

1 **How do we make a scan of Earth's oceanic crust?**

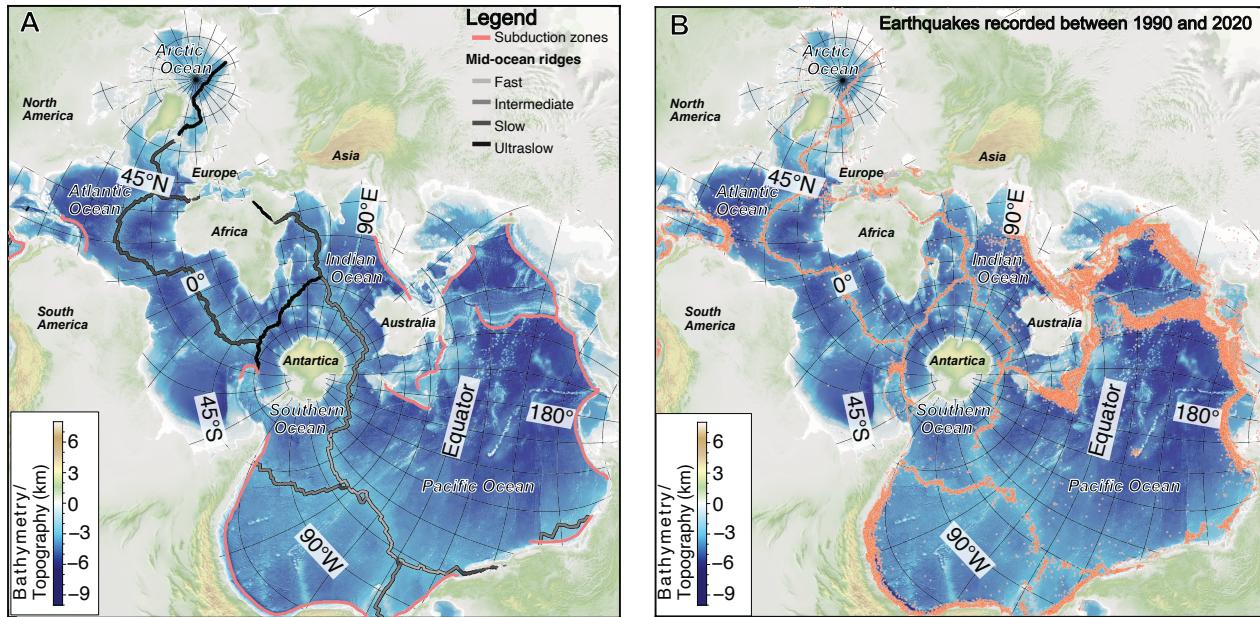
2
3 **Milena Marjanović¹, Simon Besançon^{1,2}, Souradeep Mahato¹, David Hautemayou^{1,3} & Ted**
4 **Luc¹**

5
6 ¹Institut de Physique du Globe de Paris, Université Paris Cité, CNRS UMR7154

7 ²SIMON Now at: Laboratoire de Météorologie Physique, UMR6016 CNRS - UCA - OPGC, 4
8 avenue Blaise Pascal 63170 Aubière

9 ³DAVID Now at: Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL,
10 CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France

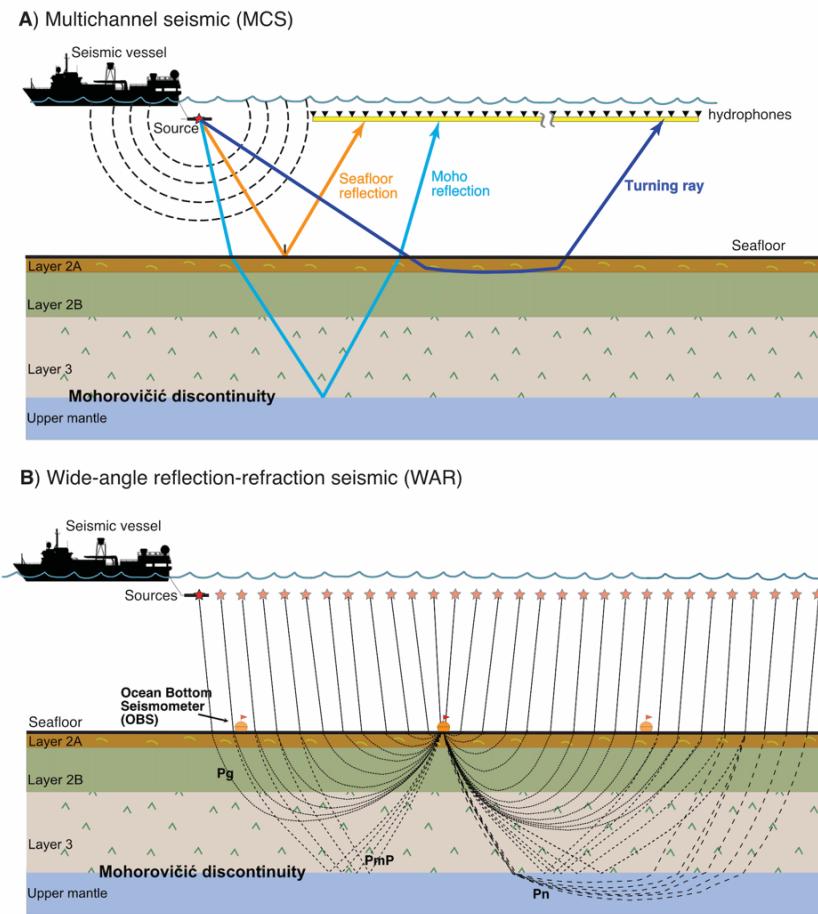
11
12 *corresponding author: Milena Marjanović; marjanovic@ipgp.fr


13
14 **Abstract:** Like computed tomography (CT) scans used in medicine to look inside human bodies,
15 marine seismologists conduct controlled-source experiments to understand the characteristics of
16 the oceanic lithosphere (rigid outer Earth's layer) that covers >70% of the surface of our planet.
17 While at sea aboard a research vessel, using the air compressed in an array of stainless-steel
18 cylinders, we produce small earthquakes in the form of air bubbles that propagate through the
19 water, Earth's crust, and mantle and return to be recorded by the instruments we place in the
20 water column or on the seafloor. Although the technique was developed in the 1950s and has
21 been extensively used by academia and industry for decades, it has remained obscured, primarily
22 because it is conducted offshore, out of sight. To expose the less-known technique and to
23 showcase associated career paths and show it as a possible career path, we designed a playful
24 hands-on model that encourages interaction. Together with the model, we present fundamental
25 Earth processes and the methods we use to explore them, followed by video materials we
26 recorded at sea while collecting the data. Furthermore, to quantitatively evaluate our effort, we
27 constructed age-adapted control quizzes completed by the participants before and after the
28 workshop. These quizzes were designed to assess the student's understanding of the concepts,
29 providing a clear measure of the workshop's effectiveness. We have already conducted the
30 workshop package at several outreach events. Without any exception, the results of the quizzes
31 show that students of ages 9-18 years improved their overall knowledge covered by the
32 experiment. This result is a signal that supports the effectiveness of 'learning by doing' science in
33 a playful, interactive way.

