

Toward Exascale Climate Modelling: A Python DSL Approach to ICON's (Icosahedral Non-hydrostatic) Dynamical Core (icon-exclaim v0.2.0)

Anurag Dipankar¹, Mauro Bianco³, Mona Bokenberger², Till Ehrengruber³, Nicoletta Farabullini¹, [Oliver Fuhrer⁴](#), Abishek Gopal⁵, Daniel Hupp⁴, Andreas Jocks³, Samuel Kellerhals¹, Clarissa A Kroll², Xavier Lapillon⁴, Matthieu Leclair¹, Magdalena Luz¹, Christoph Müller⁴, Chia Rui Ong¹, Carlos Osuna⁴, Praveen Pothapakula², [Andreas Prein²](#), Matthias Röthlin⁴, William Sawyer³, [Christoph Schär²](#), [Sebastian Schemm⁷](#), Giacomo Serafini⁴, Hannes Vogt³, Ben Weber⁴, [Robert C. Jnglin Wills²](#), [Nicolas Gruber⁶](#), Thomas C. Schulthess³

¹Center for Climate System Modelling C2SM, ETH Zürich, Switzerland

²Institute for Atmospheric and Climate Sciences IAC, ETH Zürich, Switzerland

³Swiss National Supercomputing Centre CSCS, ETH Zürich, Switzerland

⁴Federal Office of Meteorology and Climatology MeteoSwiss, Switzerland

⁵NSF National Center for Atmospheric Research, Boulder, Colorado

[6Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Switzerland](#)

[7Department of Applied Mathematics and Theoretical Physics, Cambridge University, UK](#)

Correspondence to: Anurag Dipankar (anurag.dipankar@c2sm.ethz.ch)

Abstract.

A refactored atmospheric dynamical core of the ICON model implemented in GT4Py, a Python-based domain-specific language designed for performance portability across heterogeneous CPU-GPU architectures, is presented. Integrated within the existing Fortran infrastructure, the [new GT4Py dynamical core is shown to exceed ICON OpenACC performance achieves throughput slightly exceeding the optimized OpenACC version, reaching up to 213 simulation days per day when using a quarter of CSCS's ALPS GPUs.](#)

[A multi-tiered testing strategy has been implemented to ensure numerical correctness and scientific reliability of the model code. Validation has been performed through global aquaplanet and prescribed sea-surface temperature simulations to demonstrate model's capability to simulate mesoscale and its interaction with the larger-scale at km-scale grid spacing. This work establishes a foundation for architecture-agnostic ICON global climate and weather model, and highlights poor strong scaling as a potential bottleneck in scaling toward exascale performance.](#)

1 Introduction

Simulating Earth's atmosphere at a horizontal grid spacing of a few kilometres, commonly referred to as storm-resolving simulations, marks the first step towards a new regime of climate and weather modelling. At such grid spacing, assuming that the vertical grid spacing is similarly adjusted, one expects the interactions between the mesoscale and the larger scales to be represented more accurately than at a grid spacing of tens of kilometres. This expectation is well

40 justified, knowing that at km-scale such interactions are not influenced by empirical
41 parameterisation but are instead governed dynamically.

42 The Nonhydrostatic Icosahedral Atmospheric Model (NICAM; Satoh et al., 2014) modelling group
43 started working towards global storm resolving simulations on the Japanese K-computer (Satoh
44 et al., 2017), which then paved the way for further developments. The larger community joined
45 the efforts towards global storm resolving simulations using a horizontal grid spacing of less than
46 or equal to 5 km in the second phase of DYnamics of the Atmospheric general circulation Modelled
47 On Non-hydrostatic Domains (DYAMOND Winter; Duras et al., 2021). 9 of the 12 models
48 contributing to DYAMOND Winter use a grid spacing of 5 km or less. Only 2, ARPEGE-nh (Action
49 de Recherche Petite Echelle Grande Echelle Non-Hydrostatic; Bubnovà et al., 1995) and ICON
50 (ICOsaHedral Non-hydrostatic; Zängl et al., 2015) of these 9 models employ a grid spacing of 2.5
51 km or less. The progressively decreasing number of models with decreasing grid spacing in
52 DYAMOND Winter underscores the challenge towards km-scale modelling—that it is a complex
53 scientific-technical problem. The scientific challenge lies in adjusting models numeric and the
54 remaining sub-grid scale parameterisation to a very new regime that is free of an important and
55 highly tuneable convection parameterisation. The technical challenge lies in making these models
56 run reliably and efficiently at scale on the modern computing systems.

57 We focus here on performance and reliability of these models. Achieving performance good
58 enough to be able to simulate a few decades in a reasonable time is probably the most commonly
59 discussed challenge. One simulation year per computational day is often used as a benchmark in
60 this regard (Schulthess et al., 2019). Reliability, defined as the ability to run a model stably at scale
61 on a supercomputer, is a known but less frequently published challenge, often confined to
62 discussions in specialised workshops and conferences. We begin by addressing performance.

63 Stevens et al. (2019) reported that models participating in the first phase of DYAMOND typically
64 produced six simulation days per computational day (SDPD) ~~on grid spacing of roughly 2.5 km,~~
65 ~~amounting to 0.75 SDPD on a grid spacing of 1.25 km, which is about a factor 500 short of the goal~~
66 ~~of 365 SDPD. In the last six years, the community has invested substantial resources in~~
67 ~~performance optimizing their codes. The recent numbers are very encouraging, which clearly is~~
68 ~~low for a meaningful climate simulation. The recent numbers from the Gordon Bell submission~~
69 ~~(Personal comm. Klocke et al., 2025) Klocke et al. (2025), see their Table 1 for a detailed~~
70 ~~assessment, report 26 SDPD for the Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM;~~
71 ~~Donahue et al., 2024), 17 SDPD NICAM, and 145.7 SDPD for ICON. Obviously, these numbers are~~
72 ~~not comparable since the models were run on different machines using different number of~~
73 ~~compute tasks but an increasing trend is clearly seen. are promising though the Simple Cloud-~~
74 ~~Resolving E3SM Atmosphere Model (SCREAM; Donahue et al., 2024) in atmosphere land~~
75 ~~configuration using a grid spacing of 3.25 km (and 4.875 km for parameterisation) and 128 vertical~~
76 ~~levels achieved 458 SDPD when utilising 87% of Frontier GPUs. NICAM, also in atmosphere land~~
77 ~~configuration, at 3.5 km grid spacing yields about 365 SDPD using 26% of Fugaku CPUs. IFS-FESOM~~
78 ~~in atmosphere land ocean configuration at a grid spacing of 1.4 km yields about 79 SDPD when~~
79 ~~using 92% of MareNostrum5 CPUs. ICON, which has been OpenACC ported and optimised since~~
80 ~~the numbers published in Stevens et al. (2019), gives a throughput of about 213 SDPD at 2.5 km~~
81 ~~horizontal grid spacing using 120 vertical levels in atmosphere land configuration when using~~
82 ~~about 25% of ALPS Grace-Hopper (GH) 200 GPUs (see Fig. 8). The fully coupled configuration of~~
83 ~~ICON, i.e. atmosphere land ocean vegetation biogeochemistry carbon, is demonstrated to~~
84 ~~produce 82.5 SDPD at 1.25 km grid spacing when using 75% of ALPS GH200 GPUs.~~

85 While these performance numbers are encouraging, they remain insufficient for any practical
86 tuning and multi-decadal production runs at 1–2 km grid spacing. GPUs offer significant
87 acceleration but suffer from poor strong scaling (Giorgetta et al., 2022; Adamidis et al., 2025).
88 CPUs, by contrast, scale well but incur high energy costs, which is undesirable (Adamidis et al.,
89 2025). Given the rapid evolution of computing architectures, it is unwise to tie models to a specific
90 platform (Schulthess, 2015). A logical solution is to adopt the principles of Domain Specific
91 Languages (DSLs)—specifically, separation of concerns. This allows user code to remain
92 unchanged while DSL abstractions enable backend flexibility across architectures.

93 This view is shared by several modelling groups: developers of the Portable Model for Multi-Scale
94 Atmospheric Prediction (PMAP; Ubbiali et al., 2025) and PACE (Dahm et al., 2024) use the Python-
95 based DSL GT4Py (Paredes et al., 2023). SCREAM employs the C++ library Kokkos (Trott et al.,
96 2022), and the UK Met Office uses the Fortran-based DSL PSyclone (Pysclone, 2025) for its next-
97 generation modelling system.

98 However, performance metrics alone do not reflect the reliability of computing platforms required
99 for large-scale simulations using thousands of GPUs. Experience and discussions in workshops
100 (e.g., iCAS24, Hart 2024) suggest that global km-scale modelling is cutting-edge not only in
101 application but also in hardware and interfacing libraries. Node failures, memory overflows,
102 filesystem crashes, and random errors are significantly more frequent when simulating at scale.
103 These issues are more apparent for the legacy codes because Fortran compiler support on the
104 newer architectures is being increasingly deprioritized by the vendors. Addressing these is
105 difficult, given the continuous evolution of hardware and software. Nevertheless, application
106 developers can improve reliability by testing code at various granularities to ensure robustness of
107 both the application and the underlying platform.

108 Within EXtreme scale Computing and data platform for cLOUD-resolving weAther and cLimate
109 Modeling (EXCLAIM), we are addressing the aforementioned challenges. The project seeks to
110 develop a modularised code based on ICON that is performant, architecture agnostic, and at the
111 same time reliable. Laid out as a three-phase development project (see Section 3), the present
112 manuscript ~~outlines the outcome of reports on~~ Phase I: embedding GT4Py-based atmospheric
113 dynamical core kernels into the existing Fortran framework. This integration achieves competitive
114 performance relative to the original implementation, marking a critical step toward a fully
115 modular and scalable system.

116 ~~in which the atmospheric dynamical core is re-written in GT4Py and is driven by the existing~~
117 ~~Fortran driver delivering a competitive performance.~~

118 The manuscript is accordingly organised as follows. The details of the model and the DSL is given
119 in section 2. The software development strategy of EXCLAIM and the placement of the current
120 version in the roadmap is discussed in section 3 followed by details on code refactoring and testing
121 strategies in section 4. Computational performance of the current version and future possibilities
122 are presented in section 5. Simulation results from the scientific experiments are discussed in
123 section 6. The manuscript ends with a conclusion in section 7.

124 2 The model and the new user code

125 The model is based on the global weather and climate modelling system ICON which is written
126 primarily in Fortran. ICON is used for a large set of applications ranging from large-scale climate
127 dynamics (Hohenegger et al., 2023; Giorgetta et al., 2018) to numerical weather prediction (Zängl

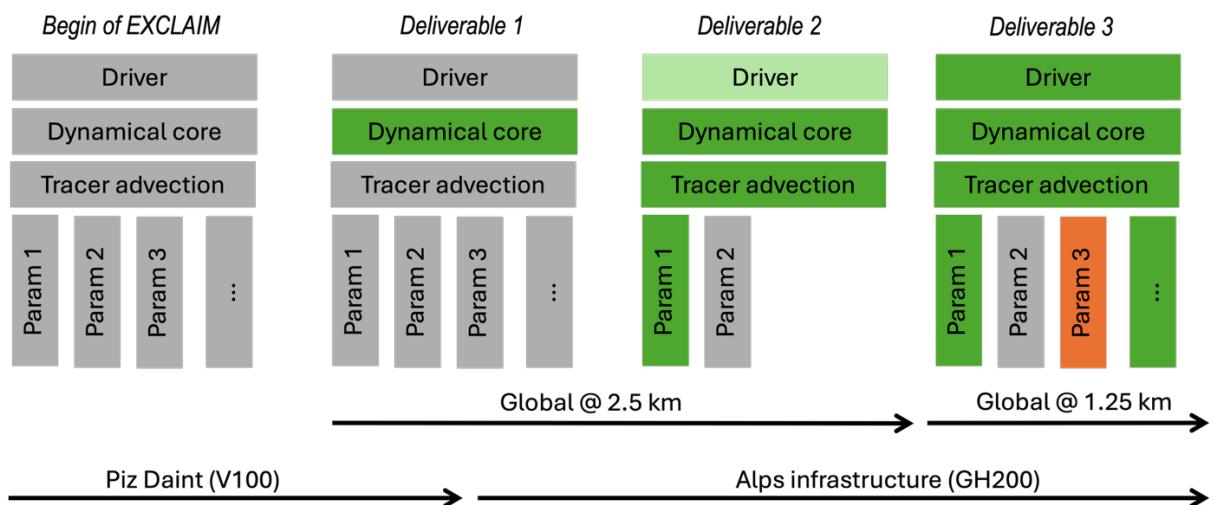
et al., 2015; Prill et al., 2023) to large-eddy simulation (Dipankar et al., 2015; Heinze et al., 2017). All these applications share the same dynamical core and tracer advection routines but differ on the suite of physical parameterisations and their coupling technique to the dynamical core. While ICON has traditionally been used on homogeneous computing platforms using MPI and OpenMP parallelization, recent developments (Giorgetta et al., 2022 and Lapillonne et al., 2025) have made it work on heterogeneous CPU-GPU platforms using OpenACC directives. These developments are now used for global storm resolving simulations in the projects like nextGEMS (Segura et al., 2025), Destination Earth (Bauer et al., 2021), EXCLAIM, and for operational limited-area weather forecasts at the Swiss National Meteorological Service (Lapillonne et al., 2025).

