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RC: Reviewers’ Comment, AR: Authors’ Response, [ Manuscript Text

We appreciate the constructive comments. We have clarified these points in the revised manuscript, as detailed
below.

General Comments

How does the trained model perform during a different time period? Aerosols in the 90s were much higher
than they are today, is the model that is practically only driven by temperature (and air density, which
does not change much with climate change) able to capture that time period? More generally, what is the
validity range of the model, given its training dataset?

We appreciate the reviewer’s comment. MAMnet was tested using data from a different year not used during
training, showing that it is able to generalize beyond its training data. MAMnet is not intended to fully
emulate the modal aerosol model (MAMT7). Rather, its purpose is to map the simulated aerosol mass across
species into a 7-modal aerosol size distribution (ASD). This is arguably a simpler task than emulating the
full range of aerosol processes represented in MAM?7, since the aerosol mass fields used as input already
encapsulate the effects of meteorology, clouds, as well as trends in aerosol emissions. The mass-number
relationship on the other hand is not expected to depend strongly on such factors, since in many cases it can
be approximated to some degree using prescribed formulations for the ASD. Therefore it is likely that it can
be learned only from the relative abundances of the aerosol species and their vertical variation (encapsulated
in the density and temperature). As MAMnet performs well using data from a different year of simulation,
not used during training, we don’t anticipate a major effect of the time period.

How much computational time is saved? There is no MERRA-2+MAM model, but the comparison between
GEOS, GEOS+MAM, MERRA-2, and MERRA-2+MAMnet should be able to provide the necessary
information.

Thanks for the comment. We haven’t completed the implementation of MAMnet in an online model (i.e.,
GEOS+MAMnet), and focused instead on its offline performance. Whether such an implementation leads
to a speed up depends strongly on technical details such as code base (i.e., Python vs. Fortran), input and
output speeds, and parallelization performance. Expanding on these details would deviate substantially from
the focus of this work, and it is left for future research. It must be mentioned that MAMnet not only offers
potential speedup, but also enables a better estimation of the ASD where limited information is available, like
in satellite retrievals and data assimilation systems.

I guess it is MAMY7 used in this work; shouldn’t you be using this name to separate it from other MAM
versions?

Yes, we agree and it has been corrected in the revised work.

I am really surprised that only temperature and air density have been used for the meteorological state. 1
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would expect that 3-dimensional wind fields (long-range transport), clouds and precipitation (wet removal,
CCN, activation), and surface type (dry deposition) would be of key importance. Clouds can be also
important for sulfate formation in the aqueous phase, and then cloud evaporation should affect sulfate
size distribution. How can a model be accurate without these processes included?

We appreciate the reviewer’s comment.

As mentioned above MAMnet maps the simulated aerosol mass across species to the ASD, but it is not
intended to simulate the full range of aerosol processes. Instead it leverages such physics from the bulk model.
We agree that aerosol number concentrations and mixing states are influenced by meteorological and cloud
processes in ways that differ from aerosol mass. However, our results suggest that the neural network can
effectively learn the nonlinear relationship between aerosol species mass and number, likely by leveraging the
relative abundances of different species within each mode. This may reduce the model’s sensitivity to the
explicit meteorological state.

This has been clarified in the revised work.

The lifetime of a single species in MAM (e.g. SU) would depend by the removal rates in each mode, which
differs in terms of mode solubility (a function of mode composition) and sedimentation velocity (a function
of mode size). The NN training is implicitly using this information, but the NN application in a bulk model
like GOCART does not have that distinction when calculating SU mass, so inherently SU is different across
models by design. The NN will likely try to compensate that, but can you make a comment on this?

This is a valid point. The evolution of aerosol species in MAM7 depends on processes such as solubility and
sedimentation, not explicitly represented in bulk models. As a result, applying MAMnet to bulk aerosol mass
fields introduces uncertainty due to differences in model assumptions. However, MAMnet can be fine-tuned
for such applications if needed. Furthermore, our comparison against observations also shows that when
driven by assimilated aerosol fields MAMnet still produces realistic ASDs. This suggests that the network is
able to learn a robust, nonlinear mapping from species mass to the ASD, even under varying model conditions.

This discussion has been added to the conclusion section.

Specific Comments

Line 9: Replace “physical representation” with “aerosol microphysics representation”. A machine-learned
approach is not physics

The statement now reads: “Our model paves the way to improve the representation of aerosols in atmospheric
models while maintaining the versatility and efficiency required in large scale applications”

Line 24: “of the same size” should be “in the same bin”. Bulk approaches allow particles in different bins
to have the same size but different composition, e.g. sulfate vs. nitrate. Line 25: “they fail to distinguish”
is too harsh, please replace with “they are not designed to resolve”. They would fail if they would try to
resolve ASD, but they don’t.