34
35

1. Introduction

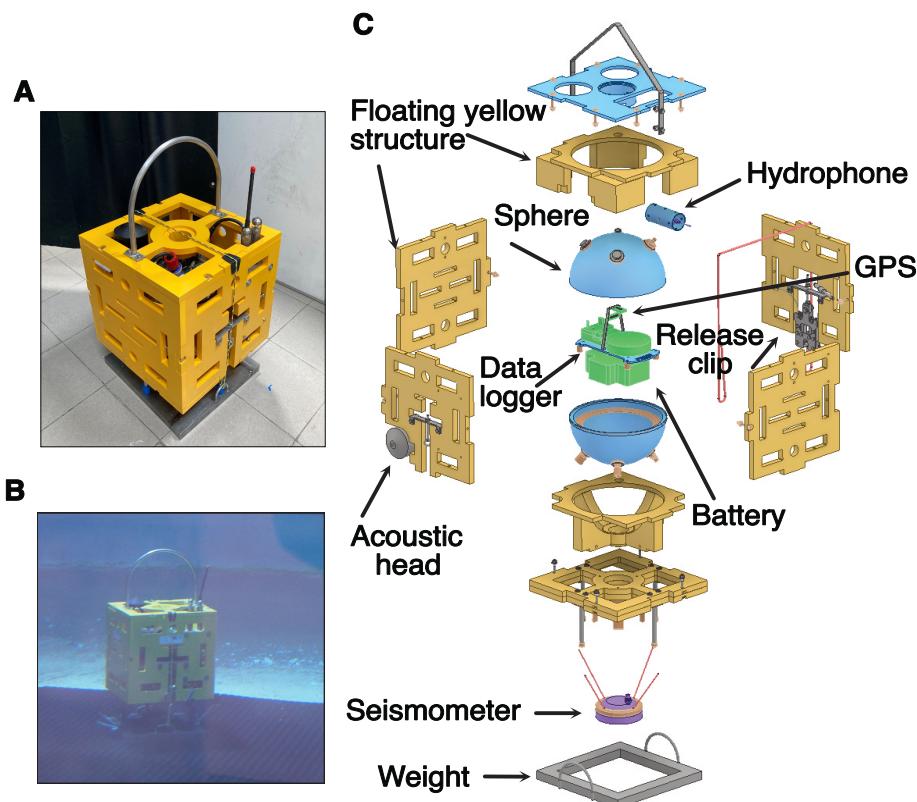
36 Seismologists record different types of seismic waves that propagate through the Earth's
37 interior to understand its structure. For instance, by observing several records of an earthquake
38 that struck a Croatian town ~40 km from Zagreb on October 8th, 1909, Andrija Mohorovičić
39 noticed consistent, prominent blips originating at a depth of ~50 km kilometers depth (Mohorovičić,
40 1910). They were explained by the strong contrast in density between the crust and mantle, now
41 known as the Mohorovičić discontinuity or Moho for short. Similarly, a few decades later, Inge
42 Lehman, a Danish seismologist, by observing anomalous arrivals in the recorded seismic signal
43 at the remote stations in Siberia and their mysterious difference in travel time, discovered that the
44 Earth's core has two distinct parts: an inner, solid core and an outer, liquid core (Lehmann, 1987).
45 In addition to revealing the structure of the Earth, these bursts of energy represent one of the
46 most prominent natural hazards, unfortunately, many with casualties, especially when associated
47 with large tsunami waves (e.g., Sumatra Earthquake in 2004), extensive fires (San Francisco in
48 the USA, 1906) and even bringing humanity at the edge of a nuclear disaster (Tōhoku Earthquake
49 in Japan, 2011). As most of those prominent earthquakes occur along the plate boundaries that
50 are dominantly covered by the ocean (Fig. 1); a number of instruments have been placed at its


51 bottom for prolonged [listening to the Earth's pulsation](#) monitoring of Earth' seismic activity to
52 provide the answer to the question of our time when and where [will](#) the next big one [will](#) occur?

53
54 **Figure 1** – Spilhaus global projection map offering a different view of the Earth's surface centered at
55 Antarctica. With this projection we want to provide another view of our Blue Planet that places the ocean at
56 is center. [In panel A, we outline plate boundaries](#). The [subduction zones](#) (locations where oceanic plate is
57 [sliding under the continental](#)) and [mid-ocean ridges](#) (locations where two plates are separating) is outlined
58 and [tectonic plate boundaries are outlined and defined in Legend](#); [The shades of gray color represent the](#)
59 [variation of full spreading rate along mid-ocean ridges](#) (in millimeters per year); based on the spreading
60 [rate we can distinguish the following categories: fast spreading with the spreading rate >80 mm/yr,](#)
61 [intermediate ones with spreading rate between 40 and 80 mm/yr, slow-spreading centers with the rate](#)
62 [varying from 20-40 mm/yr and ultraslow where the plates are separating at the rate <20 mm/yr.](#) In panel B,
63 [we show the distribution of earthquakes which are predominantly occurring along the plate boundaries](#)
64 [outlined in panel A. The earthquakes are spanning the period from 1990 to 2020 \(USGS database, 2020\)](#)
65 [and are indicated in pink dots.](#) The maps [is-are](#) modified from Chen et al. (2023).

