address potential skewness in the sample170

distribution.171

slope=median
yi−yj
xi−xj

（6）

Here x and y indicate the E and VPD differences; i and j are the geolocations of172

samples within the moving window. Theil–Sen slope estimator adopts the median173

value of a range of possible slopes and is thus insensitive to the statistical outliers of174

the samples.175

2.2.3 Pearson Correlation Analysis176

The Pearson correlation coefficient is a statistical measure used to assess the177

relationship between variables, with values ranging from –1 to 1. However, the178

observed correlation may occur by chance; therefore, the p-value is employed as an179

indicator of statistical significance (Zhang and Zeng, 2024). In this study, for each180

pixel, we calculate the Pearson correlation coefficient between the corresponding181

pixel values of vapor pressure deficit (VPD) and different components of182

evapotranspiration (Ei, Et, Eb) (Miralles et al., 2011) to quantify the degree of linear183

association at that location. The correlation coefficient RRR is computed as follows:184

R=
n∑xiyi−∑xi∑yi

n∑xi2− ∑xi 2 n∑yi2− ∑yi 2

（7）

where n denotes the sample size, and x and y represent the time series values of185

VPD and the respective evapotranspiration components Ei, Et, and Eb. Based on the186

absolute value of R, correlation strength is categorized into five levels: negligible or187

no correlation (∣R∣<0.2); weak correlation (0.2 ≤∣R∣<0.4); moderate188

correlation (0.4 ≤∣R∣<0.6); strong correlation (0.6 ≤∣R∣<0.8); and very strong189

correlation (0.8 ≤∣R∣≤1).190
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2.2.4 Piecewise Linear Regression and Generalized Additive Model (GAM)191

Piecewise linear regression is suited for scenarios where the independent variable192

exhibits different linear relationships across distinct intervals, allowing simultaneous193

detection of trends and breakpoints (Yu et al., 2024). GAM are non-parametric194

regression techniques that capture nonlinear relationships between independent and195

dependent variables through smoothing functions, where the mean or location196

parameter of the response variable depends on the sum of smoothing functions of the197

covariates (Brunner and Naveau, 2023). This study applies these two models to198

investigate the nonlinear relationship and potential thresholds between VPD and E,199

and further categorizes the data into five climate zones—tropical (A), arid (B),200

temperate (C), frigid (D), and polar (E)—as well as into arid versus humid regions, in201

order to explore regional differences. To ensure data quality, outliers were removed202

by filtering values outside the 1st and 99th percentiles of VPD and E. Data processing203

was conducted using Python libraries rasterio and geopandas.To identify thresholds in204

the VPD–E relationship, piecewise linear regression was applied, modeling VPD as205

the independent variable and E as the dependent variable with a single breakpoint x0.206

The model is defined as:207

（8）

where k1 and k2 represent the slopes before and after the breakpoint respectively,208

and b1 is the intercept. Parameters (x0,k1,k2,b1) were estimated using scipy.optimize.209

Model performance was evaluated by the coefficient of determination (R2) and root210

mean square error (RMSE).211

E=f VPD （9）

Here, f is a cubic spline function (s(0)). The threshold is determined by212

calculating the second derivative of the GAM prediction curve to identify the VPD213

value corresponding to the point with the maximum curvature. The 95% confidence214

interval is used to assess uncertainty. The model fitting quality was evaluated by R2215

https://doi.org/10.5194/egusphere-2025-4820
Preprint. Discussion started: 21 October 2025
c© Author(s) 2025. CC BY 4.0 License.



9

and RMSE.216

2.2.5 Quantifying the Influence of VPD on E under Multi-Factor Coupling Using217

SEM218

To elucidate the direct and indirect regulatory mechanisms of VPD on E under219

the coupling effects of multiple factors, this study employs Structural Equation220

Modeling (SEM) to model and quantify the path relationships among various221

variables. SEM, as a multivariate causal analysis tool, is widely utilized in222

ecohydrological systems to identify and disentangle complex inter-variable223

relationships, enabling simultaneous estimation of direct effects of multiple224

independent variables on a dependent variable, indirect effects mediated through225

intervening variables, and total effects (Guo et al., 2025).226

During the model construction process, it is assumed that temperature (T) and227

precipitation (PRE) have a direct impact on VPD. Meanwhile, T, PRE, and VPD228

regulate soil moisture (SM) and leaf area index (LAI). Ultimately, VPD, SM, and LAI229

jointly affect E. The model data is based on multi-source remote sensing and230

reanalysis products from 1981 to 2020. All variables were standardized and included231

