

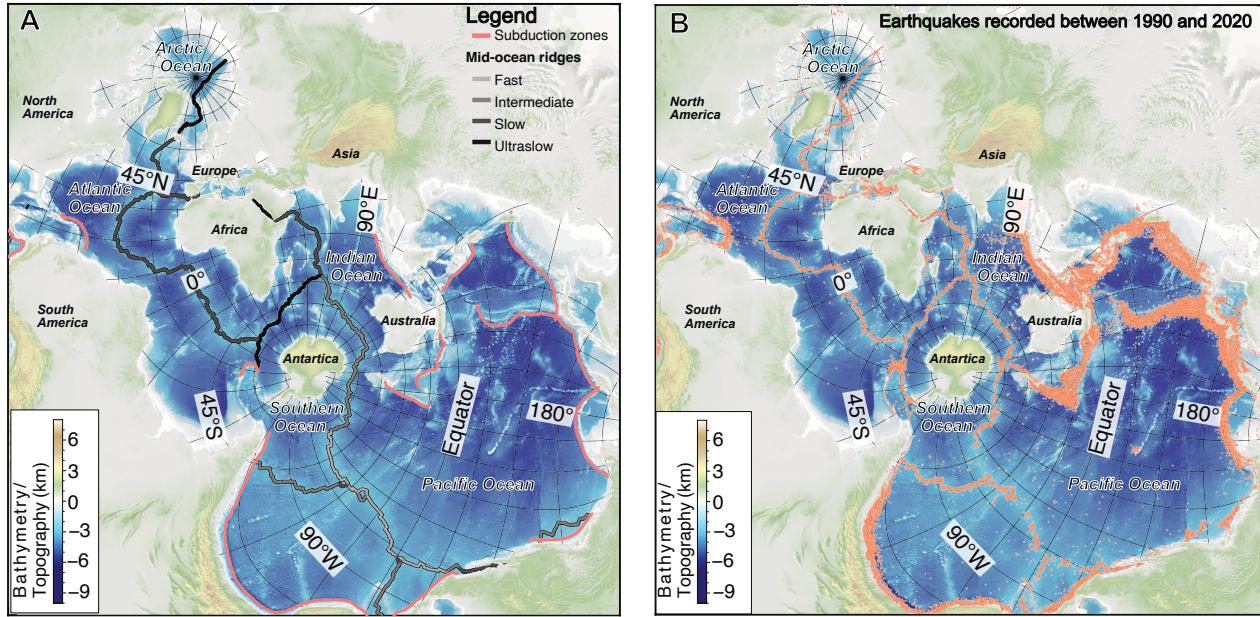
1 **How do we make a scan of Earth's oceanic crust?**

2  
3 **Milena Marjanović<sup>1</sup>, Simon Besançon<sup>1,2</sup>, Souradeep Mahato<sup>1</sup>, David Hautemayou<sup>1,3</sup> & Ted**  
4 **Luc<sup>1</sup>**

5  
6 <sup>1</sup>Institut de Physique du Globe de Paris, Université Paris Cité, CNRS UMR7154

7 <sup>2</sup>SIMON Now at: Laboratoire de Météorologie Physique, UMR6016 CNRS - UCA - OPGC, 4  
8 avenue Blaise Pascal 63170 Aubière

9 <sup>3</sup>DAVID Now at: Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL,  
10 CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France

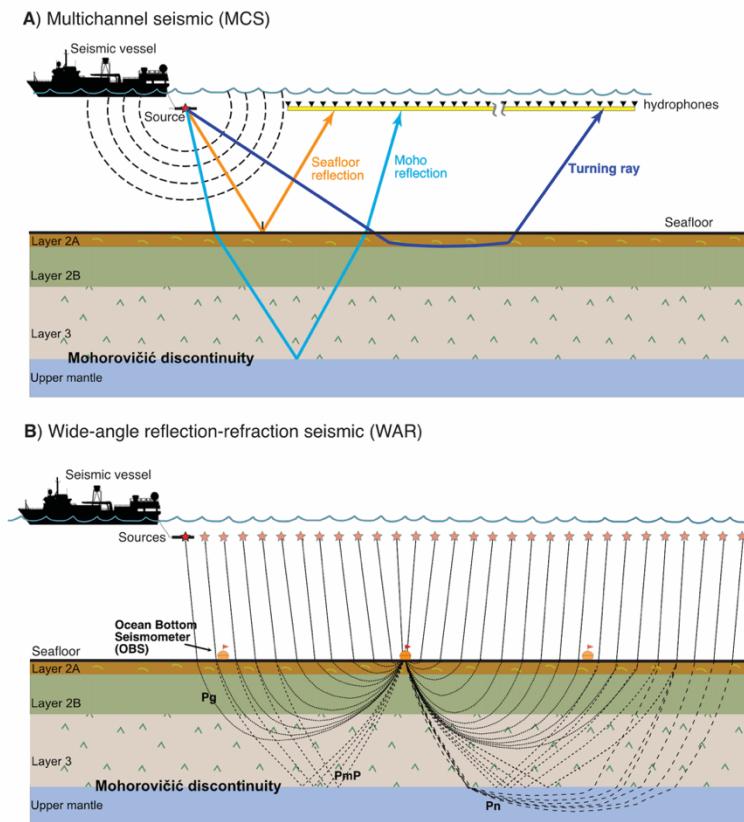

11  
12 \*corresponding author: Milena Marjanović; [marjanovic@ipgp.fr](mailto:marjanovic@ipgp.fr)

13  
14 **Abstract:** Like computed tomography (CT) scans used in medicine to look inside human bodies,  
15 marine seismologists conduct controlled-source experiments to understand the characteristics of  
16 the oceanic lithosphere (rigid outer Earth's layer) that covers >70% of the surface of our planet.  
17 While at sea aboard a research vessel, using the air compressed in an array of stainless-steel  
18 cylinders, we produce small earthquakes in the form of air bubbles that propagate through the  
19 water, Earth's crust, and mantle and return to be recorded by the instruments we place in the  
20 water column or on the seafloor. Although the technique was developed in the 1950s and has  
21 been extensively used by academia and industry for decades, it has remained obscured, primarily  
22 because it is conducted offshore, out of sight. To expose the less-known technique and to  
23 showcase associated career paths, we designed a hands-on model that encourages interaction.  
24 Together with the model, we present fundamental Earth processes and the methods we use to  
25 explore them, followed by video materials we recorded at sea while collecting the data.  
26 Furthermore, to quantitatively evaluate our effort, we constructed age-adapted control quizzes  
27 completed by the participants before and after the workshop. These quizzes were designed to  
28 assess the student's understanding of the concepts, providing a clear measure of the workshop's  
29 effectiveness. We have conducted the workshop package at several outreach events. Without  
30 any exception, the results of the quizzes show that students of ages 9-18 years improved their  
31 overall knowledge covered by the experiment. This result is a signal that supports the  
32 effectiveness of 'learning by doing' science in a playful, interactive way.

