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RC: Reviewers’ Comment, AR: Authors’ Response, □ Manuscript Text

RC: Use of deep learning model to approximate aerosol size distribution from bulk mass inputs is interesting
and operationally valuable. Integration with MERRA-2 opens opportunities for reanalysis and assimilation
improvements.

AR: We appreciate the positive assessment. Please find below detailed responses to each comment.

1. Line-by-line comments

RC: L24-27: You may also flag that some modal schemes like GLOMAP in UK Met Office Unified Model
assume a lognormal shape for each mode with prescribed geometric standard deviation and each mode is
internally mixed. (in L87-88 you do mention something similar for another model)

AR: Thanks for bringing this to our attention. We now make reference to the GLOMAP model as well.

RC: L35: Consider specifying orders of magnitude or cite a study quantifying what is really "better" for
representing ASD in models.

AR: Thanks for the comment. We have added the following paragraph detailing the role of the ASD in simulating
aerosol processes:

“The ASD and mixing state is at the center of the ability of climate models to accurately simulate the transport
and chemical evolution of aerosol species [Aquila et al., 2011, Bender et al., 2019]. Variability in the
representation of the ASD among models has been shown to drive large differences in cloud droplet number
concentration and aerosol–cloud radiative forcing [Virtanen et al., 2025]. Explicitly resolving the ASD
improves the representation of nucleation, condensation, and coagulation processes [Zhou et al., 2018], and
it is critical for realistically simulating scavenging within clouds, as smaller particles are less efficiently
removed than larger ones, affecting global particle number concentrations by up to 20% [Pierce et al., 2015].
It has been shown that models that resolve particle-level mixing state and size better represent CCN activity,
aerosol aging, and radiative properties [Riemer et al., 2019].”

RC: L56-57: Clarify what is meant by “meteorological state”—mention that it includes only temperature and
air density up front, since this is unexpectedly minimal and a key methodological decision.

AR: Thanks for the comment. We realize that our input set selection requires additional justification. The
paragraph has been extended as:

“MAMnet uses a minimal set of inputs, total aerosol mass, air density, and temperature, to predict the ASD.
This design choice ensures that the neural network remains independent of the host model, since including
additional meteorological inputs like wind speed and humidity, would introduce sensitivity to model-specific
parameterizations. It also makes MAMnet suitable for applications involving satellite aerosol retrievals, where
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only a limited set of atmospheric variables is typically available. This approach is supported by previous
studies showing that the conversion between aerosol mass and number concentrations can be reasonably
approximated using spatially varying, but prescribed, ASDs [e.g., Remer et al., 2005, Inness et al., 2019,
Block et al., 2024], suggesting that such relationships can be effectively learned by a neural network.”

RC: L77-79: Clarify whether the model includes any simplified representation of aerosol growth, aging, or wet
removal in GOCART (even if parametrized) because "transport and evolution" maybe construed for many
physical phenomenon.

AR: This statement has been clarified as: “GEOS implements two aerosol schemes to interactively calculate the
evolution of aerosol and gaseous tracers. Both include parameterized representation of aerosol formation,
growth, aging and wet removal, and differ in their treatment of the ASD and mixing state. ”

RC: L87-88: Suggest clarifying whether the geometric mean diameter is prognosed or computed diagnostically.

AR: The statement has been rewritten as: “The size distributions for each mode is assumed to follow a lognormal
distribution, with geometric mean diameter computed diagnostically and prescribed geometric standard
deviation for each mode”

RC: L96-97: What years were simulated? Why only two time points per day? This sparsity might miss diurnal
features. How were the 25 output files selected—what does “one file” correspond to (single timestamp
across globe?)? The use of only 25 files for training seems low given the mention of >100M samples later.
Please clarify.

AR: Thanks for bringing this up. Yes, out of the thousands of files of the run we selected 25 timestamps, at random
for training, with no duplicates (without replacement). During training the loss is calculated on data not
used to update the parameters of the network, termed validation loss, taken as 10 additional files. Each file
represents global instantaneous output from the GEOS+MAM7 model. Since the validation loss still guides
optimization choices it is considered part of the training step. The testing data is completely independent, and
we have used 5 additional files taken from the year 2006, which was not used at all during training.

