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Abstract. As climate simulations generate increasingly large datasets, reducing storage demands without compromising 

scientific integrity has become a critical challenge. This study evaluates the effectiveness of precision truncation, applied prior 

to lossless compression, in balancing storage efficiency and fidelity within regional Weather Research and Forecasting (WRF) 15 

simulations over the United States. We examine input-only, output-only, and combined input–output truncation strategies 

across both routine meteorological variables and extreme precipitation indices. Results show that conventional atmospheric 

fields remain robust when outputs are truncated to 5 or 4 significant digits, keeping biases within acceptable limits. Wind speed 

is largely insensitive to truncation, temperature and humidity are more vulnerable under aggressive output truncation (3 

significant digits). Precipitation shows mixed responses, with deviations dominated by input perturbations. Extreme 20 

precipitation indices display more complex sensitivities: percentile- and maximum-based indices are highly susceptible to 

nonlinear, regionally heterogeneous biases under input truncation, whereas frequency- and intensity-based indices respond 

more systematically to output truncation, with substantial distortions emerging at 3 digits. These findings demonstrate that 

truncation strategies cannot be applied uniformly but must be tailored to variable type and diagnostic. Within this study, output-

only truncation emerges as the most reliable strategy, with 4 significant digits identified as a safe lower bound and 5 digits 25 

preferable when fidelity of extreme-event is critical. To implement this in practice, we introduce a flexible error-tolerance 

framework that applies a predefined threshold across all indices and adapts truncation levels by region and season, enabling 

substantial storage savings while safeguarding the integrity of climate diagnostics. 
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1 Introduction 

Climate variability and change, driven by both natural processes and human activities, have profound impacts on human 30 

societies and natural ecosystems. To better understand and project these processes, the scientific community increasingly 

demands climate simulations with higher spatial resolution, richer representations of physical processes, and large ensembles 

under multiple scenarios. This shift has greatly expanded the complexity and scale of numerical models, driving exponential 

growth in both input and output data volumes. Global-scale simulations now routinely generate tens to hundreds of petabytes 

of output  (Overpeck et al., 2011), placing unprecedented pressure on storage and analysis capacities. The rapid rise in data 35 

production poses significant challenges for existing storage infrastructures, constraining long-term archiving, data sharing, 

reproducibility of analyses, and the efficiency of postprocessing workflows. These challenges are further exacerbated by 

storage systems and network bandwidths that have not kept pace with the rapid gains in computational performance (Prein et 

al., 2015). 

Importantly, the shift from global to regional modeling does not alleviate the challenges of data volume and management. 40 

The Weather Research and Forecasting (WRF) model (Skamarock et al., 2019), a widely used regional modeling system with 

a large international user base across academia, government agencies, private forecasting services, and independent researchers 

(Powers et al., 2017), exemplifies this issue. High-resolution WRF simulations generate several to hundreds of terabytes of 

output from a single project (Prein et al., 2015). Such datasets are not only central to advancing scientific understanding but 

are also increasingly used to support infrastructure planning, disaster preparedness, and policy development (Akbar et al., 2013; 45 

Jam-Jalloh et al., 2024; Young et al., 2025; Zhang et al., 2025). At the same time, the rapid adoption of machine learning in 

atmospheric science has amplified data-handling demands. WRF outputs are now frequently harvested as training datasets, yet 

their size and temporal density often exceed the memory capacity of modern GPUs, creating bottlenecks in preprocessing and 

model optimization (Abdulla et al., 2022; Waqas et al., 2025). These combined pressures highlight the urgent need for effective 

data compression techniques that can substantially reduce data storage requirements.  50 

A variety of compression techniques, which are appliable for atmospheric model archives, have been developed to reduce 

the storage demands. Lossless algorithms such as gzip and bzip2 preserve bitwise reproducibility but generally achieve only 

modest compression ratio when applied to floating-point geophysical fields (e.g., Poppick et al., 2020). Error-bounded lossy 

approaches offer higher efficiency by discarding information beyond defined tolerances, expressed in terms of absolute error 

or significant digits. This enables much greater compression while still controlling numerical accuracy (Baker et al., 2016; 55 

