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Abstract. Aerosols influence Earth’s radiative balance via the scattering and absorbing of solar radiation, affect cloud forma-
tion, and play important roles on precipitation, ocean seeding and human health. Accurate modeling of these effects requires
knowledge of the the chemical composition and size distribution of aerosol particles present in the atmosphere. Computation-
ally intensive applications like remote sensing and weather forecasting commonly use simplified representations of aerosol
microphysics, prescribing the aerosol size distribution (ASD), introducing uncertainty in climate predictions and aerosol re-
trievals. This work develops a neural network model, termed MAMnet, to predict the ASD and mixing state using the bulk
mass of aerosol and the meteorological state. MAMnet can be driven by the output of single moment, mass-based, aerosol
schemes or using reanalysis products. We show that MAMnet is able to accurately reproduce the predictions of a two-moment
microphysics aerosol model as well as field measurements. Our model paves the way to improve the physical representation of

aerosols in physical models while maintaining the versatility and efficiency required in large scale applications.

1 Introduction

Aerosols play a crucial role in the Earth’s climate system by influencing radiative forcing (Forster et al., 2007; Bender, 2020),
cloud formation and lifetime (Christensen et al., 2020), and precipitation patterns (Stier et al., 2024). Aerosol particle size and
composition determine their atmospheric lifetime (Seinfeld and Pandis, 2016), impact on human health (Arfin et al., 2023),
long range transport (Uno et al., 2009), and their ability to become cloud droplets and ice crystals (Seinfeld et al., 2016).
The size and composition of atmospheric aerosols are critical parameters determining the concentration of cloud condensation
nuclei (CCN) in the atmosphere (Seinfeld and Pandis, 2016). Understanding the distribution and composition of atmospheric
aerosols is thus essential for accurate climate and weather simulations (Seinfeld et al., 2016).

The representation of the aerosol size distribution (ASD) and mixing state is at the center of the ability of climate models
to accurately simulate the transport and chemical evolution of aerosol species (Aquila et al., 2011; Bender et al., 2019). At-
mospheric models represent the ASD using approximations with different degrees of sophistication. The bulk mass approach
aggregates aerosol species into a limited number of prescribed bins based on their mass and composition (Jones et al., 1994;
Langner and Rodhe, 1991; Ginoux et al., 2001; Chin et al., 2000). This approach inherently assumes externally mixed com-
ponents, that is, all particles of the same size have the same composition (Seinfeld and Pandis, 2016). Bulk schemes offer low

computational expense, but they fail to distinguish between processes affecting number concentration and mass, hence cannot
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explicitly predict the ASD. However, they are amenable to data assimilation methods (Randles et al., 2017), and are often used
in forecasting systems, satellite retrievals, and reanalysis products (Chu et al., 2002; Gelaro et al., 2017; Inness et al., 2019).
For example, the Goddard Chemistry, Aerosol, Radiation, and Transport model, GOCART (Colarco et al., 2010b), explicitly
calculates the mass of dust, black carbon, organic material, sea salt, and sulfate using a bulk, externally-mixed approach, and
forms the basis of aerosol assimilation in the MERRA-2 climate reanalysis (Gelaro et al., 2017; Randles et al., 2017).

In contrast to bulk methods, modal aerosol schemes estimate both the number concentration and mass of atmospheric aerosol,
hence two-moments of the ASD (e.g., Whitby and McMurry, 1997; Wilson et al., 2001; Stier et al., 2005; Liu et al., 2012).
Because they predict the number concentration and mass independently, modal schemes can handle internally-mixed aerosol
species, where aerosol species partition between different modes, better approximating the ASD (Wilson et al., 2001; Her-
zog et al., 2004; Stier et al., 2005). This leads to a better representation of aerosol-cloud interactions (Adams and Seinfeld,
2002), the variability in net radiative effects (Herzog et al., 2004), and the effects of alterations to emissions on a global scale
(Wei et al., 2022). More sophisticated aerosol schemes either calculate additional modes of the ASD (Zhang et al., 2020) or
explicitly resolve it by using a binned approach (e.g., Adams and Seinfeld, 2002). These models offer the most physically con-
sistent representation of the ASD, but often are too computationally expensive for operational forecast and long term climate
predictions.

In computationally intensive applications it is desirable to maintain the efficiency and simplicity of the bulk schemes, how-
ever with a realistic representation of the ASD. To address these challenges, there is growing interest in leveraging machine
learning (ML) techniques to develop more efficient and accurate aerosol models (e.g., Gong et al., 2021; Rasp et al., 2018;
Harder et al., 2022; Silva et al., 2021). ML models, we can in principle capture complex nonlinear relationships between
aerosol properties and environmental variables with reduced computational costs. For example, Harder et al. (2022) developed
a surrogate of the Modal Aerosol Module (MAM; Liu et al., 2012) to predict the mass and number tendencies of aerosol
species, with the aim to improve computational performance. The emulator replaces computationally intensive parts of MAM,
however does not map the ASD to the mass of the aerosol species, a requirement to many assimilation and remote sensing
algorithms (Randles et al., 2017; Buchard et al., 2017).

Here we present a novel ML-based approach for predicting the ASD and aerosol mixing state in atmospheric models that run
bulk aerosol schemes. This is accomplished by developing a ML-based parameterization that emulates the ASD predicted by
the MAM model, using as input the total mass of aerosol species from relatively fast single-moment bulk aerosol models like
GOCART. By combining the strengths of machine learning and physical principles, the parameterization maps the bulk mass
model into the ASD that would be predicted by the modal approach, enhancing the former. Our method offers a promising

avenue for advancing aerosol representation in climate predictions, data assimilation and remote sensing applications.

2 Methods and Data

We developed a neural network (NN) to estimate the ASD using as input the total mass of aerosol species and the meteorological

state. This was accomplished by training the NN on simulated data using the MAM model implemented on the NASA’s Global
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Earth Observing System (GEOS), combining the modal aerosol species predicted by MAM into their total mass across all
modes, thus resembling the externally-mixed species predicted by the GOCART scheme. This section details the modeling

components as well as the development and evaluation approach of the NN.
2.1 Modeling components

The NASA Goddard Earth Observing System (GEOS), consists of a set of components that numerically represent different
aspects of the Earth system (atmosphere, ocean, land, sea-ice, and chemistry), coupled following the Earth System Model-
ing Framework (https://gmao.gsfc.nasa.gov/GEOS_systems/). In GEOS-AGCM configuration, atmospheric transport of water
vapor, condensate and other tracers, and associated land-atmosphere exchanges, is computed explicitly, whereas sea-ice and
sea surface temperature (SST) are prescribed as time-dependent boundary conditions (Reynolds et al., 2002; Rienecker et al.,
2008). Cloud microphysics in the operational version of GEOS uses a single moment microphysics scheme for short-term
weather forecast (Molod et al., 2015), and a two-moment cloud scheme in subseasonal and seasonal prediction (Barahona
et al., 2014; Molod et al., 2020). GEOS constitutes the modeling base of MERRA-2 (Modern Era Retrospective analysis for
Research and Applications, version 2), the first multidecadal reanalysis to integrate both aerosol and meteorological obser-
vations (Gelaro et al., 2017; Randles et al., 2017). In MERRA-2 aerosol fields are described using GOCART. Aerosols are
interactive and radiatively active, hence MERRA-2 has a representation of the aerosol direct effect. Aerosol assimilation uses

the Goddard Aerosol Assimilation System (GAAS), and the overall assimilation cycle is controlled by the meteorology.
2.1.1 Aerosol transport schemes

GEOS implements two aerosol schemes to interactively calculate the evolution of aerosol and gaseous tracers. GOCART (Chin
et al., 2000; Colarco et al., 2010a) is used operationally on weather forecast and data assimilation applications. GOCART is a
mass-based aerosol model that explicitly calculates the transport and evolution of dust, black carbon, organic material, sea salt,
and sulfate. Aerosol species are assumed externally mixed. Dust and sea salt are represented in five mass bins whereas a single
bin is assumed for other species. Both organics and black carbon are split into hydrophilics and hydrophobic components. Dust
and sea salt emissions are prognostic whereas sulfate and biomass burning emissions are obtained from the MERRA-2 dataset
(Randles et al., 2017).