in the analysis.232

We use the "piecewiseSEM" package to build the path model and extract the233

standardized path coefficient (Std.Estimate) through the "coefs" function. Further234

utilize the path coefficients to calculate the indirect effects of each factor on E, and235

superimpose the direct paths to obtain the total effect. The model fit degree was236

evaluated using Fisher's C statistics and AIC (Jing et al., 2015).237

3. Results238

3.1 Spatiotemporal Distribution Characteristics of VPD and E239

From 1981 to 2020 (Fig. 1a), global VPD exhibited a significant upward trend240

accompanied by strong spatial heterogeneity. Regions with statistically significant241

increases accounted for 76.22% of the terrestrial surface, with particularly pronounced242

increases in arid and semi-arid zones, reflecting the global intensification of243

atmospheric aridification. Seasonally (Fig. 1c), VPD showed a distinct annual cycle,244

peaking in summer (typically July) and reaching a minimum in winter, indicating that245
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it is jointly regulated by meteorological drivers such as air temperature and246

evaporative demand.247

During the same period, global terrestrial E also displayed an overall increasing248

trend (Fig. 1b), with significant growth concentrated in East Asia and Northern249

Europe, whereas notable declines were detected in Africa, central South America,250

southwestern North America, and eastern Australia. At the seasonal scale (Fig. 1d),251

the peak of E generally occurred in June, preceding that of VPD by about one month,252

suggesting an earlier hydrological response to atmospheric conditions. This shift is253

likely associated with abundant soil moisture in spring and the advancement of254

vegetation phenology. Further analyses revealed that in regions with rising VPD, E255

exhibited a clear decreasing tendency, highlighting the suppressive effect of256

intensified atmospheric aridity on land surface water fluxes, particularly in257

water-limited areas where soil–vegetation regulation is weak. In contrast, at higher258

latitudes where VPD declined or increased only slightly, E generally rose, likely259

driven by synergistic effects of rising temperatures, extended frost-free periods, and260

strengthened growing-season vegetation activity.261

262

Figure 1. Spatiotemporal distribution characteristics of VPD and E: (a) VPD trend263

characteristics; (b) E trend characteristics; (c) monthly variation of VPD; (d) monthly264

variation of E.265

3.2 Global-scale Terrestrial E Response to VPD266

At the global scale, the interannual response of E to VPD shows clear and267

uneven spatial patterns (Fig. 2a). Approximately 60.71% of terrestrial areas exhibit268
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positive sensitivity to rising VPD, whereas 39.29% show negative sensitivity, with a269

global mean sensitivity of 293.27 ± 62.28 mm·hPa⁻¹·yr⁻¹ (Fig. 2a). From a climatic270

perspective, arid and cold regions are more prone to negative responses, because in271

these areas VPD-driven surface water fluxes are constrained either by limited water272

availability or by insufficient energy, resulting in suppressive effects. By contrast, in273

regions with higher temperature or precipitation, the positive response of E to VPD274

becomes stronger (Fig. 2b). For typical water-limited regions such as western275

Australia and southern Africa, increases in VPD are accompanied by declines in E,276

reflecting a stomatal closure feedback that reduces water loss and dampens277

evapotranspiration.278

Across land-use types, we grouped 16 categories into four major classes: forest,279

grassland and wetland, cropland, and barren land (Fig. 2c). All classes generally show280

positive sensitivity to VPD, but with marked differences in magnitude: forests281

respond the most strongly (405.34 mm·hPa⁻¹·yr⁻¹), followed by grasslands and282

wetlands (342.26 mm·hPa⁻¹·yr⁻¹) and barren areas (200.40 mm·hPa⁻¹·yr⁻¹), whereas283

croplands display the weakest sensitivity (78.12 mm·hPa⁻¹·yr⁻¹). Taken together, these284

results indicate that in regions with dense vegetation cover, higher VPD is more likely285

to stimulate E, while in sparsely vegetated or managed cropland areas, the effect286

remains comparatively limited.287

288
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Figure 2. Response of E to VPD during the study period (1981–2020): (a) spatial289

distribution of sensitivity; (b) variation of sensitivity indicating differences across290

climate zones, which are delineated based on annual precipitation (P, x-axis) and air291

temperature (Ta, y-axis); (c) latitudinal distribution of dE/dVPD across different292

underlying surface types, with shaded areas representing the standard deviation of293

latitude.294

3.3 Global Pattern of the Relationship between VPD and Et, Ei, and Eb295

From 1981 to 1997, E showed pronounced interannual variability but still296

followed an overall upward trend, with the global annual mean increasing by 1.47297

mm/yr (Fig. 3a). Following the strong El Niño event in 1998, this upward trend298

weakened, shifted into a decline around 2008, and then rebounded under the influence299

of the 2009 La Niña event. Satellite observations (Fig. 3b) confirm this dynamic:300