Walters and Wong, 2023). Among these methods, precision truncation is particularly appealing for both operational workflows 

because it is computationally lightweight, straightforward to implement, and easily combined with conventional lossless 

utilities (Walters and Wong, 2023). Early applications to global climate archives and regional air-quality simulations suggest 

that substantial reductions in file size can be achieved while retaining fidelity for climatological statistics.  
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Despite these advances, most implementations apply uniform truncation settings across all spatial domains, temporal 60 

periods, and variable types. Such a one-size-fits-all strategy may introduce unacceptable biases in regions or seasons where 

climate signals are highly sensitive to perturbations, while at the same time being unnecessarily conservative in situations 

where stronger compression could be applied without compromising data fidelity. This limitation underscores the need for 

adaptive frameworks that adjust precision thresholds according to region, season, and variable type, thereby maximizing 

storage efficiency while safeguarding the scientific integrity required for both routine meteorological analyses and the 65 

assessment of high-impact climate events. The latter are particularly challenging, as climate extremes exhibit pronounced 

regional and seasonal variability and often exert disproportionate societal and economic consequences (Seneviratne et al., 2021; 

Davenport et al., 2021). Many extreme-event diagnostics rely on threshold-based metrics, meaning that even subtle numerical 

perturbations introduced by lossy compression can alter exceedance frequencies, ultimately distorting long-term climate trends 

or biasing attribution studies. Robust evaluation of compression impacts on extreme climate indicators is therefore essential to 70 

ensure that truncation strategies preserve the fidelity of high-impact event characterization. 

To address this gap, this study systematically evaluates the effects of precision truncation on both storage efficiency and 

scientific fidelity in WRF simulations over the contiguous United States (CONUS) domain. We analyze both fundamental 

meteorological variables and extreme precipitation indices to provide a comprehensive assessment of how truncation strategies 

influence core climate diagnostics. Beyond domain-averaged metrics, we examine regional and seasonal heterogeneity in error 75 

responses, highlighting cases where nonlinear sensitivity to truncation may compromise the robustness of scientific 

conclusions. The remainder of this paper is organized as follows. Section 2 describes the datasets, model configurations, 

truncation strategies, and analytical methods. Section 3 presents the results, quantifying storage efficiency and evaluating the 

performance of different truncation strategies for both meteorological fields and extreme precipitation indices, with particular 

emphasis on regional and seasonal variability. Based on an error-tolerance criterion, we then introduce region- and season-80 

specific compression guidelines and discuss broader implications and limitations of the findings. Section 4 concludes the paper 

with a synthesis of key results and practical recommendations for data management in high-resolution climate modeling. 

2 Methodology 

2.1 Model Configuration 

The year 2016 was chosen as the simulation period because it recorded the highest number of billion-dollar flood disasters 85 

and the second-largest economic loss in the United States since 2000 according to the NOAA National Centers for 

Environmental Information (NCEI) (NCEI, 2025). These factors make 2016 as a representative benchmark for assessing model 

performance under different truncation strategies, particularly with respect to extreme precipitation events. The CONUS 

domain was chosen because it encompasses diverse climatological regions and benefits from dense observational networks, 
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providing a robust basis for model assessment. The evaluation focused on a comprehensive suite of common atmospheric 90 

variables and extreme precipitation indices defined by the Expert Team on Climate Change Detection and Indices (ETCCDI) 

(Frich et al., 2002; Alexander et al., 2006; Zhang et al., 2011). 

Simulations were conducted using the WRF model version 4.4.1 over the CONUS domain at a 12-km horizontal spatial 

resolution with 35 vertical layers. To improve the realism of the simulated meteorological fields, we employed four-

dimensional data assimilation (FDDA) within the WRF framework. The assimilated fields were nudged toward the North 95 

American Mesoscale (NAM) analysis, produced operationally by the National Centers for Environmental Prediction (NCEP). 

The nudging strength was set to minimal values for the upper atmosphere to constrain large-scale fields, and no nudging was 

applied at the surface to avoid suppressing near-surface variability. Table 1 summarizes the physical parameterization schemes 

used in the WRF simulations. 