The ICON dynamical core (see Zängl et al., 2015 for details), as any other dynamical core, is a complex and very large piece of code coupled to the physics ~~and model and model~~ infrastructure. In a typical ICON atmosphere-only simulation, the dynamical core is the most computationally expensive component, accounting for roughly 40% of the total cost. This part of the code also does not change much in time, making it the perfect first candidate to refactor for heterogeneous computing.

The refactored code is written in GT4Py, which is a Python-based embedded domain specific language for climate and weather modelling. GT4Py is developed at ETH Zürich together with the users. The users, other than EXCLAIM, include the developers of PMAP (Ubbiali et al., 2025) and PACE (Dahm et al., 2023).

The schematic diagram illustrates the workflow of GT4Py. It starts with 'Python code using GT4Py' (containing @field_operator, @scan_operator, and @program annotations) which is converted into the GTIR (GridTools Intermediate Representation). The GTIR undergoes 'High-level static code analysis and transformations'. This leads to two paths: the GTFN backend (GridTools Fortran backend) and the DaCe backend (Data-Centric programming paradigm backend). The GTFN backend leads to a 'Binary Callable Object'. The DaCe backend leads to a 'Binary Callable Object' and also includes a 'Performance Engineering' loop that feeds back into the DaCe backend. Finally, both the 'Binary Callable Object' and the 'Native Python Execution' (via a direct arrow from the Python code) lead to the 'Native Python Execution' stage.

Figure 1 Schematic illustrating the various steps within GT4Py from the user front end to the executable. [Here, GTIR is the GridTools Intermediate Representation; GTFN backend is the GridTools Fortran backend; DaCe backend is the Data-Centric programming paradigm backend.](#)


GT4Py is comprised of (see Fig. 1) a user-facing interface, in which the computational patterns, like stencils, used in Climate and Weather applications can be easily composed. The main computations are captured by three concepts: `field_operator` to express operations on fields, `scan_operator` to express dependencies in the vertical direction, and `program` to compose the two. The high-level description of the computation is then taken automatically by the GT4Py parser where the code is translated into an intermediate representation (GTIR) and transformed

161 with domain-specific high-level transformations and static code analysis to narrow down the code
 162 needed for the specific simulation at hand. The backend then takes the GTIR formulation of the
 163 computations to perform architecture dependent optimizations. GT4Py is designed for *portability*
 164 of *performance* and can generate code for NVIDIA and AMD GPUs, x86 and ARM CPUs. The user
 165 can select different backends, the native C++ GridTools GTFN backend (Afanashev et al., 2021) or
 166 DaCe (Data-Centric programming paradigm, Ben-Nun et al., 2019). DaCe offer an open-box
 167 solution for optimization for finer tuning. It allows for performance engineers to tailor the
 168 optimization to the specific characteristics and semantics of the application, and possibly of the
 169 input configuration of the simulation.

170 GT4Py is designed to overcome the limitations of typical domain specific languages (DSLs), which
 171 usually involve offline compilation of computation kernels to be linked in program executables.
 172 DSLs like these usually simplify the writing of the kernels but make the integration into the main
 173 applications rather complex. GT4Py, instead, is embedded in Python and allows the users to write
 174 and execute the code directly in Python, either natively in Python or generating efficient codes
 175 using just-in-time compilation (JIT) or ahead-of-time compilation (AOT). [The current](#)
 176 [implementation uses AOT.](#)

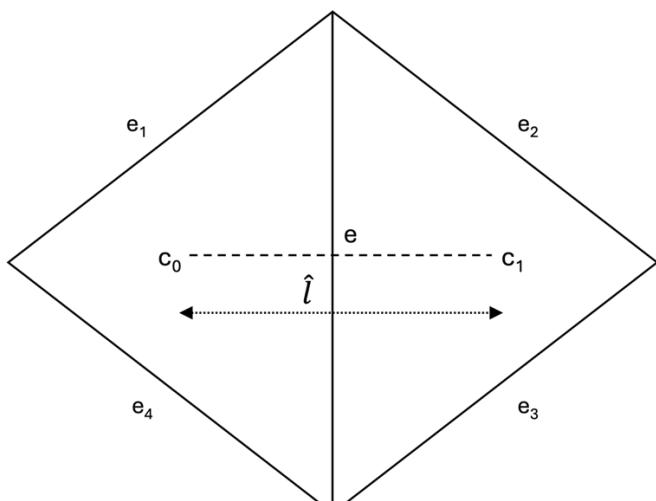
177 3 Development roadmap

178 Due to the monolithic design of the Fortran-based ICON model, refactoring is both challenging
 179 and time-intensive. To ensure that scientific production and model development proceed in
 180 parallel, we have adopted a development roadmap that is closely aligned with scientific use cases.
 181 The core use cases include global aquaplanet simulations, global simulations with prescribed sea-
 182 surface temperatures, and fully coupled global atmosphere-ocean simulations. Development is
 183 structured in three phases each with one key deliverable tied to a core scientific use case, as
 184 illustrated in Fig. 2.

185
 186 Figure 2. EXCLAIM's software development roadmap combined with timelines for the core scientific use cases
 187 and the computational hardware. The colors indicate Programming languages: grey is Fortran+OpenACC,
 188 green is GT4Py/Python, and orange is Kokkos.

189 Starting with the code version refactored using OpenACC, the first deliverable is the refactored
 190 GT4Py dynamical core encapsulated within the original Fortran+OpenACC ["Fortran+\)"](#) ICON. This
 191 initial deliverable is critical, as it establishes the foundation for continuous integration (CI) and
 192 continuous deployment (CD) of the developed model. It also facilitates the transition from the

193 legacy Swiss National Supercomputing system, Piz Daint, to the new ALPS research infrastructure,
194 which utilises NVIDIA GH200. The goal of this first deliverable is to demonstrate the feasibility of
195 conducting a few years of global km-scale simulations on the ALPS infrastructure, with
196 performance comparable to the reference Fortran+ implementation.


197 The second deliverable underscores the transition towards a Python-based driver with
198 components in GT4Py. Adopting a Python driver will enable numerous features that would be
199 challenging in the traditional Fortran-based application. Firstly, the portability of the code would
200 be improved; secondly, the memory layout of the numerical fields could be adapted to the
201 architecture, thanks to the separation of concerns that GT4Py offers in decoupling data access
202 syntax from the actual data organization. Finally, the access to the vast Python ecosystem of
203 packages could greatly impact the usability of complex workflows and applications, beyond the
204 current capabilities. The driver is currently being developed (hence the light green color in Fig. 2)
205 and components such as tracer advection and microphysics are already implemented in GT4Py.
206 Since the driver is written from scratch, it is not expected to be fully featured to perform realistic
207 use cases. Instead, the second deliverable will be tested in idealised configuration(s).

208 The third and final deliverable is intended to enable realistic simulations thereby superseding the
209 first deliverable. The target horizontal grid spacing for use cases in this stage is 1.25 km globally.
210 The driver is designed to be modular, allowing integration of physical parameterisation schemes
211 written in languages other than GT4Py, for example, using Kokkos. The remainder of this
212 manuscript focusses on the first deliverable.

213 4 Code refactoring and testing

214 4.1 Code refactoring

215 Our starting point was the code base using Fortran+ as described in Giorgetta et al. (2022), which
216 has been since further optimised (Lapillonne et al, 2025). The entire Fortran+ dynamical core,
217 including numerical diffusion, is re-written except for the part involving Halo exchange. The
218 original implementation is retained for the Halo exchange in the current version. Furthermore,
219 the blocking length that is typically used in atmospheric codes for cache efficiency is not used in
220 the refactored code.

221
222

223 Figure 3. Schematic to illustrate gradient operation on a triangle edge as used in ICON. e is the centre of the
 224 edge where operation is performed. The neighbouring edges are indicated from e_1 to e_4 . Triangle cells about
 225 the edge e are indicated by c_0 and c_1 with a separation of \hat{l} between them.

227 We first demonstrate through a simple example of a computational stencil how the high-level
 228 description of computations in GT4Py simplifies the user code. Let's assume that a generic
 229 variable, ψ , is located at the centre of the edge (see Fig. 3) and we wish to compute its horizontal
 230 gradient in the direction normal to the edge using a centred difference. The mathematical
 231 expression reads as (Equation 1)

$$233 \frac{\Delta\psi}{\Delta c_0 c_1} = \frac{\psi_{c_1} - \psi_{c_0}}{\hat{l}} = \frac{\psi(c_1(e)) - \psi(c_0(e))}{\hat{l}} \quad (1)$$

235 where c_0 and c_1 are the cell centres of the given edge e , and \hat{l} is the length between them. In
 236 Fortran, the above computation is written as shown in Listing 1.

```

238 1. !$OMP PARALLEL
239 2. !$OMP DO PRIVATE(jb, i_startidx, i_endidx, je, jk)
240 3. DO jb = i_startblk, i_endblk
241 4.   CALL get_indices_e(ptr_patch, ...)
242 5.   !$ACC PARALLEL ...
243 6. #ifdef __LOOP_EXCHANGE
244 7.   DO je = i_startidx, i_endidx
245 8.     DO jk = slev, elev
246 9.   #else
247 10.  DO jk = slev, elev
248 11.  DO je = i_startidx, i_endidx
249 12. #endif
250 13.    grad_norm_psi_e(je,jk,jb) =  &
251          ( psi_c(iidx(je,jb,2),jk,iblk(je,jb,2)) -
252            psi_c(iidx(je,jb,1),jk,iblk(je,jb,1)) )
253 14.    / ptr_patch%edges%lhat(je,jb)
254 15.  ENDDO
255 16. !$ACC END PARALLEL ...
256 17. END DO
257 18. !$OMP END DO NOWAIT
258 19. !$OMP END PARALLEL

```

258 Listing 1 Fortran+ code to compute equation 1 illustrating increasing complexity of the user code due to
259 different pragmas for different parallelization methods

260 Clearly, a significant part of the code here is used to describe parallelization in OpenMP and
261 OpenACC and for performance optimisation using loop exchange, which makes the code
262 convoluted. Translation of the same code in GT4Py is shown in Listing 2. Here, the parallelization
263 and performance details are not visible in the user code and the high-level description then allows
264 one to write a code that is significantly simplified and easy to understand.

265

266

```
@field_operator
267 def _grad_norm(
268     psi: Field[[CellDim, KDim], float],
269     lhat: Field[[EdgeDim], float],
270 ) -> Field[[EdgeDim, KDim], float]:
271     return (psi(E2C(1)) - psi(E2C(0)))/lhat
```

271

272 Listing 2. Translation in GT4Py of the Fortran+ code in Listing 1 using a field operator for gradient computation.
273 CellDim and EdgeDim are the horizontal dimensions of triangular cells and edges. KDim is the vertical
274 dimension. E2C points to the two cell centres about the edge.

275 The unstructured ICON grid often requires computations involving shifts between cells, edges, and
276 vertices with subsequent summation over newly defined offsets. Example from the code in Listing
277 3

278

```
psi (iqidx(je,jb,1),jk,iqblk(je,jb,1)) +
psi (iqidx(je,jb,2),jk,iqblk(je,jb,2)) +
psi (iqidx(je,jb,3),jk,iqblk(je,jb,3)) +
psi (iqidx(je,jb,4),jk,iqblk(je,jb,4))
```

283

284 Listing 3 an example illustrating typical neighbour access in icon. here, an edge variable **psi** is summed over
285 the four boundary edges in Figure 3.