33  
34 **1. Introduction**

35 Seismologists record different types of seismic waves that propagate through the Earth's  
36 interior to understand its structure. For instance, by observing several records of an earthquake  
37 that struck a Croatian town ~40 km from Zagreb on October 8th, 1909, Andrija Mohorovičić  
38 noticed consistent, prominent blips originating at a depth of ~50 km kilometers depth (Mohorovičić,  
39 1910). They were explained by the strong contrast in density between the crust and mantle, now  
40 known as the Mohorovičić discontinuity or Moho for short. Similarly, a few decades later, Inge  
41 Lehman, a Danish seismologist, by observing anomalous arrivals in the recorded seismic signal  
42 at the remote stations in Siberia and their mysterious difference in travel time, discovered that the  
43 Earth's core has two distinct parts: an inner, solid core and an outer, liquid core (Lehmann, 1987).  
44 In addition to revealing the structure of the Earth, these bursts of energy represent one of the  
45 most prominent natural hazards, unfortunately, many with casualties, especially when associated  
46 with large tsunami waves (e.g., Sumatra Earthquake in 2004), extensive fires (San Francisco in  
47 the USA, 1906) and even bringing humanity at the edge of a nuclear disaster (Tōhoku Earthquake  
48 in Japan, 2011). As most of those prominent earthquakes occur along the plate boundaries that  
49 are dominantly covered by the ocean (Fig. 1), a number of instruments have been placed at its

50 bottom for prolonged monitoring of Earth' seismic activity to provide the answer to the question of  
51 our time *when and where will the next big one occur?*

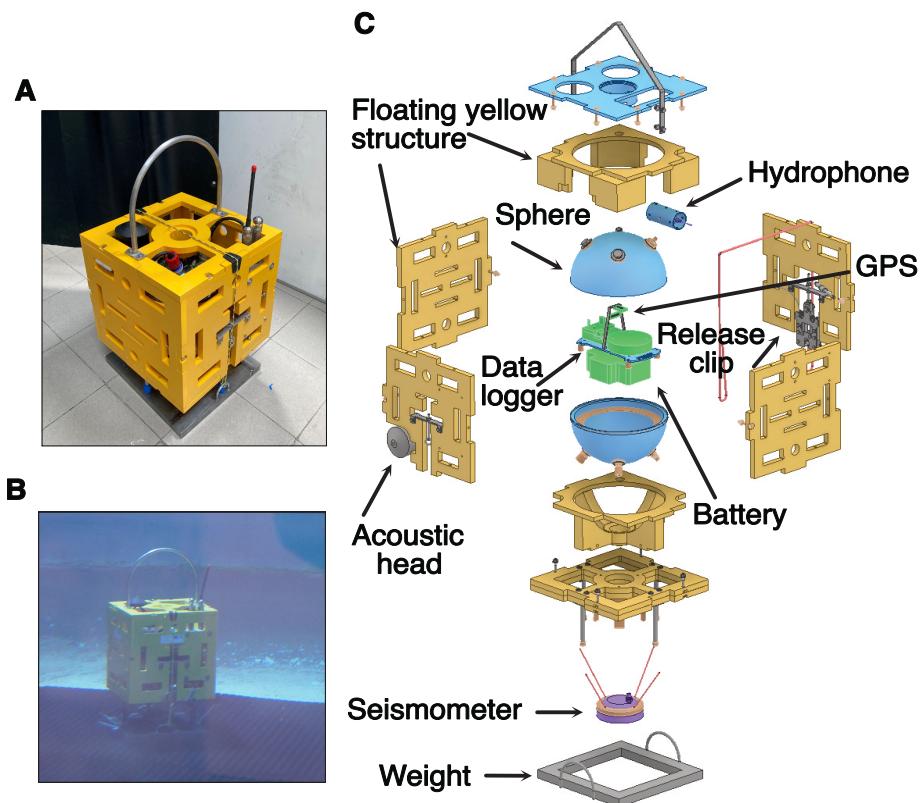



52 **Figure 1** – Spilhaus global projection map offering a different view of the Earth's surface centered at  
53 Antarctica. With this projection we want to provide another view of our Blue Planet that places the ocean at  
54 is center. In panel A, we outline plate boundaries. The subduction zones (locations where oceanic plate is  
55 is sliding under the continental) and mid-ocean ridges (locations where two plates are separating) are outlined  
56 and defined in Legend; the shades of gray color represent the variation of full spreading rate along mid-  
57 ocean ridges (in millimeters per year). Based on the spreading rate we can distinguish the following  
58 categories: *fast spreading* with the spreading rate  $>80$  mm/yr, *intermediate* ones with spreading rate  
59 between 40 and 80 mm/yr, *slow-spreading* centers with the rate varying from 20-40 mm/yr and *ultraslow*  
60 where the plates are separating at the rate  $<20$  mm/yr. In panel B, we show the distribution of earthquakes  
61 which are predominantly occurring along the plate boundaries outlined in panel A. The earthquakes are  
62 spanning the period from 1990 to 2020 (USGS database, 2020) and are indicated in pink dots. The maps  
63 are modified from Chen et al. (2023).

64  
65 In parallel with learning about the deep Earth's interior and hazard mitigation, to extract more  
66 detailed information about the Earth's outer shell, i.e., the crust and upper mantle, a new branch  
67 of seismic techniques that uses man-made, tiny earthquakes (controlled source or active  
68 seismology) has emerged (e.g., Dragoset, 2005). The first application was reserved exclusively  
69 for land surveying, mainly for mineral, oil, and gas exploitation. To produce these artificial tremors,  
70 dynamite explosions were used as the primary source of energy. In 1935, Maurice Ewing, the  
71 pioneering US marine geophysicist, with colleagues, started a new era in earth exploration of the  
72 subsurface by conducting TNT explosions in marine settings (Ewing and Press, 1955). This  
73 technique, initially used to image the thickness of ocean sediments, revealed a three-layer  
74 structure of the oceanic crust and quickly became the dominant tool in exploring the seafloor  
75 subsurface. It has been evolving ever since, with dangerous dynamite being replaced by air  
76 bubbles. Theoretical calculations showed that although the mean pressure produced by air  
77 bubbles is  $\sim 8\%$  of that of the signal produced by dynamite, for most of the surveys the former  
78 signal is more coherent (Staples et al., 1999). In addition, it is less dangerous for the source  
79 operation team aboard the vessel and less harmful for the ocean fauna.

As the controlled-source surveys are conducted offshore, aboard research vessels, the method has remained obscure and unknown outside of geophysical circles. To shed light and introduce this technique to new generations, we designed a model that depicts marine, controlled-source seismic data collection. Moreover, with this model, we aim to showcase the interdisciplinary context of the field, encompassing electrical and mechanical engineering, robotics, mathematics, physics, and, in recent years, artificial intelligence, while also highlighting its adventurous side of joining sea-going expeditions, open to everyone. We want to mention that for designing the model we obtained an EGU Public Engagement Grant in 2022.

