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 25 
Abstract. We use measurements of near-surface aerosol backscatter, extinction, and depolarization acquired by four 

NASA Langley Research Center airborne High Spectral Resolution Lidars (HSRLs) in machine learning (ML) 

regression algorithms to derive concentrations of particulate matter (PM) with aerodynamic diameters less than 2.5 µm 

(PM2.5), 10 µm (PM10), and the PM2.5/PM10 ratio. The ML regression models are trained using airborne HSRL 

measurements acquired over major metropolitan regions in the United States and Asia that are coincident with hourly 30 
surface PM2.5 and PM10 measurements from the EPA air quality system and similar networks in other countries. We 

examine several regression methods and find that exponential Gaussian Process regression (GPR) algorithms 

consistently give the best performance in terms of the lowest root-mean-square (RMS) errors and the highest 

correlations.  When evaluated using surface measurements withheld from the training sets, ML models that use the 

HSRL near-surface measurements of aerosol backscatter and aerosol intensive properties such as depolarization, 35 
backscatter color ratio, and lidar ratio typically give the best performance with RMS differences in PM2.5 retrievals 

around 5 µg m-3 and correlation coefficients above 0.8, respectively. Corresponding RMS differences and correlation 

coefficients for PM10 retrievals are 11 µg m-3 and 0.7 and corresponding RMS differences and correlation coefficients 

for PM2.5/PM10 are 0.17 and 0.75.  This retrieval performance is achieved using airborne HSRL measurements alone 

and so does not depend on external knowledge of or assumptions regarding aerosol type, aerosol mass extinction 40 
efficiency, aerosol hygroscopic growth, the ratio of PM2.5 to PM10, particle density, or relative humidity. PM2.5 values 

in the training set range from about 5 to 80 µg m-3; PM10 values range from about 10 to 100 µg m-3. Accurate retrievals 
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of PM outside these ranges would require commensurate training data.  We present examples of PM retrievals in the 

United States as well as Asia when HSRL measurements were acquired when the aircraft flew systematic “raster-scan” 

patterns for several hours over major urban areas. We show that these PM2.5 retrievals are in good agreement with 45 
PM2.5 derived from coincident airborne in situ measurements near the surface as well as aloft. We describe also how 

the distribution of PM2.5 varies with aerosol type and altitude over these regions. We use the HSRL measurements of 

aerosol extinction and retrievals of surface PM2.5 along with HSRL retrievals of aerosol type to derive estimates of the 

fine mode aerosol mass extinction efficiency (MEEf) for major aerosol types identified by an updated HSRL aerosol 

classification method. MEEf ranges from about 2.6 ± 0.5 m2 g-1 for maritime aerosol to 5.0 ± 0.7 m2 g-1 for smoke. 50 
These estimates of MEEf are also in good agreement with values derived from airborne in situ measurements. We also 

discuss how this methodology may be applied to measurements from the Atmospheric Lidar (ATLID) on the 

EarthCARE satellite.   

1 Introduction 

Aerosol particles, especially particulate matter with aerodynamic diameters less than 2.5 µm (PM2.5), have been linked 55 
to various respiratory and cardiopulmonary diseases and are reported to relate to ~2 to 4 million premature deaths per 

year globally (Liu et al., 2005b; Hoff and Christopher, 2009; Silva et al., 2013; Diao et al., 2019; Strosnider et al., 

2019). Smoke from wildfires is of particular concern as recent animal toxicological studies suggest that PM2.5 from 

wildfires is more toxic than equal doses from other sources such as ambient pollution (Aguilera et al., 2021; Zhang et 

al., 2023; Wegesser et al., 2009; Kim et al., 2018).  In addition, although PM2.5 in the US has decreased over the last 60 
few decades, PM2.5 from wildfires is projected to increase due to climate change (Zhang et al., 2023); in North America 

climate change contributed to about 15000 wildfire particulate deaths from 2006-2020 (Law et al., 2025).   

Surface PM2.5 concentrations are monitored by the U.S. Environmental Protection Agency (EPA) and similar agencies 

in other countries for regulatory purposes. However, the low spatial coverage of these surface stations is problematic 

for detecting and monitoring PM2.5 in portions of the United States as well as in foreign countries (e.g., Manila in the 65 
Philippines). As an example, since surface stations tend to be in urban areas and far from wildland fires, people living 

outside the vicinity of an EPA Air Quality System (AQS) monitor (defined by 5 km radius) were subject to 36% more 

smoke impact days compared to people living nearby such sensors (Zhang et al., 2023). In addition, surface 

measurements alone often cannot separate PM2.5 from fire smoke from other sources (Zhang et al., 2023). 

Given the limited coverage of surface measurements, monitoring PM2.5 from space has been investigated extensively, 70 
primarily by using aerosol optical thickness (AOT) derived from spaceborne passive sensor measurements (Chu et al., 

2003; Wang and Christopher, 2003; Van Donkelaar et al., 2006; Lee et al., 2012; Xie et al., 2015). These efforts have 

largely focused on developing correlative relationships between ground-based in situ PM2.5 (mass per volume) and 

satellite AOT (unitless, e.g., (Hoff and Christopher, 2009) and references therein).  Using AOT measurements from 

satellites to estimate PM2.5 takes advantage of the large spatial and temporal coverage provided by spaceborne passive 75 
sensors.  However, since AOT retrieved from spaceborne satellite sensors is a column integrated property, in regions 
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where AOT variations are associated with aerosols above the surface layer, such as elevated aerosol plumes above the 

planetary boundary layer (PBL), PM2.5 (which is a near-surface property) and AOT can be weakly- or un-correlated 

(e.g., (Toth et al., 2014; Toth et al., 2019)).   

Several studies have used chemical transport models, or CTMs (e.g., (Van Donkelaar et al., 2015; Van Donkelaar et 80 
al., 2016)), to improve correlations between AOT and PM2.5 and to account for variability in the aerosol vertical 

distribution.  Such models can also specifically simulate PM2.5 associated with fire smoke thereby enabling 

epidemiological studies that cover both urban and rural populations. Assimilating satellite AOT data has become 

increasingly common, significantly enhancing AOT analyses and short-term forecasting (e.g., (Zhang et al., 2014; 

Sessions et al., 2015)).  However, simulations of PM2.5 continue to be inadequate (e.g., (Reid, 2016)).  Uncertainties 85 
in such studies are unavoidable due to uncertainties in the assimilated AOTs and in CTM-based aerosol vertical 

distributions, as models do not routinely assimilate lidar profiles that can be used for constraining modeled aerosol 

vertical distributions.  In addition, nighttime AOTs are currently unavailable from passive remote sensing satellite 

retrievals, although efforts are underway to achieve this (e.g., (Wang et al., 2023)). Attempts to use multisource AOT 

products (Tang et al., 2019; Liu et al., 2022) or use nighttime light imagery to retrieve nighttime PM2.5 concentrations 90 
are usually limited by moonlight conditions and artificial light sources so that study areas are restricted (Wang et al., 

2023). 

Measurements from airborne and satellite lidars can help alleviate these issues. These lidar measurements are very 

helpful for evaluating and improving models through their ability to provide the fine scale vertical structure of aerosols 

as well as by constraining aerosol type (Burton et al., 2012).  These lidars provide aerosol measurements at or near 95 
the surface thereby avoiding uncertainties associated with using column aerosol measurements (i.e., AOT) to infer 

aerosol concentrations near the surface. Lidar measurements of aerosol extinction near the surface have been used to 

derive estimates of surface PM2.5 concentrations.  One method used coincident ground-based lidar and surface PM2.5 

measurements to derive to derive a linear model to relate aerosol extinction to surface PM2.5 concentration (Xiang et 

al., 2020).  Another method, which has been used with space-based Cloud-Aerosol Lidar with Orthogonal Polarization 100 
(CALIOP) measurements, uses a bulk-mass-modeling approach whereby PM2.5 is derived by dividing the CALIOP 

retrieved near-surface extinction coefficient by the product of the aerosol mass extinction efficiency (MEE) (Hand 

and Malm, 2007), the scattering enhancement factor [f(RH)] associated with hygroscopic growth of aerosol particles 

(Hänel, 1976), and the ratio of PM2.5 to PM10 (Toth et al., 2014; Toth et al., 2019; Toth et al., 2022). Comparisons of 

surface PM2.5 derived in this manner with daily-averaged surface measurements of PM2.5 have shown some success 105 
and indicate long-term spatial and temporal variability of PM2.5 over the USA (Toth et al., 2022).  While this 

methodology generally provides better estimates of PM2.5 than those derived using only column AOT and PBL heights, 

such estimates still have relatively large uncertainties and modest correlations due to assumptions regarding these 

parameters as well as the uncertainty in the near-surface aerosol extinction retrieved from backscatter lidar 

measurements. These conversion factors typically require some knowledge of the aerosol properties which can vary 110 
significantly depending on aerosol type. 
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Various other methods have used CALIOP measurements to retrieve estimates of PM2.5. One method used 

measurements of near-surface aerosol extinction,  Aerosol Robotic Network (AERONET) sun photometer retrievals 

of particle sizes, and assumptions regarding aerosol scattering enhancement factors, particle extinction efficiencies 

and densities (Ma et al., 2020). Another method has used CALIOP measurements of AOT at various altitude levels, 115 
several meteorological variables provided by the Modern-Era Retrospective analysis for Research and Applications, 

Version 2 (MERRA-2) model, and estimates of the PBL height provided by the ERA-5 model. These data were used 

with multiple machine learning methods trained using hourly mean PM2.5 concentrations from surface measurements 

to estimate PM2.5 concentrations at the surface and aloft (Chen et al., 2022). This previous study found that the 

combination of meteorological factors (e.g. air temperature, pressure, relative humidity, wind speed) had higher 120 
importance than layer AOT in retrieving PM2.5 and that air temperature was more important than total column AOT 

for retrieving PM2.5. This result is likely due to the difficulty in using column AOT to infer surface PM2.5 concentrations 

as well as the uncertainty in CALIOP retrievals of AOT. In addition, 1064‐nm backscatter lidar data from the spaced-

based NASA Cloud‐Aerosol Transport System (CATS) and the Goddard Earth Observing System (GEOS) model were 

used to derive surface PM2.5 (Matus et al., 2025).  The CATS lidar data were combined with an ensemble of aerosol 125 
profiles from the GEOS Aerosol Data Assimilation System (GAAS). Assimilating the CATS lidar data into the GEOS 

atmospheric model significantly improved the model's capability to represent the vertical distribution of aerosols.   