66
67 In parallel with learning about the deep Earth's interior and hazard mitigation, to extract more
68 detailed information about the Earth's outer shell, i.e., the crust and upper mantle, a new branch
69 of seismic techniques that uses man-made, tiny earthquakes (controlled source or active
70 seismology) has emerged ([e.g., Dragoset, 2005](#)). The first application was reserved exclusively
71 for land surveying, mainly for mineral, oil, and gas exploitation. To produce these artificial tremors,
72 dynamite explosions were used as the primary source of energy. In 1935, Maurice Ewing, the
73 pioneering US marine geophysicist, with colleagues, started a new era in earth exploration of the
74 subsurface by conducting TNT explosions in marine settings ([Ewing and Press, 1955](#)). This
75 technique, initially used to image the thickness of ocean sediments, revealed a three-layer
76 structure of the oceanic crust and quickly became the dominant tool in exploring the seafloor
77 subsurface. It has been evolving ever since, with dangerous dynamite being replaced by air
78 bubbles. [Theoretical calculations showed that although the mean pressure produced by air](#)
79 [bubbles is ~8% of that of the signal produced by dynamite, for the most of the surveys the former](#)
80 [signal is more coherent \(Staples et al., 1999\).](#) In addition, it is less dangerous for the source
81 operation team aboard the vessel and less harmful for the ocean fauna.

82 However, as the controlled-source surveys are conducted offshore, aboard research
 83 vessels, the method has remained obscure and unknown outside of geophysical circles. To shed
 84 light and introduce this technique to new generations, we designed a model that depicts marine,
 85 controlled-source seismic data collection. Moreover, with this model, we aim to showcase the
 86 interdisciplinary context of the field, encompassing electrical and mechanical engineering,
 87 robotics, mathematics, physics, and, in recent years, artificial intelligence, while also highlighting
 88 its adventurous side of joining sea-going expeditions, open to everyone. We want to mention that
 89 for designing the model we obtained an EGU Public Engagement Grant in 2022.
 90

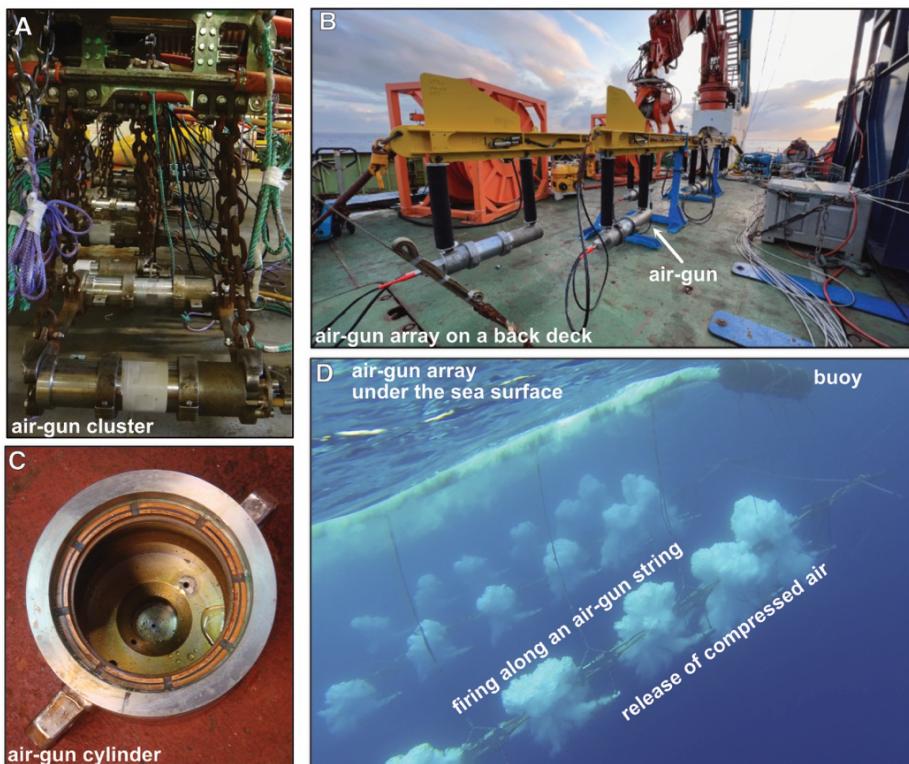


91 **Figure 2** – Illustration of **A**) Multichannel seismic (MCS) and **B**) Wide-angle reflection-refraction seismic
 92 techniques.

93 Communicating science to and engaging with the public are essential for establishing the link
 94 between science and society, making the research process more transparent and trustworthy,
 95 and the results more impactful and relatable to the public (e.g., [Boon et al., 2022](#); [Stilgoe et al., 2019](#);
 96 [Thomas & Durand, 1987](#); [Stilgoe et al., 2019](#); [Boon et al., 2022](#)). However, it is not always
 97 clear what the best practices are for implementing this, i.e., what distinguishes high- from low-
 98 quality engagement/communication, with the latter carrying the risk of provoking a counter-effect
 99 ([Reincke et al., 2020](#); [Jensen & Holliman, 2016](#); [Reincke et al., 2020](#)). Typically, the success of
 100 an outreach session would be only qualitatively expressed through an instantaneous
 101 reaction (aka “wow effect”), informal feedback (verbal or nonverbal) from the audience right after
 102 the event, and/or a personal feeling. Rarely are outreach events designed to include quantitative
 103

104 evaluation. Few, events are conceived to include quantitative evaluation. One of the most
105 complete, if not widely known, guidelines for evaluating outreach activities is offered by
106 IMPACTLAB (Land-Zastral, et al., 2023), which outlines ten different approaches. Here, we adopt
107 entry/exit quizzes, a subgroup of the 'Surveys Method. According to the guide, this strategy is
108 recommended for assessing 'detailed quantitative measure of acquired knowledge and
109 understanding' acquired by the audience.

110 One of the most complete, but not widely known, guideline for evaluating the outreach activity is
111 provided through IMPACTLAB (Land-Zastral et al., 2023), which outlines ten different
112 approaches, one of which is the entry/exit quizzes as a subgroup of the "Surveys method", which
113 we adopt here as in the guide it is recommended for assessing "detailed quantitative measure of
114 acquired knowledge and understanding" acquired by the audience.


115
116 **Figure 3** – CUBI **A** in the lab, **B** under the water and **C** schematic representation of the instrument's main
117 elements.

