Reviwer 1

This manuscript presents stage one of a multi-tiered plan to support heterogeneous (mixed
CPU/GPU) architectures for running the ICON model. The authors utilize GT4Py, a domain-
specific language, to modernize the ICON dynamics core from the existing Fortran code base. The
outcome is a more performant code, which is also easier to read and develop compared to the
equivalent Fortran implementation. The paper is well written and well reasoned, demonstrating
promising results that are on par with the current state of GPU-ready Earth System modeling. |
recommend that this manuscript be published, as I have only a few minor questions and technical
corrections to suggest.

First, I want to commend the authors for their attention to (a) the hardware-based challenges that
arise when running these models at scale, and (b) the importance of robust testing. In my
experience, these topics are not typically the most exciting to discuss, but they are essential
considerations for any group undertaking a similar effort.

We sincerely thank the reviewer for taking time to reviewer the paper and for appreciating our
work.

Minor Comments:
Introduction

1. Paragraph 3: It may be helpful to include node counts when discussing how much of the
machine each example used. This additional detail would provide useful context, especially
as future machines come online.

We agree with the reviewer that additional details would be useful. However, adding them
to the same paragraph would make the introduction quite involed with details on hardwares.
We have therefore repharsed the paragraph with only relevant details and have suggested
interested readers to look at Table 1 in Klocke et al. (2025) for more details. Please see
lines 62-70 in the revised version.

Paragraph 6: As noted above, I appreciate the discussion highlighting barriers to running
these models at scale.

Thanks again!

Section 2

1. Not strictly necessary, but it may add valuable context for readers if the authors note that
Fortran compiler support is increasingly being deprioritized by vendors, which makes
supporting legacy codes on new machines more challenging.

We appreciate the reviewer for reminding this point. It has been added in the revised
introduction on line 89 when discussing softare reliability.
Section 3
1. I'may have missed it, but it was unclear whether the plan is to transition entirely away from

Fortran after deliverable 3. Could the authors clarify how much of the original Fortran code
is expected to remain in the model (e.g., 10%, 25%, or more)?



Thanks for asking this question. We do aim for a Fortran-free driver/infrastructure code in
deliverable 3. The no-Fortran infrastructure so far is complete for idealized simulations
using dynamical core alone.

As for the model components, we will (likely) keep land-surface parameterization and
Ocean in Fortran in the foreseable future.

Section 4

l.

General comment: The authors should verify that each “Listing” is correct and that the code
blocks would work as expected.

Thanks for pointing it out. The listings have been checked again. They are correct in what
they represent but we do not expect them (e.g., Listing 1) to work by simply copy and
pasting.

Section 4.3: If I understood correctly, the ported code was tested to within a tolerance error,
and bit-for-bit (BFB) agreement was not strictly enforced. Was any BFB enforcement
attempted during porting? If not, could the authors justify their decision not to enforce
BFB?

Thanks for asking this question. Enforcing BFB agreement was not deemed as a sustained
testing strategy within the project since we had intentions to combine stencils into larger
GT4Py operators/programs for performance tuning through DaCe. Maintaing such a
debugging mode would have been difficult. That said, we did attempt BFB agreement
during dynamical core porting- we used the -iEEE flag to prevent Fortran from doing non-
IEEE 754 compliant transformations of floating point computations. We also switched off
fused multiply adds (FMA) on both sides (Fortran and generated CUDA code in gt4py).
BFB was achieved in the vast majority of stencils except for a few, even though the codes
were correct.

Figure 5: Did the authors conduct experiments with runs well beyond 15 timesteps to
confirm that the relative error does indeed stabilize?

Yes, we did and the errors did stabilize.

Figure 7: Did the authors examine this data using a log-log plot? If so, was the observed
trend not quite linear?