GEOS also implements the MAM model (Liu et al., 2012), as an alternative aerosol scheme for research applications. MAM
is a modal aerosol scheme that predicts the mass and number concentration of Aitken (AIT), accumulation (ACC), primary
carbon (PCM), fine dust (FDU) and sea salt (FSS), and coarse dust (CDU) and sea salt (CSS) aerosol modes. The aerosol
representation is internally mixed with modal composition as detailed in Table 2. The total number of simulated tracers in
MAM is 31: 24 modal mass components and seven aerosol number concentrations. The size distributions for each mode is

assumed to follow a lognormal distribution, with prescribed geometric standard deviation for each mode (Liu et al., 2012).
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Table 1. Aerosol species considered in this work; « is the hygroscopicity parameter (Kreidenweis et al., 2005).

Abbreviation Description %  Density Kgm™®
SU Sulfates, includes ammonium 0.64 1600
SS Sea salt 1.3 2200
oG Primary and secondary organics  0.25 900
POM primary Organic Matter 0.25 900
BC Black carbon 0.01 1600
DU Dust 0.1 1700

Table 2. Aerosol modes predicted by MAM and MAMnet; o, is the geometric standard deviation.

Abbreviation Mode Og Species in mode
ACC Accumulation 1.8 SU, OG, POM, BC, SS
AIT Aitken 1.6 SU, OG, SS
CDU Coarse dust 1.8 SU, DU
CSS Coarse sea salt 2.0 SU, SS
FDU Fine dust 1.8 SU, DU
FSS Fine sea salt 2.0 SU, SS
PCM Primary carbon matter 1.6 POM, BC

2.2 Development of the deep learning model

We built a neural network, termed “MAMnet”, to estimate the aerosol number concentration and composition mimicking the
MAM model (Table 2), using as input the total mass mixing ratios for dust, sulfates, organics, black carbon and sea salt, and
the atmospheric state (temperature, 7" and air density, p,;,), for a total of 31 predicted tracers as shown in Fig. 1. This section

describes the development of the NN.
2.2.1 Data generation

The AGCM configuration of GEOS, running MAM (referred to as “GEOS+MAM”), was used to develop a robust dataset
to train the neural network. We ran a 5-year simulation at 1-degree horizontal resolution and 72 vertical levels, with diurnal,
instantaneous outputs at UTC 9:00:00 and 21:00:00. From these simulation, 25 output files were randomly selected without
replacement for training, and 10 for the testing of the trained model. Temperature and horizontal winds were “replayed” to
MERRA-2. The replay technique is a form of nudging that combines analysis increments with the model results, to correct
the model state every six hours (Takacs et al., 2018). This ensures that the simulation reproduces the observed meteorological
state.

We combined the internally-mixed, modal mass components parameterized by MAM across 5 different species including

sulfate, sea salt, dust, primary and secondary organic matter, and black carbon (Table 1 and Fig. 1) to derive the total mass
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Figure 1. Neural network development workflow. Blue arrows represent the training steps, while red arrows correspond to the inference
process. During training, the “mapping” step aggregates aerosol species across modes from the MAM output to construct the input Xnvam.
The MAM output is then used to calculate the MAMnet loss. During inference, input from MERRA-2 or GOCART is used to predict the
aerosol size distribution and mixing state, mimicking the MAM output. MAMnet consists of a single input layer (black), seven hidden layers

(orange), and one output layer (green). 7" and pair represent the temperature and air density, respectively. N is the number of samples.

mixing ratios for the input features. The input mass features were logo-transformed and all input variables (including 7" and
Pair) Were standardized by removing the mean and dividing by the standard deviation. Statistics used for normalization were
calculated using 100 random instantaneous output files not used during training. Target variables included the mass of each
of the MAM species and the number concentration for each mode. Because aerosol mass and number concentration vary over
several orders of magnitude, we logo-transformed the targets, and filtered out values less than minimum threshold values,
1072°ug Kg ~! and 10™* mg ~! for mass and number, respectively. The modal aerosol dry diameter (hereafter D,,,) was not
directly included as a a target of MAMnet. Instead it was used to check for mass conservation, that is, matching the predicted
Dy, against the target values indicates that the mass and number concentration remain consistent in the prediction. Dy, was

derived for each i*" mode in the form (Seinfeld and Pandis, 2016),

1/3

6 J M; i 311’120' i
Dypgi= | — J exp (2 & > (1)
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where o ; and V; are the geometric standard deviation and number concentration for the it" mode, respectively. M; ; and p; ;

are the mass and density of the j*" species in the i'"

mode, respectively, and Ny, ; is the number of species present in the mode.
During training data was fed to the NN using a “single-level” approach where the 4-dimensional geospatial fields are flattened

into one-dimensional arrays with a total number of samples given by:

Nsamples = Nlev X Ntime X Nlat X Nlon (2)

where for each of Ny, time steps, Ny is the number of model levels (72), N}, is the number of latitudinal grid points (181),
and Ny, is the number of longitudinal grid points (360). The single-level approach makes the parameterization resolution-
independent facilitating its potential incorporation into GCMs with various resolutions. It also provides a large volume of
training data (> 100 M samples) capturing a wide array of physically plausible instances in the training data for MAMnet. It
however has the disadvantage that potentially significant spatial relations may be missing in the input. Tests using a whole-

column approach suggested that given the large number of samples such caveat did not result in loss of accuracy (not shown).
2.2.2 Model architecture

Various levels of complexity were tested for the MAMnet architecture, including Multilayer Perceptrons (MLPs) and Convolu-
tional Neural Networks (CNNs) (Bengio et al., 2017). These architectures have demonstrated success in capturing multi-scale
behaviors of GCMs for different physical properties (e.g., Brenowitz and Bretherton, 2019; Rasp et al., 2018; Barahona et al.,
2024). MLPs extract global patterns from the entirety of the input feature vector simultaneously, resulting in a greater number
of model parameters for optimization. This approach compels the NN to make localized decisions, considering what occurs
at an individual model level within each grid cell and time step, utilizing global information encompassing all grid cells and
time steps. In contrast, CNNs extract features from smaller spatiotemporal blocks, enabling local decisions to be influenced by
nearby information where the receptive field of each sample is a hyperparameter. Testing of both architectures showed that the
MLP configuration exhibited superior performance and was easier to optimize. The final architecture is shown in Fig. 1.

The MAMnet model was trained using the Keras library with Tensorflow backend (Chollet et al., 2015). Optimization
was carried out with the Adam algorithm (Kingma and Ba, 2014) using the minimum mean square error (MSE) as the loss
function. Hyperparameter optimization for MAMnet was performed using the Keras Tuner software (O’Malley et al., 2019).
Approximately 1500 optimization trials were performed using random configurations of the hyperparameters in Table 3, using
a subset of the training data as in Yu et al. (2024). All trials used the same subset of the training/validation data (5 output files
for training, 2 for validation). For each parameter set, a new model was built and trained for up to 100 epochs with the same
early stopping criteria used during the training of MAMnet. For each trial, a custom metric was recorded at the end of each
epoch, the convergence loss (L.onv), defined as the absolute difference between the training and validation losses. Using this
custom metric allowed us to select the model that generalizes the best over both the training and validation data sets. The best
set of hyperparameters was selected by choosing the configuration that minimized the MSE on the validation set and had the

lowest Leony-
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Table 3. Parameters used during hyperparameter tuning for MAMnet. Optimal hyperparameters are shown in bold.

Hyperparameter Values Interrogated
Number of dense layers 1,2,3,4,5,6,7,8,9,10, 15, 20
Number of nodes per layer 32,64, 128,256,512

Batch normalization True, False,

Dropout True, False,

Dropout rate 0.1,0.2,0.3,0.5

Initial learning rate le—3, le—4,1e-5,1e—6

Activation function ReLU, ELU, Leaky ReLLU

Activation « 0.1,0.2,0.3

Optimizer Adam, SGD, RMSprop

Batch size 64 x 72,128 x 72,256 x 72,512 x 72,

2.3 Observational data

Besides synthetic data the neural network was evaluated on its ability to reproduce observations when driven by the MERRA-
2 reanalysis output. This was important for testing the reliability of MAMnet when applied outside of the purely simulated
environment. Near-surface aerosol number concentrations ranging from 30 nm to 500 nm, compiled by Asmi et al. (2011),
were used for model evaluation. The dataset includes two years (2008—-2009) of hourly measurements from 24 sites across
Western Europe, as detailed in Table 4. These measurements were collected from two major monitoring networks: the European
Supersites for Atmospheric Aerosol Research (EUSAAR) project, part of the Sixth Framework Programme of the European
Commission (Philippin et al., 2009), and the German Ultrafine Aerosol Network (GUAN) (Birmili et al., 2009). The data are

reported as cumulative number concentrations for four aerosol size ranges, N3g, N50, N1go, and Nasg, defined as,
Y
Nx= )Y N(Dp) 3)

where the subscript X represents the aerosol number concentration for size range defined by threshold X, and Y = 500 nm for
X =50,100 and 250 nm and Y = 50 nm for X = 30 nm. Equivalently, these can be calculated from the predicted ASD in the
form (Seinfeld and Pandis, 2016),

N _N"id& ert (Y~ Dpgi ) (X —In Dy “)
X = 5 V2Ino,; V2Inoyg;

i=1
where Ny,0q = 7, is the number of lognormal modes. For each site, MERRA-2 derived aerosol mass concentration, temperature
and air density are interpolated at the location and time of the measurements, then used in MAMnet to predict the ASD. Using

Egs. 1 and 4, the predicted Nx can be compared against the observations.
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Table 4. Datasets for the period 2008-2009 used for comparison with surface aerosol size distributions predicted by MAMnet. The original

data reference is given, although all data sets used in this work were curated by Asmi et al. (2011).