286 represents the offset of the ψ field from edges -> cells -> edges over the four edges (e_1 to e_4) in
287 Fig. 3. On the other hand, GT4Py does not require indices specification or loops over dimensions
288 bounds. This allows for a cleaner and intuitive solution: `neighbor_sum (psi (E2C2E))`

289 Not having the loops in GT4Py is one of its most fundamental features, since it allows for
290 decoupling the mathematical expression from the data layout and the scheduling of the
291 instructions on the architecture. This comes at the cost of some limitations in the expressiveness
292 of the GT4Py as the user interface. This is why GT4Py is a domain-specific solution for weather and
293 climate computations and not a generic framework for arbitrary arguments. With respect to other
294 approaches, GT4Py builds upon several years of experience with different implementations
295 (STELLA (Gysi et al., 2015) and GridTools (Afanashev et al., 2021)), addressing not only expressing
296 abstractly domain specific concepts but also stressing portability of performance and the
297 integration into larger application frameworks.

298 Finally, even with the presence of some limitations, this work brought major improvements in
299 comparison to the Fortran+ version: the code itself is more readable and allows for an easy local
300 documentation through docstrings, and it is slightly superior in terms of performance.

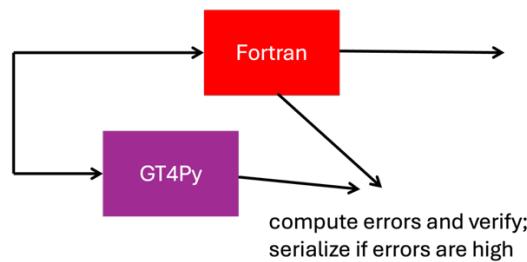
301 4.2 Insertion of stencils with Liskov preprocessor

302 The ICON dynamical core consists of approximately 60 stencils which have horizontal
303 dependencies through neighbouring cells, edges and vertices. These stencils were translated into
304 GT4Py and then unit tested individually. The requirement for their subsequent integration into
305 ICON was that each could be verified with respect to the existing Fortran+ code. This approach
306 requires extensive boilerplate, which would have resulted in unclean code. From the outset, it was
307 clear that a preprocessing stage would be necessary to simplify this insertion task.

308 ICON Liskov¹ is a directive-based preprocessor which parses comments and substitutes them with
309 code, facilitating the integration of the GT4Py generated code into the ICON model. A simple
310 example illustrating the insertion of a stencil used in the horizontal numerical diffusion is depicted
311 in Listing 4.

```
312 !$DSL START_STENCIL( name=mo_nh_diffusion_stencil_10;
313 !$DSL           w=p_nh_prog%w(:,:,1);
314 !$DSL           diff_multfac_n2w=diff_multfac_n2w(:);
315 !$DSL           cell_area=p_patch%cells%area(:,:,1);
316 !$DSL           z_nabla2_c=z_nabla2_c(:,:,1);
317 !$DSL           vertical_lower=2;
318 !$DSL           vertical_upper=nrdmax(jg);
319 !$DSL           horizontal_lower=i_startidx;
320 !$DSL           horizontal_upper=i_endidx )
321 DO jk = 2, nrdmax(jg)
322   DO jc = i_startidx, i_endidx
323     p_nh_prog%w(jc,jk,jb) = p_nh_prog%w(jc,jk,jb) + &
324     diff_multfac_n2w(jk) * patch%cells%area(jc,jb) * &
325     z_nabla2_c(jc,jk,jb)
326   ENDDO
327 ENDDO
```

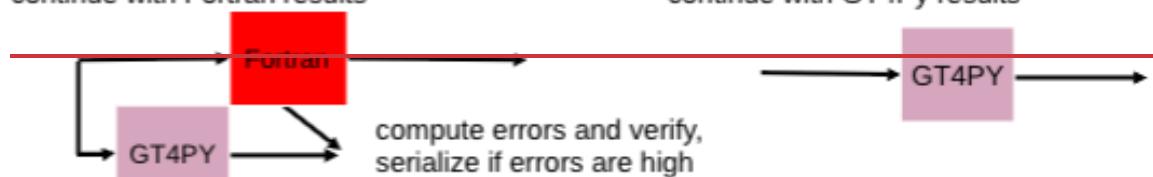
323 Listing 4. Example showing the use of Liskov in the Fortran code to generate corresponding GT4Py code.


324 Liskov can generate code in two modes: one for straightforward *substitution* and one for
325 *verification*. The former simply inserts the appropriate GT4Py stencil, compiled ahead-of-time,
326 instead of the intervening Fortran code, while the latter instead executes both the stencil and
327 the Fortran code and compares the results, giving an error message if they do not meet a given
328 tolerance. These modes are illustrated in Fig. 4. While the verification mode was used extensively
329 during development, the substitution mode has been used for the scientific testing and
330 benchmarks presented in the following sections.

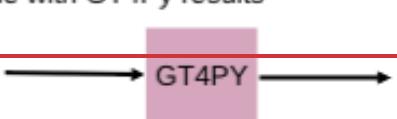
¹ Named after Barbara Liskov, an American computer scientist and Turing Award laureate who has made pioneering contributions to programming languages.

332 **Verification mode**

332 execute both GT4Py and Fortran versions;
332 continue with Fortran results


332 **Verification mode**

332 execute GT4Py version;
332 continue with GT4Py results


333 **Verification mode**

333 execute both GT4Py and Fortran versions
333 continue with Fortran results

333 **Substitution mode**

333 only execute the GT4Py version
333 continue with GT4Py results

334 Figure 4: Liskov verification and substitution modes.

335 ~~While the verification mode was used extensively during development, the substitution mode has~~
336 ~~been used for the scientific testing and benchmarks presented in the following sections.~~

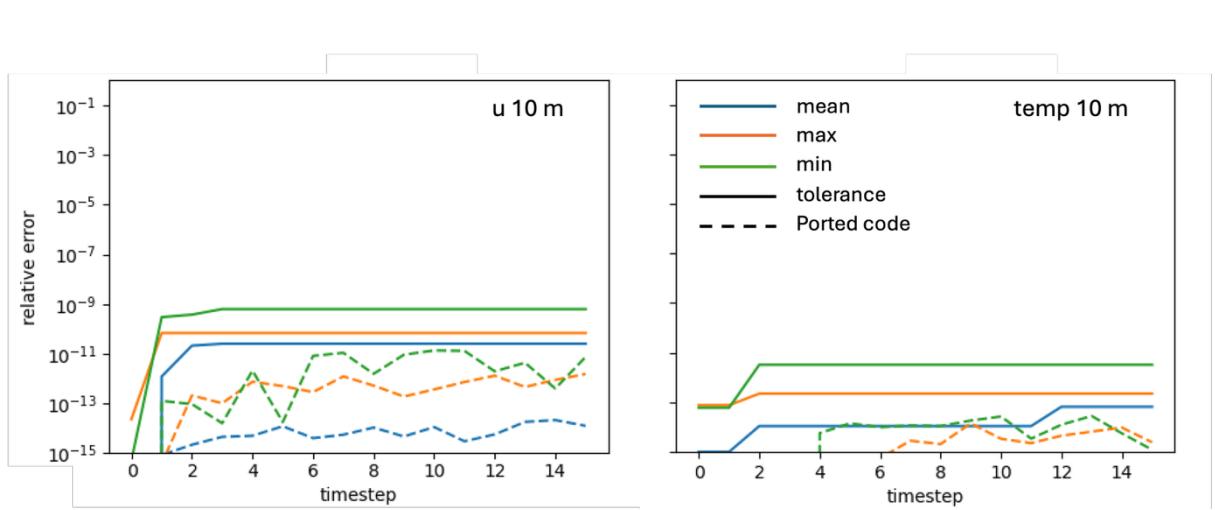
337 The Liskov preprocessor is only a temporary tool: for the longer term we are coalescing stencils
338 into larger kernels to exploit data reuse. These fused stencils have been incorporated into a full
339 GT4Py dynamical core, which can be called independently from a Python (see deliverable 2 or 3)
340 or the current Fortran driver. The work of creating a Fortran-callable interface for this dynamical
341 core version is now complete, and an effort to optimize the ICON model version which calls this
342 version is now ongoing. This will constitute the final dynamical core product, and we will report
343 on its features and performance in subsequent publications.

344

4.3 Testing

345 The ICON modelling system has its own testing infrastructure that runs a set of experiments on
346 several machines. All the experiments go through a series of tests that have been commonly used
347 in the community. These include, for example, an *MPI test* to check the correctness of MPI
348 parallelization, a *nprompa test* to check the correctness of the implementation of horizontal *loop*
349 blocking, a *restart test* to check the correctness of restart functionality, etc.

350 When porting a code for accelerated computing, testing is tricky as the results are different due
351 to rounding. Lapillonne et al. (2025) have described *probtest* wherein the outputs from a GPU
352 binary of a full integration are compared against that of a CPU binary with some tolerance. This
353 test is part of the ICON testing infrastructure, and we have adopted it in our testing infrastructure
354 as well. In addition, we include tests at fine granularity to ensure improved reliability of the
355 application. Essentially, the refactored code is submitted to testing at three broad levels:


356 1. Level 1 one-to-one testing between individual Fortran stencils and their GT4Py counterparts
357 at a coarser grid spacing.

358 2. Level 2 perturbation growth test wherein a full integration is performed for a few time steps
359 at a coarser grid spacing.

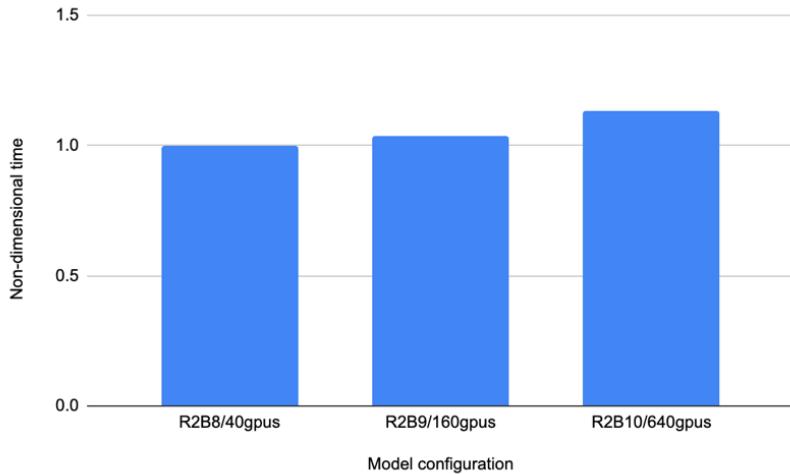
360 3. Level 3 testing is scientific validation of use cases at the target grid spacing.

361 Tests under Levels 1-2 have a faster turnaround time and are therefore part of continuous
362 integration. Level 1 tests are performed at runtime comparing the outputs from the ported
363 (GT4Py) and the reference (Fortran+) codes. Here, one sets an acceptable tolerance based on
364 experience, typically 10^{-12} or smaller for double precision computations. The level 2 test is the
365 probabilistic testing described in Probttest (2023), and used in Giorgetta et al. (2022) and
366 Lapillonne et al. (2025). It works along the lines of early work by Rosinski and Williamson (1997)
367 to check if the error of the ported code falls within the expected error growth of initial
368 perturbations in the reference code.

369 Figure 5 shows an example of a Level 2 test performed on 10m diagnostics for Global aquaplanet
370 use case. The relative error in the ported code is the difference between the outputs produced by
371 the GPU binary of the ported code and the CPU binary of the reference code. Tolerance statistics
372 (mean, max, and min) are estimated from a difference of the outputs from an unperturbed CPU
373 simulation and 19 perturbed CPU simulations (Dipankar et al., 2025). To pass the test, relative
374 errors in the ported code (dashed lines in Fig. 5) must be less than the acceptable tolerance
375 indicated by the solid lines.

378 Figure 5 Probttest test applied on the aquaplanet use case for the indicated variables. the solid lines indicate
379 the accepted error in the variable and the dashed lines show the error in the ported code. the colors indicate
380 various measures of the error.