Communicating science to and engaging with the public are essential for establishing the link between science and society, making the research process more transparent and trustworthy, and the results more impactful and relatable to the public (e.g., *Boon et al.*, 2022; *Stilgoe et al.*, 2019; *Thomas & Durand*, 1987). However, it is not always clear what the best practices are for implementing this, i.e., what distinguishes high- from low-quality engagement/communication, with the latter carrying the risk of provoking a counter-effect (*Jensen & Holliman*, 2016; *Reincke et al.*, 2020). Typically, the success of an outreach session would be only qualitatively expressed through an instantaneous reaction (aka “wow effect”), informal feedback (verbal or nonverbal) from the audience right after the event, and/or a personal feeling. Rarely are outreach events designed to include quantitative evaluation. One of the most complete guidelines for evaluating outreach activities is offered by IMPACTLAB (*Land-Zastral, et al.*, 2023), which outlines ten different approaches. Here, we adopt the entry/exit quizzes, a subgroup of the ‘Surveys Method’. According to the guide, this strategy is recommended for assessing ‘detailed quantitative measure of acquired knowledge and understanding’ by the audience.

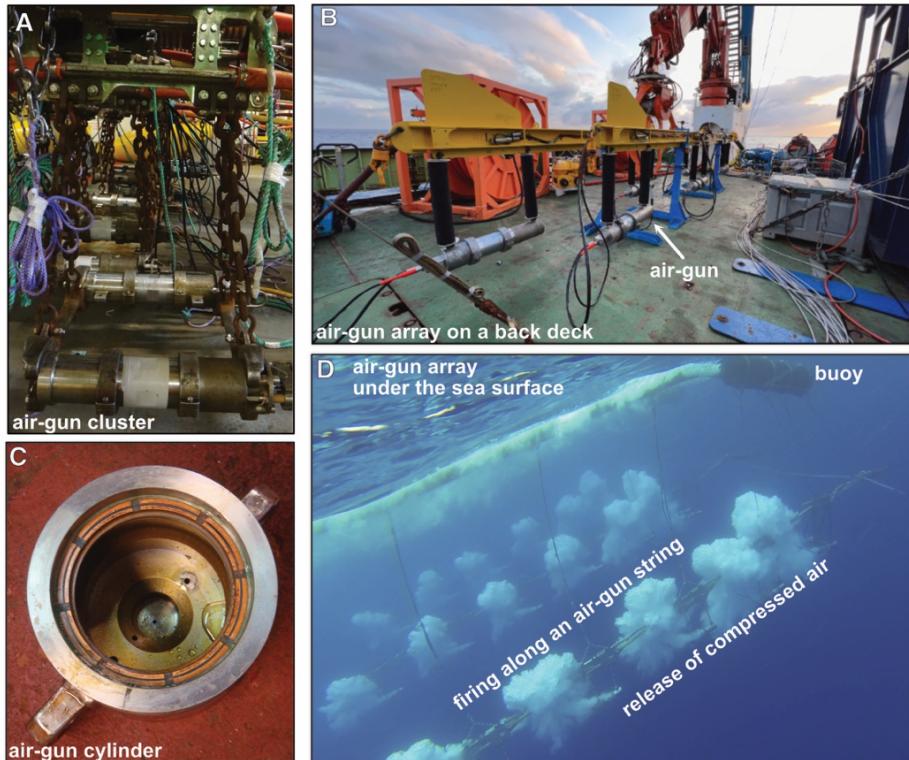



**Figure 2 – Illustration of A) Multichannel seismic (MCS) and B) Wide-angle reflection-refraction seismic techniques.**

105      **2. Background**

106      **2.1 How does controlled-source seismic work at sea?**

107      Researchers typically employ two primary types of controlled-seismic experiments: multichannel  
108      seismic (MCS) and wide-angle reflection-refraction (WAR) seismic (Fig. 2). The primary difference  
109      lies in the type of receiver used to record the seismic waves. Whilst the former uses a >3-15 km  
110      long cable (i.e., streamer) with densely populated recorders (a few to tens of meters spacing)  
111      towed behind the ship at ~10 m below the sea surface, the latter uses ocean bottom seismometers  
112      (OBS) that are deployed on the seafloor at a few to tens of kilometers spacing. Typically, we would  
113      use MCS surveys to obtain high-resolution images (metric scales) of the subseafloor within a  
114      localized survey area. In contrast, WAR seismic would be used for more regional scanning of the  
115      subsurface at a somewhat lower resolution, ranging from several tens to hundreds of meters. The  
116      model we designed depicts the WAR seismic survey on which we will focus in the following  
117      sections.




118  
119      **Figure 3 – CUBI** **A** in the lab, **B** under the water and **C** schematic representation of the instrument's main  
120      elements.

121  
122      **2.1.1 Ocean Bottom Seismometers (OBS)**

123      The Ocean Bottom Seismometers (sometimes referred to Ocean Bottom Seismographs) or  
124      OBS for short exist in different forms and shapes depending on the laboratory in which they were  
125      designed. In this experiment we use the model of an OBS known as CUBI for Compact  
126      Underwater Bottom Instrument (Fig. 3). We need to mention that this model is preferentially used  
127      for recording the earthquakes, but we decided to use it here as it is the model that was developed  
128      and constructed at Institut de Physique de Globe de Paris - IPGP (where all the members of our

129 team worked at the time of the model build up). The real dimensions of the instrument are 43 x  
 130 45 x 85 cm<sup>3</sup>; its dry weight is about 35 kg without the weight (which adds ~15 kg). In the water  
 131 without weight, it has negative buoyancy (-3 kg), which is obtained using well designed floating  
 132 components (Fig. 3C). The maximum water depth at which this instrument can be deployed is 6  
 133 km below sea surface and its autonomy is guaranteed for four months using batteries that are  
 134 cased in a glass sphere, which isolates the electronic components from contact with water and  
 135 high pressures. The CUBI contains 2 sensors: a hydrophone (pressure sensor), and three-  
 136 component sensor that measures vertical and horizontal displacements.



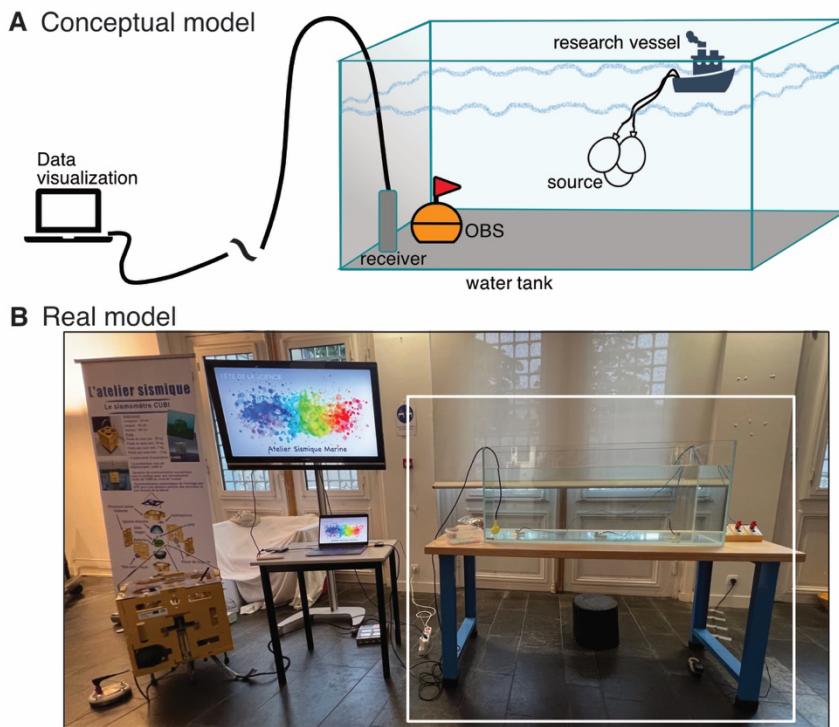
137 **Figure 4** – Examples of **A** airgun cluster (aboard M/V Western Trident in 2015), **B** Air-gun array (aboard  
 138 RRS James Cook in 2022) and **C** air-gun cylinder in the laboratory (aboard R/V Marcus G. Langseth in  
 139 2012). In panel **D** we show a snapshot of airgun firing under the water.