Station Name Station Code  Altitude (m.a.s.l.) Reference

Aspvreten ASP 30 Tunved et al. (2004)
Birkenes BIR 190 Amunsen et al. (1992)
Pallas PAL 560 Lihavainen et al. (2008)
Preila PLA 5 Ulevicius et al. (2010)
SMEAR I SMR 181 Hari et al. (2013)

Vavihill VHL 172 Kristensson et al. (2008)
Bosel BOE 16 Birmili et al. (2009)
K-Puszta KPO 125 Kiss et al. (2002)

Melpitz MPZ 87 Engler et al. (2007)
Kosetice OBK 534 Cervenkova and V4 fia (2010)
Hohenpeissenberg ~ SMPS 988 Birmili et al. (2003)
Waldhof WAL 70 Birmili et al. (2009)
Cabauw CBW 60 Russchenberg et al. (2005)
Harwell HWL 60 Charron et al. (2007)
Mace Head MHD 5 Jennings et al. (1991)
Finokalia FKL 250 Mihalopoulos et al. (1997)
JRC-Ispra ISP 209 Gruening et al. (2009)
Zeppelin ZEP 474 Strom et al. (2003)

Puy de Dome PDD 1465 Venzac et al. (2009)
Schauninsland SCH 1210 Birmili et al. (2009)
Zugzpitze ZSF 2650 Birmili et al. (2009)
Jungfraujoch JFI 3580 Jurdnyi et al. (2011)

BEO Moussala BEO 2971 Nojarov et al. (2009)
Monte Cimone CMN 2165 Marinoni et al. (2008)
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Further evaluation was performed by comparing the concentration of cloud condensation nuclei, Nccn, derived from MAM-
net against global datasets. Watson-Parris et al. (2019) utilized the Global Aerosol Synthesis and Science Project (GASSP)
dataset (Reddington et al., 2017) to assess the vertical distributions of aerosol number and N¢cn in the global aerosol-climate
model ECHAM-HAM. The GASSP database contains aerosol measurements from 37 field campaigns and over 1000 flights,
largely concentrated over North America and Western Europe. Choudhury and Tesche (2022) estimated Nccn from spaceborne
CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar measurements. Block et al. (2024) derived Nccn based on
the latest Copernicus Atmosphere Monitoring Service (CAMS) reanalysis provided by the European Centre for Medium-Range
Weather Forecast (ECMWF) (Block, 2023). Finally, we compare MAMnet results against the GiOcean atmosphere-ocean-
aerosol reanalysis (Song et al., 2025), derived from the NASA GEOS-S2S system (Molod et al., 2020). Unlike MERRA-2
which only assimilates the atmospheric state, GiOcean is a coupled atmosphere-ocean reanalysis that incorporates an updated
model framework. This framework includes two-moment cloud microphysics, enabling the explicit calculation of Nccn. The
evaluation of Nccn also serves as a test for the estimation of particle size, as CCN concentrations are highly sensitive to the
aerosol size (Lee et al., 2013). We used the approach of Fountoukis and Nenes (2005) to estimate Ncoon from the derived
7-modal size distribution and modal composition. Hygroscopicity parameters, x, for each mode were obtained by volume-

weighting the values for each aerosol species as listed in Table 1.

3 Results and Discussion

We evaluated the MAMnet model for both its ability to reproduce the original MAM model when driven by the testing data
set, and to reproduce observations when driven by aerosol concentrations derived from the MERRA-2 reanalysis. We assessed
whether MAMnet reproduces the spatial distribution of aerosol variables in GEOS+MAM using the the mean Pearson’s spatial

correlation coefficient (12). We also calculated the mean log-bias, i.e.,

A~

Naamp es
MLB — Dot log o (Y) —logy (Y)

; ®)

Nsamples

where Y and Y correspond to the predicted variables by MAMnet and GEOS+MAM, respectively. In general MLB in the
range [—0.5,0,5] indicates a prediction within an order of magnitude of the target value. These metrics are summarized in Fig.
2 for each pressure level and output variable.

MAMnet demonstrates strong performance in reproducing the modal number concentrations (“NUM” variables in Fig. 2)
from the GEOS+MAM simulations, with high spatial correlations R > 0.9 and mean log-bias (MLB) within 0.1 across
most pressure levels. However, performance slightly degrades at pressures below p < 100 hPa, particularly for the Aitken
(NUM_AIT) and coarse dust modes (NUM_CDU), where correlations drop slightly (R > 0.7) and MLB increases to +0.3.
The largest discrepancies occur near the surface (p > 900 hPa) and in the upper troposphere (150 — 400 hPa). Specifically,
NUM_AIT shows underprediction between 150 — 400 hPa while it overpredicts from 700 — 850 hPa, indicating that MAMnet
tends to underestimate fine particles near the tropopause and overestimate them in the mid-to-lower troposphere. Similarly,

NUM_PCM exhibits negative biases near 150 — 400 hPa, suggesting underprediction of particle number in the primary carbon
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Figure 2. Pearson’s spatial correlation (R) (top) and mean log-bias (Eq. 5; bottom) predicted by MAMnet calculated on the reserved test set,
against the GEOS+MAM simulation. Results are shown for mass (Table 1 and 2) and number (NUM) concentration for each mode, as well

as for the derived modal diameter (DPG).
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mode at higher altitudes. The MLB patterns (Fig. 2, bottom panel) reveal localized biases at specific pressure ranges. Positive
MLBs (orange shading) occur in NUM_PCM and NUM_ACC, indicating slight overestimation at mid-to-lower pressure levels.
In contrast, NUM_CDU displays small negative MLB (blue shading) around 500 — 700 hPa, suggesting underprediction of
coarse dust particles in the mid-troposphere. In summary, while MAMnet captures the overall trends in the modal number
concentrations with high accuracy, systematic errors emerge for specific modes and pressure ranges. Aitken mode number
concentrations show the largest deviations, particularly near the surface and upper troposphere, while biases in primary carbon
and coarse dust modes are localized to mid-tropospheric levels.

Figure 3 shows the zonal mean profiles of modal aerosol number concentration, comparing GEOS+MAM outputs (left col-
umn), MAMnet predictions (center column). Consistent with Fig. 2, the Aitken mode exhibits the largest biases, characterized
by underestimation above 400 hPa and overestimation in the lower troposphere, mostly below 700 hPa. Unlike other aerosol
modes, the vertical distribution of Aitken mode particles is unique, with higher concentrations found in the upper troposphere
and lower stratosphere (p < 400 hPa) compared to lower altitudes, where the other modes exhibit the highest concentrations
near the surface. The underestimation in the upper troposphere and overestimation in the lower troposphere may be influenced
by a “dilution” effect, as Aitken particles contribute relatively little mass compared to other modes. The accumulation mode
(ACC), coarse sea salt (CSS), and fine sea salt (FSS) modes show generally strong agreement between true and predicted val-
ues, with minimal biases across most pressure levels, with MLB values close to zero. However, localized biases are apparent
for FSS and PCM near the surface, suggesting slight overestimation in these regions. The coarse dust mode (CDU) and fine
dust mode (FDU) exhibit minimal errors overall, with MLB values near zero across most pressure levels. MAMnet accurately
predicts the aerosol number concentration for most modes, with systematic biases for the Aitken and primary carbon modes,
particularly near the tropopause and in the lower troposphere, suggest that smaller and less massive particles are more difficult
to predict accurately due to their unique vertical distribution and sparse representation in the data.