 100 

Table 1. Setup of physical parameterization schemes in WRF simulation. 

Physical processes Scheme Reference 

Microphysics Morrison 2-moment Morrison et al. (2009) 

Radiation  RRTMG Shortwave and Longwave  Iacono et al. (2008) 

Surface Layer Pleim–Xiu Pleim (2006) 

Land Surface Model Pleim–Xiu Land Surface Model Pleim and Gilliam (2009) 

Planetary Boundary Layer Asymmetric Convection Model 2   Pleim (2007) 

 

2.2 Precision Truncation Strategies 

Precision truncation was applied at three levels, retaining 5, 4, or 3 significant digits, referring to Walters and Wong (2023). 

A Fortran-based routine was used to modify each floating-point variable except latitude and longitude fields. Specifically, the 105 

algorithm retained 5, 4, or 3 significant digits when values were expressed in Fortran scientific notation with a leading digit of 

zero. Two dataset categories were considered for the application of truncation: model input fields and model output fields. 

Truncation was applied in three configurations: (i) input–only, (ii) output–only, and (iii) both input and output simultaneously. 

After truncation, all datasets were compressed using two widely adopted lossless algorithms, gzip and bzip2, resulting in 15 

distinct truncation strategies (Table 2).  110 
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Table 2. Description of 15 truncation strategies. 

Case Input Precision Output Precision 

WRF_fx5/fx4/fx3 Full precision 
 

Keeping 5/4/3 significant digits 
 

WRF_5 Keeping 5 significant digits 
 

Full precision 
 

WRF_5fx5/5fx4/5fx3 Keeping 5 significant digits  
 

Keeping 5/4/3 significant digits 
 

WRF_4 Keeping 4 significant digits 
 

Full precision 
 

WRF_4fx5/4fx4/4fx3 Keeping 4 significant digits 
 

Keeping 5/4/3 significant digits 
 

WRF_3 Keeping 3 significant digits 
 

Full precision 
 

WRF_3fx5/3fx4/3fx3 Keeping 3 significant digits 
 

Keeping 5/4/3 significant digits 
 

 

2.3 Observational Datasets 

To quantitatively evaluate model performance, we employed observational datasets of surface meteorology and 

precipitation for the year 2016 within the CONUS domain. Hourly near-surface meteorological variables, including 2-m air 115 

temperature, 2-m relative humidity, and 10-m wind speed, were obtained from the National Climatic Data Center (NCDC). To 

ensure data reliability and spatial representativeness, a two-step quality control procedure was applied. First, only stations with 

valid records for at least 330 days in 2016 and with less than 5% missing data were retained. Second, to reduce 

representativeness errors caused by terrain mismatch, only stations with an elevation difference of less than 100 m from the 

corresponding WRF grid cell were selected. These criteria yielded a total of 1622 stations across CONUS domain (Fig. 1a), 120 

providing dense spatial coverage across diverse climatic and physiographic regions. This station network enabled robust 

validation of WRF-simulated near-surface meteorology at both regional and national scales. 
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Figure 1: Spatial coverage of observational datasets, WRF model domain, and regional divisions used in this study: (a) locations of 

NCDC surface meteorological stations (red dots) across CONUS domain; the white box outlines the WRF simulation domain; (b) 125 

delineation of 9 climatologically coherent subregions. Base map imagery from NASA Worldview, Earth Observing System Data and 

Information System (EOSDIS). 

 

For precipitation, we used the Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM 

(IMERG) Final Precipitation L3 product (Version 07) with a uniform spatial resolution of 0.1° × 0.1°. Two temporal resolutions 130 

were employed. First, daily IMERG data for the period 2001–2015 (Huffman et al., 2023a) were used to establish a 

climatological baseline. From these data, the 95th and 99th percentile precipitation thresholds were calculated and 

subsequently applied for computing extreme precipitation indices. Second, IMERG half-hourly data for 2016 (Huffman et al., 