118
119
120
121
122
123
124
125
126
127
128

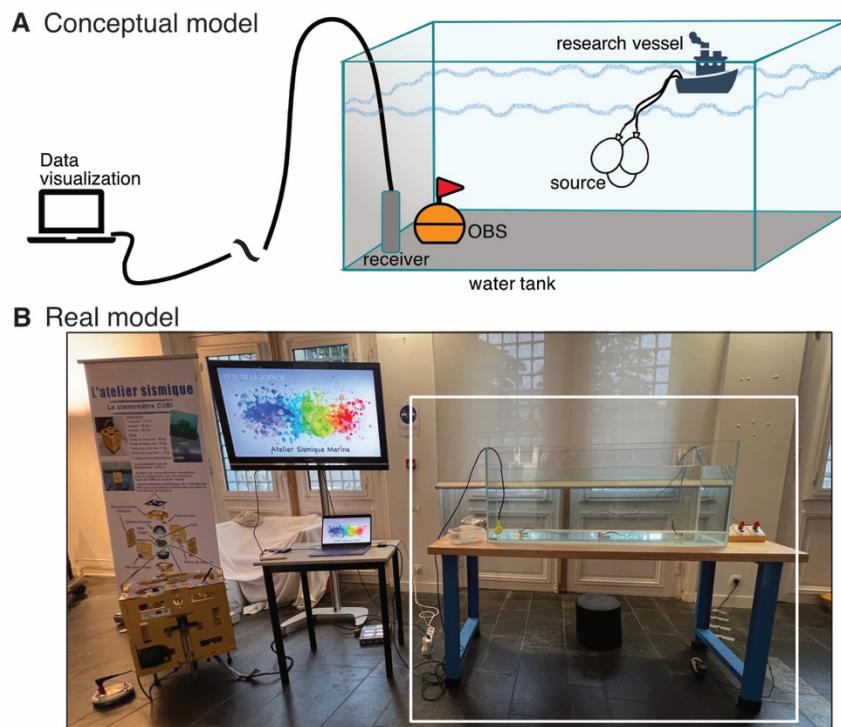
129 **2. Background**

130 **2.1 How does controlled-source seismic work at sea?**

131 In academia [Researchers typically](#), we employ two primary types of controlled-seismic
132 experiments: multichannel seismic (MCS) and wide-angle reflection-refraction (WAR) seismic (Fig.
133 2). The primary difference lies in the type of receiver used to record the seismic waves. Whilst the
134 former uses [a](#) >3-15 km long cable (i.e., streamer) with densely populated recorders (a few to
135 tens of meters spacing) towed behind the ship at ~10 m below the sea surface, the latter uses
136 ocean bottom seismometers (OBS) that are deployed on the seafloor at a few to tens of kilometres
137 spacing. Typically, we would use MCS surveys to obtain high-resolution images (metric scales) of
138 the subseafloor within a localized survey area. In contrast, WAR seismic would be used for more
139 regional scanning of the subsurface at a somewhat lower resolution, ranging from several tens to
140 hundreds of meters. The model we designed depicts the WAR seismic survey on which we will
141 focus in the following sections.

142 **Figure 4** – Examples of **A** airgun cluster (aboard M/V Western Trident in 2015), **B** Air-gun array (aboard
143 RRS James Cook in 2022) and **C** air-gun cylinder in the laboratory (aboard R/V Marcus G. Langseth in
144 2012). In panel **D** we show a snapshot of airgun firing under the water.

145
146 **2.1.1 Ocean Bottom Seismometers (OBS)**


147 The Ocean Bottom Seismometers (sometimes referred to Ocean Bottom Seismographs) or
148 OBS for short exist in different forms and shapes depending on the laboratory in which they were
149 designed. In this experiment we use the model of an OBS known as CUBI for Compact
150 Underwater Bottom Instrument (Fig. 3). We need to mention that this model is preferentially used
151 for recording the earthquakes, but we decided to use it here as it is the model that was developed
152 and constructed at Institut de Physique de Globe de Paris - IPGP (where all the members of our
153 team worked at the time of the model build up). The real dimensions of the instrument are 43 x
154 45 x 85 cm³; its dry weight is about 35 kg without the weight (which adds ~15 kg). In the water

156 without weight, it has negative buoyancy (-3 kg), which is obtained using well designed floating
157 components (Fig. 3C). The maximum water depth at which this instrument can be deployed is 6
158 km below sea surface and its autonomy is guaranteed for ~~4~~four months using batteries that are
159 cased in a glass sphere, which isolates the electronic components from contact with water and
160 high pressures. The CUBI contains 2 sensors: a hydrophone (pressure sensor), and three-
161 component sensor that measures vertical and horizontal displacements.

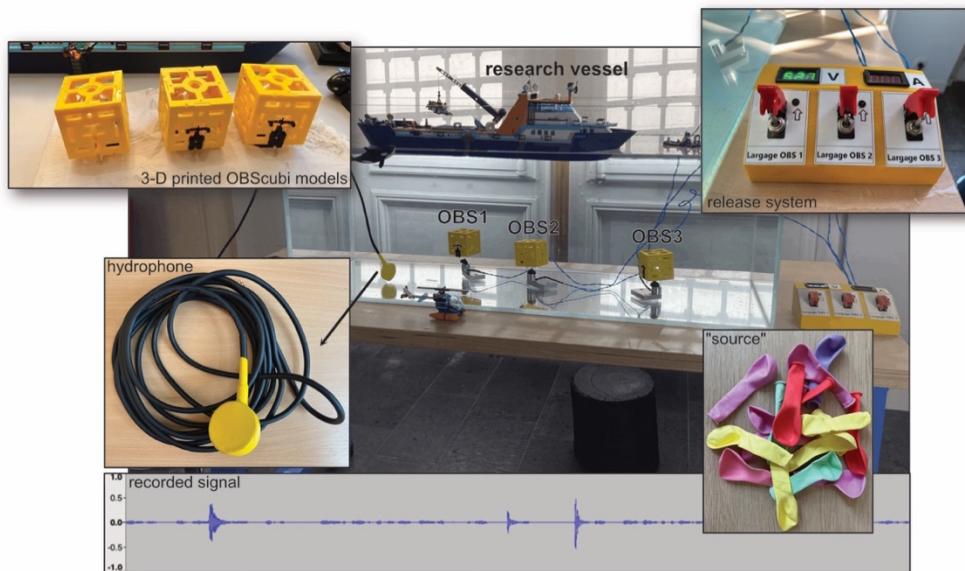
162
163
Figure 4 Examples of **A** airgun cluster (aboard R/V Western Trident in 2015), **B** Air gun array (aboard
164 RRS James Cook in 2022) and **C** air gun cylinder in the laboratory (aboard R/V Marcus G. Langseth in
165 2012). In panel **D** we show a snapshot of airgun firing under the water.
166