You are right. Here’s the log-log plot for your reference.



solid DSL,; dashed OpenACC
@® DsSLtotal(s) @ OACCtotal(s) ¢ DSLdycore(s) ¢ OACC dycore (s)

Time (s)

50
40 60 80 100 200 400

Number of GPUs



Reviewer 2

This is a clear well written paper describing a gt4py implementation of the ICON dynamical core,
running in the existing I[CON Fortran modeling system, enabling k-scale atmospheric simulations
on the ALPS GPU supercomputer. The authors describe their porting approach, including
thorough testing from the kernel level up to full physics simulations. They provide a sober
analysis of the potential of GPUs and their strong scaling limitations.

We sincerely thank the reviewer for taking time to reviewer the paper and for appreciating our
work.

I only have minor comments:

1. Section 4.3: what is "the implementation of horizontal blocking"? Does that refer to the loop
blocking in the Fortran loops, (which was removed in the Python code?)

Yes. We have also adjusted the sentence (see line 328) to include “horizontal loop blocking” so
that it is clearer.

2. Section 4.3: "...testing is tricky as the results are different due to rounding..."

The authors have a good port testing strategy in the presence of roundoff error, but this statement
implies that these rounding differences are unavoidable. The E3SM dycore porting work
(Bertagna et al. GMD 2019 and Bertagna et al. SC2020) showed that it is possible to obtain BFB
agreement between CPUs and GPUs with careful coding, allowing for a different porting
approach which simplifies some aspects of code porting.

We agree with the reviewer that enforcing BFB agreement for debugging purposes is helpful.
We used it during dynamical core porting by using the -iEEE flag to prevent Fortran from doing
non-IEEE 754 compliant transformations of floating-point computations. We also switched off
fused multiply adds (FMA) on both sides (Fortran and generated CUDA code in gt4py). BFB was
achieved in the vast majority of stencils except for a few, even though the codes were correct.
However, since the compute stencils were continuously being combined into larger GT4Py
operators/programs for performance tuning through DaCe, we did not think that maintaining
BFB reproducibility would add any value in longer run.

3: Section 5.1:

For the final model, I assume all significant code is running on the GPUs, with the dycore using
gtdpy and the physics using openACC. I believe this is implied, but I didn't see it clearly

stated. Were there any software challenges running the two different GPU programming models
in the same executable?

Thanks for pointing it out. We have adjusted the paragraph (see lines 371-374) to make it clear.
As for running the OpenACC and GT4Py codes in single binary- this was not much of a problem
since all memory allocations took place in the OpenACC side. The largest change was to make
the OpenACC code work with no-horizontal-blocking.



4. Line 400: "GT4Py synchronization"

I know of two types of synchronization: across MPI nodes, as well as synchronization among
thread teams running on the GPU. Which is this referring to?

Thanks, again. It was a mistake. It was the MPI synchronization that took lesser time in the new
model. The revised mansucript has been updated accordingly. See line 405.

5. Section 5.1

How does the gt4py code compare with the Fortran code on CPUs? It would be interesting to add
CPU-only performance numbers to Figure 7.

Thanks for showing interest on CPU benchmarks. Unfortunately, the structure of the current
mansucript is such that the authors did not consider adding CPU benchmarks here. However, we
intend to write a mansucript on deliverable 2 very soon, where the focus will be on (performance)
portability. We believe that the CPU benchmarks better belong there.



Reviewer 3

The paper is about a re-implementation of the ICON dynamical core using a domain-specific
language embedded into Python called GT4Py. The work is carried out in the EXCLAIM project
for which the paper presents the outcomes of the first phase. Described is the porting approach
when rewriting the dynamical core into GT4Py, the testing strategy during the work, an
evaluation of the computational performance and the scientific validation of the new code.

I found the paper was written in an accessible way, with a clear and sensible structure that covers
all relevant angles of this development. The achieved milestone of the dynamical core rewritten
in GT4Py is a remarkable achievement and the approach that utilised a very thorough testing
procedure was well designed to avoid mistakes as much as possible. I would recommend a few
minor edits to improve the overall presentation, which I list below with reference to the relevant
sections of the text:

We thank the reviewer for taking time to reviewe the paper and for appreciating our work.