2023b) were aggregated to hourly resolution for comparison with observations and further aggregated to daily resolution for 

the computation of extreme precipitation indices. Bilinear interpolation was applied to all precipitation datasets to project them 135 

onto the WRF model grid, thereby ensuring consistency in spatial representation between observations and model results. 
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2.4 Evaluation Metrics, Climate Regional Subdivision, and Extreme Precipitation Indices 

Model fidelity under each truncation strategy was evaluated using three standard statistical metrics: the Root Mean Square 

Error (RMSE), the Pearson correlation coefficient (R), and the Normalized Mean Bias (NMB). These quantify, respectively, 

the overall magnitude of deviations, the strength of linear association, and the normalized systematic bias between compressed-140 

simulation outputs and their reference counterparts. They are defined as:  
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Here Mi and Oi denote the evaluated values (precision-truncated cases) and the reference values (observations or the baseline 145 

WRF simulation without any data modification, WRF_bl), respectively, and N is the number of matched data pairs. To ensure 

spatial comparability, model outputs were matched to reference datasets using the nearest-neighbor method for station-based 

surface meteorological variables.  

To capture spatial heterogeneity in truncation-induced errors, the CONUS domain was subdivided into 9 climatologically 

coherent regions following Karl and Koss (1984): Northwest, West, Northern Rockies & Plains, Southwest, Upper Midwest, 150 

Ohio Valley, South, Northeast, and Southeast (Fig. 1b).  

In addition, to assess the impacts on extreme precipitation, 8 precipitation indices recommended by the ETCCDI (Frich 

et al., 2002; Nastos et al., 2013; Ozer and Mahamoud, 2013) were computed from both baseline and truncated-simulation 

precipitation fields. These indices encompass multiple dimensions of precipitation, including intensity, frequency, and 

persistence (Table 3). Percentile-based thresholds (e.g. R95p_days and R99p_days) were derived from the 2001–2015 daily 155 

GPM IMERG baseline dataset, ensuring consistency in threshold definitions across all evaluations. The truncated WRF 

precipitation fields for 2016 were then compared against this baseline to quantify truncation-induced biases in extreme-event 

diagnostics. 
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Table 3. Definitions of Extreme Precipitation Indices 

Name Definition Units 

R95p_days 
Number of days per year with daily precipitation exceeds the 95th percentile of wet‐

day amounts (≥ 1 mm), thresholds derived from the 2001–2015 baseline period. 
days 

R99p_days Same as R95p_days, but for the 99th percentile threshold. days 

Rx1_day Maximum 1-day precipitation total in a year. mm 

Rx5_day Maximum total precipitation accumulated over any consecutive 5-day period mm 

R10mm_days Annual count of days with daily precipitation ≥ 10 mm. days 

PRCPTOT Total annual precipitation from wet days. mm 

wet_days Annual count of wet days (≥ 1 mm). days 

SDII Simple Daily Intensity Index, calculated as PRCPTOT divided by wet_days. mm day-1 

3 Result 160 

3.1. Compression Efficiency Analysis  

Figure 2 presents the relative compression ratios achieved by applying gzip and bzip2 to the 15 truncation strategies, 

in which input and/or output data were truncated to 5, 4, or 3 significant digits. The baseline dataset totals 2991.3 GB, 

consisting of 837.0 GB of input data and 2154.3 GB of output.  

For input data (Fig. 2a), compression efficiency improves progressively with stronger truncation. Under gzip, the 165 

relative compression ratio decreases from 69.0% at 5 significant digits to 34.9% at 3 significant digits, while bzip2 

achieves a reduction from 52.4% to 18.5%. For output data (Fig. 2b), the pattern is similar but the relative gains are 

larger: under gzip, the ratio decreases from 84% to 44%, and under bzip2 from 64% to 25%. This indicates that while 

both input and output data benefit from truncation, output data exhibit a stronger relative gain when precision is reduced 

from 5 to 3 significant digits. In combined input–output truncation strategies, the compression of output data is 170 

determined almost entirely by the precision applied to the output data, with input truncation exerting little additional 

influence. For the total dataset (Fig. 2c), gzip reduces the relative compression ratio from 91.8% in WRF_5 to 41.6% in 

WRF_3fx3, corresponding to a 58.4% reduction. Bzip2 achieves even stronger gains, decreasing from 86.5% to 23.4% 

(a 76.6% reduction). On average, bzip2 performs 15–30 percentage points better than gzip, with the advantage widening 

under higher truncation. 175 
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Figure 2: Relative compression performance under different truncation strategies on (a) input data, (b) output data, (c) the combined 

datasets. Lower percentages indicate greater compression efficiency. 