381 Level 3 testing is the final round in which the entire code base is subjected to a scientific use case
382 of varying complexity and the results are then validated against reference. The reference can be
383 a more mature model, for example in the case of idealised aquaplanet experiments, or
384 observations in realistic configurations. This testing is performed by the experts who have a better
385 understanding of the physical processes that the model simulates. In addition, level 3 testing also
386 help identify issues in the model code and the entire computing platform, which are not captured
387 in the level 1 and 2 tests. Validation of the new dynamical core is discussed further in Section 6.

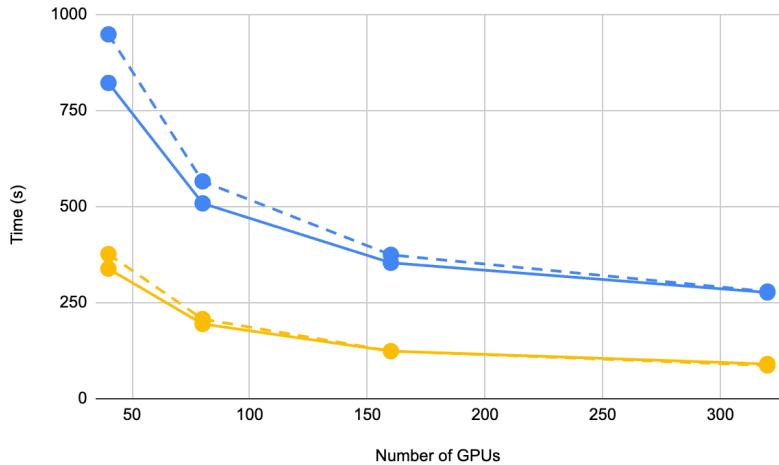

388 Finally, it is important to note that in addition to the three-tiered testing of refactored ICON
389 mentioned above, GT4Py, as a library, undergoes its own testing (Paredes et al., 2023).

390 5 Computational Performance

391 Since performance is one of the key motivations to our development, the [model with GT4Py](#)
392 [dynamical core is compared against the](#) Fortran+ version of the [e3demodel](#) (Lapillonne et al.,
393 2025) ~~to is used as a reference to demonstrate the~~ feasibility of the approach. [The two \(user\)](#)
394 [codes are same except for the dynamical core](#). All simulations are performed using full physics
395 except for convection, gravity-wave drag, and subgrid-scale orography drag parameterization as
396 in prescribed SST simulations discussed in section 6.3. Simulation length is 24 hours using a fixed
397 time step of 22 seconds and 120 vertical levels. Radiation is called every 15 mins, outputs are
398 turned off, and only the integration time is measured and are available at Dipankar et al. (2025).
399 Simulations are performed on the Swiss National Supercomputing Centre (CSCS) ALPS
400 infrastructure on NVIDIA GH200 processors.

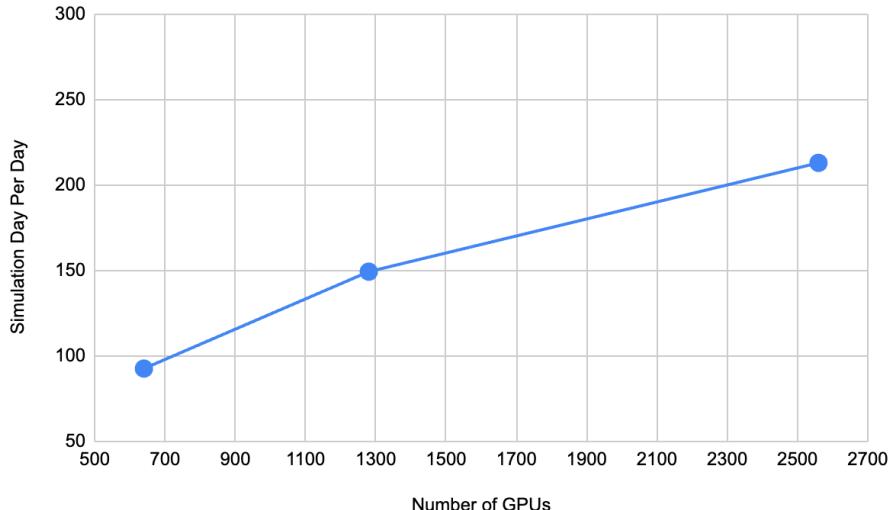
401 5.1 Benchmarking

402 We consider the strong- and weak-scaling of the implementation, as well as the performance
403 comparison with the reference Fortran+ implementation. Figure 6 shows the weak scaling. There
404 is some degradation in the performance for two reasons: first, the halo region becomes
405 proportionally larger than the process-local domain as the latter shrinks with increasing number
406 of GPUs. Secondly, there are many more MPI processes communicating, which leads to more load
407 imbalance and, thus, synchronization overhead. Time reporting reveals that the latter is primarily
408 responsible for the increased overhead.


410
411 Figure 6: Demonstrating weak scaling for the grids R2B8, R2B9, and R2B10 which correspond to a horizontal
412 grid spacing of around 10 km, 5 km, and 2.5 km, respectively.

413 Figure 7 shows strong scaling comparison between the GT4Py (solid lines) and the Fortran+
414 (dashed lines) versions, not only for the dynamical core (yellow) but also for the full code during
415 the time loop (blue). The GT4Py dynamical core performs about 10% faster than the Fortran+ near
416 the GPU numbers where the memory required by the simulation configuration just fits. The
417 differences between the two, however, reduces with increasing number of GPUs. Both
418 implementations indicate an asymptotic limit to the strong scaling over the GPUs, which is a
419 known issue (Giorgetta et al., 2022) and is understood to be due to the decreasing GPU occupancy.
420 This implies that at even higher GPU numbers a CPU implementation, which has much better

421 strong scaling, may outperform the GPU implementation. It is therefore crucial to choose a “just-
422 fits” memory configuration (here 40 GPUs), which offers the maximal occupancy.


423 Interestingly, the timings difference in the dynamical core does not explain the larger performance
424 difference in the overall time loop, even though the former is the only component which is
425 different in the two implementations. A careful study of all the component timings suggests that
426 ~~the GT4PyMPI~~ synchronization overhead is less in the new model, which also has an effect within
427 the physical parameterisations.

428

429
430 Figure 7: The overall timings (blue) of the R2B8 (10km) grid indicates an asymptotic limit to strong scaling for
431 both the Fortran+ (dashed blue) and GT4Py (solid blue). The dynamical core (yellow) has a similar asymptotic
432 limit. Near the “just-fits” configuration of (40 GPUs), the GT4Py (soliddashed yellow) is about 10% faster than
433 the Fortran+ (soliddashed yellow) implementation.

434 Figure 8 shows strong scaling in SDPD metric for R2B10 (2. 5 km) simulations. As indicated in the
435 previous figure, there is an asymptotic limit due to the decreasing GPU occupancy, such that there
436 is little reason to more than quadruple the GPU configuration to improve throughput. At 2560
437 GPUs, which is about a quarter of the CSCS ALPS infrastructure, the throughput we get is about
438 213 SDPD at R2B10 using 120 vertical levels and without coupling to the ocean. With an aim of
439 365 SDPD, one clearly sees the need of a radical change in the model design and compute
440 architecture to further improve the computational performance, while constraining the energy
441 consumption, as also discussed in Adamidis et al. (2025).

442

443 Figure 8: The simulation throughput in simulation days per day (SDPD) on R2B10 grid using 120 vertical levels
 444 with the GT4Py dynamical core. The strong scaling indicates some speedup but it quickly reaches an
 445 asymptote as the GPU occupancy decreases. Again, the just-fits configuration (here 640 GPUs) should be
 446 chosen to reap the maximal benefit from the GPU.

447 5.2 Future potential for further optimization

448 The performance of the GT4Py dynamical core outperforms the Fortran+ reference version by
 449 roughly 10%. There is some satisfaction in this result: the performance of the latter has culminated
 450 after years of optimization, while the former can still benefit from ongoing optimizations in the
 451 GTFN and DaCe backends. There is also the opportunity to fuse stencils, potentially increasing
 452 overall dynamical core performance. This work is currently ongoing and will be reported in future
 453 publications.

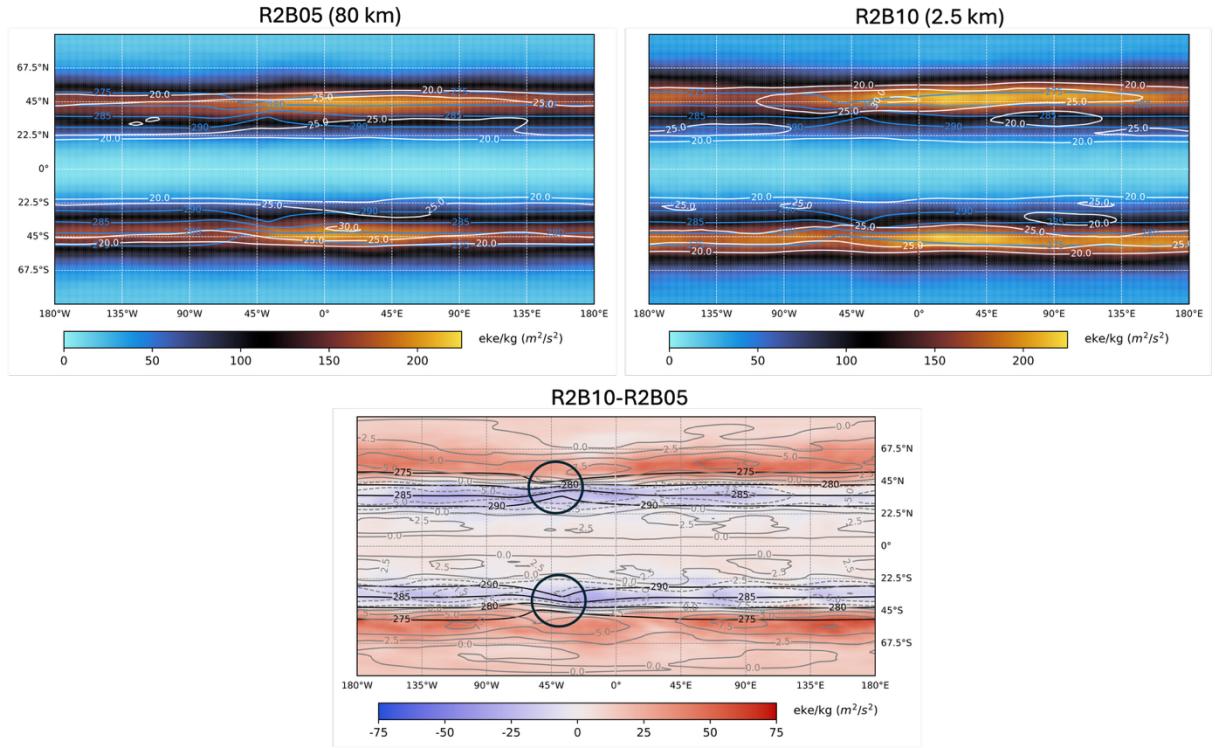
454 While it is difficult to estimate the potential limit for optimization in the backends, one guide could
 455 be the hand-written CUDA implementation of the dynamical core written by Nvidia developers
 456 [Pers comm., Alexeev D]. This so-called speed-of-light (SOL) implementation indicated that the
 457 overall dynamical core could potentially be sped up by a factor of two or more. The GTFN/DaCe
 458 backend development is leveraging the lessons from the SOL implementation.

459 6 Validation

460 Model validation is guided by a suite of scientific use cases of increasing complexity, including
 461 global aquaplanet (atmosphere-only), global uncoupled (atmosphere–land), and global coupled
 462 (atmosphere–land–ocean) simulations. Additionally, limited-area applications targeting numerical
 463 weather forecasting and regional climate modelling are considered. To date, the current model
 464 version has been employed in global aquaplanet and global uncoupled simulations. In this work,
 465 we present selected results from these simulations (see Dipankar et al., 2025 for data), with
 466 comprehensive analyses to be reported in separate publications.