171 2.1.2 Seismic source

172 To produce a quake at sea, instead of dynamite, nowadays, we use compressed air, which is
173 pumped into airguns i.e., stainless-steel cylinders with chambers of different volumes (Fig. 4A-C)
174 organized in several arrays. The total volume of the source can vary depending on the objective
175 of the survey; typically, new generations of sources used in WAR seismic ~~in academia~~ are \sim 5000
176 in^3 (or 82 liters). The position of each airgun within the array, as well as its volume is carefully
177 designed to provide signals, which when superimposed result in the sharpest possible signal that
178 propagates through the water and subsurface. An example of the compressed air released from
179 gun-array under the water is shown in Figure 4D.

180 **Figure 5** – Schematic (A) and real (B) representation of the experiment. The white box in panel B marks
181 the part of the experiment explained in detail in Figure 6.
182
183

184


185

186 **2.2 Building the model**187 As in all recipes, we first provide the main ingredients that constitute our model followed by
188 detailed description of the role of each element and how the experiment is conducted. The
189 schematic of the conceptual model and the final model are presented in Figures 5 and 6.

190 The main elements of the model:

- 191 • 300 l water tank
- 192 • floating ship from LEGO CITY collection
- 193 • 3-D printed CUBI models
- 194 • electromagnetic box with 3 electromagnets and 3-D printed control box
- 195 • balloons
- 196 • pins for perforating balloons
- 197 • hydrophone
- 198 • laptop
- 199 • software for displaying the recorded signal
- 200 • large TV screen
- 201 • whale model (from the same LEGO City set as the ship)
- 202 • remotely controlled submarine toy

203

204 Figure 6 – Detailed layout of the experiment.

205

206 For presenting the main principles of a WAR seismic survey, two components are essential: the
207 simulation of the source and its recording (Fig. 6). To effectively mimic the explosion of
208 compressed air under the ocean surface (as described in Section 2.1.2), we use a small balloon;
209 an inflated balloon is submerged into a large water tank and perforated to release an air bubble
210 that propagates through the water. Thus, the released signal, splashing the water within and often
211 around the tank (which is usually followed by the awe of the experiment participants), is then
212 recorded on a hydrophone. For this purpose, we used a water-proof piezoelectric microphone,
213 which detects different types of vibrations. The hydrophone is connected to a laptop with software
214 that displays the vibrations – we used either Audacity (an open-source digital audio editor) or a
215 MATLAB function. We must emphasize that with this model setup, we do not intend to record a

216 real seismic signal that can be further analyzed; instead, we want to demonstrate the central
217 concept.

218 **Figure 6—Detailed layout of the experiment.**

219
220 To depict all phases of seismic data collection and make the model more engaging, we add a
221 research vessel, here it is a floating ship model from the LEGO City collection (Fig. 6). In addition,
222 we include three 3-D printed models of CUBI (scale 1:7) and an in-house developed device. At
223 sea the OBSs are deployed from the surface and sink to the seafloor thanks to an attached weight
224 (Fig. 3C). After a period of seismic data recording, they are recovered by sending an acoustic
225 command that triggers the release of the weight. Freed from the weight, each OBS rises back to
226 the surface due to its built-in buoyancy. To simulate this mechanism in the experiment, we
227 designed simplified OBS models. Each model consists of a 3D-printed frame holding a sealed
228 plastic ball filled with air, providing buoyancy. Beneath the frame, a 3D-printed dummy sensor is
229 attached, weighted with an encased metal nut.

230 At the bottom of the tank, three electromagnets are installed, with their power cables routed
231 outside the tank to a control box. The control box is straightforward, consisting of three ON/OFF
232 switches that independently power each electromagnet. At the beginning of the experiment, the
233 magnets are switched ON. The three OBS models are then lowered by hand, one by one, until
234 the nut contacts the magnet, effectively “anchoring” them to the seafloor. To recover the OBS,
235 the procedure simply involves switching OFF the electromagnetic current. Once released, each
236 OBS floats back to the surface autonomously, mimicking the real-world recovery process.

237
238 **3. Approach and methods**

239 There are many examples of playful ways that our colleagues worldwide have designed
240 to showcase research in Geology, [primarily targeting younger audiences, to present the field as](#)
241 [a potential career path.](#)— For instance, every Fall, the Lamont-Doherty Earth Observatory from
242 Columbia Climate School in the USA opens its doors to engage with the public through a wide
243 range of ateliers, including [exposition demonstrations](#) of deep-sea cores, [trying on immersing](#)
244 ["Gumby" survival safety](#) suits, and the creation of volcanic eruptions [through reaction of liquid](#)
245 [nitrogen and water](#) (link from the 2024 program is available [here](#)).— [Most of these ateliers are](#)
246 [focused on a specific object \(e.g., rock sample\) or replicating specific natural process](#). In France,
247 the beginning of October is reserved for the Fête de la Science (FDS), an outreach event held
248 nationwide. Traditionally, at our home institute (IPGP), this event is held every other year, with
249 colleagues presenting inventive experiments and materials collected during expeditions across
250 seven continents and five oceans. Some of the topics include talks on lost meteorites, the
251 observation of the oldest ecosystems under the microscope, and a 360-degree view of Titan and
252 Mars, to name a few (link to the latest FDS edition at IPGP can be followed [here](#)).

253 In Marine Geosciences, we typically use visual aids to depict the work we conduct at sea,
254 which are ideal for presenting the processes and research activities [we perform in the water](#)
255 column. For example, the videos recorded using submarine vehicles to collect rock samples are
256 very [efficient effective](#) in depicting the activity. However, visual materials fall short when it comes
257 to explaining indirect marine techniques, such as controlled-source seismic (Section 2.1); seismic
258 data collection requires propagation of waves in the water column and subsurface, which are not
259 visible in videos, which [is posing poses](#) a challenge when doing science communication.