 180 

    These results highlight the significant potential of precision truncation as a preprocessing step for standard lossless 

compression. Bzip2 renders much better relative compression rate with respect to truncation amount, making it a 

favorable choice for high-resolution regional climate modeling frameworks such as WRF. However, while the storage 

benefits are substantial, the scientific consequences of aggressive truncation remain uncertain. In the following section, 

we evaluate how these truncation strategies affect the fidelity of key meteorological fields, with particular attention to 185 

variable-specific and nonlinear sensitivities. 

3.2. Effects on Meteorological Fields  

While gains in compression efficiency are important, they must be weighed against potential degradation in 

scientific fidelity. Figure 3 presents the relative changes in RMSE and correlation coefficient R for wind speed, 

temperature, relative humidity, and precipitation. For precipitation, values are derived from spatially averaged time series 190 

before calculating temporal statistics; whereas for meteorological variables, statistics are computed at each station–grid 

pair and then averaged spatially.  

Wind speed exhibits the strongest response to input truncation, with larger and nonlinear deviations compared to output 

truncation, suggesting that wind dynamics are sensitive to perturbations in forcing and initial conditions. However, the relative 

magnitude of truncation-induced errors in wind speed is the smallest among all variables, indicating that despite its sensitivity 195 
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to input perturbations, the overall bias introduced is limited in scale. Temperature exhibits different behavior: truncating 

output to 3 significant digits produces substantially larger changes than other strategies, with RMSE increases of about 

1.1%. This indicates that thermal variability is more vulnerable to precision loss when applied directly to prognostic 

outputs. Relative humidity shows a similar response, with marked increases in RMSE and decreases in R under 3 

significant digits output truncation, underscoring the high sensitivity of moisture fields to aggressive precision reduction 200 

in outputs. Precipitation demonstrates a distinct pattern compared with the other variables. Input truncation at 3 

significant digits leads to the largest deviations, while output-only truncation results in the smallest changes. This reflects 

the diagnostic nature of precipitation, which is strongly modulated by upstream dynamical and thermodynamical input 

fields but remains relatively robust to precision loss on the output side. 

Overall, these results demonstrate that truncation impacts are variable-dependent. Dynamical fields such as wind 205 

speed respond more sensitive to input truncation, thermodynamical fields such as temperature and humidity respond 

more strongly to output truncation, and precipitation shows mixed sensitivity dominated by perturbations to input data. 

These contrasts provide motivation for a more detailed analysis of regional and seasonal heterogeneity, as shown in Fig. 

4. 

 

 210 

Figure 3: Relative changes with regard to WRF_bl, in RMSE (a–d) and correlation coefficient R (e–h) for wind speed, temperature, 

relative humidity, and precipitation across all cases. 
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Figure 4 presents the absolute RMSE increases across nine climate regions and four seasons. When only the output 215 

is truncated to four or five significant digits, with inputs left unaltered, RMSE changes are negligible for all variables 

across regions and seasons. By contrast, truncating the output to three digits introduces systematic effects: wind speed 

remains largely stable, but temperature and relative humidity show consistent error increases across all regions, and 

precipitation displays noticeable degradations, particularly during winter and fall.  