MAMnet accuately reproduces the spatial patterns of the aerosol mass, with accumulation mode mass variables such as
SU_ACC, SS_ACC, and SOA_ACC showing near-perfect correlations (R > 0.9) across the entire pressure range (Fig. 2).
This is also the case for most other variables with only DU_FDU and AMM_FSS showing slight reduction in correlation near
1000 hPa, indicating slightly worse performance in the lower atmosphere. Biases shown in Fig. 2 (bottom) indicate that all
but six mass tracers (SOA_ACC, SU_AIT, SOA_AIT, SU_CSS, SS_A_CSS, AMM_CSS) are systematically overpredicted
for p < 200 hPa where mass values are very small (~ 1072 kg kg~!). These errors tend to be exacerbated in logarithmic
space but remain negligible in absolute terms. Negative biases are also notable for SU_FDU and AMM_FDU, which become
increasingly negative towards the surface. This is explained by the low mass of sulfates in the fine dust mode leading to a
“dilution” of sulfate in fine dust mode relative to other aerosol modes. Overall, the model demonstrates robust predictive skill
for most aerosol types, with minor discrepancies concentrated near the surface and in sparse aerosol regimes.

Differences in the zonal distribution between aerosol modes can contribute to errors, especially due to the uneven represen-
tation of smaller particles, such as those in the Aitken and organic modes, in the training dataset, typically referred to as “class
imbalance” (Japkowicz and Stephen, 2002; Buda et al., 2018). For instance, the mass of sulfate particles in the accumulation

mode is often at least ten times greater than in the Aitken mode, whereas the opposite is true for the number concentration. As
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Figure 3. Zonal profiles for modal aerosol number concentration. Left: GEOS+MAM reserved test set. Middle: MAMnet prediction. Right:
Mean Log-Bias. From top: Accumulation (ACC), Aitken (AIT), coarse dust (CDU), coarse sea salt (CSS), fine dust (FDU), fine sea salt
(FSS), primary carbon matter (PCM).
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a result, the variability in sulfate mass is primarily driven by the accumulation mode, causing the Aitken mode to be underrep-
resented in the neural network’s input data. Despite this, the residual differences between predicted and true values for Aitken
mode aerosol number concentrations are small compared to other modes, and the mean global error remains well below an
order of magnitude, highlighting the neural network’s accuracy.

Figures 4 and 5 show the MAMnet-derived D, in remarkable agreement with GEOS+MAM. MLBs between the two
datasets are typically below 0.01, indicating consistency in the predicted modal mass and number concentrations, and sug-
gesting that MAMnet conserves mass. This is consistent with the correlation coefficients for DPG (R > 0.9), shown in Fig. 2,
highlighting strong agreement with the test dataset across most pressure levels. The global distribution of D, for the different
aerosol modes closely matches the spatial patterns of the modal number concentrations. Larger residuals are observed near the
surface in the tropics and the Southern Hemisphere, particularly for fine dust (FDU). This discrepancy arises primarily due to
the very low number concentrations of fine dust over the oceans, making it challenging for the neural network to accurately
predict values close to zero. However, such inaccuracies are unlikely to affect climate simulations, as regions with negligible
aerosol concentrations typically do not contribute significantly to atmospheric processes. Residuals for Dy, in the coarse dust
(CDU) mode are also slightly larger compared to other modes. This is evident in the zonal mean profiles (Fig. 5), where biases
are most prominent in the tropics and near the Arctic. Additionally, MAMnet tends to underestimate D, in the Southern
Hemisphere around 308, particularly in the free troposphere. This underestimation likely results from class imbalance, as dust
concentrations in this region are very low, making it difficult for the neural network to learn accurate predictions. Overall

MAMnet shows remarkable skill at reproducing the ASD from GEOS+MAM, with no evidence of systematic biases.
3.1 Evaluation against observations

The ability of a neural network to generalize to new data is a key measure of its effectiveness and reliability in real-world
applications. While the neural network may perform well reproducing simulated data, it is important to test whether MAMnet
is able to reproduce patterns observed in nature. To accomplish this, we take advantage of the ability of MAMnet to work with
reanalysis data, that is, using as input the assimilated fields of MERRA-2.

We first tested whether MAMnet had learned the physical relationships underlying the ASD or simply memorized the training
data. To investigate this, we evaluated whether MAMnet, when driven with MERRA-2 inputs, would reproduce the biases of
the GEOS+MAM simulation or instead align with the MERRA-2 fields. Figure 6 compares the total aerosol mass column from
MERRA-2 (left), MAMnet driven by MERRA-2 inputs (center), and GEOS+MAM (right). Since aerosol concentrations in
GEOS+MAM are not assimilated, they are expected to differ from MERRA-2, which incorporates observational constraints.
This discrepancy is evident in Fig. 6, where GEOS+MAM tends to underestimate black carbon (BC) and sea salt (SS) over the
ocean. If MAMnet had merely memorized the GEOS+MAM outputs, these same biases would persist when MERRA-2 inputs
were used. Instead, MAMnet accurate reproduces the MERRA-2 aerosol concentrations when driven by MERRA-2 inputs. It
is important to note that in this analysis, the aerosol outputs were mapped from the seven modes produced by MAMnet. This

result highlights the internal consistency of the model and demonstrates that MAMnet generalizes to new, unseen data.
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3.1.1 Comparison against ground observations

Figure 7 compares the cumulative ASD predicted by MAMnet against surface observations from different European sites.
These are mostly coastal sites with composition typical of clean and polluted continental origin, that is, mostly of sulfates,
dust, organics and sea salt (Asmi et al., 2011). Altitude ranges from a few meters to about 3 km providing a good overview
of the lower troposphere. Although representing a limited set, the range of aerosol compositions, sources, and altitudes offers
a meaningful assessment of the model’s ability to generalize to different atmospheric states. To carry out the comparison,
MAMnet was run using collocated aerosol concentrations and meteorological fields obtained from MERRA-2 at each site, and
using Eq. 4.

Except for high altitude sites (Fig. 7, bottom row), MAMnet tends to predict slightly lower median values compared to ob-
servations, with this discrepancy becoming more pronounced as particle size increases (N100 and N250). This is particularly
noticeable at locations such as PAL, PLA, OBK, MHD, FKL, and JFJ, where the model underestimates values consistently.
The pattern is reversed at high-altitude sites (PDD, SCH, ZSF, JFJ, BEO, and CMN), where median N100 and N250 are gener-
ally overestimated by MAMnet, although the observations themselves display significant variability. Some locations like SMR,
WAL, CBW, and SCH exhibit better agreement, with overlapping medians and interquartile ranges. Additionally, the spread of
values for MAMnet is typically narrower than for observations, indicating that the model underestimates variability. Observa-
tions also show more outliers, whereas MAMnet predictions are more constrained. There are a few exceptions where MAMnet
slightly overestimates values, such as VHL (N250) and SMR (N100). Overall, systematic bias exists in MAMnet-predicted
particle concentrations, particularly for larger size bins, capturing less variability compared to observations. MERRA-2 data,
which provide MAMnet’s input, may not resolve local emissions, terrain, or small-scale meteorology, such as boundary layer
height and humidity. This can lead to biases, particularly in the larger particle size categories that depend on aerosol growth
processes. Moreover, the training data likely lacks sufficient diversity, particularly for remote or high-altitude sites, which are
probably underrepresented in the training set. Additionally, aerosol evolution involve complex, nonlinear interactions that are
not explicitly modeled by MAMnet. These factors likely contribute to the model’s challenges in capturing the magnitude and
variability of aerosol concentrations observed in the real world. Additionally, it is important to note that retrievals of ASD
are inherently complex, and experimental errors can be significant, particularly for larger particle sizes (Asmi et al., 2011).
Nevertheless, the consistent results across many sites indicate that MAMnet is capable of reasonably capturing the ASD on

regional scales when driven by reanalysis data.
3.1.2 Comparison against global CCN datasets

Figure 8 illustrates the global mean distribution of cloud condensation nuclei (CCN) at 0.2% supersaturation at 900 hPa,
derived from MAMnet driven by MERRA-2 (shown as MAMnet-MERRA?2), GiOcean (Song et al., 2025), the CAMS aerosol
reanalysis (Block et al., 2024), and CALIOP satellite retrievals (Choudhury and Tesche, 2022). Data were averaged over the
period 2006 — 2021. All datasets reveal similar spatial patterns, with lower CCN concentrations over oceans, particularly in

polar regions, and higher concentrations over central and eastern Asia, Europe, and the Americas. However, large differences in
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Figure 6. Comparison of column-integrated bulk aerosol (from top: sulfates, sea salt, dust, black carbon, organic matter) represented by