467 Simulations are performed using the NWP (Numerical Weather Prediction) scientific configuration
 468 described in Zängl et al. (2015) and Prill et al. (2023) and the code version in Dipankar (2025)
 469 except for the use case in section 6.2 that uses XPP (eXtended Predictions and Projections)
 470 scientific configuration described in Müller et al. (2025) and made available in Müller et al. (2024).
 471 Both configurations use ecRAD (Hogan and Bozzo, 2018; Rieger et al., 2019) radiation scheme and
 472 single-moment bulk scheme of Seifert (2008). The turbulence schemes in NWP configuration is

473 based on Raschendorfer (2001) whereas XPP uses Mauritsen et al. (2007). The land surface
474 scheme in the NWP configuration is TERRA (Heise et al., 2006) whereas it is JSBACH (Reick et al.,
475 2021) in XPP. ICON dynamical core employs an ad hoc treatment of three-dimensional turbulence
476 at this scale by treating horizontal numerical diffusion using Smagorinsky (1969) closure.


477 For horizontal grid spacing of 5 km and smaller, deep convective parametrization, gravity-wave
478 drag, and subgrid-scale orography drag have been turned off except for the use case in section 6.2
479 where the subgrid-scale orography drag is kept on.

480 It should be noted that the atmospheric configurations used here are different from the ICON
481 Sapphire configuration described in Hohenegger et al. (2023). This is particularly true for the
482 treatment of sub-grid processes for land and atmosphere. The scientific details of dynamical core
483 is identical in all the configurations.

484 6.1 Global aquaplanet

485 State-of-the-art climate models struggle to accurately represent the intensification of
486 extratropical cyclones as well as the position, intensity, and tilt of the stormtracks, especially over
487 the North Atlantic. This is the case in terms of both tropopause-level Eddy-kinetic energy and
488 surface level cyclone frequency. Schemm (2023), by performing a nested 5 km simulation over the
489 storm track region, has shown that an increase in horizontal grid spacing towards storm-resolving
490 regime has the potential to lead to more tilted and poleward positioned stormtracks downstream
491 of a sea-surface temperature (SST) front. Validating this hypothesis led to the first use case for
492 EXCLAIM.

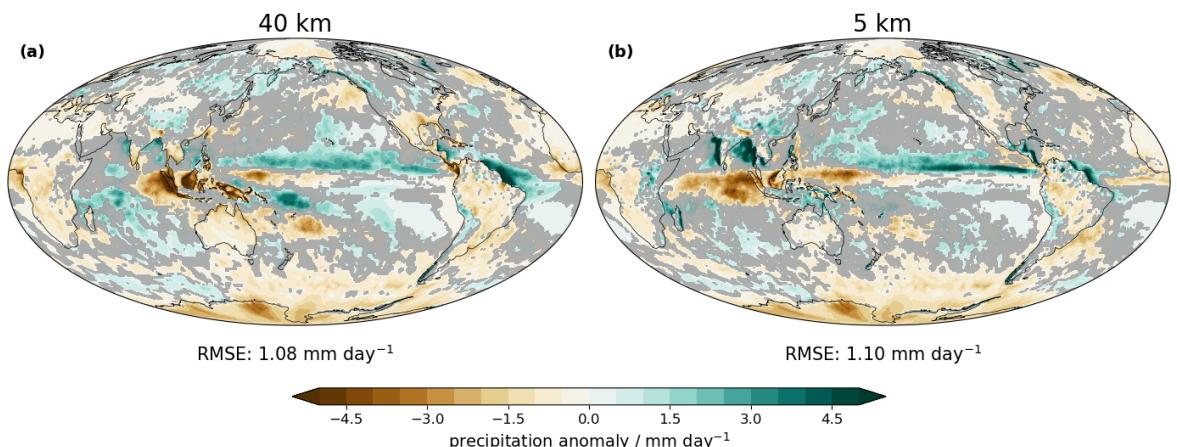
493 Following Schemm (2023), global aquaplanet is set up with 10 K SST anomalies in the shape of
494 ellipsoids in both hemispheres. The resulting SST mimics the Gulf Stream plus the land-sea
495 contrasts along the east coast of North America- replicating the formation of the North Atlantic
496 storm track downstream of the Gulf Stream. The simulations are performed on grids R2B10 (2.5
497 km), R2B07 (20 km), and R2B05 (80 km) using 90 vertical levels. The initial condition and SST for
498 each of these grids are perturbed to generate 3 ensemble members each of which one year-long
499 post spin up. Here, we only show the results from the finest (R2B10) and the coarsest (R2B05) grid
500 spacing simulations to demonstrate the effect of storm-resolving global simulations.

501

502 Figure 9: Mean state of the jet in aquaplanet simulations for indicated grids (top)
 503 and their difference (bottom). EKE is shaded and the horizontal wind speed is depicted in white (grey)
 504 contours (dashed negative) starting at 20 m/s with a spacing of 5 m/s (2.5 m/s) in top (bottom) panel.
 505 The blue (black) contours are SST in top (bottom) panels starting at 275 K with a spacing of 5 K. Region around the SST
 506 fronts are circled in the bottom panel.

507 Figure 9 shows the ensemble mean of eddy kinetic energy (EKE) and horizontal wind speed
 508 averaged over the simulation period and vertically between 450 hPa and 250 hPa for the two grids
 509 and their differences. Indeed, the resolution jump affects both the mean state of the jet and its
 510 variability. The annual mean wind speed fields show that the jet is stronger and more poleward in
 511 the R2B10 than R2B05 simulations. The lower panel shows that this difference is particularly
 512 marked downstream of the SST front. This is also the region where the difference between the
 513 storm tracks marked by the difference in EKE is strongest. As for the mean wind speed, EKE is
 514 larger and more poleward for the R2B10 ensemble mean. This is especially true in the 180°
 515 downstream of the SST front, where the mean jet is also most poleward. The correlation between
 516 the differences in the mean state of the jet and the storm track point toward the importance of
 517 eddies for shaping the mean jet: The jet is strongest where EKE is, and the differences between
 518 the mean states of the R2B10 and R2B05 jets are strongest where the differences in EKE are.

519 Overall, these findings are in line with Schemm (2023) showing the potential of km-scale
 520 simulations to better represent stormtracks compared to a typical climate model. Further study
 521 will focus on the impact of grid spacing on the most extreme winds in the jet stream to enhance
 522 our understanding of the mean jet stream representation and its variability.


523 6.2 Global uncoupled with idealized SST perturbations

524 Equilibrium climate sensitivity (Charney, 1979) describes the global mean temperature increase
 525 following a doubling of CO₂ concentrations. It is a key parameter for assessing the planet's
 526 vulnerability to climate change. However, its uncertainty range has remained approximately
 527 constant over the past 40 years. Cloud feedback is one of the main sources of uncertainty
 528 (Sherwood et al., 2020). Current state-of-the-art Coupled Model Intercomparison Project (CMIP)

529 type climate models heavily rely on parameterisations, which are known to be a major contributor
 530 to the uncertainty. As model grid spacing increases, more essential processes can be directly
 531 resolved and represented by explicit physical equations. We evaluate the differences in feedback
 532 processes in response to SST perturbations between coarse-resolution simulations with the full
 533 set of parameterisations and high-resolution simulations without deep convective and gravity
 534 wave parameterisations. We focus on idealised SST perturbations such as a warming patch in the
 535 Western Pacific (GFMIP protocol, Bloch-Johnson et al., 2024) and realistic perturbation such as El
 536 Niño.

537 Simulations are performed using the ICON XPP configuration targeted for seasonal and climate
 538 simulations (Früh et al., 2022; Niemeier et al., 2023; Müller et al., 2025). A characterisation of the
 539 km-scale setup can be found in Kroll et al. (2025). Two horizontal grid spacings are tested: R2B06
 540 (40 km) and R2B09 (5 km), both with 150 vertical levels and a model top at 75 km. For the R2B06
 541 configuration, all parameterisations are active whereas the parameterisations for deep
 542 convection and gravity waves are switched off for R2B09.

543 Capturing the atmospheric teleconnections between the tropics and extratropics is especially
 544 important for an accurate representation of feedbacks studied in this use case. For this, the
 545 absence of the double Intertropical Convergence zone (ITCZ) bias is essential. The mean
 546 precipitation bias of the 40 km and 5 km configuration against Global Precipitation Measurement
 547 Integrated Multi-satellitE Retrievals for GPM (GPM IMERG; Huffman et al., 2019) shows that the
 548 single strand ITCZ is expressed correctly (see Fig. 10). The skill of both configurations in capturing
 549 the large-scale precipitation fields is comparable, however the regions of dominating biases shift.
 550 For example, the 5 km setup exhibits an improved representation of precipitation over islands in
 551 the Tropical Warm Pool, whereas the 40 km setup has reduced biases at the coast of India and
 552 Burma. A detailed description is available in Kroll et al. (2025) and will be accompanied by an
 553 analysis of the atmospheric feedback in a separate work.

555 Figure 10: Two-year mean global precipitation bias with respect to the 2004-2010 average of IMERG
 556 precipitation field for the (a) 40 km (R2B06) and (b) 5 km (R2B09) configurations. Statistically significant
 557 differences, based on a two-sided z-test at $\alpha = 0.1$, are shown; insignificant regions are grayed out. All data
 558 was remapped to a grid using 140 km spacing for better comparability. The Global Root Mean Square Error
 559 (RMSE) for both configuration is shown below the maps.

6.3 Global uncoupled with realistic SST

Global uncoupled simulations with realistic prescribed SSTs served as the first realistic use case. These configurations are critical to the success of envisioned digital twins of Earth system (Bauer et al., 2021; Hazeleger et al., 2024) to aid adaptation decisions for the changing climate at a community level, and for a better understanding of the Earth system in general. First studies have demonstrated the potential of global storm-resolving simulations in better representing key atmospheric processes that affect clouds and precipitation (Kuma et al 2024, Lee and Hohenegger 2024, Spät et al 2024) and their effectiveness in realising extreme precipitation (Wille et al 2024). The present use case complements these studies by analysing the vast amount of information contained in these simulations from a different perspective. Detailed analyses of the results will be reported in separate publications. Here we present some of the results, highlighting the potential of the current configuration.

The simulation is performed on R2B10 grid (2.5 km) using 120 vertical levels. The science configuration follows the protocol with a motivation to contribute towards DYAMOND phase – III globally coordinated experiments as described in Takasuka et al. (2024). The simulation is initialised by European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data on 2020-01-20, 00UTC using European Space Agency Climate Change Initiative (ESA-CCI) SST at a horizontal spacing of $1/20^\circ$ updated daily. Soil moisture is spun up through another 10-year simulation at 10 km horizontal spacing and then regridded to R2B10. The simulation is conducted for a period of 4 years starting from January 2020 to March 2024. The first two months are discarded for spin up.