The abstract presents a specific throughput number but without specifying for what configuration
or resolution. I would either add more details or leave it at the statement that the GT4pPy core
exceeds ICON OpenACC performance without giving a specific number.

Thanks for point it out. The abstract has been accordingly adjusted.

The overview of current performance numbers in the paragraph in 1l. 581t is a wild mixture of
very different configurations and resolutions. The intention is likely to take stock of how close
current ESMs get to the 1 SYPD target, but this gets lost in the presentation. I would suggest to
make this a little more focussed, ideally using a more like-for-like comparison. Moreover, most
numbers are presented without references (NICAM, IFS-FESOM, ICON@1.25km). Some should
stem from the GB submissions (https://dl.acm.org/doi/10.1145/3712285.3771789 and
https://dl.acm.org/doi/10.1145/3712285.3771790) but it is irritating to see them published in this
preprint before the availability of the original papers, particularly when no reference is given.

Thanks, again. The paragraph has been adjusted. Please see lines 62-70 of the revised manuscript.

In 1. 971f the three-phase nature of EXCLAIM is mentioned but no further information about the
planned content of phases 2 and 3 is provided. Does this correspond to the deliverables shown in
Figure? In the same paragraph, it is stated that the rewrite is "driven by the existing Fortran
driver", which I did not understand until much later. Maybe this could be described in a form that
makes it clearer that it is embedded into the existing Fortran framework, replacing calls to the
dynamical core routines.

Done. Please see lines 97-100 in the revised manuscript.
Figure 1 is a useful illustration of the GT4Py code generation pipeline. I suspect not every reader
may be familiar with therein used acronyms "GTIR" and "GTFN", which could be spilled out in

the caption. GTIR is clarified later in the text but GTFN remains unclear.

Thanks for poiting it out. Figure 1 caption has been modified to explain the acronyms.



In 1. 1541, three execution modes for running GT4Py are mentioned. Which of these are used
here? Given that this is embedded into Fortran, I suspect this requires AOT?
Yes. A sentence has been added in the revised text to make it clear.

I did not immediately recognize the term "Fortran+" in 1. 169 as the introduction of nomenclature.
Maybe putting this in quotes would be helpful?

Done.

The description of the refactoring work in Sec. 4 is well written with an appropriate level of
detail. The formatting of Listing 2 is unfortunate, with a page break between the listing and the
caption - this should be rectified before final publication.

I agree on the readability angle in 1. 278 but I did not understand the reason why only Python
should allow in-line documentation through docstrings. I would argue that this could be done in
any language, including Fortran.

You are right. We have modified the sentence to indicate that it easier to do so in Python.
The resolution of Fig. 4 seems a little low, it shows some artifacts in my print-out.
Thanks, again. Figure has been updated.

The hierarchy of testing levels appears well thought-out and seems effective to cover testing from
a fine-grained stencil-loop level to full system regression. How much of this is automatic and
when is it run? How expensive are these tests (in core-h or similar)?

Testings in level 1 and 2 are automatic and are part of the CI. For smaller experiments, it takes
about 90 seconds for level 1 and about 30 seconds for level 2 for each experiment. Level 3 is full
scientific simulation, which takes long and is only performed during this development phase. We
do not expect to maintain it once the development is over.

The presented performance numbers are promising. However, in Fig. 7 either the plot colours or
caption are wrong. The caption claims "GT4Py (dashed yellow) is about 10% faster than the
Fortran+ (solid yellow)", while the plot suggests this to be the other way round. For the blue
colours, dashed/solid seem to be reversed, so I suspect this may simply be a mistake in the
caption.

There was indeed a mistake in the caption. Thanks for spotting it.
Given the substantial performance speed-up claims from the speed-of-light implementation: is
there a specific pattern/generic improvement that accounts for this improvement? Or is it a

mixture of several different changes?

In SOL implementation they used several tricks in addition to writing the code in CUDA C++ and
inlining/fusion. The overall gain seem to be a result of all these combinations.

Since I'm not an expert on the scientific evaluation presented in Sec. 6, I cannot give a substantial
feedback to this part.