Elastic backscatter lidars such as CALIOP and CATS have a basic limitation when retrieving AOT and profiles of 

aerosol extinction. Such lidars measure total attenuated backscatter, which is a combination of backscatter and 

extinction from higher parts of the profile. Consequently, to derive particulate backscatter, the extinction-to-130 
backscatter ratio (“lidar ratio”) [Young, 1995; Omar et al., 2009] must be assumed and/or additional external 

constraint(s) must be provided. Some methods assume a single, fixed lidar ratio (Xiang et al., 2020) while others, such 

as that used for CALIOP and CATS, choose fixed lidar ratios that depend on inferences of aerosol type (Omar et al., 

2009).  Uncertainties in the lidar ratio are the largest source of systematic error in CALIOP retrievals of AOT and 

aerosol extinction profiles (Winker et al., 2009; Schuster et al., 2012; Rogers et al., 2014).  These errors are often 135 
largest near the surface, which is particularly problematic for estimating surface PM concentrations.  Combining or 

assimilating the measurements from these lidars with models can help reduce these uncertainties as model simulations 

of aerosol types can provide estimates of these lidar ratios. 

Alternatively, High Spectral Resolution Lidars (HSRLs), such as the airborne HSRL systems from the NASA Langley 

Research Center (LaRC) and the Atmospheric Lidar (ATLID) on the EarthCARE satellite (Wehr et al., 2023), are 140 
particularly valuable because they provide direct measurements of near-surface calibrated aerosol backscatter and 

aerosol extinction without additional constraints or assumptions to account for attenuation by overlying aerosols. Also, 

HSRL systems provide measurements of aerosol intensive properties that provide valuable information regarding 

aerosol type (e.g. smoke, pollution, dust, etc.)(Burton et al., 2012; Groß et al., 2013; Floutsi et al., 2024). During 

several NASA field missions designed to study air quality, airborne HSRLs have provided profiles of aerosol 145 
backscatter, extinction, and depolarization over major metropolitan regions in the United States and Asia. These 

systems use the HSRL technique to independently retrieve aerosol (and tenuous cloud) extinction and backscatter 
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(Shipley et al., 1983; Grund and Eloranta, 1991; She et al., 1992a) without having to assume the aerosol type or aerosol 

extinction-to-backscatter ratio.  During these missions, these lidars were deployed from aircraft that flew at altitudes 

ranging from 9 to 13 km and measured profiles below the aircraft thereby providing aerosol profiles near the surface.   150 

LaRC airborne HSRL measurements of aerosol extinction and inferences of aerosol type have been used in an 

algorithm that associates chemical components with aerosol types inferred from the HSRL measurements to derive 

estimates of surface PM2.5 (Meskhidze et al., 2021). In this Creating Aerosol Types from CHemistry (CATCH) 

algorithm (Dawson et al., 2017), aerosol composition is derived for each HSRL retrieved aerosol type from GEOS-

chem model aerosol types based on the aerosol properties measured by the HSRL. The CATCH algorithm links the 155 
HSRL inferences of aerosol type with specific aerosol chemical composition and speciation represented by the GEOS-

Chem model.  The algorithm was applied to airborne data collected over South Korea (Sutherland et al., 2023) as well 

as several regions in the United States (Sutherland and Meskhidze, 2025; Meskhidze et al., 2021).  Comparisons 

between the derived surface PM2.5 values and surface measurements from the EPA Air Quality System showed mean 

absolute errors (MAE) of about 10 µg m-3 (Sutherland and Meskhidze, 2025).  These results also showed the critical 160 

importance of accurate PBL heights in such retrievals since discrepancies in aerosol composition could be attributed 

to layers of different aerosol types aloft compared to those near the surface; differences in estimates of the PBL height 

were found to lead to about 20% variability in the MAE (Sutherland and Meskhidze, 2025).  Another approach uses 

multiwavelength HSRL aerosol measurements in an inversion algorithm to derive aerosol volume concentration 

profiles; PM2.5 mass concentration profiles are then estimated by integrating the volume concentration of particles 165 

with diameters less than 2.5 µm and applying an assumed aerosol density (Zhou et al., 2025). Initial results showed 

qualitative agreement with ground station measurements; however, the particle density that must be assumed can vary 

over a wide range of values and depends on several factors (Pitz et al., 2008; Hasheminassab et al., 2014).  

Here we present an alternative method of deriving PM concentrations that uses airborne HSRL measurements in a 

machine learning (ML) regression algorithm to derive PM2.5 and PM10 concentrations. Unlike these previous methods 170 
(Meskhidze et al., 2021; Sutherland et al., 2023; Sutherland and Meskhidze, 2025) that have used airborne HSRL data 

to derive surface PM2.5 concentrations, this method does not require the HSRL qualitative inferences of aerosol type 

or aerosol chemical composition information provided by models.  It also does not require assumptions regarding the 

aerosol mass scattering and absorption efficiencies, hygroscopic growth factor, the ratio of scattering by fine to coarse 

mode particles, or particle density.   Instead, this new approach takes advantage of machine learning algorithms applied 175 
to numerous, detailed, near-surface airborne HSRL measurements of aerosol properties acquired simultaneously with 

surface PM2.5 and PM10 measurements; such algorithms have used statistical methods to infer surface PM from lidar 

(Chu et al., 2013; Chu et al., 2015; Ma et al., 2021) and passive sensors (Fang et al., 2021; Lary et al., 2015; Lee et 

al., 2021).   

We first discuss the airborne HSRL measurements acquired during these field missions. Next, we describe how these 180 
data are used in ML regression algorithms to derive surface PM2.5 and PM10 and show how these retrievals depend on 

the various aerosol parameters measured by these lidars. We then show examples of these PM retrievals using airborne 
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HSRL data collected during recent NASA field missions. We also discuss the uncertainties in the retrievals and the 

impacts of the training data on the PM values derived from these regression models. We show how the PM2.5 varies 

with aerosol type as derived from a modified aerosol classification algorithm applied to the HSRL aerosol 185 
measurements. We then use the retrieved PM2.5 and PM10 values in conjunction with the HSRL measurements of 

aerosol extinction to derive estimates of fine mode mass extinction efficiency for these aerosol types. Finally, we 

discuss the potential use of these machine learning regression techniques for retrieving PM2.5 from satellite lidars such 

as the ATLID instrument on EarthCARE (Wehr et al., 2023). 

2 Methodology 190 

2.1 Airborne HSRL Measurements 

Our methodology takes advantage of a unique set of airborne HSRL measurements acquired by four airborne HSRL 

systems developed at NASA Langley Research Center.  These lidars include HSRL-1 (Hair et al., 2008), HSRL-2 

(Burton et al., 2018; Ferrare et al., 2023), DIAL/HSRL (Browell, 1989; Hair et al., 2008), and HALO (Carroll et al., 

2022; Barton-Grimley et al., 2022).  Each of the airborne lidars employs the HSRL technique at 532 nm to 195 
independently retrieve both aerosol extinction and backscatter (Grund and Eloranta, 1991; She et al., 1992b; Shipley 

et al., 1983) without a priori assumptions regarding aerosol type or extinction-to-backscatter ratio. The HSRL 

technique measures both total attenuated backscatter and attenuated molecular backscatter which are used to directly 

derive both aerosol extinction and backscatter and the extinction-to-backscatter ratio (aka the “lidar ratio”).  The ability 

of HSRL to independently measure extinction and backscatter measurements is a huge advantage over standard 200 
backscatter lidars.  By measuring the ratio of the total (molecular + particulate) to the molecular signal, the HSRL 

technique permits measurements of calibrated, unattenuated aerosol backscatter. The vertical derivative of the 

attenuated molecular backscatter signal measured by HSRL provides the aerosol extinction profile (Hair et al., 2008).  

HSRL-2 also uses the HSRL technique to measure aerosol backscatter and extinction at 355 nm.  These lidars employ 

the standard elastic backscatter lidar technique to measure aerosol backscatter at 1064 nm.  All these lidars measure 205 
particulate depolarization at 532 and 1064 nm; HSRL-2 also measures particulate backscatter, extinction, and 

depolarization at 355 nm. Aerosol and cloud measurement parameters for these lidars are summarized in Table 1.  

Additional products are derived from the aerosol profiles measured by these lidars.  Backscatter color ratios and 

Angstrom exponents are derived from the ratio of aerosol backscatter at two wavelengths; spectral depolarization 

ratios are similarly derived from the ratio of particulate depolarization at two wavelengths.  The lidar ratio is also 210 
derived from these measurements.  Mixed layer heights (MLHs), which are often associated with sharp gradients in 

aerosol backscatter profiles, are also derived from these data; these heights have been found to be in good agreement 

with boundary layer heights (BLHs) derived from radiosondes (Scarino et al., 2014). Aerosol type is derived using a 
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classification algorithm to interpret the information about aerosol physical properties indicated by the measured 

aerosol intensive parameters1 (Burton et al., 2012).  215 

A significant advantage of the HSRL technique is that it does not rely on apportioning part of the measurement profile 

for calibration (Hair et al., 2008) unlike standard elastic backscatter lidars that must assume negligible aerosol in a 

calibration region.  All the depolarization channels and the aerosol and molecular measurements at 532 nm are self-

calibrating, while the 1064 nm backscatter measurement and the 355 nm HSRL-2 measurements take advantage of 

the calibrated HSRL measurement at 532 nm. The overall systematic error associated with the backscatter and 220 
depolarization calibration is estimated to be less than 2-3%.  Under typical conditions, the total systematic error for 

extinction is estimated to be less than 0.01 km-1 at 532 nm. The random errors for all aerosol products are typically 

less than 10% for the backscatter and depolarization ratios (Hair et al., 2008).  A study designed to validate the HSRL 

extinction coefficient profiles (2009) found that the HSRL extinction profiles are within the typical state-of-the-art 

systematic error at visible wavelengths (Schmid et al., 2006). Column AOT values derived from HSRL-2 data were 225 
found to be in excellent agreement with coincident measurements from AERONET (e.g. (Sawamura et al., 2017)).  

LaRC airborne HSRL measurements have been used to assess WRF-Chem regional model representations of aerosol 

backscatter and extinction profiles (Fast et al., 2011; Fast et al., 2014; Saide et al., 2020) as well as evaluate operational 

(Rogers et al., 2011) and advanced research-type (Burton et al., 2010; Mcpherson et al., 2010; Josset et al., 2011) 

CALIOP aerosol profiles, advanced Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of AOT 230 

 
1 Extensive optical parameters, such as backscatter, extinction, and optical depth depend on the amount (concentration) 
and type (size, composition, shape) of aerosol/cloud particles.  Intensive properties, such as depolarization ratios, color 
ratios, Angstrom exponents, and extinction/backscatter ratio (“i.e. “lidar ratio”) depend only on the type and not on 
the quantity or concentration.  
 

Table 1. Measurement parameters, wavelengths, resolutions, and precision for aerosol products 
measured in the nadir direction by the airborne HSRL systems discussed in the text. Horizontal 
resolutions are based on aircraft flying at approximately 200 m/s. All the airborne HSRL systems lidars 
measure the parameters at the wavelengths shown in black; HSRL-2 also measures these parameters at 
355 nm shown in boldface.  
 