(from left) MERRA-2, the trained MAMnet model applied to MERRA-2 inputs, and the reserved GEOS+MAM test data.
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Figure 7. Cumulative size distribution comparison of the trained MAMnet model applied to MERRA-2 inputs against surface measurements
(Asmi et al., 2011). The sites in the bottom row (PDD, SCH, ZSF, JFJ, BEO, CMN) are characterized as high altitude sites, with altitudes
between 1200 and 3600 m.a.s.l.

absolute values are evident with MAMnet-MERRAZ2 consistently showing the lowest Nccn, and CALIOP-derived the highest.
These discrepancies likely arise from differing assumptions in estimation methods. GiOcean and CAMS estimate CCN based
on aerosol mass, prescribing the ASD, and assuming externally-mixed aerosols, which may double-count CCN as organics
and sulfates are typically internally mixed (Adachi and Buseck, 2008; Kirpes et al., 2018). MAMnet-MERRA?2 avoids this
issue but underpredicts Ncocn over oceanic regions, likely due to low sea salt concentrations in MERRA-2, stemming from
uncertainties in the aerosol assimilation system (Buchard et al., 2017). In contrast, CALIOP may overestimate Nccon from the
assumption of CCN as all soluble aerosols above 50 nm, some of which may not activate as CCN at 0.2% supersaturation.
Figure 9 compares global mean vertical profiles of Nccn from the datasets in Figure 8 and from in-situ observations
(Watson-Parris et al., 2019). Vertical distributions vary significantly. GiOcean, CALIOP, and in-situ profiles exhibit similar
shapes with peak concentrations around 950 hPa, while the MAMnet-MERRA?2 and CAMS profiles show a monotonic de-
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Figure 8. MAMnet-derived CCN at 0.2% supersaturation at 900 hPa using the MERRA?2 reanalysis (MAMnet-MERRA?2) against global
CCN datasets. Also shown are results from the GiOcean reanalysis (Song et al., 2025), CALIOP- (Choudhury and Tesche, 2022), and CAMS-
(Block et al., 2024) derived CCN.

crease with altitude. The peak in Nccon at 950 hPa may result from more efficient aerosol scavenging near the surface, better
represented by two-moment cloud microphysics in GiOcean (Song et al., 2025; Barahona et al., 2014). In contrast, MAMnet-
MERRA?2 and CAMS rely on single-moment cloud microphysics, which may explain the smoother decrease in Ngoon with
height. The reliance on single-moment microphysics may also explain the more gradual decrease in Ncocon with height in
CAMS and MAMnet-MERRA? than in the other data sets, noticeable over the ocean. In the free troposphere, MAMnet-
MERRAZ2 tends align more closely with GiOcean, CALIOP and the in situ data.

3.2 Explainable machine learning analysis

Shapley values were used to elucidate the relative influence of input features on the model’s decision-making process (Winter,
2002). Figure 10 is a summary plot of Shapley values calculated for each input feature relative to predicted targets for aerosol

modal number concentration (left) and mass (right). Each row represents a specific feature. The x-axis represents SHAP values,
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Figure 9. Annual mean profile of CCN concentration derived from MERRA?2 using MAMnet (red). Also shown are CALIOP-derived CCN
(magenta; Choudhury and Tesche, 2022), the GiOcean reanalysis (blue; Song et al., 2025), CCN derived from field campaign data around
the globe (green; Watson-Parris et al., 2019), and CAMS-derived CCN (black; Block et al., 2024).

indicating the impact (positive or negative) of each feature on the model’s prediction, so that the features with larger SHAP
values contribute more significantly to the model output. Red dots represent high feature values, while blue dots indicate low
feature values.

Features such as sulfate (SU), sea salt (SS), dust (DU), temperature (T), and air density (AIRD) are consistently ranked
as dominant contributors, with their relative importance varying across aerosol modes. Fine-mode outputs, such as ACC and
AIT, are strongly influenced by sulfate and temperature, where higher feature values positively impact predictions. In contrast,
coarse-mode outputs like CDU and FDU are heavily driven by dust, with significant positive contributions observed for high
dust concentrations. Intuitively, this makes sense because as SU, SS, and DU are the largest components of accumulation
mode aerosols. However the relation is non-linear as high SU values correspond to a strong positive impact on aerosol number,
particularly for dust (CDU) and sea salt (CSS) modes, whereas low values lead to neutral or negative contributions.The SHAP
values further highlight the critical role of air density and temperature in for CSS and FSS, which may be related to the aerosol
activation processes.

For aerosol mass, the SHAP plots show significant influence from DU, SS, BC, SU. The interplay between feature impor-
tance and values is evident as, high sea salt concentrations (SS) are positively correlated with increased mass in CSS, while
low values lead to neutral or negative contributions. One significant characteristic of the mass SHAP plots is the broader range
of SHAP values compared to number concentration, indicating greater variability in the importance of input features for pre-
dicting mass. For instance, black carbon (BC) has a consistently positive influence on ACC and AIT mass predictions, but its
impact is less pronounced for other modes. Additionally, temperature at low values negatively impacts aerosol mass, while
at higher values, it positively influences mass, possibly by promoting secondary aerosol formation. In some cases however

a SHAP value for a feature may have no obviously interpretable significance to the target prediction, or may be so strongly
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correlated with another feature that the individual contribution is negligible with respect to the feedbacks between a pair of
features or more (Aas et al., 2020). Overall, the SHAP analysis identifies key physical drivers that govern aerosol behavior

across fine and coarse scales in MAMnet.

4 Conclusions

This study develops a neural network, termed MAMnet, to predict the aerosol size distribution and mixing state using as input
the bulk mass of different aerosol species, temperature and density. MAMnet is oriented towards allowing a better estimation
of the ASD and the aerosol physicochemical properties in cases where computational cost considerations prevent the usage two
and higher moment aerosol microphysics schemes, for instance, weather forecast, or where limited information is available to
constraint the ASD as in remote sensing and data assimilation.

MAMnet was designed to reproduce the output of the MAM model (Liu et al., 2012). The neural network was optimized
for performance taking into account the model architecture, training parameters and the rank of the data used as input. We
performed a comprehensive evaluation of the NN model against simulated data and observations, showing that MAMnet is a
robust and accurate model over a wide set of conditions. Importantly, MAMnet reproduces MERRA-2 aerosol concentrations
when driven by MERRA-2 inputs, demonstrating that it has learned physical relationships rather than memorizing the training
data. Explainable machine learning analysis showed that MAMnet identifies key physical drivers and the non-linear behavior
governing the aerosol distribution across fine and coarse scales.

Comparison of MAMnet predictions against a reference dataset from GEOS+MAM simulations exhibited remarkable agree-
ment, with log-mean residuals typically below 0.1 and spatial correlation typically exceeding 0.9 for all aerosol modes. The
greatest discrepancies were observed near the surface and in regions with low aerosol concentrations i.e., fine dust over oceans
and coarse dust in the Southern Hemisphere free troposphere. These discrepancies are primarily attributed to challenges in the
prediction of concentrations near zero and class imbalance. Notably, biases in number and mass concentrations do not signifi-
cantly influence the prediction of geometric mean diameter, which tends to compare exceedingly well against the GEOS+MAM
simulations, indicating that MAMnet captures the physical relationship between aerosol mass and number, inherently conserv-
ing mass.

We took advantage of the fact that MAMnet can be driven by output from reanalysis data to evaluate its performance
against observations. When driven using collocated MERRA-2 fields, MAMnet reasonably reproduced the measured aerosol
size distribution at different ground observation sites, representing a variety of aerosol composition, origin and meteorologi-
cal conditions. The median values of the predicted concentrations were generally consistent with observations. However the
range of values predicted by MAMnet is in general smaller than observed, indicating that the model underestimates variability.
It is likely that coarse reanalysis inputs, limited training data diversity, and the complexities of aerosol evolution, not mod-
eled explicitly by MAMnet, contributed to the observed discrepancies. CCN concentrations derived from MAMnet using the
MERRA?2 dataset were within the range of reported values but showed discrepancy near the surface and in regions with high

variability, which may originate from uncertainty in the MERRA-2 aerosol fields. As MAMnet reproduces well the training
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Figure 10. SHAP analysis for aerosol number concentration (left) and total mass (right) across different modes in the troposphere, based on
1,000 randomly selected samples from the test set. Modes are displayed from top to bottom: Accumulation (ACC), Aitken (AIT), coarse dust
(CDU), coarse sea salt (CSS), fine dust (FDU), fine sea salt (FSS), and primary carbon matter (PCM). The color gradient (red for high values,
blue for low values) indicates the relative value of each feature, with features ordered top-to-bottom by their importance to the prediction
(most sensitive at the top). The x-axis represents SHAP values, quantifying how much each feature contributes to deviations from the mean

prediction.