VPD rose abruptly in 1998 (0.034 hPa yr⁻¹), dropped temporarily, and then peaked at301

7.839 hPa in 2010. The correlation between E and VPD at the decadal scale suggests302

that the intensification and alleviation of atmospheric aridification correspond to the303

suppression and recovery of E, respectively.304

At the spatial scale, correlations between VPD and different E components305

display broadly consistent geographic patterns (Fig. 3d, f, h), though with varying306

magnitudes: VPD has the strongest influence on Et (r = 0.66), followed by Ei (r =307

0.37), while Eb exhibits an overall negative correlation (r = –0.15) (Fig. 3c). In308

high-latitude regions and parts of the low latitudes, VPD significantly enhances E,309

with its effect on Et being particularly prominent compared to Eb and Ei. This occurs310

because higher VPD increases atmospheric demand for water vapor, directly driving311

diffusion from leaves through stomata into the atmosphere and thereby stimulating312

transpiration. Conversely, in arid and semi-arid regions at mid- and low latitudes (e.g.,313

central Australia and southern Africa), intensified atmospheric aridification leads to314

negative correlations between VPD and both Ei and Eb (Fig. 3f, h), reflecting315

suppressed canopy interception and soil evaporation. Across temporal scales, Et316

consistently shows the strongest interannual coherence with VPD, followed by Eb,317

whereas Ei responds the weakest (Fig. 3e, g, i), consistent with the above spatial318
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analyses.319

320

Figure 3. Global influence of VPD on different E components. (a, b) Interannual321

fluctuations of E and VPD, respectively; (c) Pearson correlation coefficients (r)322

between VPD and Et, Ei, and Eb; (d, f, h) spatial distribution of Pearson correlations323

between VPD and Et, Ei, and Eb computed using annual data from 1981 to 2020; (e, g,324

i) interannual variations of Et, Ei, and Eb, respectively.325

4 Discussion、326

4.1 Threshold effect and the universality of nonlinearity327

This study reveals a widespread nonlinear relationship between E and VPD,328

indicating that terrestrial ecosystems generally exhibit threshold-like responses to329

VPD variability. Based on piecewise linear regression and GAM, we quantified VPD330

thresholds across different climate zones. The results show a clear climatic gradient in331

thresholds (Fig. 4a–e): tropical (0.79 kPa) > temperate (0.68 kPa) > cold (0.28 kPa) >332

polar (0.07 kPa), and arid (1.31 kPa) > humid (0.32 kPa). The high consistency333
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between the two models (Fig. 4f, i) confirms the robustness of these thresholds and334

reveals pronounced regional differences in E’s response to VPD. Notably, the low335

threshold (0.07–0.08 kPa) in polar zones suggests that even slight increases in VPD336

can induce substantial changes in E, whereas the high threshold (1.67–1.68 kPa) in337

temperate zones likely reflects vegetation adaptation to long-term arid conditions338

(Gao et al., 2024; Lian et al., 2021). These results underscore the key regulatory roles339

of climatic background and ecosystem traits in shaping VPD thresholds.340

Model comparisons demonstrate that GAM outperforms piecewise regression in341

capturing nonlinear responses, especially in the cold climate zone (R² = 0.93; Fig. 4d)342

and humid regions (R² = 0.91). This finding is further supported by the cross-zone343

threshold analysis (Fig. 4f). Quantitatively identifying VPD thresholds is essential for344

predicting ecosystem responses to intensified atmospheric aridification under future345

climate change (Li et al., 2020). Regions with lower thresholds (e.g., cold and polar346

zones) are more vulnerable to VPD increases, facing earlier risks of water stress and347

associated declines in vegetation productivity and carbon cycling. To better uncover348

the underlying mechanisms, future studies should integrate multi-source349

ecohydrological factors, particularly in regions with relatively weak model350

performance, such as tropical zones (GAM R² = 0.25; Fig. 4a), thereby improving351

both the precision of threshold detection and its ecological interpretability.352
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353