It is important to clarify that MAMnet is not designed to emulate the underlying aerosol processes, but rather
to learn the statistical relationship between the ASD and the total mass of each species. In this scheme each
grid cell represents a training example. Thus just a few files already contain a very large number of samples.
For our final training we used Ns = 72 ∗ 180 ∗ 360 ∗ 25 ≈ 1.12× 108 samples. Given this large number, it is
assumed as representative of all possible mass-number combinations produced by MAM, which is what the
model needs to train.

Sampling at 12-hour intervals allowed us to use more data for training while still capturing differences
between day and night. We agree that higher-frequency sampling could better resolve the diurnal cycle, but
this comes at the cost of fewer training time steps due to memory limitations. However, this is not expected to
be critical, as the relationship between mass and number likely exhibits weaker diurnal variability than the
aerosol mass itself, which would be already represented by the bulk model.

This has been clarified in the work in sections 2.2.1 as follows:

“Each grid cell in the GEOS+MAM7 output is treated as an independent training example, resulting in a
large volume of data: with Ntime = 25 timestamps, Nlev = 72 vertical levels, Nlat = 181 latitudes, and
Nlon = 360 longitudes, the training set contains over 100 million samples. This single-cell approach makes
the parameterization resolution-independent, facilitating integration into atmospheric models with varying
grid resolutions. It also ensures broad coverage of physically plausible combinations of aerosol mass and
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number. To balance data volume and temporal representativeness, we sample at 12-hour intervals, which
allows the network to capture differences between day and night while maximizing the number of training
samples under memory constraints. Although this approach may omit spatial or vertical correlations, tests
using a full-column inputs showed no significant gain in accuracy (not shown). Additionally, the relationship
between aerosol mass and number is expected to exhibit weaker diurnal variability than mass itself, which
would be already resolved by the host model.”

RC: L98-100: Add sentence on whether aerosols evolve freely in these simulations or are constrained by
observations. Can we understand to what model levels were these "horizontal winds" nudged and to what
extend they affect aerosols number concentration?

AR: Thank you for the comment. In the GEOS+MAM7 simulations used for training, aerosol mass and number
evolve freely and is not directly constrained by observations. However, horizontal winds are nudged toward
the MERRA-2 reanalysis fields at each model grid point every six hours, influencing the transport of aerosol
species but not the aerosol concentrations.

While the nudging of winds may affect aerosol number concentrations indirectly, quantifying this effect
would require a dedicated set of sensitivity experiments that are beyond the scope of this study. Here, our
focus is on the design and evaluation of the neural network model, assuming the aerosol mass fields as given.

We have clarified this in the manuscript.

RC: L104-105: Better to specify: Were log10-transformed values standardized after transformation or before?
Are temperature and air density standardized globally or per level?

AR: The mass input variables were first log10-transformed, and the resulting values were then standardized by
computing Z-scores using the global mean and standard deviation across all levels. Temperature and air
density were also standardized using their global mean and standard deviation. This procedure has now been
clarified in the manuscript.

RC: L110-115: clarify was this Dpg compared only during evaluation, or was it ever used in the loss function?
Please state your loss function as some physics informed neural net models have tried modifying it as well.

AR: The modal aerosol dry diameter was not directly included as a target of MAMnet, and it is not part of the loss
function. We used minium square error as loss function with no additional constraints. This is now clarified
in the Appendix (former section 2.2.2).

RC: L116-120: Clarify whether the flattened fields are shuffled across time and space, or whether there’s
structure preserved (e.g., batches by time or region). Were any vertical or horizontal correlations exploited
or lost?

AR: The training samples are randomly shuffled in both time and space prior to training. We acknowledge that
this approach omits explicit spatial and vertical correlations. However, we do not expect these correlations to
significantly impact model performance, as MAMnet is designed to learn the relationship between aerosol
mass and number concentration for each mode. This relationship depends primarily on the relative abundance
of species within a given grid cell, which the network captures without requiring spatial context. We have
clarified this point in the manuscript.

RC: L125-134: Were other architectures considered (e.g., transformers, residual connections)? If not, briefly
justify.

AR: Thank you for the suggestion. In designing MAMnet, our priority was to ensure simplicity and computational
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efficiency, as the neural network is intended for potential use in online applications within large-scale
atmospheric models and retrieval systems. More complex architectures such as visual transformers or
convolutional networks with residual connections are designed to exploit local spatial correlations within
structured data. Since MAMnet treats each grid cell as an independent sample such architectures are not
expected to result on improved accuracy. For this reason, we focused on standard fully connected networks,
which provide an effective balance between simplicity and computational cost.