We agree the definition is ambiguous. The statement has been rewritten as:

“The bulk mass approach predicts the transport and evolution of aerosols by tracking the mass concentration
of individual chemical species [Jones et al., 1994, |[Langner and Rodhe} 1991} |Ginoux et al., 2001} |Chin et al.,
2000]. It inherently treats aerosols as externally mixed, since each particle is assumed to consist of a single
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chemical component or their surrogate [Riemer et al.,|2019]]. Because each species is typically represented by
a single prognostic variable, the bulk approach is not designed to resolve the ASD or the mixing state, which
are often prescribed from climatological data.”

Lines 38-39: “These models offer the most physically consistent representation of the ASD” is not
necessarily correct, since modal models assume a shape of the size distribution per mode, typically a
lognormal, which is an approximation of reality. One could argue that sectional models, which are even
more expensive than modal ones, are better, since they can freely calculate the ASD shape without the
need of a lognormal, but they also suffer from assumptions needed when moving mass and number from
one section to another. Particle-resolved models might be the most realistic ones, but these are practically
impossible to use in large-scale models. The point is that mentioning that modal schemes are the most
physically consistent is incorrect.

This was referring to more sophisticated models. There is also typo where we meant moments “instead” of
“modes”. We agree that the way it is written is ambiguous. The statement has been corrected and now reads:

“More sophisticated aerosol schemes either compute additional moments of the ASD [Zhang et al.| 2020],
explicitly resolve it using a binned approach [e.g.,/Adams and Seinfeld, 2002], or represent it on a particle-by-
particle basis [Riemer et al.,[2019]. While these models provide the most physically consistent representation
of the ASD, they are often too computationally expensive for operational forecasting and long-term climate
simulations.”

Line 96: Which years were simulated, and 72 vertical levels up to what altitude?
The model top pressure is 0.01 hPa. The simulated years were 2001-2006. This is now clarified in the paper.

Line 97: Please elaborate on the choice of 9 AM/PM UTC time for the output and especially the 12-hour
Jfrequency. Understandably this is a lot of output already, but I would argue that sampling any individual
location just twice a day has a high probability to miss the diurnal variability of ASD. I would expect that 4
times a day would be the minimum reasonable sampling frequency, as a first guess.

Sampling at 12-hour intervals allowed us to use more data for training while still capturing differences
between day and night. We agree that higher-frequency sampling could better resolve the diurnal cycle, but
this comes at the cost of fewer training time steps due to memory limitations. However, this is not expected to
be critical, as the relationship between mass and number likely exhibits weaker diurnal variability than the
aerosol mass itself, which is already represented by the bulk model.

Section 2.2.1: I do not follow the files counting and usage. 25 were “randomly selected without replacement
Jor training” (what does that mean?), 10 were used “for the testing of the trained model”, 100 were “not
used during training” (how were they used?). What are these files? Each instantaneous output produces
one file, so 2 per day, times 365 times 5 years files? If yes, what happens with the remaining thousands of
files? And how many have been used for training?

Thanks for bringing this up. Yes, out of the thousands of files of the run we selected 25, at random for
training, with no duplicates (without replacement). Each file represents global instantaneous output from the
GEOS+MAM7 model. During training the loss is calculated on data not used to update the parameters of the
network, termed validation loss, taken as 10 additional files. Since the validation loss still guides optimization
choices it is considered part of the training step. The testing data is completely independent, and we have
used 5 additional files taken from the year 2006, which was not used at all during training.

The reason that we select just a few files is that each one represents an already very large number of samples.
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For our final training we used N, = 72 % 180 * 360 * 25 ~ 1.12 x 108 samples. Given this large number,
this is assumed as representative of all possible mass-number combinations produced by MAM7, which is
what the model needs to train. In our sampling strategy we maximize the number of samples the model could
handle. Again we want to emphasize that a MAMnet does not attempt to learn the spatial distribution of the
ASD, just its relation to the aerosol mass.

This has been clarified in the work.

I see later (lines 139-140) stated “5 output files for training, 2 for validation” which makes even less sense.
Please explain.

As there are several free parameters in the design of the neural network, the optimal architecture is found by
doing a guided search, training on a small set of data, running for a fixed number of epochs (50 in our case).
This was done using 5 files training and 2 for validation.

The optimization and training section has been moved to the Appendix for clarity.