Figure 4. Nonlinear relationships between VPD and E across different climate zones:354

tropical (a), arid (b), temperate (c), cold (d), and polar (e). Panels (f) and (g) show355

results for arid and humid regions, respectively. The plots display observed data356

points, piecewise linear regression fits (red solid lines), GAM fits (green solid lines),357

and their corresponding thresholds (dashed lines). Panels (h) and (i) compare the358

thresholds derived from piecewise regression and GAM across climate zones (h) and359

between arid/humid regions (i) using bar charts.360

4.2 Mechanism of VPD regulating E under multi-factor coupling361

This study employed SEM to quantitatively reveal the complex mechanisms by362

which VPD regulates global terrestrial E under multi-factor coupling, with all factors363

jointly explaining 77% of the variance in E (Fig. 5a). T exerts a significant positive364

effect on VPD (standardized coefficient = 0.58), whereas Pre has a significant365

negative effect (standardized coefficient = –0.40), indicating that sufficient water366

supply can effectively reduce VPD. Meanwhile, the strong negative relationship367

between SM and VPD (standardized coefficient = –0.84) suggests that under high368

VPD conditions, SM is rapidly depleted, potentially leading to substantial alterations369

in ecosystem water budgets (Liu et al., 2019). Previous studies have shown that the370

response of Et to VPD varies with environmental and plant traits: in water-limited371
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regions, reduced SM may suppress Et, whereas in moisture-abundant regions, Et may372

rise with increasing VPD (Massmann et al., 2019). Our SEM results are consistent373

with this understanding, highlighting that the interaction between VPD and SM374

represents a critical regulatory pathway for E. Moreover, LAI increases markedly375

under high VPD conditions (standardized coefficient = 0.90), but its direct effect on376

Et remains weak (standardized coefficient = 0.07), suggesting that VPD primarily377

influences Et indirectly by modulating vegetation status and SM, thereby regulating E.378

This indirect pathway aligns with the consensus in ecohydrology: VPD influences379

stomatal conductance, thereby indirectly controlling photosynthesis and transpiration,380

and ultimately shaping E dynamics (Zhang et al., 2023).381

Within the multi-factor coupling framework, VPD exerts a significant direct382

effect on E (direct effect coefficient = 0.5443) while also amplifying its indirect effect383

via its positive influence on LAI; the contributions of T and PRE to E are also384

pronounced (Fig. 5b). These results underscore the interactive coupling pathways385

between VPD and other climatic drivers, particularly the mechanism by which VPD386

indirectly regulates E through vegetation structural adjustments. With ongoing climate387

change driving rising temperatures and shifting precipitation regimes, VPD is388

projected to increase continuously throughout the 21st century (Yuan et al., 2019).389

This trajectory will impose major challenges on global ecosystems, especially those390

constrained by water availability. Our SEM findings highlight the importance of391

systematically accounting for the interactions and feedbacks among VPD, T, PRE, SM,392

and LAI when developing adaptation strategies and refining predictive models. Future393

work should further explore regional heterogeneity and the long-term adaptive394

strategies of vegetation to enhance the predictive accuracy of global ecohydrological395

models.396
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397

Figure 5. Direct and indirect effects of T, PRE, SM, LAI, and VPD on E. Numbers398

adjacent to the arrows represent standardized path coefficients indicating the strength399

of the relationships. Arrow widths are proportional to the magnitude of the400

standardized coefficients. Significant paths are marked with asterisks. The p-value401

and Chi-square test statistic are shown in the lower-left corner of the model.402

4.3 Implications of land-atmosphere feedback under future VPD increase scenarios403

The anticipated rise in VPD will continuously reshape land–atmosphere404

interactions by regulating E, thereby profoundly influencing both regional and global405

water cycle patterns (Yuan et al., 2019). In arid regions, when VPD exceeds the406

critical threshold (1.67–1.68 kPa; Fig. 4f), E is substantially suppressed (Fig. 4b, f),407

triggering a positive “SM–atmospheric water vapor” feedback loop: declining SM408

reduces E, weakens atmospheric water vapor flux, suppresses cloud formation and409

precipitation, and further intensifies regional drought (Zhou et al., 2019). In humid410

regions, E may initially rise with increasing VPD in the short term (Fig. 2a); however,411

as available water becomes progressively depleted, this enhancement effect may412

weaken or even reverse, disrupting cross-regional water vapor transport and413

precipitation recycling. Responses to elevated VPD vary considerably across climate414

zones and vegetation types. Forest ecosystems are generally highly sensitive to VPD415

anomalies, where VPD-induced water stress can markedly reduce productivity and416

elevate the risks of tree mortality and forest degradation (Will et al., 2013). In contrast,417

agricultural systems may alleviate some negative impacts of increasing VPD through418

irrigation, but in water-scarce regions this buffering capacity is constrained,419
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potentially amplifying the instability of agricultural yields.420

Overall, the continuous rise in VPD may intensify land–atmosphere feedbacks421

and magnify uncertainties in global water and carbon cycles (Gentine et al., 2019).422