22



370

375

380

385

390

https://doi.org/10.5194/egusphere-2025-482
Preprint. Discussion started: 17 March 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

dataset it is likely that the biases against observations result from biases in the input and complex physics not modelled by
MAM. Despite such biases, the comparison against observations indicate that MAMnet is able to capture the aerosol size
distribution on regional and global scales.

Strategies to address the remaining biases include applying physical constraints via transfer learning, as well as including
observational data during the training process (Barahona et al., 2024). Class imbalance can potentially be addressed by recon-
figuring the NN such that each mode would be predicted by a separate layer, or even individual NNs. The latter option is less
desirable because it would require developing, constraining, and maintaining multiple NNs as opposed to one. Future work
would focus on applying MAMnet to elucidate long-term trends in the ASD as well as on its implementation with GCMs (Ott
et al., 2020). The model developed here provides a versatile foundation to improve the physical representation of aerosols in
weather forecasting, remote sensing and data assimilation, potentially enhancing our undesrtanding of their role in the climate

system.

Code and data availability. The MERRA-2 Reanalysis is publicly available from https://disc.gsfc.nasa.gov/ (GMAO, 2015). The GEOS
source code is available under the NASA Open Source Agreement at https://github.com/GEOS-ESM (GMAO, 2025a). The MAMnet
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GiOCEAN_el/ (GMAO, 2025b). CALIOP data was obtained from CALIPSO (2023).

Author contributions. D.B. conceived and directed the work. K.H.B. co-developed of the neural network model. A.D. implemented the

MAM model within GEOS. K.B. Provided CCN data for comparison.
Competing interests. The authors declare no conflict of interest.

Acknowledgements. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA
Center for Climate Simulation (NCCS) at Goddard Space Flight Center. Keras and Tensorflow libraries were obtained from https://keras.io/.
Maps were created using the NCAR Command Language (Version 6.6.2) Software. (2019). Boulder, Colorado: UCAR/NCAR/CISL/TDD.
http://dx.doi.org/10.5065/D6WD3XHS. The SHAP python package was used to conduct the explainable machine learning analysis as de-
scribed in https://shap-Irjball.readthedocs.io/en/latest/index.html. This work was supported by the NASA Modeling, Analysis and Prediction
program, Grant NNH20ZDAOOIN-MAP.

23



395

400

405

410

415

420

425

430

https://doi.org/10.5194/egusphere-2025-482
Preprint. Discussion started: 17 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

References

Aas, K., Jullum, M., and Lgland, A.: Explaining individual predictions when features are dependent: More accurate approximations to
Shapley values, 2020.

Adachi, K. and Buseck, P.: Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City, Atmospheric Chemistry
and Physics, 8, 6469-6481, https://doi.org/10.5194/acp-8-6469-2008, 2008.

Adams, P. J. and Seinfeld, J. H.: Predicting global aerosol size distributions in general circulation models, Journal of Geophysical Research:
Atmospheres, 107, AAC—4, 2002.

Amunsen, C., Hanssen, J., Semb, A., and Steinnes, E.: Long-range atmospheric transport of trace elements to southern Norway, Atmospheric
Environment. Part A. General Topics, 26, 1309-1324, 1992.

Aquila, V., Hendricks, J., Lauer, A., Riemer, N., Vogel, H., Baumgardner, D., Minikin, A., Petzold, A., Schwarz, J., Spackman, J., et al.:
MADE-in: A new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state, Geoscientific Model
Development, 4, 325-355, 2011.

Arfin, T., Pillai, A. M., Mathew, N., Tirpude, A., Bang, R., and Mondal, P.: An overview of atmospheric aerosol and their effects on human
health, Environmental Science and Pollution Research, 30, 125 347-125 369, 2023.

Asmi, A., Wiedensohler, A., Laj, P, Fjaeraa, A.-M., Sellegri, K., Birmili, W., Weingartner, E., Baltensperger, U., Zdimal, V., Zikova, N.,
et al.: Number size distributions and seasonality of submicron particles in Europe 2008-2009, Atmospheric Chemistry and Physics, 11,
5505-5538, 2011.

Barahona, D. and Breen, K.: MAMnet, https://github.com/dbarahon/MAMnet, 2025.

Barahona, D., Molod, A., Bacmeister, J., Nenes, A., Gettelman, A., Morrison, H., Phillips, V., and Eichmann, A.: Development of two-
moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model (GEOS-5), Geosc. Model Dev.,
7, 1733-1766, https://doi.org/10.5194/gmd-7-1733-2014, 2014.

Barahona, D., Breen, K. H., Kalesse-Los, H., and Rottenbacher, J.: Deep Learning Parameterization of Vertical Wind Velocity Variability via
Constrained Adversarial Training, Artificial Intelligence for the Earth Systems, 3, €230 025, https://doi.org/10.1175/AIES-D-23-0025.1,
2024.

Bender, F. A.-M.: Aerosol forcing: Still uncertain, still relevant, AGU advances, 1, e2019AV000 128, 2020.

Bender, F. A.-M., Frey, L., McCoy, D. T., Grosvenor, D. P., and Mohrmann, J. K.: Assessment of aerosol-cloud-radiation correlations in
satellite observations, climate models and reanalysis, Climate Dynamics, 52, 4371-4392, 2019.

Bengio, Y., Goodfellow, 1., and Courville, A.: Deep learning, vol. 1, MIT press Cambridge, MA, USA, 2017.

Birmili, W., Berresheim, H., Plass-Diilmer, C., Elste, T., Gilge, S., Wiedensohler, A., and Uhrner, U.: The Hohenpeissenberg aerosol forma-
tion experiment (HAFEX): a long-term study including size-resolved aerosol, H 2 SO 4, OH, and monoterpenes measurements, Atmo-
spheric Chemistry and Physics, 3, 361-376, 2003.

Birmili, W., Weinhold, K., Nordmann, S., Wiedensohler, A., Spindler, G., Miiller, K., Herrmann, H., Gnauk, T., Pitz, M., Cyrys, J., et al.:
Atmospheric aerosol measurements in the German ultrafine aerosol network (GUAN), Gefahrst. Reinhalt. L, 69, 137-145, 2009.

Block, K.: Cloud condensation nuclei (CCN) numbers derived from CAMS reanalysis EAC4 (Version 1),
https://doi.org/10.26050/WDCC/QUAERERE_CCNCAMS_vl1, 2023.

Block, K., Haghighatnasab, M., Partridge, D. G., Stier, P., and Quaas, J.: Cloud condensation nuclei concentrations derived from the CAMS
reanalysis, Earth System Science Data, 16, 443-470, https://doi.org/10.5194/essd-16-443-2024, 2024.

24



435

440

445

450

455

460

465

https://doi.org/10.5194/egusphere-2025-482
Preprint. Discussion started: 17 March 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Brenowitz, N. D. and Bretherton, C. S.: Spatially extended tests of a neural network parametrization trained by coarse-graining, Journal of
Advances in Modeling Earth Systems, 11, 2728-2744, 2019.

Buchard, V., Randles, C., Da Silva, A., Darmenov, A., Colarco, P., Govindaraju, R., Ferrare, R., Hair, J., Beyersdorf, A., Ziemba, L., et al.:
The MERRA-2 aerosol reanalysis, 1980 onward. Part II: Evaluation and case studies, Journal of Climate, 30, 6851-6872, 2017.

Buda, M., Maki, A., and Mazurowski, M. A.: A systematic study of the class imbalance problem in convolutional neural networks, Neural
networks, 106, 249-259, 2018.

CALIPSO: Cloud—Aerosol Lidar and Infrared Pathfinder Satellite Observation Lidar Level 2 Aerosol Profile V4-20,
https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_05KMAPRO-STANDARD-V4-20, 2023.

Cervenkova, J. and Va iia, M.: Trend Assessment of deposition, throughfall and runoff water chemistry at the ICP-IM station Kosetice, Czech
Republic, IAHS-AISH publication, 336, 103-108, 2010.

Charron, A., Birmili, W., and Harrison, R. M.: Factors influencing new particle formation at the rural site, Harwell, United Kingdom, Journal
of Geophysical Research: Atmospheres, 112, 2007.