Figure 1: Please explain what MAMnet loss is. It is not referenced anywhere else in the manuscript.
Also, why GOCART is mentioned? This figure is for the development of the NN, not its application. Isn’t
GOCART only used for application?

Thank you for pointing this out. The MAMnet loss refers to the minimum mean squared error between
the network predictions and the corresponding MAM?7 fields. We have clarified this in the figure caption.
Additionally, we have removed the GOCART reference from the figure, as it is not used in this study.

Table 3: Too many new concepts there which are not explained. Please help the reader understand what
these are, or move this table in an appendix, if you consider it too technical to expand.

Thanks for the suggestion. We have moved Table 3 and the related discussion to the Appendix.

Section 3: I would recommend adding a section 3.1 “evaluation against GEOS+MAM”’, similar as to what
current section 3.1 says “evaluation against observations”, instead of having it under the generic section 3.

Thanks for the suggestion, the headline has been added.

Figure 2: Are these global means per layer? Assuming that yes, is this a good metric, especially for number
concentration? Wouldn’t doing this regionally be much more meaningful? I appreciate the zonal means
and maps later, but my question stands. To be more specific, how can you say “systematic errors emerge”
in line 199, without knowing whether this error is widespread or just some very large scattered errors that
overwhelm the mean?

Thank you for the comment. We agree that number concentration varies greatly across regions, and that
averaging globally can hide local differences. In Figure 2, we used global mean bias by vertical level to give
an overview of model performance. To account for the large range in number concentration we calculated the
bias on a logarithmic scale. We also included additional plots such as the zonal averages and spatial maps in
later figures. Finally, the second panel in Figure 2, which shows spatial correlation, helps identify whether
large errors spread across regions.

Regarding the statement on line 199 about “systematic errors,” we have clarified in the revised text that this
refers to consistent patterns in the bias. It now reads:

“In summary, MAMnet captures overall modal number patterns well, but errors remain in the Aitken mode,
primary carbon and coarse dust.”
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Figures 2-3, regarding mass concentrations: what is the model performance in terms of mass conservation?
The results per mode do not need to conserve mass, but per species across modes mass conservation is
paramount. Thinking even further, how will the mass conservation concept be applied when using
MAMpnet in production runs? Lines 253-262, and Figure 6: These are an evaluation against MERRA-2,
not observations, as the title of section 3.1 denotes. This whole paragraph and figure are a good conclusion
in the discussion just before this section, so moving it right after line 247 and before section 3.1 starts
should be considered.

This is an important point, which we aimed to illustrate in Figure 6. There, we show that when MERRA-2
fields are used as input and all species predicted by MAMnet are combined (as in Figure 1), the resulting
bias is very small. While we originally presented this as evidence that MAMnet does not inherit the biases of
GEOS+MAMY7, it also demonstrates that the model conserves mass, as it accurately maintains the total mass
of each species. Additional support for this comes from the the modal geometric mean diameter, D,  ;, as
it remains very close to MAM7. Since D, ; is not predicted by MAMnet, but instead calculated from its
output, it indicates that both mass and number concentrations evolve in a physically consistent manner. In an
online implementation MAMnet would be diagnostic to the bulk model, hence would not directly influence
mass conservation.

We have moved Figure 6 and the corresponding discussion before Figures 2 and 3 at the start of the new
Section 3.1 to clarify this point.

Section 3.1: Although I agree with the motivational 1st paragraph of this section (lines 249-252), it
sounds more than wishful thinking. MAMnet is trained with model data, not measurements, so at its
peak performance it will be able to emulate the modeled data. In terms of measurements, it can only
be as good as GEOS+MAM or MERRA-2 models, and any improvement in skill when compared with
measurements (if at all evident) will be coincidental, thus irrelevant. What is really missing from both
sections 3.1.1 and 3.1.2 is a baseline discussion: how does MERRA-2 alone perform when comparing with
measurements? Of course MERRA-2 does not simulate ASD, but biases in the total aerosol mass (per
species or not) will impact ASD. Even more, GEOS+MAM does not include assimilation, so other sorts of
biases are likely present in the ASD of the training data set. Since this paper is about MAMnet, and since
section 3.1 as a whole is to demonstrate its overall skill, not knowing the skill of the training dataset is a
major shortcoming. To the very least, GEOS+MAM should be presented in figures 7 and 8, but a mass
concentration comparison (or citation of past evaluation efforts) should be presented as well.

Thank you for this comment.