This underscores the urgent need to refine climate models to better capture regional423

heterogeneity in ecosystem responses. For ecologically fragile regions—particularly424

polar, frigid, and arid zones—developing targeted water resource management and425

ecological conservation strategies is essential to enhance ecosystem adaptability and426

resilience, thereby mitigating ecological risks and climate feedbacks associated with427

rising VPD.428

4.4 Uncertainty and future outlook429

This research provides a new perspective for understanding the mechanisms by430

which global VPD regulates E, yet three major sources of uncertainty remain. In431

terms of data, this study relies on ERA5 reanalysis data for statistical analysis.432

Although ERA5 incorporates higher-quality near-surface meteorological inputs, it still433

exhibits systematic deviations from in situ observations. For example, ERA5 tends to434

overestimate SM in arid regions (Kokkalis et al., 2024), which may dampen the435

statistical significance of the VPD–SM–ET pathway. To improve the robustness of the436

findings, future work should utilize multi-source datasets at different temporal scales437

to more accurately evaluate the impact of VPD on E. In terms of environmental438

factors, although multiple drivers were considered when examining the VPD–E439

relationship, the legacy effects of climatic factors on terrestrial ecosystems (Miralles440

et al., 2014) introduce additional uncertainty. Future studies should incorporate a441

broader suite of environmental variables and ecological processes and investigate442

their interactive effects with VPD and E, thereby providing a more comprehensive443

understanding of the global land–atmosphere coupling system. In terms of444

methodology, this study applied piecewise linear regression and GAM to quantify the445

nonlinear relationship between VPD and E. However, these approaches rely on446

simplifying assumptions that may bias results. For instance, piecewise regression447

assumes a single breakpoint in the VPD–E relationship, whereas the actual448

relationship may involve multiple thresholds or gradual nonlinear transitions.449
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Moreover, in tropical regions, the GAM fit was relatively weak (R² = 0.25; Fig. 4a),450

possibly due to data noise or suboptimal parameter selection. Future studies should451

validate thresholds using FLUXNET site-level observations and adopt more advanced452

approaches, such as improved GAM formulations or machine learning techniques, to453

capture the inherently complex nonlinear dynamics.454

5 Conclusion455

This study integrates multi-source remote sensing and reanalysis data from 1981456

to 2020 to systematically evaluate the pathways and regional heterogeneity through457

which VPD influences global terrestrial E and its components (Et, Ei, Eb). The results458

show that global VPD has increased significantly (covering 76.22% of land areas).459

Overall, E exhibits an increasing trend, but in regions where VPD rises rapidly, E460

decreases markedly. This essentially reflects the mismatch between limited water461

supply and surging atmospheric demand, which triggers stomatal closure in plants and462

soil water limitation, thereby suppressing water fluxes. The global mean sensitivity of463

E to VPD is 293.27 ± 62.28 mm·hPa⁻¹·yr⁻¹, dominated by positive responses (60.71%)464

and stronger in regions with higher vegetation cover, whereas 39.29% of regions465

exhibit negative sensitivity. Clear nonlinear relationships and threshold gradients are466

evident: thresholds by aridity range from 1.31 kPa in arid zones to 0.32 kPa in humid467

zones, and by climate zones from 1.68 kPa in arid, 0.79 kPa in tropical, 0.68 kPa in468

temperate, 0.28 kPa in frigid, to 0.07 kPa in polar climates. Model fits are stronger in469

frigid (R² = 0.93) and humid (R² = 0.86) zones. At the component level, Et is most470

sensitive to VPD (r = 0.66) and exerts a positive influence on E, whereas in471

mid-latitude arid–semiarid regions, VPD suppresses Ei and Eb, indicating the472

constraint of atmospheric dryness on non-transpiration components under473

water-limited conditions. Structural equation modeling further reveals that multiple474

drivers jointly explain 77% of the variance in E. VPD exerts a strong direct effect475

(direct effect coefficient = 0.5443) and indirectly amplifies its influence through its476

positive regulation of LAI along the VPD–LAI–E pathway. Overall, the continued rise477

in VPD under global warming may reshape the allocation of terrestrial energy and478
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water, intensify land–atmosphere feedbacks, and exacerbate regional hydroclimatic479

divergence. While this study provides quantitative constraints and mechanistic480

insights for future predictions of the water cycle and water resource management,481

three major uncertainties remain: the representation of lagged and cumulative effects,482

the estimation of Ei and Eb, and the identification of nonlinear thresholds. Future483

work should incorporate high-resolution observations, isotope tracing, and484

experimental evidence to refine understanding of the regulatory mechanisms of VPD485

on E.486
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