140

141

#### 142 2.1.2 Seismic source

143 To produce a quake at sea, instead of dynamite, nowadays, we use compressed air, which is  
 144 pumped into airguns i.e., stainless-steel cylinders with chambers of different volumes (Fig. 4A-C)  
 145 organized in several arrays. The total volume of the source can vary depending on the objective  
 146 of the survey; typically, new generations of sources used in WAR seismic are ~5000 in<sup>3</sup> (or 82  
 147 liters). The position of each airgun within the array, as well as its volume is carefully designed to  
 148 provide signals, which when superimposed result in the sharpest possible signal that propagates  
 149 through the water and subsurface. An example of the compressed air released from gun-array  
 150 under the water is shown in Figure 4D.


151

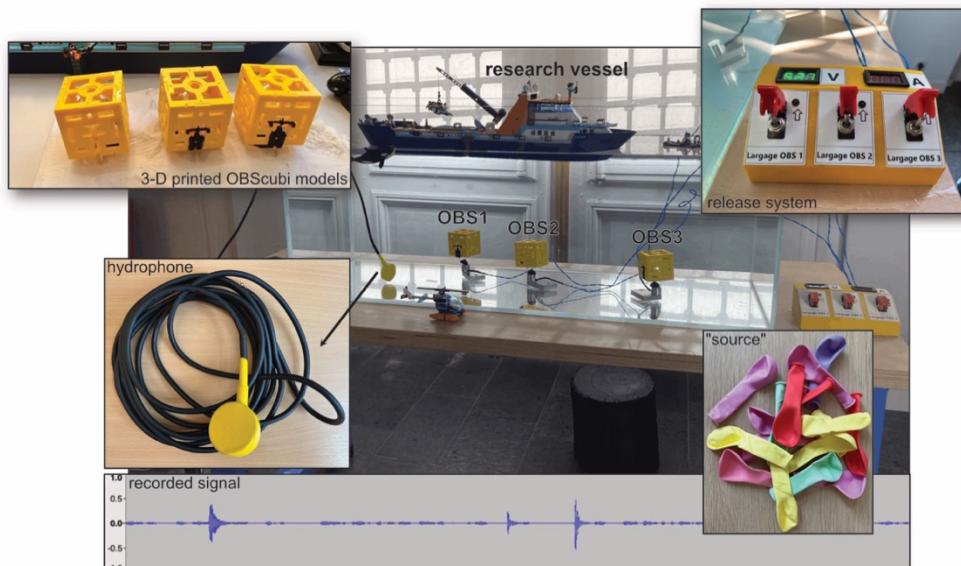
152

#### 153 2.2 Building the model

154 As in all recipes, we first provide the main ingredients that constitute our model followed by  
 155 detailed description of the role of each element and how the experiment is conducted. The  
 schematic of the conceptual model and the final model are presented in Figures 5 and 6.

156 The main elements of the model:  
 157 • 300 l water tank  
 158 • floating ship from LEGO CITY collection  
 159 • 3-D printed CUBI models  
 160 • electromagnetic box with 3 electromagnets and 3-D printed control box  
 161 • balloons  
 162 • pins for perforating balloons  
 163 • hydrophone  
 164 • laptop  
 165 • software for displaying the recorded signal  
 166 • large TV screen  
 167 • whale model (from the same LEGO City set as the ship)  
 168 • remotely controlled submarine toy




169 **Figure 5** – Schematic (A) and real (B) representation of the experiment. The white box in panel B marks  
 170 the part of the experiment explained in detail in Figure 6.

171  
 172 For presenting the main principles of a WAR seismic survey, two components are essential: the  
 173 simulation of the source and its recording (Fig. 6). To effectively mimic the explosion of  
 174 compressed air under the ocean surface (as described in Section 2.1.2), we use a small balloon;  
 175 an inflated balloon is submerged into a large water tank and perforated to release an air bubble  
 176 that propagates through the water. Thus, the released signal, splashing the water within and often  
 177 around the tank (which is usually followed by the awe of the experiment participants), is then  
 178 recorded on a hydrophone. For this purpose, we used a water-proof piezoelectric microphone,  
 179 which detects different types of vibrations. The hydrophone is connected to a laptop with software  
 180 that displays the vibrations – we used either Audacity (an open-source digital audio editor) or a  
 181 MATLAB function. We must emphasize that with this model setup, we do not intend to record a

182 real seismic signal that can be further analyzed; instead, we want to demonstrate the central  
183 concept.

184  
185 To depict all phases of seismic data collection and make the model more engaging, we add a  
186 research vessel, here it is a floating ship model from the LEGO City collection (Fig. 6). In addition,  
187 we include three 3-D printed models of CUBI (scale 1:7) and an in-house developed device. At  
188 sea the OBSs are deployed from the surface and sink to the seafloor thanks to an attached weight  
189 (Fig. 3C). After a period of seismic data recording, they are recovered by sending an acoustic  
190 command that triggers the release of the weight. Freed from the weight, each OBS rises back to  
191 the surface due to its built-in buoyancy. To simulate this mechanism in the experiment, we  
192 designed simplified OBS models. Each model consists of a 3D-printed frame holding a sealed  
193 plastic ball filled with air, providing buoyancy. Beneath the frame, a 3D-printed dummy sensor is  
194 attached, weighted with an encased metal nut.

195 At the bottom of the tank, three electromagnets are installed, with their power cables routed  
196 outside the tank to a control box. The control box is straightforward, consisting of three ON/OFF  
197 switches that independently power each electromagnet. At the beginning of the experiment, the  
198 magnets are switched ON. The three OBS models are then lowered by hand, one by one, until  
199 the nut contacts the magnet, effectively “anchoring” them to the seafloor. To recover the OBS,  
200 the procedure simply involves switching OFF the electromagnetic current. Once released, each  
201 OBS floats back to the surface autonomously, mimicking the real-world recovery process.



202 **Figure 6** – Detailed layout of the experiment.

203

### 204 **3. Approach and methods**

205 There are many examples of playful ways that our colleagues worldwide have designed  
206 to showcase research in Geology, primarily targeting younger audiences, to present the field as  
207 a potential career path. For instance, every Fall, the Lamont-Doherty Earth Observatory from  
208 Columbia Climate School in the USA opens its doors to engage with the public through a wide  
209 range of ateliers, including exposition of deep-sea cores, trying on immersing survival suits, and  
210 the creation of volcanic eruptions through reaction of liquid nitrogen and water (link from the 2024  
211 program is available [here](#)). Most of these ateliers are focused on a specific object (e.g., rock  
212 sample) or replicating specific natural process. In France, the beginning of October is reserved

213 for the Fête de la Science (FDS), an outreach event held nationwide. Traditionally, at our home  
214 institute (IPGP), this event is held every other year, with colleagues presenting inventive  
215 experiments and materials collected during expeditions across seven continents and five oceans.  
216 Some of the topics include talks on lost meteorites, the observation of the oldest ecosystems  
217 under the microscope, and a 360-degree view of Titan and Mars, to name a few (link to the latest  
218 FDS edition at IPGP can be followed [here](#)).