Parameter Wavelength 
(nm) 

Approximate 
Precision 

Horizontal 
Resolution 

Vertical 
Resolution 

Aerosol Backscatter  355/532/1064 0.2 Mm-1sr-1 2 km 30 m 

Aerosol Extinction 355/532 0.01 km -1 12 km 300 m 

Aerosol Depolarization 355/532/1064 0.01 2 km 30 m 

Aerosol Optical Depth 355/532 0.01 12 km  

Aerosol Type (e.g., marine, dust, 
smoke) 

N/A Qualitative 12 km 300 m 

Mixed Layer Heights N/A 30 m 2km 30m 
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(Munchak et al., 2013), extinction profiles derived from airborne in situ measurements (Ziemba et al., 2013b), and 

AOT derived from other remote sensors (Kassianov et al., 2010; Knobelspiesse et al., 2011; Shinozuka et al., 2013). 

2.2 Airborne HSRL Data Sets 

The airborne HSRL systems discussed above have acquired data over several major cities in the United States 

including Washington D.C., Baltimore, Houston, Los Angeles, Chicago, and New York City, as well as major cities in 235 
Asia including Seoul (South Korea), Manila (Philippines), Tainan-Kaohsiung (Taiwan), and Bangkok (Thailand) 

during several NASA field missions conducted since 2010 as shown in Figure 1. These HSRL measurements were 

often acquired when the aircraft flew systematic “raster-scan” patterns for several hours and often repeated multiple 

 

Figure 1.  Locations and dates of airborne HSRL measurements over major urban areas in the USA (a) and 
Asia (b) used in this study.  The different colors represent the four different airborne HSRL systems that 
provided the data used here.  Data from 193 flights that occurred between 2010-2024 are used to develop 
ML algorithms for retrieving PM concentrations.  

https://doi.org/10.5194/egusphere-2025-4812
Preprint. Discussion started: 9 October 2025
c© Author(s) 2025. CC BY 4.0 License.



9 
 

times per day. These flight patterns provided the opportunity for the airborne HSRL to observe the spatial and temporal 

variabilities in distributions of aerosol backscatter, aerosol extinction, and AOT over these cities. For the missions 240 
considered in the study, the HSRL systems were deployed from several different aircraft including the NASA King 

Air B200, G-III, G-V, and DC-8.   

The raster patterns flown over urban areas in many of these field missions have enabled these systems to acquire data 

coincident and collocated with surface PM2.5 and PM10 sensors thereby providing the opportunity to assess how well 

these surface concentrations can be inferred from airborne remote sensing measurements.  Hourly surface PM2.5 and 245 
PM10 data from the US EPA AirNow network (Environmental Protection Agency, 2017; Toth et al., 2022) as well as 

similar networks in South Korea, Taiwan, and Thailand were used to examine the relationships among surface PM2.5 

concentrations, AOT, and near-surface aerosol extinction. The PM measurements are acquired via several instruments 

that follow the Federal Reference Method (FRM; gravimetric analysis) and Federal Equivalent Method (FEM; taper 

element oscillating microbalance [TEOM] and beta gauge analyses, high volume sampler) regulations (Environmental 250 
Protection Agency, 1997; Noble et al., 2001). Uncertainties in EPA PM2.5 are summarized in (Toth et al., 2019); 

uncertainties in PM10 are described in (Pokhariyal et al., 2019). 

Figure 2 shows examples of HSRL-2 measurements over the New York City metropolitan region on July 26, 2023, 

when HSRL-2 was deployed on the NASA G-V aircraft. Figures 2a and 2d show that the vertical distribution of aerosol 

backscatter (532 nm) varied considerably between the morning and afternoon legs in this pattern. Figure 2a shows the 255 
highest aerosol backscatter was located within 100-200 m above the surface. In contrast, Figure 2d shows a large 

increase in aerosol backscattering between 1-1.5 km above the surface during the afternoon and the presence of small 

cumulus clouds at the top of the mixed layer. Figures 2b and 2e show near-surface aerosol extinction (~300 m thick 

layer) along this same flight leg for the morning and afternoon flight legs, respectively. Similarly, Figures 2c and 2f 

show AOT for the morning and afternoon legs. These figures illustrate that the spatial and temporal variations in AOT 260 
and near-surface aerosol extinction were different on this day.   

Figure 3a shows airborne HSRL measurements of AOT (532 nm) acquired within 10 kilometers and 15 minutes of the 

surface PM2.5 measurements in the urban regions shown in Figure 1. The overall lack of correlation between AOT and 

surface PM2.5 concentrations (correlation coefficient R~0) is most likely due to differences in the vertical distribution 

of aerosols among these locations. Elevated aerosol layers were present in all locations except the California Central 265 
Valley, where the AOT typically was concentrated in shallow layers near the surface.  These elevated aerosol layers 

impact AOT but not surface aerosol concentrations. This result highlights the difficulty in using column AOT from 

passive sensors to derive PM2.5 without accurate knowledge of the vertical distribution of aerosols (Toth et al., 2014; 

Toth et al., 2019).  

Various attempts have been made using boundary layer heights (Liu et al., 2005a; Al-Saadi et al., 2008; Chen et al., 270 
2017; Wang et al., 2019; Handschuh et al., 2022) or aerosol layer heights (Chu et al., 2013; Chu et al., 2015) in 

conjunction with AOT to improve estimates of surface PM2.5 Scaling the AOT by the MLH that was derived from 

the HSRL measurements (Scarino et al., 2014) did not significantly improve the overall correlation because in those 
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locations with elevated aerosol layers much of the AOT was located above the MLH. In contrast to Figure 3a, Figure 

3b shows a much better correlation between HSRL measurements of near-surface aerosol backscatter and surface 275 
PM2.5 concentrations for these same datasets. Near-surface aerosol backscatter represents aerosol backscatter between 

approximately 60 to 100 m above the surface.  For these airborne HSRL datasets, Figure 3b indicates that the 

measurements of near-surface aerosol backscatter are more directly related to surface PM2.5 concentrations than 

column AOT. 

 2.3 Machine Learning Regression Algorithms 280 

Based on the results shown in Figure 3b, we use airborne HSRL measurements of near-surface aerosol properties to 

retrieve surface PM2.5 and PM10.  For this study, we use ML regression algorithms to estimate PM2.5 and PM10 

concentrations and PM2.5/PM10 ratios using these airborne HSRL measurements. Unlike previous methods that have 

 

Figure 2. (a) aerosol backscatter profiles, (b) near-surface aerosol extinction, and (c) AOT measured by 
airborne HSRL-2 over New York City during the morning of July 26, 2023. (d-f) show the same during the 
afternoon. The dotted lines in (b), (c), (e), (f) show the location of the flight legs for the aerosol backscatter 
profiles shown in (a) and (d).  
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used airborne HSRL data to derive surface PM2.5 concentrations (Meskhidze et al., 2021; Sutherland et al., 2023; 

Sutherland and Meskhidze, 2025), this method does not require the HSRL qualitative inferences of aerosol type or 285 
aerosol chemical composition information provided by models.  We instead take advantage of the large database of 

coincident HSRL and surface PM2.5 measurements and machine learning methodology that has used statistical 

methods to infer surface PM2.5 from lidar (e.g. (Ma et al., 2021; Fang et al., 2021; Chen et al., 2022)) and passive 

sensors (e.g. (Lary et al., 2015; Lee et al., 2021; Wang et al., 2023)).  We use coincident airborne HSRL and surface 

hourly PM data collected during 193 flights conducted between 2010 and 2024 over major metropolitan regions in the 290 
United States (New York City, Houston, Chicago, Los Angeles, Washington D.C., Baltimore) and Asia (Taiwan, South 

Korea, Thailand) (recall Figure 1) to explore various machine learning regression models for deriving surface PM 

concentrations.   

We use hourly surface PM measurements from the surface networks described earlier to train machine learning 

algorithms to retrieve surface PM concentrations from the HSRL measurements.  We compute the average of HSRL 295 
measurements within 10 kilometers and 15 minutes of each surface network measurement.  The average aerosol 

backscatter and depolarization values are computed using data within 200 m of the surface and average aerosol 

 

 

Figure 3. Surface network measurements of PM2.5 over major metropolitan regions versus airborne HSRL 
measurements of a) AOT and b) near-surface aerosol backscatter. A linear bisector best fit line is shown in 
(b). 
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extinction values are computed using data within 400 m of the surface. The larger vertical distance is used for aerosol 

extinction because it has coarser vertical resolution and does not extend as close to the surface as aerosol backscatter 

and depolarization (recall Table 1).  Using the average of the near-surface HSRL measurements within these distance 300 
and time constraints rather than each individual HSRL measurement reduces the uncertainties in the HSRL data at 

each point and reduces number of points used in the training set. This reduction in the number of points consequently 

reduces the computer time required for subsequent ML regression computations. There are 2382 of these coincident 

HSRL-surface PM network sets of measurements; approximately 1900 (~80%) of these sets were randomly chosen to 

train the regression algorithms. The remaining sets are used to test these algorithms.  305 

We use Matlab regression learner software to explore a variety of various regression methods including linear, random 

forest, ensemble, neural network, Gaussian process, kernel, and support vector machine. This software enables the 

user to explore various optimization techniques for these various methods. A five-fold cross-validation method was 

used to protect against overfitting.  For each fold a model is trained using the out-of-fold observations, model 

performance is assessed using the in-fold data, and the average validation error is computed over all folds.  This 310 
provides a good estimate of the predictive accuracy of the full data set, which is used to train the final model. The 

remaining coincident measurements (~ 500 or 20%) that were withheld from the training and cross-validation were 

then used to test these algorithms.  

Exponential Gaussian Process Algorithms consistently give the best performance in terms of lowest root-mean-square 

errors and highest correlations than the other methods. Gaussian process regression (GPR) models are nonparametric, 315 
kernel-based probabilistic models based on the assumption that the function to be learned is drawn from a Gaussian 

process. The GPR  model uses Bayesian inference to learn the distribution that is most likely to have generated the 

data (Williams and Rasmussen, 2006)2. Gaussian process regression has the advantage of providing uncertainty 

estimates along with point predictions thereby providing a means to quantify the confidence in the predictions. A 

limitation is that Gaussian process regression can be computationally expensive, especially for large datasets3.  320 

We examined the performance of the exponential GPR models using various combinations of airborne HSRL 

measurements. Table 2 lists the variables used for each of these different regression models.  For example, Model 1 

uses only HSRL measurements of AOT (532 nm) whereas Model 11 used a combination of measured near-surface 

aerosol properties (backscatter, depolarization, lidar ratio) at three wavelengths. As shown in Table 2, most of the 

model regressions use only these airborne HSRL measurements, although a few of the models also included surface 325 
relative humidity provided by ERA5 hourly reanalyses4 (Hersbach et al., 2020); these reanalysis data are gridded to a 

 
2 see also  
https://apmonitor.com/pds/index.php/Main/GaussianProcessRegression#:~:text=Gaussian%20process%20regression
%20(GPR)%20uses,specified%20as%20a%20kernel%20object) 
3 https://medium.com/@pinakdatta/unlocking-the-power-of-gaussian-processes-theory-applications-and-insights-
081d0b6a0abc 
4 Copernicus Climate Change Service, Climate Data Store, (2023): ERA5 hourly data on single levels from 1940 to 
present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), DOI: 10.24381/cds.adbb2d47 
(Accessed on 19-Nov-2024) 
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regular latitude-longitude grid of 0.25 degrees. Since surface PM measurements refer to dry aerosol mass and HSRL 

aerosol measurements are made at ambient RH, relative humidity is added to these models to assess the impact of 

including surface relative humidity. 