Wind speed remains the most robust variable, with RMSE increments below 0.1% almost everywhere, except for 220 

minor increases in the Southwest and Ohio Valley during summer. Temperature is more vulnerable, with errors reaching 

about 1.2% under 3-digit truncation, a result partly attributable to the Kelvin unit in WRF outputs, where three digits 

remove all decimal precision. Humidity follows a similar but less pronounced pattern, with elevated errors that peak near 

1.6% in the Upper Midwest during winter and fall. Precipitation emerges as the most heterogeneous field: RMSE 

increases are largest in fall, followed by summer, and smaller in winter and spring, with regional contributions shifting 225 

seasonally from the Upper Midwest, West, Southwest, and Northern Rockies & Plains in summer to the West, Southeast, 

Upper Midwest, and South in fall. Compared with these controlled and predictable output responses, input truncation 

exerts a less systematic influence, producing non-monotonic and regionally heterogeneous biases, particularly evident 

in wind speed and precipitation. Together, these results emphasize that moderate output truncation (5 and 4 significant 

digits) preserves fidelity effectively, whereas aggressive output truncation and input truncation both carry risks of 230 

introducing systematic or spatially variable biases that can compromise model reliability. 
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Figure 4: Seasonal and regional absolute RMSE increases for meteorological variables across 15 WRF truncation strategies. Stacked 

bars show RMSE differences relative to the WRF_bl, aggregated over nine climate regions. The total bar heights do not represent 235 

aggregated RMSE across regions but only serve to display regional contributions. Results are presented separately for (a–d) wind 

speed, (e–h) temperature, (i–l) relative humidity, and (m–p) precipitation. 

 

3.3. Sensitivity of Extreme Precipitation Indices to Precision Truncation  

In this section, we evaluate the sensitivity of ETCCDI extreme precipitation indices, which are critical for 240 

understanding climate variability and societal risks. The analysis focus on how these indices respond to different 

precision truncation strategies and whether truncation compromises their reliability. For clarity, the indices are grouped 

into two categories. The first category consists of percentile-based and maximum-based extreme precipitation indices 

(R95p_days, R99p_days, Rx1_day, Rx5_day), which emphasize the behavior of the upper tail of the daily precipitation 

distribution and the magnitude of rare extreme events. The second category includes precipitation frequency and 245 

accumulation indices (R10mm_days, PRCPTOT, wet_days, SDII), which describe total precipitation amounts, mean 

intensity, and the occurrence of moderate wet events. In the main text, we focus on two representative diagnostics, 

R99p_days and SDII. Results for the other six indices are provided in the Supplementary Information. 

For the percentile-threshold index R99p_days, biases are generally modest in winter, spring, and fall (typically 

within ±3% across regions and strategies), but increase sharply in summer (Fig. 5a–d). The largest positive deviations 250 

arise when input precision is truncated to 3 significant digits, either alone or in combination with output truncation, with 

NMB reaching 7–8% in the Northeast. Output-only truncation produces a relatively small and near-linear response from 

fx5 to fx3, with domain-wide shifts remaining below 2%. Once input truncation is introduced, however, the response 

becomes distinctly nonlinear, demonstrating that small distributional perturbations near the 99th-percentile threshold can 

be disproportionately amplified. These results underscore the pronounced sensitivity of percentile-based exceedance 255 

metrics to input-related perturbations. 

By contrast, SDII shows a different pattern. Negative biases dominate across most regions and seasons, and these 

biases are primarily governed by output precision (Fig. 5e–h). When only output is truncated, fx3 produces widespread 

and substantial negative deviations, while fx4 introduces consistent negative biases, ranging from -1% to -3%. In 

comparison, fx5 maintains an NMB close to zero, with minimal overall impact. Input-only truncation generates relatively 260 

small, mixed positive and negative shifts, while combined input–output truncation reveals that output precision plays a 

dominant role in determining the final bias. Overall, more aggressive truncation strategies lead to larger SDII biases, 

following a relatively linear response pattern. 

The contrasting behaviors of these two indices reveals two distinct sensitivity regimes. Percentile-threshold 
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exceedance metrics such as R99p_days are dominated by input precision and can deviate in either direction, whereas 265 

mean-intensity metrics like SDII respond more systematically and predominantly negatively to output truncation. 