Chin, M., Rood, R. B., Lin, S.-J., Miiller, J.-F., and Thompson, A. M.: Atmospheric sulfur cycle simulated in the global model GOCART:
Model description and global properties, Journal of Geophysical Research: Atmospheres, 105, 24 671-24 687, 2000.

Chollet, F. et al.: Keras, https://github.com/fchollet/keras, 2015.

Choudhury, G. and Tesche, M.: Estimating cloud condensation nuclei concentrations from CALIPSO lidar measurements, Atmospheric
Measurement Techniques, 15, 639-654, 2022.

Christensen, M. W., Jones, W. K., and Stier, P.: Aerosols enhance cloud lifetime and brightness along the stratus-to-cumulus transition,
Proceedings of the National Academy of Sciences, 117, 17 591-17 598, 2020.

Chu, D., Kaufman, Y., Ichoku, C., Remer, L., Tanré, D., and Holben, B.: Validation of MODIS aerosol optical depth retrieval over land,
Geophysical research letters, 29, MOD2-1, 2002.

Colarco, P, da Silva, A., Chin, M., and Diehl, T.: Online simulations of global aerosol distributions in the NASA GEOS-4 model and com-
parisons to satellite and ground-based aerosol optical depth, J. Geophys. Res., 115, D14 207—, http://dx.doi.org/10.1029/2009JD012820,
2010a.

Colarco, P, da Silva, A., Chin, M., and Diehl, T.: Online simulations of global aerosol distributions in the NASA GEOS-4 model and
comparisons to satellite and ground-based aerosol optical depth, Journal of Geophysical Research: Atmospheres, 115, 2010b.

Engler, C., Rose, D., Wehner, B., Wiedensohler, A., Briiggemann, E., Gnauk, T., Spindler, G., Tuch, T., and Birmili, W.: Size distributions
of non-volatile particle residuals (D p< 800 nm) at a rural site in Germany and relation to air mass origin, Atmospheric Chemistry and
Physics, 7, 5785-5802, 2007.

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., et al.: Changes
in atmospheric constituents and in radiative forcing. Chapter 2, in: Climate change 2007. The physical science basis, 2007.

Fountoukis, C. and Nenes, A.: Continued development of a cloud droplet formation parameterization for global climate models, Journal of
Geophysical Research: Atmospheres, 110, 2005.

Gelaro, R., McCarty, W., Sudrez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle,
R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R.,
Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao,
B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), Journal of Climate, 30, 5419-5454,
https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.

25



470

475

480

485

490

495

500

https://doi.org/10.5194/egusphere-2025-482
Preprint. Discussion started: 17 March 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Ginoux, P., Chin, M., Tegen, ., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S.-J.: Sources and distributions of dust aerosols simulated
with the GOCART model, Journal of Geophysical Research: Atmospheres, 106, 20 255-20 273, 2001.

GMAO: inst3sdasmep : MERRA —23DIAU State, MeteorologyInstantaneous3 — hourly(p — coord,0.625x0.5L42), https :
//doi.org/10.5067/WWQSXQ8IVFW8,2015.

GMAO: GEOS, https://github.com/GEOS-ESM, 2025a.

GMAQO: GiOcean Coupled Reanalysis, https://portal.nccs.nasa.gov/datashare/gmao/geos-s2s-3/GiOCEAN_el/, 2025b.

Gong, X., Wex, H., Miiller, T., Henning, S., Voigtlinder, J., Wiedensohler, A., and Stratmann, F.: An unsupervised machine-learning-based
classification of aerosol microphysical properties over 10 years at Cabo Verde, Atmospheric Chemistry and Physics Discussions, pp. 1-27,
2021.

Gruening, C., Adam, M., Cavalli, F,, Cavalli, P., Dell’Acqua, A., Martins Dos Santos, S., Pagliari, V., Roux, D., and Putaud, J.: JRC Is-
pra EMEP-GAW Regional Station for Atmos. Res, Tech. Rep. JRC55382, European Commission, http://publications.jrc.ec.europa.eu/
repository/handle/111111111/538, 2009.

Harder, P., Watson-Parris, D., Stier, P., Strassel, D., Gauger, N. R., and Keuper, J.: Physics-Informed Learning of Aerosol Microphysics,
arXiv preprint arXiv:2207.11786, 2022.

Hari, P.,, Nikinmaa, E., Pohja, T., Siivola, E., Bick, J., Vesala, T., and Kulmala, M.: Station for measuring ecosystem-atmosphere relations:
SMEAR, Physical and physiological forest ecology, pp. 471-487, 2013.

Herzog, M., Weisenstein, D. K., and Penner, J. E.: A dynamic aerosol module for global chemical transport models: Model description,
Journal of Geophysical Research: Atmospheres, 109, 2004.

Inness, A., Ades, M., Agusti-Panareda, A., Barré, J., Benedictow, A., Blechschmidt, A.-M., Dominguez, J. J., Engelen, R., Eskes, H., Flem-
ming, J., et al.: The CAMS reanalysis of atmospheric composition, Atmospheric Chemistry and Physics, 19, 3515-3556, 2019.

Japkowicz, N. and Stephen, S.: The class imbalance problem: A systematic study, Intelligent data analysis, 6, 429-449, 2002.

Jennings, S., O’Dowd, C., O’Connor, T., and McGovern, F.: Physical characteristics of the ambient aerosol at Mace Head, Atmospheric
Environment. Part A. General Topics, 25, 557-562, 1991.

Jones, A., Roberts, D., and Slingo, A.: A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols, Nature, 370,
450453, 1994.

Jurényi, Z., Gysel, M., Weingartner, E., Bukowiecki, N., Kammermann, L., and Baltensperger, U.: A 17 month climatology of the cloud
condensation nuclei number concentration at the high alpine site Jungfraujoch, Journal of Geophysical Research: Atmospheres, 116,
2011.

Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980, 2014.

Kirpes, R. M., Bondy, A. L., Bonanno, D., Moffet, R. C., Wang, B., Laskin, A., Ault, A. P, and Pratt, K. A.: Secondary sulfate is in-
ternally mixed with sea spray aerosol and organic aerosol in the winter Arctic, Atmospheric Chemistry and Physics, 18, 3937-3949,
https://doi.org/10.5194/acp-18-3937-2018, 2018.

Kiss, G., Varga, B., Galambos, 1., and Ganszky, I.: Characterization of water-soluble organic matter isolated from atmospheric fine aerosol,
Journal of Geophysical Research: Atmospheres, 107, ICC-1, 2002.

Kreidenweis, S., Koehler, K., DeMott, P., Prenni, A., Carrico, C., and Ervens, B.: Water activity and activation diameters from hygroscopicity

data-Part I: Theory and application to inorganic salts, Atmospheric Chemistry and Physics, 5, 1357-1370, 2005.

26



505

510

515

520

525

530

535

https://doi.org/10.5194/egusphere-2025-482
Preprint. Discussion started: 17 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Kristensson, A., Dal Maso, M., Swietlicki, E., Hussein, T., Zhou, J., Kerminen, V.-M., and Kulmala, M.: Characterization of new particle
formation events at a background site in Southern Sweden: relation to air mass history, Tellus B: Chemical and Physical Meteorology, 60,
330-344, 2008.

Langner, J. and Rodhe, H.: A global three-dimensional model of the tropospheric sulfur cycle, Journal of Atmospheric Chemistry, 13, 225—
263, 1991.

Lee, L., Pringle, K., Reddington, C., Mann, G., Stier, P,, Spracklen, D., Pierce, J., and Karslaw, K.: The magnitude and causes
of uncertainty in global model simulations of cloud condensation nuclei, Atmospheric Chemistry and Physics, 13, 8879—-8914,
https://doi.org/10.5194/acp-13-8879-2013, 2013.

Lihavainen, H., Kerminen, V.-M., Komppula, M., Hyvirinen, A.-P., Laakia, J., Saarikoski, S., Makkonen, U., Kivekis, N., Hillamo, R.,
Kulmala, M., et al.: Measurements of the relation between aerosol properties and microphysics and chemistry of low level liquid water
clouds in Northern Finland, Atmospheric Chemistry and Physics, 8, 6925-6938, 2008.

Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.-F., Gettelman, A., Morrison, H., Vitt, F., et al.: Toward a minimal
representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAMS, Geoscientific
Model Development, 5, 709-739, 2012.