260 Therefore, in addition to the video material and photos we collected at sea, [here](#), we present
261 a novel marine seismic model to bring the data collection offshore closer to the young audience.
262 [However, our](#) approach is novel not only because we build a playful model, but also because,
263 for the first time, we provide insights into the [efficiency efficacy](#) of the 'learning by doing' approach
264 in explaining complex scientific concepts to primary and secondary school students. In fact,
265 although many different experiments are conducted to promote science, we often lack a clear
266 understanding of how impactful [this activity is these activities are](#) on students' retention of newly

267 acquired facts and actual learning. To the best of our knowledge, no follow-up quantitative
268 evaluation has ever been published in the domain of Marine Geosciences and hence no results
269 are available. With this experiment, we provide an approximate measure of the effect of our
270 outreach activity through entry/exit quizzes, detailed in Section 3.1. In addition, by combining the
271 presentation, video material, and hands-on experience in simulating data collection, we aim to
272 highlight the field's interdisciplinary and transdisciplinary aspects. Throughout the experiment, we
273 emphasize the contributions of each discipline involved. For instance, besides the evident role of
274 geophysicists, who typically lead surveys, we also discuss the instruments built by engineers with
275 different backgrounds (electrical, mechanical, and computer engineers), without whom the
276 seagoing experiment would not be possible. Note that our team includes researchers and
277 engineers with different field of expertise and career stages, and competent to answer questions
278 about the aspect of the presented professional paths. Another example is the participation of
279 biologists, which is highlighted by introducing a whale model and explaining the importance of
280 environment protection.

281 Furthermore, we state that the photographs and video materials we present are often taken
282 and compiled by professionals who sometimes join our adventures. Moreover, we discuss life at
283 sea and mention less evident but critical roles and contribution of professionals: chefs who
284 prepare meals for the crew, doctors on board, technicians, and professional sailors and captains.
285 In addition to depicting wide range of professions involved in marine experiments, highlighting
286 these roles underscores that every successful survey relies on teamwork, aiming to inspire
287 participants to value collaboration.

290 **3.1 Constructing the quizzes**

291 The experiment is accompanied by quizzes tailored to participant's age from 9 to 18. The
292 quizzes are divided into three groups based on the age of the participants: Quiz 1 for 9-12 years,
293 Quiz 2 for 13-15 years and Quiz 3 for the group > 15 years. The complete sets of quizzes in
294 English are provided in *Supplementary material*; as we performed the events in France and
295 Austria, the quizzes were also translated into French and German.

296 Each quiz group is composed of 5 questions that are either multiple choice or true/false. One
297 example of the quiz question prepared for the age range 9-12 is:

298
299 A marine geologist can discover clues about the formation of the Earth's crust by studying
300 _____ (more answers are possible). The offered options are:

- 301 a) waves,
- 302 b) marine animals
- 303 c) animals
- 304 d) rocks
- 305 e) ocean currents.

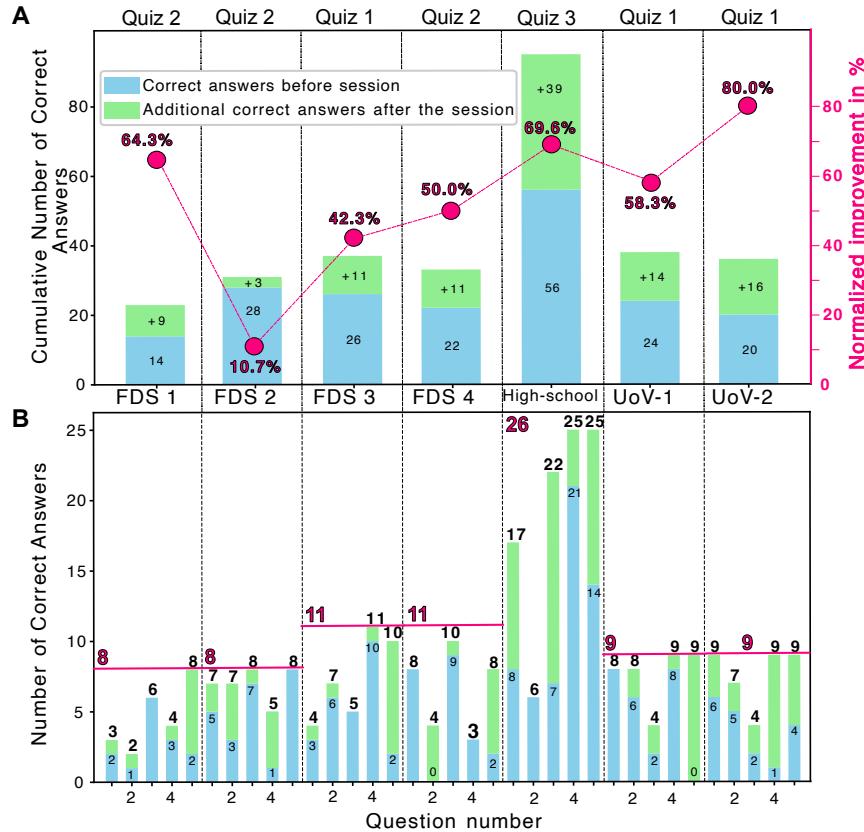
306 Another example of the quiz questions for the age 13-15 years is:

307 What is the temperature of the deep ocean?,

308 with the offered responses:

- 310 a) 0-3°
- 311 b) 23-25°C
- 312 c) 0 -10 °C.

313
314 The topics covered in the questions are all addressed during the presentation and experiment;
315 therefore, no answer key was provided to participants after they completed the exit quiz. Although
316 great care was taken in constructing the questions, which were adapted to the school program


317 and age, and colleagues and collaborators reviewed the quizzes, it is essential to mention that
318 they did not undergo an official quality control process.

319 The results of the quizzes are summarized in Section 4 and are used exclusively to evaluate
320 the effectiveness of the activity, not the initial knowledge of the participants. As we wanted to keep
321 the quizzes anonymous and also emphasize the importance of working in a team, the results
322 provided the overall performance of a group of students (i.e., they represent group scores).