This distinction becomes clearer when the full set of 8 extreme precipitation indices is examined through regional 

box plots (Fig. 6). For the percentile- and maximum-based group (R95p_days, R99p_days, Rx1day, Rx5day), output-

only truncation (fx5–fx3) keeps tight interquartile ranges with medians close to zero. However, once input truncation is 

introduced, the distributions become more dispersed and a large number of outliers appear, indicating pronounced 270 

nonlinear behavior driven by threshold crossing. In contrast, the frequency and accumulation group (R10mm_days, 

PRCPTOT, wet_days, SDII) is governed primarily by output precision. When outputs are truncated to 3 significant digits, 

R10mm_days and wet_days shift strongly positive, PRCPTOT shows modest positive shifts, and SDII exhibits consistent 

negative deviations. Input truncation, by comparison, has relatively little influence on these indices. 

 275 

 

Figure 5: Seasonal and regional NMB of R99p_days (a–d) and SDII (e–h) relative to the WRF_bl, shown for different WRF 
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truncation strategies across 9 climate regions and 4 seasons. 

 

A synthesis of central tendencies using the regional median |NMB| (Fig. 7) reinforces the earlier findings. Percentile- 280 

and maximum-based indices (Fig. 7a) maintain low medians under output-only truncation but rise sharply once input 

precision is reduced to three digits, indicating that departures are primarily triggered by input perturbations. In contrast, 

frequency, accumulation, and mean-intensity indices (Fig. 7b) exhibit a systematic monotonic response governed by 

output precision, with marked deterioration at the 3 significant digits.  

Together with Figs. 5–6, these results highlight two distinct regimes: nonlinear, threshold-driven variability in 285 

percentile-based indices versus systematic, output-driven biases in frequency and intensity indices. Recognizing this 

difference is essential for designing truncation strategies that safeguard both storage efficiency and scientific fidelity.  

 

Figure 6: Box plots showing the distribution of NMB values for 8 extreme precipitation indices across 15 truncation strategies and 290 

9 climate regions. Each box spans the interquartile range (IQR; 25th–75th percentiles), with the median shown as a horizontal line. 

Whiskers extend to 1.5 × IQR, and outliers are plotted as colored circles corresponding to the truncation groups based on input data. 

Dashed horizontal lines indicate zero bias. 
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 295 

Figure 7: Median NMB of extreme precipitation indices across 15 truncation strategies and 9 climate regions relative to the WRF_bl. 

(a) shows the indices for extreme precipitation events (R95p_days, R99p_days, Rx1_day, Rx5_day), while panel (b) displays the 

indices for precipitation frequency and intensity (R10mm_days, PRCPTOT, wet_days, SDII). 

 

3.4. Optimal Truncation Strategy  300 

Building on the sensitivity analyses presented in Sections 3.2 and 3.3, we now translate these findings into practical 

truncation strategies that balance storage optimization with the preservation of scientific fidelity. The objective is not 

simply to minimize file size, but to do so in a way that safeguards critical features of both routine meteorological variables 

and extreme precipitation indices. As shown earlier, the impacts of precision truncation vary substantially across variable 

types, regions, and seasons, with the clearest contrasts emerging for extreme precipitation metrics that play a central role 305 

in assessing climate extremes and their associated risks. 

Although input truncation offers attractive potential for stronger compression, our analysis shows that it consistently 

produces nonlinear and regionally heterogeneous biases, especially for percentile-based indices. Reducing input 

precision to 3 significant digits amplifies small perturbations near extreme thresholds, causing substantial distortions and 

undermining the reliability of extreme-event characterization. For instance, even minor shifts in daily precipitation totals 310 

near the 99th percentile can substantially alter how extremes are quantified, eroding confidence in the diagnostic signals. 

Based on these results, we focus on output-only truncation as the more reliable strategy, since it preserves the fidelity of 

all analyzed variables more effectively. 