330 
Figure 4 shows examples of the performance for deriving surface PM2.5 from various exponential GPR regression 

models that used airborne HSRL measurements when compared to surface network measurements of PM2.5. The plots 

in Figure 4 also show correlation coefficient, root-mean-square-error (RMSE) and mean absolute error (MAE). Recall 

that these results were derived using test data withheld from the training and cross-validation sets. As expected from 

the results shown in Figure 4, Model 1, which uses only AOT in the GPR ML regression model, performs poorly with 335 
a large RMSE error and a low correlation coefficient (Fig. 4a). The poor correlation between AOT and surface PM2.5 

concentrations (correlation coefficient (R)=0.37) is most likely due to differences in the vertical distribution of aerosols 

among these locations. Elevated aerosol layers, which were present in nearly all locations, impact AOT but not surface 

aerosol concentrations. This result again shows the difficulty in using column AOT from passive sensors to derive 

PM2.5 without accurate knowledge of the vertical distribution of aerosols. Scaling the AOT by the MLH provides some 340 
improvement to the overall correlation as shown by Model 2 in Figure 4b; however, the performance is not optimal 

because in those locations with elevated aerosol layers much of the AOT was located above the MLH.  In contrast, 

 
 

Table 2. Parameters used in the various exponential GPR ML models.  

Parameter 
Model 

1 2 3 4 5 6 7 8 9 10 11 12 

AOT (532 nm) X X     X X             

Mixed Layer Height   X                     

Aerosol Backscatter (532 nm)     X       X   X   X   

Aerosol Extinction (532 nm)       X X X   X   X     

Aerosol Depolarization (532 nm)         X X X X X X X   

Lidar Ratio (532 nm)             X X X X X   
Backscatter Color Ratio 

(532/1064 nm)             X X X X X   

Ratio of Aerosol Depolarization 
(532/1064 nm)             X X X X X   

Aerosol Backscatter (355 nm)                       X 

Aerosol Extinction (355 nm)                       X 

Aerosol Depolarization (355 nm)                       X 

Lidar Ratio (355 nm)                     X X 

Backscatter Color Ratio (355/532 
nm)                     X   

Ratio of Aerosol Depolarization 
(355/532 nm)                     X   

Relative Humidity (from ERA5 
model)           X     X X     
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model 3 (Figure 4c) performs significantly better highlighting the benefit of using near-surface aerosol backscatter to 

infer surface PM2.5.  These near surface lidar measurements of aerosol backscatter were acquired within about 200 m 

of the surface.  The best retrieval performance (i.e., small RMSE and high R) is provided by Model 11 (Figure 4d), 345 
which uses near-surface measurements of aerosol backscatter, aerosol backscatter color ratios (i.e., ratio of aerosol 

backscatter at 532 nm to that at 1064 nm and the ratio of aerosol backscatter between 355 and 532 nm), aerosol lidar 

ratios (355, 532 nm), aerosol depolarization (532 nm), and spectral ratios of aerosol depolarization at 532 nm to that 

at 1064 nm and at 355 nm to 532 nm. The RMSE (3.79 µg m-3) and correlation coefficient (0.84) are considerably 

better than those from previous studies that used airborne HSRL data in conjunction with models (Meskhidze et al., 350 
2021; Sutherland et al., 2023; Sutherland and Meskhidze, 2025).  

The performance of the several exponential GPR models listed in Table 2 that use various combinations of HSRL 

measurements for retrieving surface PM2.5 is shown in Figure 5. These results are derived using test data excluded 

from the training and cross-validation sets. Retrieval performance is shown as a function of RMSE and MSE (left 

axis) and correlation coefficient (right axis). Models 7, 9, 11, and 12, which use some combination of near-surface 355 
aerosol backscatter and the aerosol intensive parameters, have the best performance with RMSE generally around 

5.4 µg m-3 or less and correlation coefficients above 0.8.  Performance using only near-surface aerosol backscatter 

(532 nm) (Model 3) or only near-surface aerosol extinction (Model 4) is generally better than using AOT and MLH 

           

 

Figure 4. Machine learning exponential Gaussian regression model predictions of surface PM2.5 using 
airborne HSRL data versus surface network measurements of PM2.5 over the major metropolitan regions 
shown in the legends in Figure 3. The regression models use various airborne HSRL measurements 
including a) AOT (532 nm), b) AOT (532 nm) and MLH, c) AOT (532 nm), MLH, and near-surface aerosol 
backscatter (532 nm), and d) near-surface aerosol backscatter (532 nm), backscatter color ratio (532/1064 
nm), lidar ratio (532 nm), aerosol depolarization (532 nm), and ratio of aerosol depolarizations (532/1064 
nm). These results were derived using test data excluded from the training sets.  
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(Models 1 and 2). Note also that performance is generally better when using near-surface aerosol backscatter alone 

(e.g., Model 3) than using near-surface aerosol extinction alone (Model 4). There are (at least) two possible reasons 360 
for this.  First, aerosol extinction profiles generally have vertical resolutions of between 150-300 meters. To avoid 

contamination from the surface return, the lowest aerosol extinction value is restricted to be generally 200-350 meters 

above the surface. In contrast, the near-surface aerosol backscatter can be derived considerably lower, generally around 

60-100 m above the surface, and so will likely be better correlated to surface measurements.  Second, HSRL 

measurements of aerosol backscatter are computed from the ratio of the total (aerosol+molecular) signal to the 365 
molecular signal, in contrast to the measurements of aerosol extinction, which are computed from the derivative of 

the molecular signal (Hair et al., 2008). Computing this derivative leads to more uncertainty than computing the ratio; 

hence the near-surface aerosol backscatter is less noisy and has generally smaller uncertainties than near-surface 

aerosol extinction.  

Figure 5 shows that performance improves with Models 5 and higher that include aerosol intensive parameters such 370 
as aerosol depolarization, lidar ratio, backscatter color ratio, and spectral depolarization ratio.  These intensive 

parameters provide information regarding aerosol composition, shape, and size that improves retrievals of surface 

PM2.5. With the addition of these variables, the differences between models using near-surface aerosol backscatter and 

near-surface aerosol extinction are smaller, i.e., Models 7 vs. 8 and Models 9 vs. 10 have somewhat similar 

performance. Note that the retrieval performance of Model 11 is about the same as Models 7-10 which indicates that 375 
the addition of airborne HSRL aerosol measurements at 355 nm did not significantly improve the PM2.5 predictive 

performance.  This important result indicates that aerosol measurements at 532 nm and 1064 nm provided by the 

airborne HSRL systems that do not include HSRL measurements at 355 nm (i.e., HSRL-1, DIAL/HSRL, and HALO) 

can be still used to retrieve surface PM2.5 with the essentially the same retrieval performance as the measurements 

 

Figure 5. Performance of exponential Gaussian machine learning regression models listed in 
Table 2 in deriving surface PM2.5 as measured by RMS and MAE (left axis) and correlation 
coefficient right axis (right axis) relative to surface PM2.5 measurements.  Performance metrics 
were derived using data withheld from the training and validation datasets.   
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made by the airborne HSRL-2 system, which includes measurements at 355 nm as well as 532 and 1064 nm. 380 
Conversely, note also that the performance of Model 12 is also very similar to that of Models 7-11, which indicates 

that HSRL measurements of aerosol backscatter, extinction, and depolarization at a single UV wavelength (355 nm) 

can also be used to retrieve surface PM2.5.  This suggests that lidar systems such as the Atmospheric Lidar (ATLID) 

on the EarthCARE satellite that operate exclusively at 355 nm can use this methodology to retrieve surface PM2.5.  

Except for relative humidity (RH), the model input parameters shown in Table 2 use only airborne HSRL aerosol 385 
measurements. Variability in airborne HSRL measurements of near-surface aerosol backscatter and extinction may be 

due to changes in RH in addition to or instead of changes in dry aerosol mass thereby complicating efforts to use these 

lidar measurements to retrieve PM2.5.  Therefore, surface RH at the PM2.5 stations as represented by the ERA5 model 

is included in Models 6, 9, and 10.  Comparing the performance of Models 5 vs. 6, 7 vs. 9, and 8 vs. 10 as shown in 

Figure 5 indicates that surface RH provides very little improvement to retrievals of surface PM2.5 values.  One possible 390 
reason for this lack of sensitivity is that few (<10%) of the surface RH values for these data were above 70% where 

increases in aerosol scattering due to hygroscopic growth of the particles are more pronounced.   Another reason is 

that the impact of higher RH is already captured by the behavior of the intensive aerosol parameters measured the 

airborne HSRL systems.  Airborne HSRL measurements of aerosol intensive parameters used in these PM2.5 retrievals 

have also been used to retrieve fine mode aerosol number, surface, and volume concentrations and effective radius 395 
(Sawamura et al., 2017; Müller et al., 2014; Harshvardhan et al., 2022), real and imaginary refractive index (Wang et 

al., 2022), aerosol absorption (Redemann and Gao, 2024), aerosol single scattering albedo (Wang et al., 2022), and 

aerosol shape (Burton et al., 2015; Ferrare et al., 2023). Thus, to the extent that aerosol size, shape, and composition 

are impacted by changes in RH, the HSRL aerosol intensive properties also respond to and can indicate such changes. 

For example, aerosol depolarization often decreases with increased RH as particles take on water and become more 400 
spherical (Ferrare et al., 2021). Also, changes in particle size due to hygroscopic growth are also indicated by changes 

in the backscatter color ratio (Su et al., 2008; Burton et al., 2015).   

The performance of these exponential GPR models for retrieving PM10 and the ratio of PM2.5/PM10 for the various 

combinations of airborne HSRL aerosol measurements is shown in Figure 6.  The overall predictive performance of 

PM10 and PM2.5/PM10 ratio is somewhat smaller than the performance for PM2.5. This decrease in performance is likely 405 
because typically fine mode aerosols constitute a major part of the aerosol volume; in such cases, accumulation mode 

aerosols (i.e., PM2.5 size particles) contribute a larger portion to the total backscatter at the HSRL wavelengths than 

particles in the coarse mode (i.e. PM10 size particles) (e.g. (Müller and Quenzel, 1985; Veselovskii et al., 2004)).  