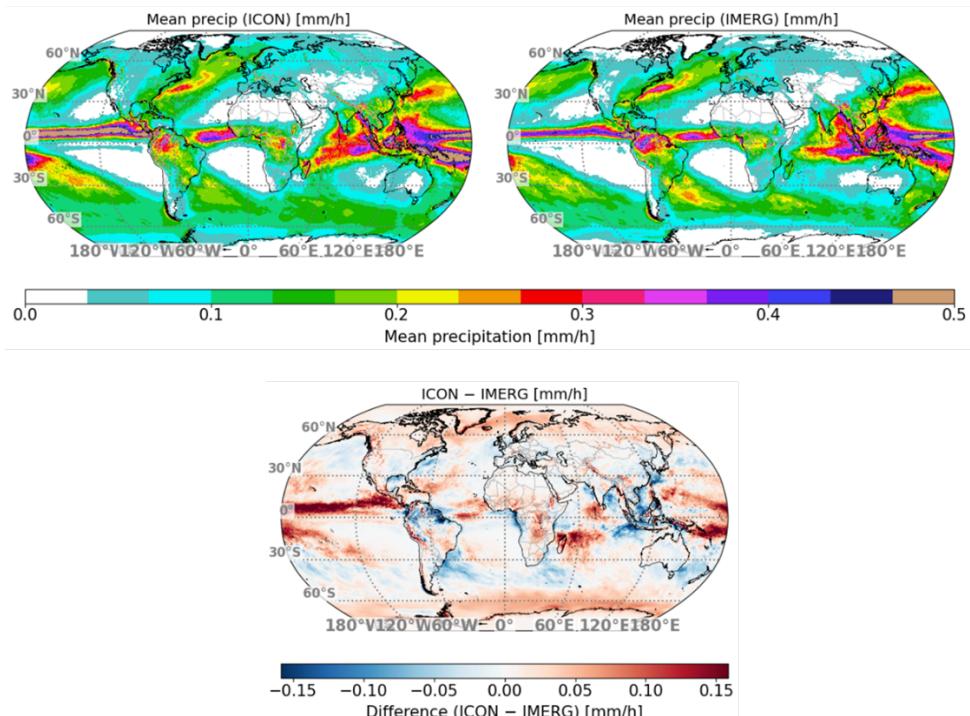
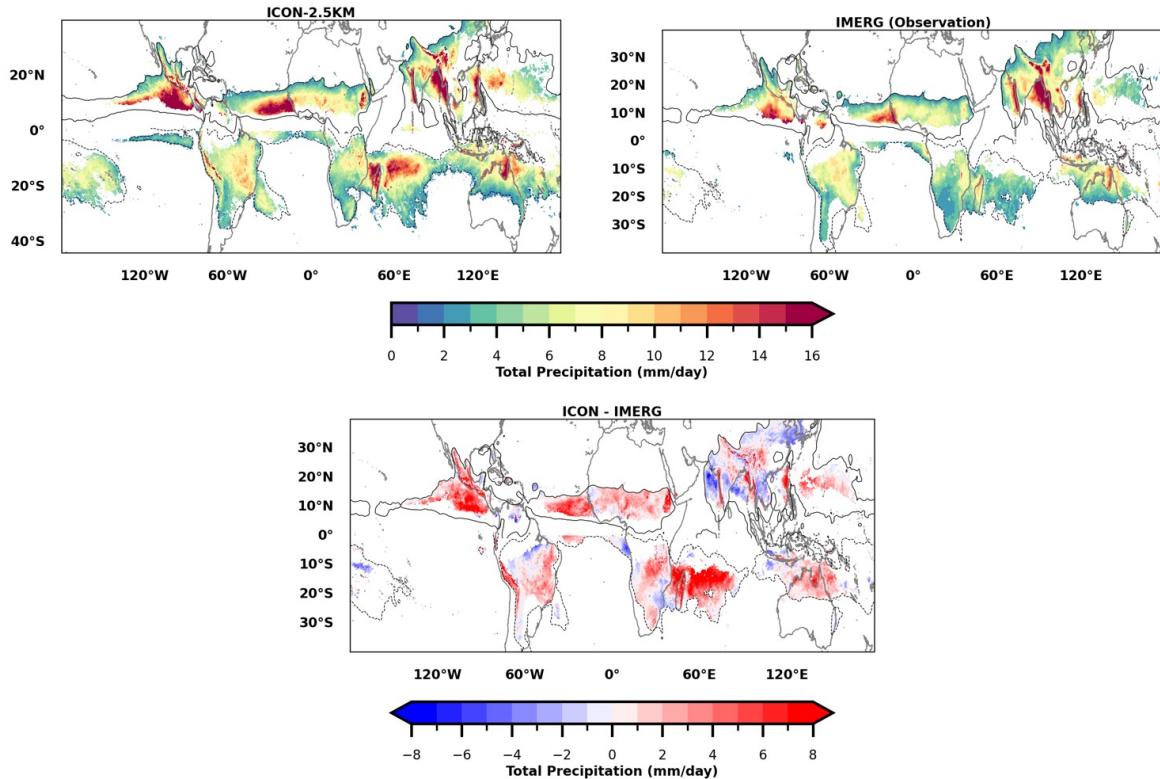



Figure 11: Mean precipitation in ICON (top left) and observation (top right). The difference is shown in bottom panel

586 Figure 11 shows the mean precipitation over the simulation period in ICON and GPM IMERG.
 587 Broadly speaking, the precipitation pattern and amplitude are nicely captured. The equatorial
 588 region, particularly over the ocean (as seen in the bottom panel), shows wet biases that warrant
 589 improvement. Interestingly, the present configuration eliminates the underestimation of
 590 equatorial rainband in the Indo-Pacific region, famously known as the double ITCZ (Inter Tropical
 591 Convergence Zone) observed in ICON simulations using Sapphire configuration (see Fig. 5 in
 592 Segura et al., 2025). The wet bias in the equatorial region is also apparent in the monsoon
 593 rainbands discussed next.

594

595

596 **Figure 12.** Global monsoon domains (shaded) are defined as regions where the difference between local
 597 summer and winter precipitation exceeds 2 mm day^{-1} , and local summer precipitation contributes at least
 598 55% to the total annual precipitation. The black contours indicate the 2 mm day^{-1} threshold of summer-minus-
 599 winter precipitation from (a) the ICON 2.5 km simulation, (b) IMERG observations, and (c) their difference
 600 (ICON – IMERG).

601 The global monsoon system is a dominant feature in the tropical region exhibiting seasonal reversals
 602 of winds while contributing significant amount of precipitation. The systems exhibit rich variety of
 603 scales and their interactions ranging from large scale teleconnections to intraseasonal oscillations
 604 and diurnal cycle. Figure 12 highlights the global monsoon domains, following the definition of
 605 Wang & Ding (2008): regions where summer minus winter precipitation exceeds 2 mm day^{-1} and
 606 summer precipitation contributes at least 55% of the annual total.

607 The ICON 2.5 km simulation captures the major domains, including the South and Southeast Asian,
 608 East Asian, West African, and North American monsoons, in broad agreement with IMERG
 609 observations. Other regions with strong seasonality, such as South Africa, Central America, and
 610 equatorial South America, remain debated in terms of their classification as monsoon domains
 (Climate Change, 2021) and are not discussed further. The contours in Fig. 12 indicate the 2 mm

612 day⁻¹ summer–winter precipitation threshold, showing that ICON resembles IMERG but tends to
613 overestimate precipitation over the Pacific Ocean and the American and Australian maritime
614 regions. These areas, however, fail the 55% annual contribution criterion and thus are excluded as
615 monsoon domains. The difference panel highlights a general wet bias in ICON relative to IMERG,
616 with the exception of localized dry biases over South/Southeast Asia and East Asia. A more detailed
617 analysis of the underlying dynamical and thermodynamical causes will be presented in other
618 detailed study

619 7 Conclusion

620 This work presents the refactored atmospheric dynamical core of ICON written in GT4Py
621 integrated within the existing Fortran-based infrastructure. The new implementation
622 demonstrates performance slightly superior to the Fortran+OpenACC version that has been
623 performance-tuned over time, while offering a cleaner and architecture-agnostic code base. The
624 use of a Python-based DSL enables separation of concerns, facilitating portability across
625 heterogeneous CPU-GPU computing platforms and laying the foundation for future model
626 evolution.

627 The refactored code has been subjected to a comprehensive testing strategy, including unit-level
628 verification, integration tests, and scientific validation. Preliminary results from global aquaplanet
629 and uncoupled simulations demonstrate the model’s ability to realistically capture key
630 atmospheric processes, such as storm track dynamics and precipitation patterns, highlighting the
631 potential of high-resolution global simulations to address persistent challenges in climate
632 modelling.

633 While the current implementation already shows a modest performance gain over the reference,
634 further optimizations, such as performance tuning using DaCe are expected to yield improvements
635 but not enough to reach the goal of one simulation year per computational day. Poor strong
636 scaling on CPU-GPU architectures appear to be the limiting factor. We believe that transition to a
637 Python-based model infrastructure and components have the potential to allow for more radical
638 changes towards achieving the performance goal in addition to improving user experience.

639 8 Acknowledgment

640 This work was supported by the EXCLAIM project funded by ETH Zürich and by the contributions
641 from ESiWACE2 and ESCAPE-2. The authors thank the EXCLAIM ~~Executive Committee~~ ~~Nicolas~~
642 ~~Gruber, Thomas Schulthess, Oliver Fuhrer, Andreas Prein, and Christoph Schär~~ for their continued
643 support. We also thank the EXCLAIM core team members Christina Schnadt Poberaj and Tamara
644 Bandikova for their inputs and suggestions. ~~Sebastian Schemm, Robert Jnglin Wills, and Andreas~~
645 ~~Prein are acknowledged for designing the global aquaplanet, uncoupled with idealized SST~~
646 ~~perturbations, and uncoupled realistic SST use cases, respectively. Andreas Prein is acknowledged~~
647 ~~for providing Figure 11.~~

648 Computing and data storage resources were provided by the Swiss National Supercomputing
649 Center (CSCS) in Lugano via the projects: cwd01 (AD), cwp02 (MBK), cwp03 (PPK), cwp04 (CAK).
650 CAK gratefully acknowledges support by the ETH Postdoctoral Fellowship Program.

651 9 Code and data availability

652 The ICON code used in the manuscript is available under a permissive BSD-3C license. Details on
653 code availability and usage can be found at <https://www.icon-model.org/>. The source code and
654 the run scripts used for the global aquaplanet simulations and global uncoupled simulations with
655 realistic SST are available at <https://doi.org/10.5281/zenodo.17250248> (Dipankar, 2025). The
656 source code and other relevant scripts for the global uncoupled simulation with idealized SST
657 perturbations are available at <https://doi.org/10.17617/3.UUIIZ8> (Müller et al., 2024).

658 Simulation and observation data used to generate the figures are available at
659 <https://doi.org/10.5281/zenodo.17317423> (Dipankar et al., 2025).

660 10 Author contributions

661 MB, AD, XL, and TCS outlined the development roadmap. AD led the manuscript. The rest of the
662 authors have contributed equally to the manuscript and to the development.

663 11 Competing interests

664 The authors have no competing interests.

665 12 References

666 Adamidis, P., Pfister, E., Bockelmann, H., Zobel, D., Beismann, J.-O., and Jacob, M.: The real
667 challenges for climate and weather modelling on its way to sustained exascale performance: a
668 case study using ICON (v2.6.6) (2025): *Geosci. Model Dev.*, 18, 905–919,
669 <https://doi.org/10.5194/gmd-18-905-2025>

670 Afanasyev A, Bianco M, Mosimann L, Osuna C, Thaler F, Vogt H, Fuhrer O, VandeVondele J,
671 Schulthess T C (2021): GridTools: A framework for portable weather and climate applications,
672 *SoftwareX*, 15, <https://doi.org/10.1016/j.softx.2021.100707>

673 Bauer P, Stevens B and Hazeleger W (2021): A digital twin of Earth for the green transition *Nat.*
674 *Clim. Change* 11 80–83, <https://doi.org/10.1038/s41558-021-00986-y>

675 Ben-Nun, T., de Fine Licht, J., Ziogas, A. N., Schneider, T., and Hoefer, T. (2019): Stateful Dataflow
676 Multigraphs: A DataCentric Model for Performance Portability on Heterogeneous Architectures,
677 in: *Proceedings of the International Conference for High Performance Computing, Networking,*
678 *Storage and Analysis*, SC’19, Association for Computing Machinery, New York, NY, USA, November
679 2019, 81, 1–14, <https://doi.org/10.1145/3295500.3356173>

680 Bloch-Johnson, J., Rugenstein, M. A. A., Alessi, M. J., Proistrosescu, C., Zhao, M., Zhang, B., et al.
681 (2024): The green's function model intercomparison project (GFMIP) protocol. *J of Adv in*
682 *Modeling Earth Sys*, 16, e2023MS003700. <https://doi.org/10.1029/2023MS003700>

683 Bubnová R, Hello G, Bénard P, Geleyn J-F (1995): Integration of the Fully Elastic Equations Cast in
684 the Hydrostatic Pressure Terrain-Following Coordinate in the Framework of the ARPEGE/Aladin
685 NWP system. *Mon Weather Rev* 123(2):515–535, [https://doi.org/10.1175/1520-0493\(1995\)123<0515:IOFEE>2.0.CO;2](https://doi.org/10.1175/1520-0493(1995)123<0515:IOFEE>2.0.CO;2)

687 Charney JG, Arakawa A, Baker DJ, Bolin B, Dickinson RE, Goody RM, Leith CE, Stommel HM,
 688 Wunsch CI. (1979): Carbon dioxide and climate: a scientific assessment. National Academy of
 689 Sciences, Washington, DC, <https://doi.org/10.17226/12181>

690 Dahm, J., Davis, E., Deconinck, F., Elbert, O., George, R., McGibbon, J., Wicky, T., Wu, E., Kung, C.,
 691 Ben-Nun, T., Harris, L., Groner, L., and Fuhrer, O. (2023): Pace v0.2: a Python-based performance-
 692 portable atmospheric model, *Geosci. Model Dev.*, 16, 2719–2736, <https://doi.org/10.5194/gmd-16-2719-2023>