219 In Marine Geosciences, we typically use visual aids to depict the work we conduct at sea,  
220 which are ideal for presenting the processes and research activities we perform in the water  
221 column. For example, the videos recorded using submarine vehicles to collect rock samples are  
222 very effective in depicting the activity. However, visual materials fall short when it comes to  
223 explaining indirect marine techniques, such as controlled-source seismic (Section 2.1); seismic  
224 data collection requires propagation of waves in the water column and subsurface, which are not  
225 visible in videos, which poses a challenge when doing science communication.

226 Therefore, in addition to the video material and photos we collected at sea, here, we present  
227 a novel marine seismic model to bring the data collection offshore closer to the young audience.  
228 Our approach is novel not only because we build a playful model, but also because, for the first  
229 time, we provide insights into the efficacy of the 'learning by doing' approach in explaining complex  
230 scientific concepts to primary and secondary school students. In fact, although many different  
231 experiments are conducted to promote science, we often lack a clear understanding of how  
232 impactful these activities are on students retention of newly acquired facts and actual learning. To  
233 the best of our knowledge, no follow-up quantitative evaluation has ever been published in the  
234 domain of Marine Geosciences and hence no results are available. With this experiment, we  
235 provide an approximate measure of the effect of our outreach activity through entry/exit quizzes,  
236 detailed in Section 3.1. In addition, by combining the presentation, video material, and hands-on  
237 experience in simulating data collection, we aim to highlight the field's interdisciplinary and  
238 transdisciplinary aspects. Throughout the experiment, we emphasize the contributions of each  
239 discipline involved. For instance, besides the evident role of geophysicists, who typically lead  
240 surveys, we also discuss the instruments built by engineers with different backgrounds (electrical,  
241 mechanical, and computer engineers), without whom the seagoing experiment would not be  
242 possible. Note that our team includes researchers and engineers with different field of expertise  
243 and career stages, and competent to answer questions about the aspect of the presented  
244 professional paths. Another example is the participation of biologists, which is highlighted by  
245 introducing a whale model and explaining the importance of environment protection.  
246 Furthermore, we state that the photographs and video materials we present are often taken and  
247 compiled by professionals who sometimes join our adventures. Moreover, we discuss life at sea  
248 and mention less evident but critical roles and contribution of professionals: chefs who prepare  
249 meals for the crew, doctors on board, technicians, and professional sailors and captains. In  
250 addition to depicting wide range of professions involved in marine experiments, highlighting these  
251 roles underscores that every successful survey relies on teamwork, aiming to inspire participants  
252 to value collaboration.

### 253 **3.1 Constructing the quizzes**

254 The experiment is accompanied by quizzes tailored to participant's age from 9 to 18. The  
255 quizzes are divided into three groups based on the age of the participants: Quiz 1 for 9-12 years,  
256 Quiz 2 for 13-15 years and Quiz 3 for the group >15 years. The complete sets of quizzes in English  
257 are provided in *Supplementary material*; as we performed the events in France and Austria, the  
258 quizzes were also translated into French and German.

259 Each quiz group is composed of 5 questions that are either multiple choice or true/false. One  
260 example of the quiz question prepared for the age range 9-12 is:  
261

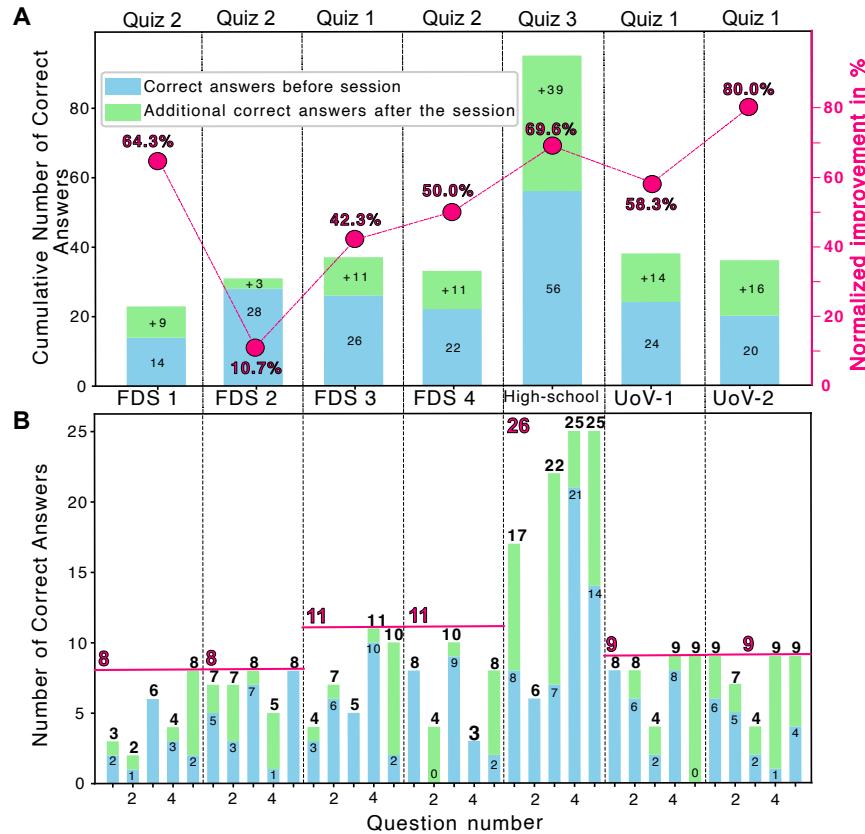
263 A marine geologist can discover clues about the formation of the Earth's crust by studying  
264 \_\_\_\_\_ (more answers are possible). The offered options are:

265 a) waves,  
266 b) marine animals  
267 c) rocks  
268 d) ocean currents.  
269

270 Another example of the quiz questions for the age 13-15 years is:  
271 *What is the temperature of the deep ocean?*

272 with the offered responses:

273 a) 0-3°  
274 b) 23-25°C  
275 c) 0 -10 °C.  
276


277 The topics covered in the questions are all addressed during the presentation and experiment;  
278 therefore, no answer key was provided to participants after they completed the exit quiz. Although  
279 great care was taken in constructing the questions, which were adapted to the school program  
280 and age, and colleagues and collaborators reviewed the quizzes, it is essential to mention that  
281 they did not undergo an official quality control process.

282 The results of the quizzes are summarized in Section 4 and are used exclusively to evaluate  
283 the effectiveness of the activity, not the initial knowledge of the participants. As we wanted to keep  
284 the quizzes anonymous and also emphasize the importance of working in a team, the results  
285 provided the overall performance of a group of students (i.e., they represent group scores).