Measurements of near-surface aerosol backscatter and near-surface aerosol extinction alone are not particularly useful 

for retrieving PM10 (Fig. 6a) and have poor skill in retrieving the PM2.5/PM10 ratio (Fig. 6b).  In both cases, 410 
performance significantly improves with the addition of aerosol depolarization and, to a lesser extent, other aerosol 

intensive parameters such as backscatter color ratio. High values of aerosol depolarization are associated with 

nonspherical particles; dust particles in particular have high aerosol depolarization values (Burton et al., 2012).  

Nonspherical dust is one of the main types of coarse mode particles, so aerosol depolarization is a particularly useful 

measurement to indicate the presence of coarse mode particles and for retrieving PM10 and the PM2.5/PM10 ratio.  415 
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Figure 6 shows that the addition of other aerosol intensive parameters such as backscatter color ratio and spectral 

depolarization ratio provided only marginal improvement when retrieving PM10 and the PM2.5/PM10 ratio. 

Figure 7 shows the importance and relationship of the various parameters to retrievals of PM2.5, PM10, and the 

PM2.5/PM10 ratio as represented by Shapley scores for Model 9.  Shapley values show the relative average impact of 

each variable on the retrieval5 and so identify which variables have the largest or smallest average impact on retrieved 420 
values5. Figures 7a, 7b, and 7c show the mean of the absolute Shapley values for each variable and thus show a 

measure of each variable’s importance for model retrievals. Figures 7d, 7e, and 7f show summaries of the Shapley 

values for each query point according to its retrieval value. The Shapley value of a variable for a particular point 

explains the deviation of the retrieval for that point from the average retrieval, due to the variable. The sign of the 

Shapley value indicates the direction of this deviation, and the absolute value indicates its magnitude. Shapley values 425 

 
5 See https://www.statcan.gc.ca/en/data-science/network/explainable-learning and  
5 https://www.mathworks.com/help/releases/R2025a/stats/explain-model-predictions-for-regression-models-
trained-in-regression-learner-app.html#mw_9aa6a89c-835c-47fc-b1ec-68ce31e14505 
 

 

 

Figure 6. Same as Figure 5 except showing performance for deriving (a) PM10 and (b) PM2.5 /PM10.  
Performance metrics were derived using data withheld from the training and validation datasets.   
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near zero indicate that the variable has a minimal impact on the model retrievals for that query point. High Shapley 

values (orange and red) such as for aerosol backscatter (532 nm) in Figures 7d and 7e indicate that high aerosol 

backscatter values correspond to a larger retrieved surface PM2.5 and PM10 values.  Conversely, lower backscatter 

values (blue) correspond to lower retrieved surface PM2.5 and PM10 values.   Note how the Shapley values for aerosol 

 

Figure 7. Mean of absolute Shapley values for a) PM2.5, b) PM10, and c) PM2.5/PM10. These values 
identify which predictors have the largest or smallest average impact on predicted response values. 
Summaries of the Shapley values according to its predictor value for d) PM2.5, e) PM10, and f) 
PM2.5/PM10. The Shapley value of a variable for a particular point explains the deviation of the 
prediction for that point from the average prediction, due to the predictor. The sign of the Shapley 
value indicates the direction of this deviation, and the absolute value indicates its magnitude. 
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depolarization (532 nm) differ in behavior for retrievals of PM2.5 and PM2.5/PM10 ratio vs. PM10. High values of aerosol 430 
depolarization that are associated with nonspherical coarse mode dust particles correspond to lower retrieved values 

of PM2.5 (and lower PM2.5/PM10 ratio) but higher retrieved values of PM10. These figures again show how aerosol 

backscatter (532 nm) dominates the retrievals of PM2.5 and the increasing contribution of aerosol depolarization and 

other intensive parameters for retrievals of PM10.  Since the PM2.5/PM10 ratio is an aerosol intensive parameter 

providing a measure of aerosol size, aerosol intensive parameters such as aerosol depolarization and backscatter color 435 
ratio have a greater impact on this ratio than an extensive parameter such as aerosol backscatter. This figure also shows 

the relatively small impact of relative humidity on retrievals of PM2.5 and the negligible impact on predictions of PM10 

and PM2.5/PM10. 

It is important to note that these GPR model results for PM2.5, PM10, and PM2.5/PM10 apply to the ranges of PM2.5, 

PM10, and PM2.5/PM10 present in the training set.  These ranges were: 2-80 µg m-3 for PM2.5, 5-110 µg m-3 for PM10, 440 

and 0.01-0.98 for PM2.5/PM10. The ranges of HSRL aerosol measurements in these training sets were:   

0.1-12 (Mm-sr)-1 for aerosol backscatter (532 nm), 5-500 Mm-1 for aerosol extinction (532 nm), 0.01-0.3 (1-30%) for 

aerosol depolarization (532 nm), 15-80 sr for the lidar ratio (532 nm), and 0.05-4 for the aerosol backscatter color 

ratio (532 m/1064 nm). The specific training set used here would be suitable for retrieving PM estimates for PM values 

and HSRL aerosol measurements in these ranges but would not be suitable for retrieving PM significantly higher than 445 
the maximum values listed above.  Based on additional tests we conducted, in such cases of high PM concentrations 

the current training set likely would lead to underestimates in the retrieved PM values. However, if additional HSRL 

aerosol measurements and coincident surface PM measurements associated with higher PM values become available, 

a revised training set using those measurements could be readily developed for determining revised GPR models that 

could then be used for such PM retrievals.    450 

3 Results 

3.1 STAQS and ASIA-AQ missions 

We demonstrate the use of this ML methodology to retrieve surface PM2.5 values using airborne HSRL-2 data collected 

during the NASA Synergistic TEMPO Air Quality Science (STAQS)6 and Airborne-Satellite Investigation of Asian 

Air Quality (ASIA-AQ)7 missions. The STAQS mission was conducted to integrate Tropospheric Emissions: 455 
Monitoring of Pollution (TEMPO) satellite observations with traditional and enhanced air quality monitoring to 

improve the understanding of air quality science for increased societal benefit (Judd et al., 2022). STAQS objectives 

include the evaluation of TEMPO retrievals of trace gases and assessments of benefits of assimilating TEMPO data 

into chemical transport models. STAQS conducted flights over major metropolitan areas in the United States during 

July and August 2023 including Los Angeles, Chicago, and New York City.  During the STAQS mission HSRL-2 was 460 
deployed on the NASA JSC G-V aircraft which flew raster patterns from an altitude of about 9 km over these cities. 

 
6 https://www-air.larc.nasa.gov/missions/staqs/  
7 https://www-air.larc.nasa.gov/missions/ASIA-AQ/  
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Each raster pattern had about 10 legs with each leg separated by about 8 km.  Each leg was about 140 km long and 

took about 12 minutes to complete so the entire raster pattern took around 2 to 2.5 hours.  During each eight-hour 

flight, the G-V typically flew three raster patterns which allowed HSRL-2 to measure profiles of aerosols and ozone 

and derive PM concentrations along these raster patterns during the morning, mid-day, and afternoon.  465 

The overarching goals of ASIA-AQ are to improve: 1) the integration of satellite observations with existing air quality 

ground monitoring and modeling efforts across Asia, 2) the understanding of the factors controlling local air quality 

across Asia. Specific goals involved measurements relating to: satellite validation and interpretation, emissions 

quantification and verification, model evaluation, aerosol chemistry, and ozone chemistry (Crawford et al., 2022).  

ASIA-AQ conducted airborne sampling across multiple locations during February and March 2024 with flights over 470 
Manila (Philippines), Taiwan, Seoul (South Korea), and Bangkok (Thailand).  NASA deployed two aircraft for ASIA-

AQ: 1) the LaRC G-III aircraft with HSRL-2 to measure profiles of aerosols and ozone and the GEO-CAPE Airborne 

Simulator (GCAS) instrument to measure column densities of nitrogen dioxide and formaldehyde, and 2) the DC-8 

aircraft with a suite of in situ instruments to measure trace gas and aerosol composition. During ASIA-AQ the G-III 

flew at about 9 km in raster patterns over each metropolitan region.  These raster patterns were like those flown during 475 
STAQS except that the shorter endurance of the G-III required two separate flights to achieve three raster patterns; 

two raster patterns were completed during the first flight and another raster pattern was completed during the second 

flight. Because of the longer transit times, only single raster patterns were flown over Taiwan on each of the four days.  

Measurements of aerosol size, composition, scattering and absorption coefficients were acquired by in situ instruments 

on the DC-8 during ASIA-AQ. Sub-micrometer non-refractory aerosol chemical composition (sulfate, nitrate, 480 
ammonium, organics, and chlorine) was measured by a High-Resolution Time-of-Flight Aerosol Mass Spectrometer 

(HR-ToF-AMS) manufactured by Aerodyne Research (Guo et al., 2021; Kim et al., 2025). A Single Particle Soot 

Photometer (SP2) measured sub-micrometer refractory black carbon mass. A TSI nephelometer (Model 3563) 

measured sub-micrometer aerosol scattering coefficients and a particle soot absorption photometer (PSAP, Radiance 

Research, Inc.) measured sub-micrometer aerosol absorption coefficients. Aerosol dry size distributions between 3 485 
and 100 nm (diameter) were measured by a TSI, Inc. Scanning Mobility Particle Sizer (SMPS, Differential Mobility 

Analyzer model 3085) (Moore et al., 2017); a Droplet Measurement Technologies Ultra-High Sensitivity Aerosol 

Spectrometer (UHSAS) measured dry aerosol size distributions between 100 and 1,000 nm (diameter) (Moore et al., 

2021) and Aerodynamic Particle Sizer (APS, TSI model 3321) provided measurements between about 1,000 and 

3,000 nm.   490 

Dry PM2.5 concentrations and fine mode Mass Extinction Efficiency (MEEf) are derived from these DC-8 

measurements in the following manner. Size distributions from the SMPS, UHSAS, and APS are converted to 

geometric diameter and then stitched together following (Soloff et al., 2024) to derive the volume concentration for 

particle diameters less than 2.5 μm. Then, bulk fine mode non-refractory aerosol density is estimated from HR-ToF-

AMS and SP2 black carbon measurements (Saide et al., 2022) by means of mass weighting and then used to derive 495 
dry PM2.5 mass concentrations. Additional details on the density computations are provided by (Salcedo et al., 2006; 
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Kuwata et al., 2012). These estimates of PM2.5 concentrations are quality assured by removing them whenever the 

HR-ToF-AMS+SP2 aerosol mass measurements are not existent (i.e., cloud contaminated) or when these estimates of 

PM2.5 concentrations derived from the size distribution are at least three times larger than those derived from the HR-

ToF-AMS+SP2 mass.  In-situ dry aerosol extinction at 532 nm is derived from the measurements of aerosol scattering 500 
and absorption (Ziemba et al., 2013a). Finally, dry MEEf is derived from the ratio of extinction and PM2.5. 