Marinoni, A., Cristofanelli, P., Calzolari, F., Roccato, F., Bonafe, U., and Bonasoni, P.: Continuous measurements of aerosol physical param-
eters at the Mt. Cimone GAW Station (2165 m asl, Italy), Science of the total environment, 391, 241-251, 2008.

Mihalopoulos, N., Stephanou, E., Kanakidou, M., Pilitsidis, S., and Bousquet, P.: Tropospheric aerosol ionic composition in the Eastern
Mediterranean region, Tellus B, 49, 314-326, 1997.

Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the GEOS-5 atmospheric general circulation model: evolution from
MERRA to MERRA?2, Geosc. Model Dev., 8, 1339-1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015.

Molod, A., Hackert, E., Vikhliaev, Y., Zhao, B., Barahona, D., Vernieres, G., Borovikov, A., Kovach, R. M., Marshak, J., Schubert, S., et al.:
GEOS-S2S version 2: The GMAO high-resolution coupled model and assimilation system for seasonal prediction, Journal of Geophysical
Research: Atmospheres, 125, €2019JD031 767, https://doi.org/10.1029/2019JD031767, 2020.

Nojarov, P., Ivanov, P., Kalapov, 1., Penev, 1., and Drenska, M.: Connection between ozone concentration and atmosphere circulation at peak
Moussala, Theoretical and applied climatology, 98, 201-208, 2009.

O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., et al.: Keras Tuner, https://github.com/keras-team/keras-tuner, 2019.

Ott, J., Pritchard, M., Best, N., Linstead, E., Curcic, M., and Baldi, P.: A Fortran-Keras deep learning bridge for scientific computing,
Scientific Programming, 2020, 2020.

Philippin, S., Laj, P, Putaud, J.-P., Wiedensohler, A., LEEUW, G. D., FIAERAA, A. M., PLATT, U., BALTENSPERGER, U., and FIEBIG,
M.: EUSAAR-An unprecedented network of aerosol observation in Europe, Journal of Aerosol Research (Earozoru Kenkyu), 24, 78-83,
https://doi.org/10.11203/jar.24.78, 2009.

Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A., Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair,
J., Shinozuka, Y., and Flynn, C. J.: The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation
Evaluation, Journal of Climate, 30, 6823—-6850, https://doi.org/10.1175/JCLI-D-16-0609.1, 2017.

Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learning to represent subgrid processes in climate models, Proceedings of the National

Academy of Sciences, 115, 9684-9689, 2018.

27



540

545

550

555

560

565

570

575

https://doi.org/10.5194/egusphere-2025-482
Preprint. Discussion started: 17 March 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

Reddington, C., Carslaw, K., Stier, P., Schutgens, N., Coe, H., Liu, D., Allan, J., Pringle, K., Lee, L., Yoshioka, M., et al.: The Global Aerosol
Synthesis and Science Project (GASSP): measurements and modeling to reduce uncertainty, Bulletin of the American Meteorological
Society, 98, 1857-1877, 2017.

Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C., and Wang, W.: An improved in situ and satellite SST analysis for climate, J.
Climate, 15, 1609-1625, 2002.

Rienecker, M., Suarez, M., Todling, R., Bacmeister, J., Takacs, L., Liu, H.-C., Gu, W., Sienkiewicz, M., Koster, R., Gelaro, R., Stajner, I.,
and Nielsen, J.: The GEOS-5 Data Assimilation System - Documentation of Versions 5.0.1, 5.1.0, and 5.2.0., vol. 27 of Technical Report
Series on Global Modeling and Data Assimilation, NASA Goddard Space Flight Center, Greenbelt, MD, USA, 2008.

Russchenberg, H., Bosveld, F., Swart, D., ten BRINK, H., de LEEUW, G., Uijlenhoet, R., Arbesser-Rastburg, B., van der MAREL, H.,
LIGTHART, L., Boers, R., et al.: Ground-based atmospheric remote sensing in the Netherlands: European outlook, IEICE Transactions
on Communications, 88, 2252-2258, 2005.

Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons, 2016.

Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., et al.:
Improving our fundamental understanding of the role of aerosol- cloud interactions in the climate system, Proceedings of the National
Academy of Sciences, 113, 5781-5790, 2016.

Silva, S. J., Ma, P.-L., Hardin, J. C., and Rothenberg, D.: Physically regularized machine learning emulators of aerosol activation, Geoscien-
tific Model Development, 14, 3067-3077, 2021.

Song, C., McCoy, D., Molod, A., and Barahona, D.: Signatures of aerosol-cloud interactions in GiOcean: A coupled global reanalysis with
two-moment cloud microphysics, EGUsphere, 2025, 1-30, https://doi.org/10.5194/egusphere-2024-4108, 2025.

Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, 1., Werner, M., Balkanski, Y., et al.: The aerosol-
climate model ECHAMS-HAM, Atmospheric Chemistry and Physics, 5, 1125-1156, 2005.

Stier, P., van den Heever, S. C., Christensen, M. W., Gryspeerdt, E., Dagan, G., Saleeby, S. M., Bollasina, M., Donner, L., Emanuel, K.,
Ekman, A. M., et al.: Multifaceted aerosol effects on precipitation, Nature Geoscience, 17, 719-732, https://doi.org/10.1038/s41561-024-
01482-6, 2024.

Strém, J., Umegard, J., Tgrseth, K., Tunved, P., Hansson, H.-C., Holmén, K., Wismann, V., Herber, A., and Konig-Langlo, G.: One year of
particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Svalbard, March 2000-March 2001,
Physics and Chemistry of the Earth, Parts A/B/C, 28, 1181-1190, 2003.

Takacs, L. L., Sudrez, M. J., and Todling, R.: The stability of incremental analysis update, Monthly weather review, 146, 3259-3275, 2018.

Tunved, P., Strém, J., and Hansson, H.-C.: An investigation of processes controlling the evolution of the boundary layer aerosol size distri-
bution properties at the Swedish background station Aspvreten, Atmospheric Chemistry and Physics, 4, 2581-2592, 2004.

Ulevicius, V., Bycenkiené, S., Remeikis, V., Garbaras, A., Kecorius, S., Andriejauskiené, J., Jasinevi¢iené, D., and Mocnik, G.: Character-
ization of pollution events in the East Baltic region affected by regional biomass fire emissions, Atmospheric Research, 98, 190-200,
2010.

Uno, 1., Eguchi, K., Yumimoto, K., Takemura, T., Shimizu, A., Uematsu, M., Liu, Z., Wang, Z., Hara, Y., and Sugimoto, N.: Asian dust
transported one full circuit around the globe, Nature Geoscience, 2, 557-560, 2009.

Venzac, H., Sellegri, K., Villani, P., Picard, D., and Laj, P.: Seasonal variation of aerosol size distributions in the free troposphere and residual

layer at the puy de Dome station, France, Atmospheric Chemistry and Physics, 9, 1465-1478, 2009.

28



580

585

https://doi.org/10.5194/egusphere-2025-482
Preprint. Discussion started: 17 March 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Watson-Parris, D., Schutgens, N., Reddington, C., Pringle, K. J., Liu, D., Allan, J. D., Coe, H., Carslaw, K. S., and Stier, P.: In situ constraints
on the vertical distribution of global aerosol, Atmospheric Chemistry and Physics, 19, 11 765-11 790, 2019.

Wei, L., Lu, Z., Wang, Y., Liu, X., Wang, W., Wu, C., Zhao, X., Rahimi, S., Xia, W., and Jiang, Y.: Black carbon-climate interactions regulate
dust burdens over India revealed during COVID-19, Nature communications, 13, 1839, 2022.

Whitby, E. R. and McMurry, P. H.: Modal aerosol dynamics modeling, Aerosol Science and Technology, 27, 673—688, 1997.

Wilson, J., Cuvelier, C., and Raes, F.: A modeling study of global mixed aerosol fields, Journal of Geophysical Research: Atmospheres, 106,
34081-34 108, 2001.

Winter, E.: The shapley value, Handbook of game theory with economic applications, 3, 2025-2054, 2002.

Yu, S., Ma, P-L., Singh, B., Silva, S., and Pritchard, M.: Two-step hyperparameter optimization method: Accelerating hyperparameter search
by using a fraction of a training dataset, Artificial Intelligence for the Earth Systems, 3, €230 013, 2024.

Zhang, H., Sharma, G., Dhawan, S., Dhanraj, D., Li, Z., and Biswas, P.: Comparison of discrete, discrete-sectional, modal and moment models

for aerosol dynamics simulations, Aerosol Science and Technology, 54, 739-760, https://doi.org/10.1080/02786826.2020.1723787, 2020.

29