### 287 **3.2 Conducting the experiment and quizzes**

288 At the beginning of each session the participants were asked to complete the entry quiz, which  
289 typically takes no longer than 5 minutes. As soon as the quizzes are turned in, we start with the  
290 session. As every sea-going research expedition begins long before we board the research vessel,  
291 our marine adventure in the lab also starts with the presentation of fundamental concepts behind  
292 plate tectonics and its exploration beneath the ocean using seismic waves, with special emphasis  
293 on the content covered in the quizzes. The explorers, equipped with the basic knowledge, are  
294 then split into four teams: 1) principal investigators (PIs), 2) team in charge of the seismic source,  
295 3) instrument team, and 4) signal imagery team. Typically, we have about 10-12 participants per  
296 session. To determine the roles in the experiment, we conduct a small poll so that each participant  
297 selects a note with a number that is linked to a specific position in the experiment. The experiment  
298 starts with the two PI(s) placing the LEGO ship in the tank filled with water. The next step is to  
299 deploy the OBS, which is done by three members of the instrument (OBS) team. Once the  
300 instruments are deployed, the source team (up to four members) starts blowing up the balloons  
301 that they submerge in the water and then explode using a pin. The released signal is recorded,  
302 and the imagery team (up to three members) signals the timing of the shot, observing it on a large  
303 screen. To explain the impact of controlled sources on the sea dwellers, we would occasionally  
304 interrupt the "shooting" procedure by inserting a whale model from the LEGO City set. Therefore,  
305 one of the seismic source team members must be on watch and signal a pause in operation until  
306 the whale leaves the survey area (here, the water tank), which is precisely the role of mammal  
307 observers when we collect controlled source seismic data at sea. As mentioned in the Introduction  
308 section, the harmful effects of seismic activity were significantly reduced by introducing the system  
309 of air guns instead of dynamite; however, the hazard to marine life is still present. To reduce it,  
310 protocols for obtaining permits for seismic activities in particular areas are put in place, and the  
311 presence of a mammal observer team has become indispensable for every controlled-source  
312 seismic survey.

313 The final step of the experiment involves recovering the OBSs that were released by cutting  
 314 the electromagnetic current. The end of the expedition is announced by the PIs, who drive a small  
 315 submarine to check that none of the instruments had remained on the seafloor. The whole  
 316 procedure is recorded and provided in Video supplement. For the events conducted at IPGP, after  
 317 completing the simulation of a marine seismic experiment, participants had the opportunity to  
 318 learn more about the CUBI instrument and its main components from the OBS team of engineers.  
 319 By completing all the proposed modules (introductory lecture, conducting the simulation, and  
 320 examining the instrument closely), the participants were exposed to different aspects of  
 321 professions involved in marine seismic. After completing the experiment, the participants were  
 322 kindly asked to repeat the quiz.



323 **Figure 7** – Analyses of the quiz results: the number of correctly answered questions before (blue) and the  
 324 improvement after (green) the session. **A** Cumulative result of correctly answered questions before and  
 325 after the atelier for each group with the observed improvement expressed in percent with respect to the  
 326 total number of participants for each individual group, indicated by circles and numbers in magenta; **B**  
 327 results for each question within the particular group. The FDS 1-4 represent the results from the group of  
 328 pupils who attended Fête de la Science (FDS) at IPGP; the “High-school” group represents the results of  
 329 all high-school participants, and the UoV 1-2 shows the results from the event conducted at the University  
 330 of Vienna. The bold number at the top indicates the total number of correctly answered questions after the  
 331 session. The total number of participants is indicated by solid line and number in magenta. The specific  
 332 group of the quiz (provided in Supplementary material) taken by the participants is indicated on the top of  
 333 panel A.

#### 334 4. Results and discussion

335 Here we describe the observations and results of the experiment conducted during three  
 336 events. The first opportunity to present the experiment was during the *Fête de la Science* (Open  
 337 House event in France) at the IPGP in early October 2024. The second session was organized  
 338

339 with 32 high-school students who were invited to IPGP in December 2024. Finally, the third time,  
340 we conducted the experiment at the University of Vienna as part of Planet Earth Day in late April  
341 2025. In Figure 7, we show the scores of the quizzes for all the tested groups.

342 Here, we would like to mention the observation that was common for all three experiments.  
343 Namely, for the pins used to perforate balloons we intentionally selected two colors of the pin  
344 heads, pink and pastel blue. An interesting tendency was that while female participants did not  
345 seem to pay much attention to the pin color, male participants were dominantly selecting the  
346 pastel blue ones. This observation matches the results of a study conducted by Jonauskaite et al.  
347 (2018), which shows that boys predominantly chose blue as their favorite color, which also seems  
348 to be liked by girls. In the following sections we describe each of the events and provide the results  
349 of the conducted quizzes.

350

#### 351 **4.1 Fête de la Science (FDS) at the Institut de Physique du Globe the Paris (IPGP)**

352 The FDS 2024 event was named "Océan de savoirs" (Ocean of Knowledge), and therefore, it  
353 was the ideal time for the inauguration of our model. Typically, the IPGP communication team  
354 organizes visits for primary school students from several schools across the Paris area over two  
355 working days (Thursday and Friday); the event is also open to the public on the weekend. Here,  
356 we focus on the experience of working with school groups, as the experiment was conducted in  
357 its entirety (Section 3.2), including quizzes, which are challenging to conduct with the public.

358 Over those two days, our atelier was attended by four groups of primary school students. Quiz  
359 2 was distributed to FDS 1 and 2, which both had 8 participants, and to FDS 4 with 11 participants.  
360 The youngest group, FDS 3, had 11 participants and was given Quiz 1. The analyses of the  
361 quizzes clearly show that for the three groups (FDS 1, 3, and 4), the overall number of correct  
362 answers increased by about 50% after the experiment (Fig. 7A), demonstrating the positive  
363 impact of the activity. The improvement of the FDS 2 group was much lower (only ~10%), which  
364 at first may seem surprising. However, if we consider that this group initially provided the overall  
365 highest score before the experiment (28 correct answers out of 36 questions total), there was  
366 much smaller room for improvement, i.e., if the group answered all questions correctly their  
367 improvement would have been less than 25%.

368 Upon examining the analyses of each question, it is noteworthy that some questions proved  
369 more challenging than others. For instance, for Quiz 2 (Supplementary material), question 4  
370 regarding seismic waves was correctly answered by only ~50% of participants even after the  
371 session. This suggests that, despite being covered in elementary physics and explained during  
372 the experiment, the concept of wave propagation is not fully grasped by most students who  
373 participated. To address this gap in understanding, we consider including simplified simulations  
374 of the wave propagation during the introduction session. However, we need to mention that the  
375 duration of our experiment is relatively short (30-45 minutes per session), which does not allow  
376 to go in greater detail in explaining complex concepts. Another interesting observation from the  
377 same age groups comes from the analyses of the question regarding the temperature of the deep  
378 ocean (Quiz 2, question 5). About 75% of the participants from FDS 1 and FDS 4 provided an  
379 incorrect answer before the atelier; however, after the atelier, the situation was reversed, and 90-  
380 100% of the participants gave the correct answer. The complete analysis of the quiz outcome,  
381 broken down to each question, is provided in Fig. 7B.