3.2 PM2.5, PM10, and PM2.5/PM10 retrievals 

Figure 8 shows examples of retrievals of surface PM2.5, PM10, and PM2.5/PM10 derived over the New York City (NYC) 

metropolitan region on July 26, 2023, during the STAQS mission. HSRL-2 was deployed from the NASA G-V aircraft 

which flew this raster pattern three times during an approximate eight-hour flight over the NYC region. These values 505 
were derived using the Model 11 regression. The HSRL-2 surface PM retrievals show extensive temporal and spatial 

variability. Note how the location of the highest surface PM2.5 varies during the day between eastern Long Island and 

central New York City. Interestingly, high surface PM2.5 was derived over Long Island Sound during the morning.  

Corresponding surface values measured by EPA surface stations are also shown; these measurements were acquired 

 

Figure 8. (a) Surface PM2.5, (b) PM10, and (c) PM2.5/PM10 derived from airborne HSRL-2 data acquired 
over New York City during the morning of July 26, 2023. (d-f) show the same during the afternoon.  
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using instruments as per the Federal Reference Method (FRM; gravimetric analysis) and Federal Equivalent Method 510 
(FEM; taper element oscillating microbalance [TEOM] and beta gauge analyses) regulations (Register, 2006; 

Greenstone, 2002).  This figure shows that the HSRL-2 retrievals provide considerable additional spatial and vertical 

information unavailable from the surface sensors.  

Figure 9 shows examples of surface PM2.5 derived from HSRL-2 measurements acquired over South Korea, Taiwan, 

and Thailand during ASIA-AQ.  The left panels (Figures 9a, 9b, 9c) show the spatial distribution of PM2.5 during each 515 

 

Figure 9. Surface PM2.5 derived from airborne HSRL-2 measurements acquired during raster 
patterns over South Korea (a), Taiwan (b), and Thailand (c).  The colored triangles also show surface 
PM2.5 values measured by surfaced stations during the HSRL-2 measurements.  Corresponding 
plots showing surface PM2.5 derived from airborne HSRL-2 measurements and measured by surface 
stations as a function of time (UT) during these flights are also shown in (d-f).   
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of these flights. Also shown are average surface network PM2.5 measurements during the raster. Figures 10 and 11 

show HSRL-2 retrievals of PM10 and PM2.5/PM10 and corresponding surface PM measurements for these regions. The 

HSRL-2 retrievals of surface PM2.5 show considerable spatial variability in surface PM2.5 over these sites.  Figures 9a 

and 10 shows highest surface PM2.5 and PM10 values occurred over Seoul with lower concentrations over rural areas 

southeast of Seoul. Figure 11a shows that the highest values of PM2.5/PM10 ratio corresponding to smaller particles 520 
also occurred over this urban region of Seoul. Figures 9b, 10b, 11b show higher PM2.5 and PM10 concentrations and 

 

Figure 10. Same as Figure 9 except for surface PM10.  
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higher PM2.5/ PM10 values in the urban areas between Tainan and Kaohsiung on the southwestern coast of Taiwan.  

Figures 9c, 10c, 11c show highest concentrations of surface PM2.5 and PM10 occurred slightly to the northwest and 

southeast of Bangkok with lower concentrations over the Gulf of Thailand south of Bangkok.  Figures 9d, 9e, 9f show 

the HSRL-2 retrievals of surface PM2.5 during these raster patterns along with the averages of surface PM2.5 525 
measurements within 15 minutes and 10 kilometers of the HSRL-2 measurements.  These also show examples of the 

variability in surface PM2.5 over these urban regions. These figures also show that the HSRL-2 surface PM2.5 retrievals 

 

     Figure 11. Same as Figure 9 except for surface PM2.5/PM10.   
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and the surface PM2.5 measurements acquired over these regions were in good agreement. Figures 10d, 10e, 10f show 

corresponding HSRL-2 retrievals of surface PM10 and PM2.5/PM10 during these raster patterns.  

3.3 PM comparisons and sensitivity studies 530 

Overall comparisons of the HSRL-2 surface PM2.5 retrievals and the surface PM2.5 measurements for all HSRL-2 

surface PM2.5 retrievals during the STAQS and ASIA-AQ missions are shown in Figures 12 and Figure 13, 

respectively. Note that these figures show surface PM2.5 derived from each HSRL measurement within 10 km and 15 

 

 

 

Figure 12. Regression (a) and histogram (b) comparisons of surface PM2.5 derived from airborne HSRL-2 
measurements and measured by surface stations during the NASA STAQS mission (2023).  STAQS data 
were included in the training set. (c) and (d) are the same except using a model that used the same 
parameters and a training set that excluded data from the STAQS mission. 
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minutes of a single surface network PM2.5 measurement rather than PM2.5 derived from the average of all HSRL 

measurements within this same distance and time requirement; consequently, there are many more points that are used 535 
for these comparisons than were used in the training set (i.e., Figure 4). Mean absolute error (MAE) and root-mean-

square-error (RMSE) differences between the HSRL-2 surface PM2.5 retrievals and the surface PM2.5 measurements 

are shown along with linear bisector slope, intercept, and correlation coefficient in each case.  

Figures 12a and 12b show results from the STAQS mission retrieved from Model 11 that used the training set that 

included data from the STAQS mission.  Approximately 12% of the data used in the training set were from the STAQ 540 
mission; the remaining training set data are from other field missions including ASIA-AQ. Figures 12c and 12d show 

results from Model 11 that used a different training set that excluded data from the STAQS mission. Thus, the results 

shown in Figures 12c and 12d provide an example of the use of a training set as applied to a new set of measurements.  

Comparing the retrieval results between the top and bottom panels in Figure 12 shows that excluding STAQS data 

from the training set did not affect the retrieval performance when applied to the STAQS data. This indicates that the 545 
relationships among the HSRL aerosol measurements and the surface PM2.5 concentrations and the range of PM2.5 

concentrations observed during STAQS was not appreciably different from those observed during the other missions. 

Figures 13a and 13b show similar results from the ASIA-AQ mission using Model 11 and the training set that included 

data from the ASIA-AQ mission; Figures 13c and 13d show results from Model 11 that used another training set that 

excluded data from the ASIA-AQ mission. Since nearly half (48%) of the data used in the original training set were 550 
from the ASIA-AQ mission, this represents a more extreme test than the exclusion of STAQS training set data 

discussed above. Note that ASIA-AQ contributed this much larger fraction of data to the training set due to the higher 

density of surface network ground stations in these locations (e.g. Seoul, South Korea; Taiwan in particular) as 

compared surface station density to the United States. This test may be somewhat unrealistic, but it does provide an 

interesting and drastic case where the method is applied to large amount of new data that have not been included in 555 
the training set.  Such a case may arise when there are no coincident surface network PM measurements available to 

add to the training set. Comparing the results between the top and bottom panels in Figure 13 shows that excluding 

ASIA-AQ data from the training set produced only a modest degradation in retrieval performance. Given that ASIA-

AQ contributed a large fraction of the data to the training set, this result shows that the methodology is relatively 

insensitive to changes in the size of the training set assuming that the remaining training data still adequately reflect 560 
the relationships among the HSRL aerosol measurements and the surface PM2.5 concentrations.  However, when 

confronted with a large amount of new data, we recommend, if possible, to include some of these new measurements 

as additional training data for optimal retrieval performance.   
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We also compared PM2.5 derived from the HSRL-2 data acquired during the ASIA-AQ mission with PM2.5 derived 

from the DC-8 in situ instruments as described in section 3.1. Recall PM2.5 was retrieved from the DC-8 measurements 565 
using particle size distributions measured by the SMPS, UHSAS, and APS instruments and particle density measured 

by the AMS and SP2 instruments.  In addition to providing another independent comparison of PM2.5, this exercise 

provides a way to examine HSRL-2 retrievals of PM2.5 aloft as well as near the surface. The HSRL-2 retrievals of 

PM2.5 aloft used for this comparison are determined in the same manner as the near-surface values such that the profiles 

of aerosol backscatter, depolarization, lidar ratio, etc. measured by HSRL-2 are used in the same ML regression 570 
algorithm that is used to derive near-surface PM2.5. PM2.5 retrieved from DC-8 at one-second frequency was matched 

 

 

Figure 13. Same as Figure 12 except for the Asia-AQ mission; a) and b) correspond to results where 
Asia-AQ data were included in the training set and c) and d) correspond to results where Asia-AQ data 
were not included in the training set.   
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to HSRL-2 measurements that were within 5 km horizontally and 30 minutes using software previously developed for 

this purpose (Schlosser et al., 2024). Since HSRL-2 provides vertically resolved measurements, the closest retrieval 

to the DC-8 altitude was used for each profile. We then examined results after aggregating to one-minute averages of 

the matched data. Figure 14 shows that the HSRL and DC-8 in situ PM2.5 retrievals aloft are in good agreement with 575 
correlations and MAE and RMS differences that are comparable to those found when comparing the HSRL retrievals 

of surface PM2.5 to PM2.5 measured by the surface network instruments.  

Overall comparisons of HSRL-2 surface PM10 and PM2.5/PM10 retrievals and corresponding surface measurements 

during the ASIA-AQ mission are shown in Figure 15. These show results when the data from ASIA-AQ were included 

in the training sets. Consistent with Figures 5 and 6, retrieval performance for PM10 as indicated by the correlation 580 
coefficient and slope is slightly reduced as compared to PM2.5 (Figure 15a vs. Figure 13a). For typical aerosol size 

distributions, fine mode particles have a greater impact on the HSRL measurements of aerosol optical properties, 

particularly 355 nm and 532 nm, than coarse mode particles (Müller and Quenzel, 1985; Veselovskii et al., 2004). 

Figures 15c and 15d show that HSRL-2 retrievals of PM2.5/PM10 agree well with surface measurements of PM2.5/PM10 

ratio for most of the range of PM2.5/PM10 values with correlation coefficient of 0.82 and slope near unity.  HSRL-2 585 
retrievals of PM2.5/PM10 ratio do not exceed about 0.85 and so do not capture the small number of high (>0.8) 

PM2.5/PM10 ratios measured by the ground stations.  This is likely due to the small number of such values in the training 

set used to derive PM2.5/PM10 ratio from the HSRL data.   