324 **3.2 Conducting the experiment and quizzes**

325 At the beginning of each session the participants were asked to complete the entry quiz, which
326 typically takes no longer than 5 minutes. As soon as the quizzes are turned in, we start with the
327 session. As every sea-going research expedition begins long before we board the research vessel,
328 our marine adventure in the lab also starts with the presentation of fundamental concepts behind
329 plate tectonics and its exploration beneath the ocean using seismic waves, with special emphasis
330 on the content covered in the quizzes. The explorers, equipped with the basic knowledge, are
331 then split into four teams: 1) principal investigators (PIs), 2) team in charge of the seismic source,
332 3) instrument team, and 4) signal imagery team. Typically, we have about 10-12 participants per
333 session. To determine the roles in the experiment, we conduct a small poll so that each participant
334 selects a note with a number that is linked to a specific position in the experiment. The experiment
335 starts with the two PI(s) placing the LEGO ship in the tank filled with water. The next step is to
336 deploy the OBS, which is done by three members of the instrument (OBS) team. Once the
337 instruments are deployed, the source team- (up to four members) starts blowing up the balloons
338 that they submerge in the water and then explode using a pin. The released signal is recorded,
339 and the imagery team (up to three members) signals the timing of the shot, observing it on a large
340 screen. To explain the impact of controlled sources on the sea dwellers, we would occasionally
341 interrupt the “shooting” procedure by inserting a whale model from the LEGO City set. Therefore,
342 one of the seismic source team members has to be on watch and signal a pause in operation until
343 the whale leaves the survey area (here, the water tank), which is precisely the role of mammal
344 observers when we collect controlled source seismic data at sea. [As mentioned in the Introduction](#)
345 [section, the harmful effects of seismic activity were significantly reduced by introducing the system](#)
346 [of air guns instead of dynamite; however, the hazard to marine life is still present. To reduce it,](#)
347 [protocols for obtaining permits for seismic activities in particular areas are put in place, and the](#)
348 [presence of a mammal observer team has become indispensable for every controlled-source](#)
349 [seismic survey.](#)

350 The final step of the experiment involves recovering the OBSs that were released by cutting
351 the electromagnetic current. The end of the expedition is announced by the PIs, who drive a small
352 submarine to check that none of the instruments had remained on the seafloor. The whole
353 procedure is recorded and provided in Video supplement. For the events conducted at IPGP, after
354 completing the simulation of a marine seismic experiment, participants had the opportunity to
355 learn more about the CUBI instrument and its main components from the OBS team of engineers.
356 By completing all of the proposed modules (introductory lecture, conducting the simulation, and
357 examining the instrument closely), the participants were exposed to different aspects of
358 professions involved in marine seismic. After completing the experiment, the participants were
359 kindly asked to repeat the quiz.

360 **Figure 7** – Analyses of the quiz results: the number of correctly answered questions before (blue) and the
361 improvement after (green) the session. **A** [Cumulative results of correctly answered](#)
362 [questions before and after the atelier for each group with the observed improvement expressed in percent](#)
363 [with respect to the total number of participants for each individual group, indicated by circles and numbers](#)
364 [in magenta](#); **B** results for each question within the particular group. The FDS 1-4 represent the results from
365 the group of pupils who attended Fête de la Science (FDS) at IPGP; the “High-school” group represents
366 the results of all high-school students who were invited to IPGP in December 2024. Finally, the third time,
367 we conducted the experiment at the University of Vienna as part of Planet Earth Day in late April
368 2025. In Figure 7, we show the scores of the quizzes for [all of all](#) the tested groups.
369
370

372 4. Results and discussion

373 Here we describe the observations and results of the experiment conducted during three
374 events. The first opportunity to present the experiment was during the *Fête de la Science* (Open
375 House event in France) at the IPGP in early October 2024. The second session was organized
376 with 32 high-school students who were invited to IPGP in December 2024. Finally, the third time,
377 we conducted the experiment at the University of Vienna as part of Planet Earth Day in late April
378 2025. In Figure 7, we show the scores of the quizzes for [all of all](#) the tested groups.
379

380 Here, we would like to mention the observation that was common for all three experiments.
381 Namely, for the pins used to perforate balloons we intentionally selected two colors of the pin
382 heads, pink and pastel blue. An interesting tendency was that while female participants did not
383 seem to pay much attention to the pin color, male participants were dominantly selecting the
384 pastel blue ones. This observation matches the results of a study conducted by Jonauskaite et al.
385 (2018), which shows that boys predominantly chose blue as their favorite color, which also seems

385 to be liked by girls. In the following sections we describe each of the events and provide the results
386 of the conducted quizzes.

388 **4.1 Fête de la Science (FDS) at the Institut de Physique du Globe the Paris (IPGP)**

389 The FDS 2024 event was named "Océan de savoirs" (Ocean of Knowledge), and therefore, it
390 was the ideal time for the inauguration of our model. Typically, the IPGP communication team
391 organizes visits for primary school students from several schools across the Paris area over two
392 working days (Thursday and Friday); the event is also open to the public on the weekend. Here,
393 we focus on the experience of working with school groups, as the experiment was conducted in
394 its entirety (Section 3.2), including quizzes, which are challenging to conduct with the public.

395 Over those two days, our atelier was attended by four groups of primary school students. Quiz
396 2 was distributed to FDS 1 and 2, which both had 8 participants, and to FDS 4 with 11 participants.
397 The youngest group, FDS 3, had 11 participants and was given Quiz 1. The analyses of the
398 quizzes clearly show that for the three groups (FDS 1, 3, and 4), the overall number of correct
399 answers increased by about 50% after the experiment (Fig. 7A), demonstrating the positive
400 impact of the activity. The improvement of the FDS 2 group was much lower (only ~10%), which
401 at first may seem surprising. surprising. However, if we consider that as this group initially provided
402 the overall highest score before the experiment (28 correct answers out of 36 questions total),
403 there was much smaller room for improvement; i.e., if the group answered all questions correctly
404 their improvement would have been less than 25%.