To clarify, MERRA-2 is an observation-constrained dataset created by assimilating a wide range of measure-
ments, including satellite-derived aerosol optical depth, into the GEOS model. Because of this assimilation,
MERRA-2 aerosol fields are in principle closer to observations than those from GEOS+MAM7. Several
studies have evaluated the performance of MERRA-2 aerosol fields against observations [e.g.,/Buchard et al.|
2017, [Sun et al., 2019} [Ukhov et al.| 2020} (Gueymard and Yang, 2020} Su et al.l 2023]], and we now reference
these in the revised manuscript.

We agree that biases in the training data (GEOS+MAM?7) can influence the learned mapping, and that
the skill of the input data (MERRA-2) affects the final output. However, we do not present comparisons
between GEOS+MAM?7 and observations at specific sites, since such comparisons are not meaningful for a
free-running model. Instead, we emphasize that comparisons between MERRA-2+MAMnet and observations
reflect the model’s performance when driven by realistic aerosol fields.

We use GEOS+MAMY7 as the training dataset because it provides internally consistent mass and number
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concentrations needed to learn the relationship between them. MAMnet is trained to approximate this
relationship, not to replicate the exact output of GEOS+MAM?7. When applied to MERRA-2, MAMnet
combines the more realistic aerosol mass fields from MERRA-2 with the learned mass—number mapping.
This allows us to assess its performance in a more observationally constrained setting.

We have added the following clarification before Section 3.1 to the manuscript to address this point:

“MERRA-2 includes aerosol mass fields that are constrained by satellite observations through data assimilation
[Buchard et al., 2017, |Sun et al.| 2019, Ukhov et al., 2020, Gueymard and Yang|, 2020, |Su et al.,2023]], and thus
provides a more realistic input compared to free-running model simulations. Although GEOS+MAM?7, which
was used to train MAMnet, does not assimilate aerosols and cannot be directly compared to observations
at specific sites, it provides physically consistent mass and number concentrations from which the network
learns the relationship between these quantities. When applied to MERRA-2, MAMnet combines this learned
relationship with more observation-constrained aerosol mass fields, allowing us to evaluate how well it
maintains physical consistency in a more realistic setting. This comparison does not validate MAMnet
independently of its training data but serves to assess its performance when driven by the best available mass
estimates.”

Section 3.2: please explain what Shapley values are exactly. There is some information in the figure
legend, but a short introduction would be useful. Also, since this is a comparison against the model data, 1
would recommend moving it before the observations sections, so swapping sections 3.1 and 3.2.

The following explanation has been added to the section, which has been moved before the observations
section.

“Shapley values [Winter, |2002], originally developed in cooperative game theory, are now widely used to
interpret predictions from neural networks [Kwon et al., 2023 Jeggle et al., [2023], Jia et al., 2023, |Ma and
Stinis| 2020, |Lundberg and Leel 2017]]. A Shapley value quantifies the contribution of a single input feature
to a specific model prediction by comparing the prediction for a given sample to the average prediction across
all samples. This contribution is averaged over all possible combinations of the remaining input features,
referred to as coalitions. Because the number of such combinations grows rapidly with the number of features,
we approximate Shapley values using 1,000 randomly selected coalitions per calculation, facilitated by the
SHAP python library using the kernel explainer method [Lundberg et al.[2020]. In this study, Shapley values
are used to assess the influence of each input feature on the predicted aerosol number concentrations for each
mode.”

Line 334: What do you mean by “possibly by promoting secondary aerosol formation” here? Secondary
organics will evaporate more at higher temperatures, while secondary inorganic aerosols will have a more
complex relationship depending on relative humidity as well.

Thanks for pointing it out. We have removed the statement as it is speculative.

Technical Corrections

1. Line 44: Change “ML models, we can’ to “ML models can’.

2. Line 79: Add “of different sizes’ after ‘“five mass bins”.



. Line 80: Replace “hydrophilics’ with “hydrophilic”.

. Line 86: Table 2 is referenced before Table 1.

. Line 97: Replace “these’ with “that”.

. Figure 1: rhog;, is mentioned in the legend, but it is termed AIRD in the figure.

. Line 109: Replace “Kg” with “kg”.

e N & U N W

. Lines 179 and 181: “the original MAM” and “GEOS+MAM” are the same thing, right? Please use
one terminology throughout, for clarity.

9. Line 214: “smaller and less massive” is the same, why not just say “smaller”?
10. Line 217: Replace “near-perfect” with “very high”.
11. Line 223: Replace “sulfates” with “sulfate”.
12. Line 260: Replace “accurate” with “accurately”
13. Line 311: Replace “tends align” with “tends to align”.

14. Figure 9: Please add a figure legend that explains the color lines, on top of the verbal description
present in the caption.

15. Line 363: Replace “predicted concentrations” with “predicted number concentrations”.

AR: All technical corrections have been incorporated.
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