 

Figure 14. Comparison of PM2.5 derived from ML regression algorithms using HSRL-2 data (x axis) 
vs. PM2.5 derived from DC-8 in situ instruments (y-axis) during the ASIA-AQ mission. Results are 
color-coded by altitude.   The solid line represents a least-squares bisector fit and the dashed line 
represents the 1:1 line.   Error bars represent the two standard deviations derived from the one-
minute averages. 
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3.4 PM2.5 and Aerosol Type 

Airborne HSRL-2 retrievals of PM2.5 and inferences of aerosol type provide the means to estimate how various aerosol 590 
types contribute to PM2.5 concentrations. We use a classification algorithm to interpret the information about aerosol 

physical properties as indicated by the HSRL-2 aerosol intensive parameters. We perform this aerosol type 

classification empirically using HSRL measurements of aerosol intensive quantities for which the dependence on the 

aerosol amount has been ratioed out, such as the depolarization ratio (which is a ratio of channels sensitive to different 

 

 

Figure 15. Regression (a) and histogram (b) comparisons of surface PM10 derived from airborne HSRL-
2 measurements and measured by surface stations during the NASA Asia-AQ mission. (c) and (d) are 
the same except for the ratio PM2.5/PM10. 
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polarizations); lidar ratio (the ratio of the extinction-to-backscatter); or “color ratio” of backscatter (the ratio of 595 
backscatter at two different wavelengths, closely related to the Angstrom exponent).  

The classification method used here is an update on the method (Burton et al., 2012) which has been used extensively 

for classification of LaRC airborne HSRL data. The updated version of this algorithm adds the aerosol types “Non-

spherical smoke” (Burton et al., 2015) and “Dry maritime” (Ferrare et al., 2023), and it drops the types “Polluted 

Maritime” and “Fresh Smoke” which subsequent use has shown are often not well separable from other types; it also 600 
drops the “Ice” type which was used as a way of filtering observations of fine ice particles observed during a particular 

Arctic field mission.  Information about the aerosol type is embedded in aerosol intensive parameters including the 

532 nm lidar ratio and the particulate depolarization at 532 and 1064 nm. In contrast to the original version, the updated 

algorithm also uses measurements of particulate depolarization and lidar ratio at 355 nm.  There are sixteen additional 

training cases, comprising four each for smoke and pollution cases from both North America and Asia, three dry 605 
maritime cases, two each maritime and pure dust cases, and a non-spherical smoke case.   

The original methodology was a supervised learning method that used training samples to create four-dimensional 

Gaussian covariance models of known aerosol types.  The distance metric between a multi-dimensional point and 

multi-dimensional covariance matrix is the Mahalanobis distance, which gives scores or probabilities for the point 

being associated with the model.  The updated classification algorithm uses a combination of this methodology with 610 
a decision tree.  Specifically, a decision tree with specific thresholds on single variables splits the data into “branches” 

with one or two aerosol types. Where there are multiple similar aerosol types on a branch, a two-dimensional Gaussian 

covariance model is used as in the original method (Burton et al., 2012).  Limiting the need for covariance models to 

two types and two variables simplifies the need for training data for each type. An additional advantage of the updated 

method is that a decision tree avoids non-intuitive mappings of the space such as enclaves.  A Gaussian model with 615 
large variability in one or more dimensions can act as a sink for noisy observations of all types, even fully surrounding 

a tighter class that has less variability. A decision tree avoids this problem while also preserving the ability to handle 

complicated boundaries between similar types in more than one dimension at a time, within the branches of the 

decision tree. 

Figure 16 shows the distribution of PM2.5 associated with various major aerosol types (i.e., smoke, urban, dust, marine) 620 
as identified by the updated HSRL aerosol classification method for HSRL-2 data acquired during the ASIA-AQ 

mission. Shown are PM2.5 values derived during raster patterns over the four main locations of the Asia AQ flights. 

The results are divided in two altitude regions, 0-1 and 1-4 km, to provide some indication of how the contribution to 

PM2.5 by aerosol type varies with altitude. These results show that, excluding South Korea, dust generally contributed 

little to PM2.5. Dust has often been observed in lidar measurements over Korea, so it is not surprising that dust is a 625 
significant contributor to PM2.5 in the HSRL-2 retrievals in this location. The optical properties of Asian dust over 

Korea have been found to vary depending on the altitude of the dust during transport over China. Dust that has crossed 

highly polluted regions of China at low altitudes are more likely to have been influenced by anthropogenic pollution 

(Shin et al., 2015).   
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As PM2.5 increased over South Korea, urban (pollution) aerosols became more dominant below 1 km.  This trend for 630 
urban aerosol to be the largest contributor as PM2.5 increased, particularly below 1 km, is common to all four urban 

areas. Marine (sea salt) aerosol generally contributes little to PM2.5 except for the Philippines and, in some cases, over 

Taiwan. Note that a significant portion of the raster patterns flown by the G-III aircraft during the Philippines portion 

of ASIA-AQ occurred over Manila Bay. Figure 16d shows that urban aerosol and smoke were the major contributors 

to PM2.5 over Bangkok. The HSRL-2 results show that in the lowest kilometer urban aerosol was a larger contributor 635 
to PM2.5 than smoke; in contrast, above 1 km, smoke more often contributed to PM2.5 except in cases of higher PM2.5.   

A somewhat similar pattern was found over Taiwan with urban aerosol the major contributor below 1 km and a 

combination of smoke and urban aerosol above 1 km.  

3.5 Aerosol Type and Mass Extinction Efficiency 

The aerosol mass extinction efficiency (MEE) is an important parameter for translating between aerosol optical 640 
properties and aerosol mass and, therefore, is crucial for modeling aerosol transport, air quality, and radiative impacts 

on climate (Kahn, 2012; Kahn et al., 2017; Gliß et al., 2021; Kahn et al., 2023). Because considerable uncertainty 

 

 

Figure 16. Distribution of PM2.5 associated with various major aerosol types as identified by the HSRL aerosol 
classification method for data acquired during the Asia-AQ campaign. Results are shown for data acquired 
over the (a) Philippines, (b) South Korea, (c) Taiwan, and (d) Thailand.  
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exists among models regarding appropriate values associated with different aerosol types (Gliß et al., 2021), various 

efforts have been proposed to obtain measurements to derive MEE (Kahn et al., 2017).  We use HSRL measurements 

of near surface extinction and retrievals of surface PM2.5 and PM10 concentrations to obtain estimates of MEE 645 
corresponding to the HSRL aerosol types.  

An estimate of dry aerosol fine mode MEE, MEEf, can be obtained from the following equation  

𝑀𝑀𝑀𝑀𝑀𝑀𝑓𝑓 =  𝜎𝜎𝑎𝑎
𝑓𝑓(𝑅𝑅𝑅𝑅)∗𝑃𝑃𝑃𝑃2.5
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𝑓𝑓(𝑅𝑅𝑅𝑅)∗𝑃𝑃𝑃𝑃2.5
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where σa represents the HSRL near-surface measurement of aerosol extinction (532 nm), PM2.5 and PM10 represent 

the near-surface retrievals of PM described earlier, MEEc represents the mass extinction efficiency of coarse mode 650 
aerosols, f(RH) is the humidification factor which represents the increase in scattering associated with hygroscopic 

growth of hygroscopic aerosols, and FMF is the fine mode fraction.  We assume that RH has little impact on aerosol 

absorption (Nessler et al., 2005; Lynch et al., 2016).  The humidification factor is required because HSRL 

measurements of aerosol extinction are at ambient RH and the derived PM2.5 concentrations correspond to dry aerosol 

mass.  We use an expression for the humidification factor as given by (Hänel, 1976)  655 

𝑓𝑓(𝑅𝑅𝑅𝑅) = �
1−𝑅𝑅𝑅𝑅100

1−(𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟/100)
�
−Γ

                                                                (2) 

where RH is the ambient relative humidity from the ERA5 reanalysis, RHref is a reference RH set to 30% (Lynch et 

al., 2016; Toth et al., 2019), and Γ is a fit parameter assumed to be 0.63, which corresponds to sulfate aerosol (Hänel, 

1976; Lynch et al., 2016; Toth et al., 2019).  To reduce the impact of f(RH) on estimates of MEEf, we only examine 

cases for which RH<70%; in such cases f(RH) is less than 1.7 and generally close to unity.  We assume that coarse 660 
mode aerosol absorption is negligible so that the coarse mode mass extinction efficiency (MEEc) can be approximated 

by the coarse mode mass scattering efficiency. Coarse mode mass scattering (extinction) efficiencies typically range 

from roughly 0.5 to 1.5 m2 g-1 (Hand and Malm, 2007; Jung et al., 2018) so we have computed MEEf assuming that 

MEEc can vary over this range.  To reduce the dependence of the estimated MEEf on MEEc, we avoid cases for which 

coarse mode aerosol extinction dominates and so examine cases for which the fine mode fraction (FMF) = PM2.5/PM10 665 
is greater than 0.5.  

We examine cases corresponding to four major aerosol types identified by the HSRL aerosol classification algorithm 

during the ASIA-AQ mission: dusty mix, maritime, urban, and smoke.  Figure 17 shows the retrieved MEEf for these 

four types. The median value for dusty mix (3.3 m2 g-1) is within the range of mass scattering efficiency (2.6 – 

3.4 m2 g-1) reported for fine mode dust (Hand and Malm, 2007).  The median value for maritime aerosol (2.6 m2 g-1) 670 
is lower than the value associated with fine mode sea salt (4.5 m2 g-1) (Hand and Malm, 2007); however, this study 

recommends a much lower value (~1.2 m2 g-1) if some coarse mode sea salt aerosol is included in the sampling.  The 

median value for urban aerosol (3.8 m2 g-1) is close to the value of 3.4 m2 g-1 used for pollution aerosol over the US 

(Toth et al., 2019; Toth et al., 2022), the value of 3.6 m2 g-1 recommended for mixed fine mode aerosol (Hand and 
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Malm, 2007), and the value of 4.4 m2 g-1 ± 0.8 m2 g-1 found for urban China (Cheng et al., 2017). The median value of 675 
5.0 m2 g-1 for smoke falls at the upper range of smoke MEE (1.5 to 6 m2 g-1) (Saide et al., 2022) reported from 

laboratory and field measurements and most likely corresponds to aged smoke (Reid et al., 2005; Kleinman et al., 

2020; Saide et al., 2022).  

We also compare MEEf derived from the HSRL-2 data and from the DC-8 in situ data like the PM2.5 comparison 

shown in Figure 14.  Recall that DC-8 MEEf is derived using the submicrometer dry aerosol extinction and PM2.5 680 
derived from the DC-8 in situ measurements.  As discussed above, to reduce the impact of uncertainties in f(RH) and 

MEEc, we compare HSRL-2 retrievals of MEEf for which RH<70% and FMF>0.5. Figure 18 shows that MEEf derived 

from the HSRL-2 and DC-8 are in generally good agreement with MAE and RMS differences less than 1 m2 g-1. In 

addition, both retrievals show the tendency of MEEf to increase as the aerosol type changed from maritime to urban 

to smoke. Some of the discrepancies can be explained by the large variability in the one-minute averages, which likely 685 
represents inhomogeneous conditions with large gradients in aerosol properties. 