RC: L139-140: The earlier statement (line 97-98) says 25 files used for training, but here it says “5 for training,
2 for validation.” I think I am missing something here?

AR: Thanks for bringing this up. This line refers specifically to the training data used for hyperparameter
optimization. This is conducted by performing about 1500 optimization trials using random configurations of
the hyperparameters, and a smaller data set over a fixed number of epochs. In this case only 5 output files
were used with 2 for validation.

This explanation is now added to the section, which has been moved to the Appendix for clarity.

RC: L163-175: Briefly discuss how errors in Dpg propagate to aerosol number concentration errors for ccn?

AR: We have added the following explanation to the section: “Because NCCN is strongly influenced by the
ASD and composition, it serves as a useful diagnostic for evaluating the estimation of particle size. CCN
concentrations are highly sensitive to aerosol size [Lee et al., 2013], as larger and more hygroscopic particles
are more likely to activate into cloud droplets. As a result, NCCN tends to be enhanced in populations
dominated by such particles. Underestimation of particle size therefore translates into a underestimation in
NCCN.”

RC: L244: The underestimation of Dpg in SH is attributed to low data availability? Could it also be due to
extrapolation error—MAMnet may have learned associations biased toward NH-dominant training. Can
we not test this applying class reweighting in the loss function?

AR: This is a valid point. It is possible that MAMnet has learned associations biased toward aerosol-rich
environments, which are more prevalent in the Northern Hemisphere. The underestimation of Dpg in
the Southern Hemisphere is most pronounced for fine dust, which is relatively scarce in that region and
thus underrepresented in the training data. While applying class weighting in the loss function could
help emphasize low-concentration regimes, it may also reduce performance in regions with higher aerosol
concentrations, where errors may have a larger climatic impact. We have now acknowledged this limitation in
the revised manuscript.

RC: L340-344: Under what conditions does this input feature set (bulk mass, T, ) suffice? Where do predictions
degrade (e.g., strong vertical motions, boundary layer transitions)? Why were other physically relevant
predictors (RH, precipitation, cloud fraction, wind) excluded? Does it limits its use in complex meteorolog-
ical regimes. Without input features tied to wet/dry removal, nucleation, or chemical aging, can the model
really be used in weather forecasting or satellite retrievals across diverse regions even when we find high
correlations?

AR: Thank you for the comment. As noted above, MAMnet is designed to map bulk aerosol mass across species
into a 7-modal ASD, rather than to emulate the full range of aerosol processes in MAM7. This is a simpler
task, as the input mass fields already reflect the integrated effects of meteorology, cloud processes, and
emissions. Using only bulk mass, temperature, and air density helps maintain model independence and makes
MAMnet suitable for use in both forecast models and satellite retrievals, where other process-based inputs
may not be available.
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We trained and evaluated MAMnet globally under a wide range of meteorological conditions and aerosol
regimes. The large number of training samples ensures broad coverage of realistic atmospheric states.
While the model does not include explicit predictors for wet/dry removal or nucleation, our results based on
independent testing across years suggest that MAMet learned the nonlinear relationship between mass and
number.

RC: L345-350: MAMnet is trained only on MAM model outputs, so how does the model avoid learning MAM’s
own biases? Can we say that evaluation against MERRA-2 is not necessarily independent since the training
data is nudged to MERRA-2 meteorology?

AR: This is a good point. MAMnet is designed to reproduce the mapping from aerosol mass to size distribution
as generated by the MAM7 scheme within the GEOS system. As such, it inherits the assumptions and
meteorological context of the training simulations. However we demonstrate that it is able to learn such a
relationship independently of the particular set of simulations used for training. That is, MAMnet learns
a physically consistent relationship between the mass of different species and the ASD, applicable across
different atmospheric conditions.

This has been clarified in the paragraph.

RC: L351-357: Can MAMnet conserve total aerosol mass by design, or does this emerge of calculation? This is
never proven numerically—just implied via Dpg.