As noted above, the impacts of truncation differ not only with specific variable type but also by season and region, 

making adaptation essential. To address this, we adopt a flexible error-tolerance framework that applies a threshold of 315 

|NMB| ≤ 1% as the benchmark for acceptable fidelity. Any truncation strategy must ensure that this criterion is 

simultaneously satisfied across all indices, regions, and seasons. Within this framework, the truncation level selected is 

the one that maximizes compression efficiency while keeping all metrics within the tolerance bounds. In practice, this 
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design allows the threshold to be adjusted if needed, enabling different tolerance levels for specific variables, regions, 

and/or seasons. We implemented this framework in a Fortran-based routine that systematically applies truncation 320 

strategies once error analyses are completed. Rather than prescribing a universal standard, we recommend that users 

conduct dataset-specific assessments and then select truncation levels that best meet their scientific objectives. It should 

be emphasized that, for the sake of scientific consistency, simulation results generated under different input conditions 

cannot be merged directly. Input truncation alters the initial and boundary conditions of the model, and thus must remain 

fixed across all regions and seasons within a single experiment. By contrast, output truncation is applied after the 325 

simulation has been completed, which allows truncation levels to vary flexibly across regions and seasons without 

affecting the underlying physical consistency of the run. This distinction ensures that the compression strategy preserves 

methodological rigor while offering practical adaptability for large-scale climate datasets. 

Figure 8 summarizes the resulting optimal truncation strategies by region and season, providing a clear visualization 

of how the error-tolerance criterion translates into tailored recommendations. Output-only truncation is consistently the 330 

most robust choice. Among these, fx5 offers the most conservative option, ensuring the highest fidelity though with 

smaller compression gains. In many regions and seasons, however, fx4 can be applied to achieve stronger storage 

reductions while still preserving scientific reliability. These results underscore the value of adaptive strategies that adjust 

truncation according to regional and seasonal sensitivities, offering a balanced pathway to maximize storage efficiency 

without compromising the robustness of both meteorological and extreme-event diagnostics. Looking forward, we 335 

encourage further error analyses of precision truncation for additional variables, which will be essential for strengthening 

data management strategies in high-resolution climate modeling. 
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Figure 8: Optimal truncation strategies across 9 climate regions and 4 seasons for at a tolerance of |NMB| ≤ 1%. Base map imagery 340 

from NASA Worldview, Earth Observing System Data and Information System (EOSDIS). 

4. Conclusions 

This study provides a comprehensive evaluation of how significant-digit truncation influences both storage 

efficiency and scientific fidelity in regional atmospheric modeling, with a focus on routine meteorological variables and 

ETCCDI extreme precipitation indices. The results demonstrate that different diagnostics respond in fundamentally 345 

different ways: conventional atmospheric fields can be well preserved when the output is truncated to 5 or 4 significant 

digits, whereas percentile- and maximum-based precipitation indices exhibit nonlinear sensitivities to input truncation, 

and frequency- and intensity-based indices follow systematic, monotonic responses to output precision. 

These contrasting behaviors argue strongly against uniform, one-size-fits-all solutions. Instead, the findings support 

the development of an adaptive truncation framework that explicitly integrates error-tolerance thresholds with regional 350 

and seasonal sensitivities. Within the scope of this work, output-only truncation emerged as the most robust option, with 

4 significant digits serving as a safe lower bound and 5 significant digits advisable in regions or seasons dominated by 

extremes. However, the core contribution of this study lies not in prescribing a single “best” truncation level, but in 

advancing a methodological framework that can be flexibly applied across variables, domains, and research objectives. 

By requiring all indices to remain within predefined error tolerances, this framework provides a precise way to 355 

evaluate trade-offs between compression efficiency and scientific robustness. This approach is inherently extensible: 

thresholds can be adapted to different scientific applications, and truncation levels can be tuned by variable, region, 

and/or season. Overall, this framework supports context-aware decisions that preserve the integrity of both routine 

meteorological diagnostics and extreme-event analyses while delivering substantial storage savings. 

Looking ahead, the methodology presented here offers a foundation for future work on climate data storage 360 

reduction. Incorporating advances in lossless compression algorithms, and applying it across diverse modeling systems 

will further enhance its utility. Ultimately, this study demonstrates how precision truncation can be integrated into a 

systematic, error-aware workflow for climate data management, enabling more efficient use of storage resources without 

compromising the fidelity of climate diagnostics. 

Code availability 365 

A tool for formatting data to a user-specified number of significant digits is available for download on Zenodo at 

https://doi.org/10.5281/zenodo.17156737 (Wong and Wu, 2025). The download includes the full source code, a run script, and 

detailed usage instructions. 
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