4 Summary and Conclusion 

We have developed a new method to retrieve PM2.5 and PM10 concentrations using airborne High Spectral Resolution 

Lidar (HSRL) measurements in machine learning regression algorithms.   Unlike previous methods that have used 

airborne HSRL data to derive surface PM2.5 concentrations, this method does not require the HSRL qualitative 690 
inferences of aerosol type or aerosol chemical composition information provided by models.  Nor does this method 

require estimates or assumptions of the mass extinction efficiency, aerosol humidification factor, fine mode fraction, 

 

Figure 17. Box chart showing the MEEf retrieved from the HSRL-2 measurements for data acquired during 
the Asia-AQ mission. The results are shown for the various major aerosol types as identified by the HSRL 
aerosol classification method.  Blue lines inside each box correspond to the median. Top and bottom edges 
of each box are the upper and lower quartiles, respectively. Whiskers represent the maximum and minimum 
values. Boxes whose shaded notch regions do not overlap have different medians at the 5% confidence level.  
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or particle density. This method takes advantage of the extensive set of airborne HSRL measurements acquired over 

major metropolitan regions in the United States and Asia over many years.  We use hourly surface PM2.5 and PM10 

measurements acquired within 10 kilometers and 15 minutes of these near-surface HSRL measurements to train 695 
models that compute PM concentrations based on these HSRL measurements. The extensive airborne HSRL datasets 

of aerosol measurements over metropolitan areas and surface are particularly well suited for developing this 

methodology of inferring surface PM concentrations.  These algorithms take advantage of the unique capability of 

airborne HSRL systems to provide accurate aerosol measurements near the surface.  In contrast to backscatter lidars, 

these systems provide direct measurements of near-surface calibrated aerosol backscatter and aerosol extinction 700 
without additional constraints or assumptions to account for attenuation by overlying aerosols. Also, HSRL systems 

provide measurements of aerosol intensive properties that provide valuable information regarding aerosol shape, size, 

and composition to help account for variations in these aerosol properties.  

Our investigations have focused on the use of the aerosol properties (aerosol backscatter, extinction, depolarization) 

that are measured by these lidars and, except for relative humidity, have not attempted to include additional 705 
meteorological, surface, or aerosol parameters in these model regressions. There are three reasons for this. First, 

focusing on regression models that exclusively use airborne HSRL measurements provides the ability to retrieve 

accurate estimates of PM concentrations using HSRL measurements in near real-time when measurements or model 

simulations of additional meteorological and/or aerosol parameters are often unavailable. This permits rapid use of 

these PM retrievals to assess model forecasts and rapidly changing conditions over urban areas which is particularly 710 
useful in planning and executing field missions designed to study air quality.  Second, these retrievals are independent 

 

Figure 18. Comparison of MEEf derived from HSRL-2 data (x axis) vs. MEEf derived from DC-8 in situ 
instruments (y-axis) during the ASIA-AQ mission. Results are color-coded by aerosol type inferred from 
HSRL-2 data. The solid line represents a least-squares bisector fit and the dashed line represents the 1:1 line. 
Error bars represent the two standard deviations derived from the one-minute averages. 
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of model simulations and model parameters and so represent an unbiased method to evaluate the model results. Third, 

the HSRL measurements themselves contain key information regarding aerosol shape, size, and composition and have 

been used in various methodologies to retrieve these parameters. Therefore, including such measurements in the 

machine learning regression provides the ability of these ML models to capture changes in aerosol type and physical 715 
properties (size, shape, composition) such as those caused by changes in relative humidity that impact the ability to 

infer PM concentrations.   We found surface relative humidity to have minimal impact on the retrievals of surface PM 

and believe this is due, at least in part, to the inclusion of HSRL measurements of aerosol intensive parameters that 

respond to changes in RH.   

We examined several regression methods and found that exponential Gaussian Process regression (GPR) algorithms 720 
consistently give the best retrieval performance in terms of the lowest root-mean-square (RMS) errors and the highest 

correlations.  These GPR models also have the advantage of providing uncertainty estimates to quantify the confidence 

in the predictions. A disadvantage of GPR models is that such models can be computationally expensive. We also 

tested several different combinations of airborne HSRL measurements of near-surface aerosol parameters (e.g., aerosol 

backscatter, extinction, depolarization, backscatter color ratios, lidar ratios, aerosol optical thickness) and retrievals 725 
(e.g., mixed layer height, aerosol type) used in the ML regressions. Models that use near-surface measurements of 

aerosol backscatter and aerosol intensive properties such as depolarization, backscatter color ratio, and lidar ratio 

yielded retrievals of surface PM2.5 that agreed well with surface PM measurements; RMS differences between HSRL 

retrievals and surface PM2.5 measurements were around 5 µg m-3 with correlation coefficients above 0.8. Model 

performance was generally better for models that used near-surface aerosol backscatter rather than near-surface aerosol 730 
extinction.  This is because near-surface aerosol backscatter profile measurements extend closer to the surface (within 

~60-100 m) than near-surface aerosol extinction profiles (within ~ 200-350 meters). Also, the HSRL measurements 

of aerosol backscatter have smaller uncertainties and so are less noisy than the aerosol extinction measurements. 

Corresponding results for PM10 were slightly worse, with RMS differences around 11 µg m-3 and correlation 

coefficients around 0.7.  These comparison results were derived using data withheld from the training sets. Shapley 735 
scores reveal that aerosol backscatter (532 nm) was by far the most important variable for retrieving surface PM2.5, 

and to a lesser extent, surface PM10. Aerosol depolarization (532 nm) was the most important parameter for retrieving 

estimates of the PM2.5/ PM10 ratio due to its sensitivity to coarse mode nonspherical dust particles.  

We used the airborne HSRL-2 aerosol measurements acquired during the recently completed NASA ASIA-AQ 

campaign to derive qualitative estimates of aerosol types using an updated aerosol classification algorithm. This new 740 
algorithm differs from our previous algorithm in two ways.  First, it uses aerosol measurements acquired at 355 nm in 

additional to measurements acquired at 532 and 1064 nm. Second, the updated algorithm uses a decision tree in 

addition to the Mahalanobis distance metric. The PM2.5 retrievals showed that dust contributed little to the PM2.5 

concentrations over the Philippines, Taiwan, and Thailand but had larger contributions over South Korea. For all areas, 

urban aerosol type became the largest contributor as PM2.5 levels increased. Over Thailand, both smoke and urban area 745 
were large contributors, with smoke providing the largest contribution above 1 km.  
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We used these estimates of aerosol types along with HSRL measurements of aerosol extinction and retrievals of surface 

PM2.5 to derive estimates of fine mode mass extinction efficiency MEEf associated with major aerosol types. These 

estimates correspond to conditions of lower RH (<70%) and where the ratio PM2.5/PM10 is above 0.5. MEEf values 

for dusty mix (3.3 m2 g-1) and urban aerosol (3.8 m2 g-1) fall with the ranges reported elsewhere. The median value for 750 
smoke (5.0 m2 g-1) lies at the upper range of reported values and most likely corresponds to aged smoke. The HSRL-2 

PM2.5 retrievals and MEEf estimates are consistent with those derived from airborne in situ estimates. 

The ML methodology described here can also be applied to satellite aerosol measurements such as those from the 

ATLID sensor on board the EarthCARE satellite. ATLID is also an HSRL and so it independently measures 

backscattered light from atmospheric aerosols and backscattered light from atmospheric molecules, which enables it 755 
to derive independently both aerosol backscatter and extinction.  Our tests using airborne HSRL-2 data using data 

only acquired at 355 nm showed retrieval performance comparable to that obtained using data from two (532 and 

1064 nm) and three wavelengths (355, 532, 1064 nm). Since ATLID also provides measurements of aerosol extinction, 

backscattering, and depolarization at 355 nm, these three parameters could be used in the same regression model that 

was developed using the corresponding airborne HSRL-2 data. Alternatively, a separate machine learning regression 760 
algorithm could be developed using these ATLID measured aerosol parameters trained using coincident hourly 

measurements of surface PM2.5 from EPA surface stations and from similar networks in other countries.  Carefully 

chosen training data sets that include a wider range of PM values, locations, and aerosol parameters acquired during 

both daytime and nighttime could be used to construct a robust regression model. Such a model could take advantage 

of global data and so would have the advantage of being applicable over a much wider range of PM values.  765 

Long-term satellite lidar measurements such as those from ATLID offer the opportunity to provide a unique long-term 

global lidar record of near-surface aerosol measurements that can be leveraged to study temporal and spatial variations 

in PM.  For example, twelve years of CALIOP measurements of near-surface aerosol extinction were used to derive 

multi-year mean and trends of surface PM2.5 over the contiguous United States (Toth et al., 2022). ATLID 

measurements provide the means to extend this record. These satellite and airborne HSRL measurements described 770 
here can be used to evaluate the ability of aerosol models to depict the vertical structure of aerosols, apportion aerosol 

extinction and optical thickness to aerosol species, and estimate PM concentrations.   

 
Data Availability 

Airborne HSRL data from the NASA STAQS and ASIA-AQ missions are available from the NASA Langley 775 
Research Center’s Atmospheric Science Data Center (ASDC)  

(https://asdc.larc.nasa.gov/project/STAQS/STAQS_AircraftRemoteSensing_JSC-GV_HSRL2_Data_1) (doi 

10.5067/ASDC/SUBORBITAL/STAQS/DATA001/GV/AircraftRemoteSensing/HSRL2_1) and 

(https://asdc.larc.nasa.gov/project/ASIA-AQ/ASIA-AQ_AircraftRemoteSensing_LaRC-G3_HSRL2_Data_1) (doi 

10.5067/ASDC/SUBORBITAL/ASIA-AQ/DATA001/G3/AircraftRemoteSensing/HSRL2_1), respectively. Airborne 780 
in situ data collected on the NASA DC-8 aircraft during ASIA-AQ are also available from the ASDC at 

(https://asdc.larc.nasa.gov/project/ASIA-AQ/ASIA-AQ_Analysis_DC-8_Data_1) (doi 
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10.5067/SUBORBITAL/ASIA-AQ/DATA001/DC-8/Analysis_1). Surface PM2.5 retrievals for the HSRL-2 

measurements acquired during the ASIA-AQ mission are also available from this archive.  Surface PM2.5 data in the 

USA were provided by the US Environmental Protection Agency, Air Quality System Data Mart [internet database] 785 
available via https://www.epa.gov/outdoor-air-quality-data. Accessed November 2024. 
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