693

694 Donahue, A. S., Caldwell, P. M., Bertagna, L., Beydoun, H., Bogenschutz, P. A., Bradley, A. M., et al.
 695 (2024): To exascale and beyond—The Simple CloudResolving E3SM Atmosphere Model (SCREAM),
 696 a performance portable global atmosphere model for cloud-resolving scales. *J of Adv in Modeling
 697 Earth Sys*, 16, e2024MS004314. <https://doi.org/10.1029/2024MS004314>

698 Dipankar, A., Stevens, B., Heinze, R., Moseley, C., Zängl, G., Giorgetta, M., and Brdar, S. (2015):
 699 Large eddy simulation using the general circulation model ICON, *J. Adv. Model. Earth Sy.*, 7, 963–
 700 986, <https://doi.org/10.1002/2015MS000431>

701 Dipankar, A. (2025). EXCLAIM use cases. Zenodo. <https://doi.org/10.5281/zenodo.17250248>

702 Dipankar, A., Bunkenberger, M., Kroll, C., and Pothapakula P K. (2025). Data for the article "Toward
 703 Exascale Climate Modelling: A Python DSL Approach to ICON's (Icosahedral Non-hydrostatic)
 704 Dynamical Core (icon-exclaim v0.2.0)". <https://doi.org/10.5281/zenodo.17317423>

705 Duras, J., Ziemen, F., and Klocke, D. (2021) : The DYAMOND Winter data collection, EGU General
 706 Assembly 2021, online, 19–30 Apr 2021, EGU21-4687, <https://doi.org/10.5194/egusphere-egu21-4687>

707

708 Früh, B., Potthast, R., Müller, W., Korn, P., Brienen, S., Fröhlich, K., Helmert, J., Köhler, M., Lorenz,
 709 S., Pham, T. V., Pohlmann, H., Schlemmer, L., Schnur, R., Schulz, J.-P., Sgoff, C., Vogel, B., Wirth, R.,
 710 and Zängl, G. (2022): ICON-Seamless, the development of a novel Earth System Model based on
 711 ICON for time scales from weather to climate, <https://doi.org/10.5194/ems2022-292>

712 Gysi T, Osuna C, Fuhrer O, Bianco M, Schulthess TC. (2015): STELLA: A domain specific tool for
 713 structured grid methods in weather and climate models. In: Proc. of the intl. conf. for high
 714 performance computing, networking, storage and analysis. New York, NY, USA: ACM; 2015, p. 12,
 715 Article 41, [10.1145/2807591.2807627](https://doi.org/10.1145/2807591.2807627)

716 Heinze, R., Dipankar, A., Henken, C.C., Moseley, C., Sourdeval, O., Trömel, S., Xie, X., Adamidis, P.,
 717 Ament, F., Baars, H., Barthlott, C., Behrendt, A., Blahak, U., Bley, S., Brdar, S., Brueck, M., Crewell,
 718 S., Deneke, H., Di Girolamo, P., Evaristo, R., Fischer, J., Frank, C., Friederichs, P., Göcke, T., Gorges,
 719 K., Hande, L., Hanke, M., Hansen, A., Hege, H.-C., Hoose, C., Jahns, T., Kalthoff, N., Klocke, D.,
 720 Kneifel, S., Knippertz, P., Kuhn, A., van Laar, T., Macke, A., Maurer, V., Mayer, B., Meyer, C.I.,
 721 Muppa, S.K., Neggers, R.A.J., Orlandi, E., Pantillon, F., Pospichal, B., Röber, N., Scheck, L., Seifert,
 722 A., Seifert, P., Senf, F., Siligam, P., Simmer, C., Steinke, S., Stevens, B., Wapler, K., Weniger, M.,
 723 Wulfmeyer, V., Zängl, G., Zhang, D. and Quaas, J. (2017): Large-eddy simulations over Germany

724 using ICON: a comprehensive evaluation. *Q.J.R. Meteorol. Soc.*, 143: 69-100.
725 <https://doi.org/10.1002/qj.2947>

726 Giorgetta, M. A., Sawyer, W., Lapillonne, X., Adamidis, P., Alexeev, D., Clément, V., Dietlicher, R.,
727 Engels, J. F., Esch, M., Franke, H., Frauen, C., Hannah, W. M., Hillman, B. R., Kornblueh, L., Marti,
728 P., Norman, M. R., Pincus, R., Rast, S., Reinert, D., Schnur, R., Schulzweida, U., and Stevens, B.
729 (2022): *The ICON-A model for direct QBO simulations on GPUs* (version icon-cscs:baf28a514),
730 *Geosci. Model Dev.*, 15, 6985–7016, <https://doi.org/10.5194/gmd-15-6985-2022>

731 Giorgetta, M. A., Brokopf, R., Crueger, T., Esch, M., Fiedler, S., Helmert, J., et al. (2018): ICON-A,
732 the atmosphere component of the ICON Earth system model: I. Model description. *J of Adv in
733 Modeling Earth Sys*, 10, 1613–1637. <https://doi.org/10.1029/2017MS001242>

734 Hart, David (2024). iCAS 2024 Presentations. figshare. Collection.
735 <https://doi.org/10.6084/m9.figshare.c.7439641.v3>

736 Hazeleger, W., Aerts, J.P.M., Bauer, P. et al. (2024): Digital twins of the Earth with and for humans.
737 *Commun Earth Environ* 5, 463, <https://doi.org/10.1038/s43247-024-01626-x>

738 Heise, E., Ritter B, and Schrödin R (2006): Operational implementation of the multilayer soil model.
739 COSMO Technical Reports No. 9, Consortium for Small-Scale Modelling, 19pp, URL
740 <http://www.cosmo-model.org>.

741 Hohenegger, C., Korn, P., Linardakis, L., Redler, R., Schnur, R., Adamidis, P., Bao, J., Bastin, S.,
742 Behravesh, M., Bergemann, M., Biercamp, J., Bockelmann, H., Brokopf, R., Brüggemann, N.,
743 Casaroli, L., Chegini, F., Datseris, G., Esch, M., George, G., Giorgetta, M., Gutjahr, O., Haak, H.,
744 Hanke, M., Ilyina, T., Jahns, T., Jungclaus, J., Kern, M., Klocke, D., Kluft, L., Kölling, T., Kornblueh,
745 L., Kosukhin, S., Kroll, C., Lee, J., Mauritsen, T., Mehlmann, C., Mieslinger, T., Naumann, A. K.,
746 Paccini, L., Peinado, A., Praturi, D. S., Putrasahan, D., Rast, S., Riddick, T., Roeber, N., Schmidt, H.,
747 Schulzweida, U., Schütte, F., Segura, H., Shevchenko, R., Singh, V., Specht, M., Stephan, C. C., von
748 Storch, J.-S., Vogel, R., Wengel, C., Winkler, M., Ziemen, F., Marotzke, J., and Stevens, B. (2023):
749 *ICON-Sapphire: simulating the components of the Earth system and their interactions at kilometer
750 and subkilometer scales*, *Geosci. Model Dev.*, 16, 779–811, <https://doi.org/10.5194/gmd-16-779-2023>

752 Hogan, R. J., and Bozzo A. (2018): A flexible and efficient radiation scheme for the ecmwf model.
753 *J. Adv. Model Earth Sy.*, 10 (8), 1990–2008, <https://doi.org/10.1029/2018MS001364>

754 Huffman, G. J., and Coauthors, (2019): NASA Global Precipitation Measurement (GPM) Integrated
755 Multi-Satellite Retrievals for GPM (IMERG). NASA Algorithm Theoretical Basis Doc., version 06, 38
756 pp., https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06.pdf.

757 Climate Change 2021 – The Physical Science Basis Working Group I Contribution to the Sixth
758 Assessment Report of the Intergovernmental Panel on Climate Change, pp. 2193 – 2204,
759 <https://doi.org/10.1017/9781009157896.019>

760 Klocke D., Frauen C, Engels J F, Alexeev D, Redler R, Schnur R, Haak H, Kornblueh L, Brüggemann
761 N., Chegini F, Römer M., Hoffmann L., Griessbach S., Bode M., Coles J., Gila M., Sawyer W.,

762 [Calotoiu A., Budanaz Y., Mazumder P., Copik M., Weber B., Herten A., Bockelmann H., Hoefler T.,](#)
763 [Hohenegger C., and Stevens B.-et.al. \(2025\): Computing the Full Earth System at 1 km Resolution,](#)
764 [In Proceedings of the International Conference for High Performance Computing, Networking,](#)
765 [Storage and Analysis \(SC '25\). Association for Computing Machinery, New York, NY, USA, 125–136.](#)
766 <https://doi.org/10.1145/3712285.3771789> [Submission to Gordon Bell.](#)

767
768 Kuma, P., Bender, F. A.-M., McDonald, A. J., Alexander, S. P., McFarquhar, G. M., Cassano, J. J.,
769 Plank, G. E., Hartery, S., Parsons, S., Garrett, S., Schuddeboom, A. J., & Possner, A. (2025): Ship-
770 based lidar evaluation of Southern Ocean low clouds in the storm-resolving general circulation
771 model ICON and the ERA5 and MERRA-2 reanalyses. Zenodo.
772 <https://doi.org/10.5281/zenodo.16313702>

773 [Kroll, C. A., Schneidereit, A., Wills, R. C. J., Kornblueh, L., and Niemeier, U. \(2025\): Parameterization](#)
774 [adaption needed to unlock the benefits of increased resolution for the ITCZ in ICON, EGUsphere](#)
775 [\[preprint\], https://doi.org/10.5194/egusphere-2025-1212](#)

776 [Kroll, C. A., Jnglin Wills, R. C., Kornblueh, L., Niemeier, U., and Schneidereit, A. \(2025\): Parameterization adaption needed to](#)
777 [unlock the benefits of increased resolution for the ITCZ in ICON, Atmos. Chem. Phys., 25, 16915–](#)
778 [16943, https://doi.org/10.5194/acp-25-16915-2025](#)

779
780 Lapillonne, X., Hupp, D., Gessler, F., Walser, A., Pauling, A., Lauber, A., Cumming, B., Osuna, C.,
781 Müller, C., Merker, C., Leuenberger, D., Leutwyler, D., Alexeev, D., Vollenweider, G., Van Parys, G.,
782 Jucker, J., Jansing, L., Arpagaus, M., Induni, M., Jacob, M., Kraushaar, M., Jähn, M., Stellio, M.,
783 Fuhrer, O., Baumann, P., Steiner, P., Kaufmann, P., Dietlicher, R., Müller, R., Kosukhin, S.,
784 Schulthess, T. C., Schättler, U., Cherkas, V., and Sawyer, W. (2025): Operational numerical weather
785 prediction with ICON on GPUs (version 2024.10), EGUsphere [preprint],
786 <https://doi.org/10.5194/egusphere-2025-3585>

787 J. Lee, [and](#) C. Hohenegger (2024): Weaker land–atmosphere coupling in global storm-resolving
788 simulation, Proc. Natl. Acad. Sci. U.S.A. 121 (12) e2314265121,
789 <https://doi.org/10.1073/pnas.2314265121>

790 Mauritsen, T., Svensson, G., Zilitinkevich, S. S., Esau, I., Enger, L., and Grisogono, B (2007): A Total
791 Turbulent Energy Closure Model for Neutrally and Stably Stratified Atmospheric Boundary Layers,
792 Journal of the Atmospheric Sciences, 64, 4113–4126, <https://doi.org/10.1175/2007JAS2294.1>

793 Müller, W. A., Lorenz, S., Pham, T. V., Schneidereit, A., Brokopf, R., Brovkin, V., Brüggemann, N.,
794 Chegini, F., Dommeneget, D., Fröhlich, K., Früh, B., Gayler, V., Haak, H., Hagemann, S., Hanke, M.,
795 Hyina, T., Jungclaus, J., Köhler, M., Korn, P., Kornblüh, L., Kroll, C., Krüger, J., Castro Morales, K.,
796 Niemeier, U., Pohlmann, H., Polkova, I., Potthast, R., Riddick, T., Schlund, M., Stacke, T., Wirth, R.,
797 Yu, D., and Maretzke, J. (2025): The ICON-based Earth System Model for Climate Predictions and
798 Projections (ICON-XPP v1.0), EGUsphere [preprint], <https://doi.org/10.5194/egusphere-2025-2473>