382

#### 383 **4.2 Experience with high-school students at IPGP**

384 This event was organized in collaboration with two physics professors from a high school  
385 located on the outskirts of Paris. In early December, 26 high school students participated in the  
386 activity, which included all the modules described in Section 3.2, followed by a specifically  
387 designed quiz aligned with their physics class curriculum, as confirmed by their professors  
388 (Supplementary material – quiz for ages >15). Thirty-two students attended the entire session,  
389 but six of them declined to take the quiz. To make the experiment efficient, the students were split

390 into three groups, each with 10 students. As they came from the same school, followed the same  
391 curriculum in physics, and spanned the same age, we opted to present their results as a single  
392 group. Overall, we see an important improvement (~70%) in providing correct answers following  
393 the experiment.

394 The main struggle was the second question regarding the types of seismic waves (see Quiz  
395 3), which only 6 participants answered correctly. No improvement was seen after the experiment  
396 (Fig. 7B). Based on the limited interaction with the students (we do not know the specifics of their  
397 background and concepts covered in the classroom) and the fact that this particular set of quiz  
398 questions was conducted only once does not allow us to provide further insights regarding the  
399 possible reasons; we can only speculate that the concept is not covered by elementary physics  
400 thought in school and for the most of the students it was the first time they heard about it. Following  
401 this experience, the challenge for us in the future will be to work more closely with high-school  
402 professors and dedicate time during the atelier to explain the less-known concepts. In contrast,  
403 questions 4 and 5, which their professors identified as challenging, after the atelier were answered  
404 correctly by almost all participants (25 out of 26).

#### 405 406 **4.3 Planet Earth Day at the University of Vienna**

407 Through close collaboration between the University of Vienna (UV) and the European  
408 Geosciences Union (EGU), we were invited to participate in the Planet Earth Day at the UV with  
409 our experiment, with some modifications. The introductory presentation was conducted in German,  
410 led by two master's students from the UV, and the quizzes were translated into German. Due to  
411 logistical issues, the water tank was reduced to 150 liters, which also required the use of a smaller  
412 ship model. It is also important to mention that the event was open to the public, requiring  
413 registration, with four proposed sessions adapted to specific age ranges. The results of the  
414 quizzes are only available for the two groups, UoV 1 and UoV 2, who completed the Quiz 1 set.  
415 Unfortunately, the entry and exit quizzes from the other two groups were mixed up, and therefore,  
416 it was not possible to analyze them.

417 The results from the two groups show a significant improvement of ~60-80% after  
418 experimentation. However, it is worth noting that most of the participants were accompanied by a  
419 parent/guardian, which may have influenced the results.

420 Comparing the responses to individual questions from the FDS 3 participants at the Fête de  
421 la Science event with the answers from UoV 1 and 2 reveals both interesting similarities and  
422 differences. Unlike the FDS3 group, participants at the University of Vienna did not struggle with  
423 the definition of geology (question 1, Quiz 1; Supplementary material). However, they did exhibit  
424 similar difficulties with question 3, a multiple-choice question that may have been confusing for  
425 the youngest participants. Another possible explanation for the lower score (only <50%  
426 participants answered correctly after the session) was that the answer was not explicitly provided  
427 during the presentation but was expected to be deduced from the whole activity, which may be  
428 challenging at an early age.

#### 429 430 **5. Final remarks**

431 In recent years, Europe has seen an increase in excellent events organized to promote  
432 research, such as European Researchers' Night, national-level Open House events (e.g., Fête  
433 de la Science in France), and Pint of Science, to name a few. The common objective of these  
434 events is to develop interest, foremost among young audience, in science (e.g., *Strick and*  
435 *Hefferich*, 2022). However, little is known about the impact these events have had on the  
436 participants and how effective they have been in communicating science to the general public.  
437 Some commonly known topics are proven to be very successful in public engagement activities;  
438 for instance, ateliers related to climate change or space exploration, have developed efficient  
439 ways to evaluate their impact that is often published (e.g., *Moser et al.*, 2009; *Smith et al.*, 2014;  
440 *Vergunst et al.*, 2025;). However, for Marine Geosciences, the landscape is quite different. Even

441 though there are exceptional materials produced by scientists and artists (e.g., Project Seafloor  
442 Futures; Mae Lubetkin, 2024), they remain relatively unknown even among researchers in the  
443 field. As no adequate study has been conducted, we can speculate that one of the main reasons  
444 is that none of the work and experience is shared through publications, which, in turn, requires an  
445 evaluation component that is typically unavailable. Given the particular nature of the technique,  
446 we wanted to expose, we opted for a hands-on approach combined with video materials; in  
447 addition, for the first time, we designed and applied an evaluation tool focused on the quantitative  
448 assessment of knowledge transfer.

449 As we continue to participate in many outreach events across Europe, the feedback we  
450 receive from participants, especially the youngest ones and their teachers/guardians, is highly  
451 positive. As an anecdote, several primary school students participating during the FDS event at  
452 IPGP, provided grades for the experiment in their final quiz, and the notes ranged from 18 to 19  
453 out of 20. Although the quizzes were not designed to test the initial knowledge of the participants,  
454 it is interesting to note that marine geosciences and associated processes, in particular, the  
455 concept related to seismic wave propagation are not well-known, as they are not covered by the  
456 core curriculum typically taught in primary and secondary school education. However, the results  
457 of the quizzes are encouraging and show that "learning by doing" is effective in helping students  
458 discover this lesser-known world, and we hope that some of the participants will develop a certain  
459 level of passion for marine sciences.

460 In designing the experiment, we primarily rely on our experience participating in the open  
461 house events. In fact, our prototype model (conducted for the first time by M. Marjanović in 2017  
462 at FDS - IPGP), involved only a small plexiglass water tank (~30 l). For this initial model, the focus  
463 was on showing how the source works, therefore in addition to the tank it also includes the  
464 underwater balloon explosion. The water was splashing everywhere, which was fun, but the  
465 personal sentiment was that the audience did not seem to receive the main message about  
466 seismic data collection. Several years of thinking and building the right team, as well as obtaining  
467 funding through EGU led to the model we have today.

468 Although the current model represents a significant improvement, one limitation is that we  
469 have only one hydrophone to record the shot, but we have three OBS models at the bottom of  
470 the tank, which sometimes leads to confusions. In addition, the hydrophone-microphone is often  
471 more sensitive to the movement of the participants than to the actual balloon' explosion. Currently,  
472 we are considering replacing it with piezoelectric sensors, placed close to each of the OBS models.  
473 In the future, we plan to upgrade the experiment to use sonar for simulating collection of  
474 bathymetry data. In addition, as the next stage of our project, we plan to properly film the  
475 experiment and make the material available online in multiple languages to reach students  
476 internationally. In parallel, we will also work on improving the quizzes by collaborating more  
477 closely with schoolteachers to adapt them to the school curriculum. In addition, we will eliminate  
478 multiple-choice questions as they pose problems at the evaluation stage (currently, the answer is  
479 considered correct if at least two correct answers are selected). Finally, we will be updating our  
480 presentation with the latest video material as we continue to collect it while at sea.