AR: This is an important point, which we aimed to illustrate in Figure 6. There, we show that when MERRA-2
fields are used as input and all species predicted by MAMnet are combined (as in Figure 1), the resulting
bias is very small. While we originally presented this as evidence that MAMnet does not inherit the biases
of GEOS+MAM7, it also demonstrates that the model conserves mass, as it accurately maintains the total
mass of each species. Additional support for this comes from the the modal geometric mean diameter, Dpg,i,
remains very close to MAM7. Since Dpg,i is not predicted by MAMnet, but instead calculated from its output,
it indicates that both mass and number concentrations evolve in a physically consistent manner.

We have moved Figure 6 and the corresponding discussion before Figures 2 and 3 at the start of the new
Section 3.1 to clarify this point.

RC: L358-370: There’s no attribution of error—how much is due to MAMnet, and how much due to MERRA-2
inputs?

AR: This is correct. The errors against observations reflect the combined effects of MERRA-2 inputs and
MAMnet’s predictions. Isolating their individual contributions is challenging. However, since MAMnet
performs well on independent test data, it is likely the error arises from the input fields or from limitations in
the aerosol representation in MAM7. We now acknowledge this as a limitation in the manuscript.

2. General comments

RC: Unclear what one “file” represents—single timestep? Single day? Entire global field? It is also unclear
whether any temporal or spatial overlap exists between train/test sets.

AR: Each file corresponds at an instantaneous global field. This is now clarified in the paper. There is no overlap
between test and train sets as they are sampled from different years. This is now clarified in the work.

RC: No analysis on extrapolation over different time periods (e.g., pre-2000). The network is trained on a
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5-year window using meteorology from MERRA-2 (likely post-2000). How would the model perform in
periods with different emissions (e.g., 1980s)? Alternatively, discuss potential limitations in extrapolating
to past or future climate states.

AR: We appreciate the reviewer’s comment. MAMnet was tested using data from a different year not used during
training, demonstrating it is able to generalize beyond ist training data. To clarify, MAMnet is not intended
to fully emulate MAM7. Rather, its purpose is to map the simulated aerosol mass across species into a
7-modal aerosol ASD. This is arguably a simpler task than emulating the full range of aerosol processes
represented in MAM7, since the aerosol mass fields used as input already encapsulate the integrated effects
of meteorology, clouds, as well as trends in aerosol emissions. The mass-number relationship on the other
hand is not expected to depend strongly on such factors, since it many cases it can be approximated to some
degree using prescribed formulations for the ASD. Therefore it is likely that it can be learned only from the
relative abundances of the aerosol species and their vertical variation (which is encapsulated in the density
and temperature). We believe such to be the case as MAMnet performs well using data from a different year
of simulation, not used during training. Hence, we don’t anticipate a major effect of the time period. This
explanation has been added to Section 2.2.

RC: How is the SHAP analysis computed over such a high-dimensional sample space (using any explainer
method)? Was it computed on the flattened single-level dataset? How do you deal with feature correlation?

AR: The following clarifying paragraph has been added to the paper:

Shapley values [Winter, 2002], originally developed in cooperative game theory, are now widely used to
interpret predictions from neural networks [Kwon et al., 2023, Jeggle et al., 2023, Jia et al., 2023, Ma and
Stinis, 2020, Lundberg and Lee, 2017]. A Shapley value quantifies the contribution of a single input feature
to a specific model prediction by comparing the prediction for a given sample to the average prediction across
all samples. This contribution is averaged over all possible combinations of the remaining input features,
referred to as coalitions. Because the number of such combinations grows rapidly with the number of features,
we approximate Shapley values using 1,000 randomly selected coalitions per calculation, facilitated by the
SHAP python library usng the kernel explainer [Lundberg et al., 2020]. In this study, Shapley values are used
to assess the influence of each input feature on the predicted aerosol number concentrations for each mode.

RC: Is MAMnet architecture resolution-agnostic? Though you use single-level training to make the model
resolution-independent, how would MAMnet perform in coarser ( 2.5) or finer (< 1) gridded input?

AR: MAMnet is designed to be resolution-agnostic, as it operates on single grid cell inputs without relying
on spatial context. However, we agree that the relationship between aerosol mass and the resulting size
distribution may vary with model resolution, as it is typically the case for physical parameterizations. Changes
in resolution affect not only aerosol mass fields but also emissions and meteorological inputs, making this a
complex issue to assess. A thorough evaluation of resolution dependence is beyond the scope of this study,
but we now acknowledge this limitation in the manuscript and suggest to be addressed in future work.
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