799 Müller, W. A., Lorenz, S., Pham, T. V., Schneidereit, A., Brokopf, R., Brovkin, V., Brüggemann,
800 N., Chegini, F., Dommeneget, D., Fröhlich, K., Früh, B., Gayler, V., Haak, H., Hagemann, S., Hanke,

801 [M., Ilyina, T., Jungclaus, J., Köhler, M., Korn, P., Kornblueh, L., Kroll, C. A., Krüger, J., Castro-
802 Morales, K., Niemeier, U., Pohlmann, H., Polkova, I., Potthast, R., Riddick, T., Schlund, M., Stacke,
803 T., Wirth, R., Yu, D., and Marotzke, J.: The ICON-based Earth System Model for climate predictions
804 and projections \(ICON XPP v1.0\), Geosci. Model Dev., 18, 9385–9415,
805 <https://doi.org/10.5194/gmd-18-9385-2025, 2025>](https://doi.org/10.5194/gmd-18-9385-2025, 2025)

806 Müller, Wolfgang; Lorenz, Stephan; Pham, Trang Van; Schneidereit, Andrea; Brokopf, Renate;
807 Brovkin, Victor; Brüggemann, Nils; Castro-Morales, Karel; Chegini, Fatemeh; Dommgen, Dietmar;
808 Engels, Frederik; Fröhlich, Kristina; Früh, Barbara; Gayler, Veronika; Haak, Helmuth;
809 Hagemann, Stefan; Hanke, Moritz; Ilyina, Tatiana; Jungclaus, Johann; Köhler, Martin; Korn, Peter;
810 Kornblueh, Luis; Kroll, Clarissa; Krüger, Julian; Nabel, Julia; Niemeier, Ulrike; Potthast, Roland;
811 Riddick, Thomas; Pohlmann, Holger; Polkova, Iuliia; Riddick, Thomas; Schlund, Manuel; Schnur,
812 Reiner; Sgoff, Christine; Stacke, Tobias; Wirth, Roland; Yu, Dakuan; Zaehle, Sönke; Marotzke,
813 Jochem (2024): "Source code and scripts for publication "The ICON-based coupled Earth System
814 Model for Climate Predictions and Projections (ICON XPP)"", <https://doi.org/10.17617/3.UUIZ8>,
815 Edmond, V3

816 Niemeier, U., Wallis, S., Timmreck, C., van Pham, T., & von Savigny, C. (2023): How the Hunga
817 Tonga–Hunga Ha'apai water vapor cloud impacts its transport through the stratosphere:
818 Dynamical and radiative effects. *Geophysical Research Letters*, 50, e2023GL106482.
819 <https://doi.org/10.1029/2023GL106482>

820 Paredes EG, Groner L, Ubbiali S, Vogt H, Madonna A, Mariotti K, Cruz F, Benedicic L, Bianco M,
821 VandeVondele J, and Schutheiss T (2023): GT4Py: High Performance Stencils for Weather
822 and Climate Applications using Python <https://doi.org/10.48550/arXiv.2311.08322>

823 Probttest (2023): Probability testing, <https://github.com/MeteoSwiss/probttest>, last access 25
824 September 2025

825 Psyclone (2025): <https://github.com/stfc/PSyclone>, last access 01 October 2025

826 Prill, F., Reinert, D., Rieger, D., and Zängl, G. (2023): ICON tutorial 2023: Working with the ICON
827 model, Deutscher Wetterdienst, https://doi.org/10.5676/DWD_pub/nwv/icon_tutorial2023

828 Raschendorfer, M. (2001): The new turbulence parameterization of LM. *COSMO News Letter* No.
829 1, Consortium for Small-Scale Modelling, 89–97, <http://www.cosmo-model.org>.

830 Rieger, D., M. Köhler, R. J. Hogan, S. A. K. Schäfer, A. Seifert, A. de Lozar, and G. Zängl (2019): ecRad
831 in ICON - Details on the Implementation and First Results. (4), [10.5676/DWD_pub/nwv/icon_004](https://doi.org/10.5676/DWD_pub/nwv/icon_004).

832 Reick, C. H., Gayler, V., Goll, D., Hagemann, S., Heidkamp, M., Nabel, J. E. M. S., Raddatz, T.,
833 Roeckner, E., Schnur, R., and Wilkenskjeld, S. (2021): JSBACH 3 - The land component of the MPI
834 Earth System Model: documentation of version 3.2, p. 4990986,
835 <https://doi.org/10.17617/2.3279802>, MPI für Meteorologie, 685 (1)

836 Rosinski, J. M. and Williamson, D. L. (1997): The Accumulation of Rounding Errors and Port
837 Validation for Global Atmospheric Models, *SIAM J. Sci. Comput.*, 18, 552–564,
838 doi:[10.1137/S1064827594275534](https://doi.org/10.1137/S1064827594275534)

839 Satoh M, Tomita H, Yashiro H, Kajikawa Y, Miyamoto Y, Yamaura T, Miyakawa T, Nakano M,
840 Kodama C, Noda AT, Nasuno T, Yamada Y, Fukutomi Y (2017): Outcomes and challenges of global
841 high-resolution non-hydrostatic atmospheric simulations using the K computer. *Prog Earth Planet
842 Sci* 4:13. <https://doi.org/10.1186/s40645-017-0127-8>

843 Satoh M, Tomita H, Yashiro H, Miura H, Kodama C, Seiki T, Noda AT, Yamada Y, Goto D, Sawada
844 M, Miyoshi T, Niwa Y, Hara M, Ohno T, Iga S-i, Arakawa T, Inoue T, Kubokawa H (2014): The Non-
845 hydrostatic Icosahedral Atmospheric Model: description and development. *Prog Earth Planet Sci*
846 1:18. <https://doi.org/10.1186/s40645-014-0018-1>

847 Schemm, S. (2023): Toward eliminating the decades-old “too zonal and too equatorward” storm-
848 track bias in climate models. *Journal of Advances in Modeling Earth Systems*, 15, e2022MS003482.
849 <https://doi.org/10.1029/2022MS003482>

850 Schulthess, T.C., P. Bauer, O. Fuhrer, T. Hoefler, C. Schär, N. Wedi, (2019): Reflecting on the goal
851 and baseline for exascale computing: a roadmap based on weather and climate simulations. *IEEE
852 Computing in Science and Engineering*, 21 (1), 30-41,
853 <https://doi.org/10.1109/MCSE.2018.2888788>

854 Schulthess, T. (2015): Programming revisited. *Nature Phys* 11, 369–373,
855 <https://doi.org/10.1038/nphys3294>

856 Segura, H., Pedruzo-Bagazgoitia, X., Weiss, P., Müller, S. K., Rackow, T., Lee, J., Dolores-Tesillos, E.,
857 Benedict, I., Aengenheyster, M., Aguridan, R., Arduini, G., Baker, A. J., Bao, J., Bastin, S., Baulenas,
858 E., Becker, T., Beyer, S., Bockelmann, H., Brüggemann, N., Brunner, L., Cheedela, S. K., Das, S.,
859 Denissen, J., Dragaud, I., Dziekan, P., Ekblom, M., Engels, J. F., Esch, M., Forbes, R., Frauen, C.,
860 Freischem, L., García-Maroto, D., Geier, P., Gierz, P., González-Cervera, Á., Grayson, K., Griffith,
861 M., Gutjahr, O., Haak, H., Hadade, I., Haslehner, K., ul Hasson, S., Hegewald, J., Kluft, L., Koldunov,
862 A., Koldunov, N., Kölling, T., Koseki, S., Kosukhin, S., Kousal, J., Kuma, P., Kumar, A. U., Li, R., Maury,
863 N., Meindl, M., Milinski, S., Mogensen, K., Niraula, B., Nowak, J., Praturi, D. S., Proske, U.,
864 Putrasahan, D., Redler, R., Santuy, D., Sármány, D., Schnur, R., Scholz, P., Sidorenko, D., Spät, D.,
865 Sützl, B., Takasuka, D., Tompkins, A., Uribe, A., Valentini, M., Veerman, M., Voigt, A., Warnau, S.,
866 Wachsmann, F., Wacławczyk, M., Wedi, N., Wieners, K.-H., Wille, J., Winkler, M., Wu, Y., Ziemen,
867 F., Zimmermann, J., Bender, F. A.-M., Bojovic, D., Bony, S., Bordoni, S., Brehmer, P., Dengler, M.,
868 Dutra, E., Faye, S., Fischer, E., van Heerwaarden, C., Hohenegger, C., Järvinen, H., Jochum, M.,
869 Jung, T., Jungclaus, J. H., Keenlyside, N. S., Klocke, D., Konow, H., Klose, M., Malinowski, S., Martius,
870 O., Mauritzen, T., Mellado, J. P., Mieslinger, T., Mohino, E., Pawłowska, H., Peters-von Gehlen, K.,
871 Sarré, A., Sobhani, P., Stier, P., Tuppi, L., Vidale, P. L., Sandu, I., and Stevens, B (2025): nextGEMS:
872 entering the era of kilometer-scale Earth system modeling, *EGUsphere* [preprint],
873 <https://doi.org/10.5194/egusphere-2025-509>.

874 Seifert, A. (2008): A revised cloud microphysical parameterization for COSMO-LME. *COSMO News
875 Letter No. 7*, Proceedings from the 8th COSMO General Meeting in Bucharest, 2006, Consortium
876 for Small-Scale Modelling, 25–28, URL <http://www.cosmo-model.org>.

877 Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., et al.
878 (2020): An assessment of Earth's climate sensitivity using multiple lines of evidence. *Reviews of*
879 *Geophysics*, 58, e2019RG000678. <https://doi.org/10.1029/2019RG000678>

880 Smagorinsky, J 1963: General Circulation Experiments with the Primitive Equations 1. The Basic
881 Experiment. *Mon. Wea. Rev.* 91, 99-164 [https://doi.org/10.1175/1520-0493\(1963\)091<0099:GCEWTP>2.3.CO;2](https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2)

883 Spät, D., Biasutti, M., Schuhbauer, D., & Voigt, A. (2024): Autocorrelation—A simple diagnostic
884 for tropical precipitation variability in global kilometer-scale climate models. *Geophysical*
885 *Research Letters*, 51, e2024GL108856. <https://doi.org/10.1029/2024GL108856>

886 Stevens, B, Satoh, M, Auger, L, Biercamp, J, Bretherton, C S, Chen, X, et al. (2019): DYAMOND: The
887 DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains. *Prog in*
888 *Earth and Planet Sci*, 6(1), 1–17. <https://doi.org/10.1186/s40645-0190304-z>

889 Ubbiali, S., Kühnlein, C., Schär, C., Schlemmer, L., Schulthess, T. C., Staneker, M., and Wernli, H
890 (2025): Exploring a high-level programming model for the NWP domain using ECMWF
891 microphysics schemes, *Geosci. Model Dev.*, 18, 529–546, <https://doi.org/10.5194/gmd-18-529-2025>.

893 Takasuka D, Satoh M, Miyakawa T, Kodama C, Klocke D, Stevens B, Vidale P L, Terai C R (2024): A
894 protocol and analysis of year-long simulations of global storm-resolving models and beyond
895 <https://doi.org/10.21203/rs.3.rs-4458164/v1>

896 Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N., Gayatri, R., Harvey,
897 E., Hollman, D. S., Ibanez, D., Liber, N., Madsen, J., Miles, J., Poliakoff, D., Powell, A.,
898 Rajamanickam, S., Simberg, M., Sunderland, D., Turcksin, B., and Wilke, J (2022): *Kokkos 3: Programming Model Extensions for the Exascale Era*, IEEE T. Parall. Distr., 33, 805–817,
900 <https://doi.org/10.1109/TPDS.2021.3097283>

901 Wille J D, Koch R, Becker T and Fischer E M (2024): Extreme precipitation depiction in convection-
902 permitting Earth System Models within the nextGEMS project accepted
903 <https://doi.org/10.22541/essoar.173204240.08166674/v1>

904 Wang, B., & Ding, Q. (2008). Global monsoon: Dominant mode of annual variation in the tropics.
905 *Dynamics of Atmospheres and Oceans*, 44(3-4), 165-183.
906 <https://doi.org/10.1016/j.dynatmoce.2007.05.002>.

907 Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M (2015): The ICON (ICOahedral Non-hydrostatic)
908 modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core,
909 Quarterly Journal of the Royal Meteorological Society, 141, 563–579,
910 <https://doi.org/https://doi.org/10.1002/qj.2378>

911