481  
482 **Acknowledgements:**  
483 We would like to thank the European Geoscience Union (EGU) and the Institut de Physique du  
484 Globe (IPGP) for the financial support of the model and for their assistance in organizing the  
485 events. In particular, we want to thank Emmelyne Mitard (now at INSU-CNRS), Pierre-Olivier  
486 Foucault (IPGP), Antoine Roux (now at INSU-CNRS), and Christina Orieschnig (EGU). We are  
487 also grateful to the colleagues from Vienna University, Heidi Wienhäupl and Nils Bezwoda, for  
488 preparing the materials we needed to conduct the experiment; we especially thank Xenia Hauser  
489 and David Fischer (UV), who conducted the event in German during the Planet Day event at the  
490 University of Vienna. We also thank the high school (led by Chloé Lardy), as well as all the  
491 participants in the experiment. To build the LEGO ship, we had great help from Elodie Lebas,

492 Antoine Demont and Jean-Guillaume Feignon. We are grateful to Samuel Howell (JPSL), who  
493 provided invaluable advice for the experiment's conception. Finally we want to acknowledge the  
494 contribution of the reviewers Sima Mousavi and Maya Pincus, as well as the editor Louise Arnal,  
495 whose comments improved the manuscript.

496 Data availability

497 No primary data sets were used in producing this article.

498 Ethical statement

499 For conducting of the quizzes, we closely followed the "Ethical Guidelines for Educational  
500 Research" published by the British Educational Research Association. Before the quizzes, we  
501 explained the process to the guardians (teachers and/or parents) and obtained their consent. All  
502 quizzes were anonymous, and the results do not reveal any personal details of the participants.  
503 Students had the right to withdraw from the quiz at any stage.

504

505 Video supplement

506 <https://sdrive.cnrs.fr/s/33SgMcHtpwWRKYe>

507

508 Author contributions

509 M.M. conceived the project; M.M. S.B. applied for the funding and built the model; S.M. conducted  
510 analyses of the quizzes' results; M.M., S.B., S.M., D.H., T.L. conducted the experiments; M.M  
511 wrote the initial draft of the manuscript with input from all co-authors.

512

513 Competing interests

514 The authors declare that they have no conflict of interest.

515 References:

516 Boon, W., de Haan, J., Duisterwinkel, C., Gould, L., Janssen, W., Jongsma, K., Milota, M.,  
517 Radstake, M., Stevens, S., Strick, M., Swinkels, M., van Mil, M., van Sebille, E., Wanders, N. and  
518 Yerkes, M.A.: Meaningful public engagement in the context of open science: reflections from early  
519 and mid-career academics. *Research for All*, 6 (1), 23. DOI: <https://doi.org/10.14324/RFA.06.1.23>.  
520 2022

521

522 Chen, J., Zhang, T., Tominaga, M., Escartin, J., Kang, R.: Ocean Sciences with the Spilhaus  
523 Projection: A Seamless Ocean Map for Spatial Data Recognition. *Sci Data*; 10(1):410. doi:  
524 10.1038/s41597-023-02309-6. PMID: 37355727; PMCID: PMC10290725, 2023.

525

526 Dragoset, B., A historical reflection on reflections. *The Leading Edge*, 24(s1), 2005 s46–  
527 s70.doi:10.1190/1.2112392

528

529 Ewing, M., and F. Press, Seismic measurements in ocean basins. *Journal of Marine Research* 14,  
530 (4). 1955 [https://elischolar.library.yale.edu/journal\\_of\\_marine\\_research/853](https://elischolar.library.yale.edu/journal_of_marine_research/853)

531

532 Jensen, E. and Holliman, R. Norms and values in UK science engagement practice'. *International  
533 Journal of Science Education, Part B: Communication and public engagement*, 6 (1), 68–88.  
534 <https://doi.org/10.1080/21548455.2014.995743>, 2014.

535

536 Jonauskaite, D., Dael, N., Chèvre, L. Althaus, B., Tremea, A., Charalambides, L., & Mohr, C.: Pink  
537 for Girls, Red for Boys, and Blue for Both Genders: Colour Preferences in Children and  
538 Adults. *Sex Roles* 80, 630–642, <https://doi.org/10.1007/s11199-018-0955-z>, 2019.

539

540 Land-Zandstra, A. M., Strick, M., Peeters, W., and De Jong, P.: Het meten van impact van  
541 wetenschapscommunicatie: Eindrapport IMPACTLAB, Zenodo [data set],  
542 <https://doi.org/10.5281/zenodo.7884384>, (version in English is available online:  
543 <https://impactlab.sites.uu.nl/en/>), 2023.

544

545 Lehmann, I., Seismology in the days of old: Eos, v. 68, no. 3, pp. 33- 35, 1987. Lubetkin, M.,  
546 Seafloor Futures Ocean-Archive.org Digital Residency 2023–2024;  
547 <https://garden.ocean-archive.org/seafloor-futures/>, 2024

548

549 Mohorovičić A., Potres od 8. X 1909/Das Beben vom 8. X 1909, Godišnje izvješće zagrebačkog  
550 meteorološkog opservatorija za godinu 1909, Zagreb, 1-56 pp. 1910; English translation: Skoko,  
551 D., Earthquake of 8 October 1909, Geofizika, 9, 3-55, 1992. Moser, S. C.: Communicating climate  
552 change: history, challenges, process and future directions, WIREs Clim. Change, 1, 31–53,  
553 <https://doi.org/10.1002/wcc.11>, 2009.

554

555 Moser, S. C.: Reflections on climate change communication research and practice in the second  
556 decade of the 21st century: what more is there to say?, WIREs Climate Change, 7, 345–369,  
557 <https://doi.org/10.1002/wcc.403>, 2016.

558

559 Reincke, C.M., Bredenoord, A.L. and Van Mil, M.H. From deficit to dialogue in science  
560 communication. EMBO Reports, 21 (9), 1–4. <https://doi.org/10.15252/embr.202051278>, 2020.

561 Smith, D.A., L. Petricolas, T. Schwerin, S. Shipp, and J. G. Manning, Science and Science  
562 Education Go Hand-in-Hand: The Impact of the NASA Science Mission Directorate Education  
563 and Public Outreach Program, Ensuring STEM Literacy: a National Conference on STEM  
564 Education and Public Outreach ASP Conference Series, Vol. 483, 2014

565 Strick, M. and Helfferich, S.: Active ingredients of science communication impact: a quantitative study at a science festival,  
566 J. Sci. Commun., 22, N01, <https://doi.org/10.22323/2.22020801>, 2023.

567

568 Staples, R.K., R.W., Hobbs, and R.S., White, A comparison between airguns and explosives as  
569 wide-angle seismic sources. Geophysical Prospecting, 47: 313-  
570 339. <https://doi.org/10.1046/j.1365-2478.1999.00134.x>, 1999

571

572 Thomas G, Durant J (1987) Why should we promote the public understanding of science? In:  
573 Shortland M (ed.) *Scientific Literacy Papers*. Oxford: Rewley House, pp. 1–14.

574

575 U.S. Geological Survey. Earthquake Lists, Maps, and Statistics. (2022).

576

577 Vergunst N., T. Varol, and E. van Sebille, Designing and evaluating a public engagement activity  
578 about sea level rise, Geosci. Commun., 8, 67–80, 2025 <https://doi.org/10.5194/gc-8-67-2025>,  
579 2025.

580

581