405 Upon examining the analyses of each question, it is noteworthy that some questions proved
406 more challenging than others. For instance, for Quiz 2 (Supplementary material), question 4
407 regarding seismic waves was correctly answered by only ~50% of participants even after the
408 session. This suggests that, despite being covered in elementary physics and explained during
409 the experiment, the concept of wave propagation is not fully grasped by most students who
410 participated. To address this gap in understanding, we consider including simplified simulations
411 of the wave propagation during the introduction session. However, we need to mention that the
412 duration of our experiment is relatively short (30-45 minutes per session), which does not allow
413 to go in greater detail in explaining complex concepts. Another interesting observation from the
414 same age groups comes from the analyses of the question regarding the temperature of the deep
415 ocean (Quiz 2, question 5). About 75% of the participants from FDS 1 and FDS 4 provided an
416 incorrect answer before the atelier; however, after the atelier, the situation was reversed, and 90-
417 100% of the participants gave the correct answer. The complete analysis of the quiz outcome,
418 broken down to each question, is provided in Fig. 7B.

419
420 **4.2 Experience with high-school students at IPGP**

421 This event was organized in collaboration with two physics professors from a high school
422 located on the outskirts of Paris. In early December, 26 high school students participated in the
423 activity, which included all the modules described in Section 3.2, followed by a specifically
424 designed quiz aligned with their physics class curriculum, as confirmed by their professors
425 (Supplementary material – quiz for ages >15). Thirty-two students attended the entire session,
426 but six of them declined to take the quiz. To make the experiment efficient, the students were split
427 into three groups, each with 10 students. As they came from the same school, followed the same
428 curriculum in physics, and spanned the same age, we opted to present their results as a single
429 group. Overall, we see an important improvement (~70%) in providing correct answers following
430 the experiment.

431 The main struggle was the second question regarding the types of seismic waves (see Quiz
432 3), which only 6 participants answered correctly. No improvement was seen after the experiment
433 (Fig. 7B). Based on the limited interaction with the students (we do not know the specifics of their
434 background and concepts covered in the classroom) and the fact that this particular set of quiz
435 questions was conducted only once does not allow us to provide further insights regarding the

436 possible reasons; we can only speculate that the concept is not covered by elementary physics
437 thought in school and for the most of the students it was the first time they heard about it. Following
438 this experience, the challenge for us in the future will be to work more closely with high-school
439 professors and dedicate time during the atelier to explain the less-known concepts. In contrast,
440 questions 4 and 5, which their professors identified as challenging, after the atelier were answered
441 correctly by almost all participants (25 out of 26).

443 **4.3 Planet Earth Day at the University of Vienna**

444 Through close collaboration between the University of Vienna (UV) and the European
445 Geosciences Union (EGU), we were invited to participate in the Planet Earth Day at the UV with
446 our experiment, with some modifications. The introductory presentation was conducted in German,
447 led by two mastermasters: students from the UV, and the quizzes were translated into German.
448 Due to logistical issues, the water tank was reduced to 150 liters, which also required the use of
449 a smaller ship model. It is also important to mention that the event was open to the public,
450 requiring registration, with four proposed sessions adapted to specific age ranges. The results of
451 the quizzes are only available for the two groups, UoV 1 and UoV 2, who completed the Quiz 1
452 set. Unfortunately, the entry and exit quizzes from the other two groups were mixed up, and
453 therefore, it was not possible to analyze them.

454 The results from the two groups show a significant improvement of ~60-80% after
455 experimentation. However, it is worth noting that most of the kids-participants were accompanied
456 by a parent/guardian, which may have influenced the results.

457 Comparing the responses to individual questions from the FDS 3 participants at the Fête de
458 la Science event with the answers from UoV 1 and 2 reveals both interesting similarities and
459 differences. Unlike the FDS3 group, participants at the University of Vienna did not struggle with
460 the definition of geology (question 1, Quiz 1; Supplementary material). However, they did exhibit
461 similar difficulties with question 3, a multiple-choice question that may have been confusing for
462 the youngest participants. Another possible explanation for the lower score (only <50%
463 participants answered correctly after the session) was that the answer was not explicitly provided
464 during the presentation, but was expected to be deduced from the whole activity, which may be
465 challenging at an early age.

467 **5. Final remarks**

468 In recent years, Europe has seen an increase in excellent events organized to promote
469 research, such as European Researchers' Night, national-level Open House events (e.g., Fête
470 de la Science in France), and Pint of Science, to name a few. The common objective of these
471 events is to develop interest, foremost among young audiences, in science (e.g., *Strick and*
472 *Helfferich, 2022*). However, little is known about the impact these events have had on the
473 participants and how effective they have been in communicating science to the general public.
474 Some commonly known topics are proven to be very successful in public engagement activities;
475 for instance, ateliers related to climate change or space exploration, have developed efficient
476 ways to evaluate their impact that is often published (e.g., *Moser et al., 2009; Vergunst et al.,*
477 *2025; Smith et al., 2014; Vergunst et al., 2025*). However, for Marine Geosciences, the landscape
478 is quite different. Even though there are exceptional materials produced by scientists and artists
479 (e.g., Project Seafloor Futures; Mae Lubetkin, 2024), they remain relatively unknown even among
480 researchers in the field. As no adequate study has been conducted, we can speculate that one of
481 the main reasons is that none of the work and experience is shared through publications, which,
482 in turn, requires an evaluation component that is typically unavailable. Given the particular nature
483 of the technique, we wanted to expose, we opted for a hands-on approach combined
484 with video materials; in addition, for the first time, we designed and applied an evaluation tool
485 focused on the quantitative assessment of knowledge transfer.

486 As we continue to participate in the experiment through more outreach events across Europe,
487 the feedback we receive from participants, especially the youngest ones and their
488 teachers/guardians, is highly positive. As an anecdote, several primary school students
489 participating during the FDS -event at IPGP, provided grades for the experiment in their final quiz,
490 and the notes ranged from 18 to 19 out of 20. Although the quizzes were not designed to test the
491 initial knowledge of the participants, it is interesting to note that marine geosciences and
492 associated processes, in particular, the concept related to seismic wave propagation are not well-
493 known, as they are not covered by the core curriculum typically taught in primary and secondary
494 school education. However, the results of the quizzes are encouraging and show that "learning
495 by doing" is effective in helping students discover this lesser-known world, and we hope that some
496 of the participants will develop a certain level of passion for marine sciences.

497 In designing the experiment, we primarily rely on our experience participating in the open
498 house events. In fact, our prototype model (conducted for the first time by M. Marjanović in 2017
499 at FDS - IPGP), involved only a small plexiglass water tank (~30 l). For this initial model, the ~~main~~
500 focus was on showing how the source works, therefore it involved only the underwater
501 balloon explosion. The water was splashing everywhere, which was fun, but the personal
502 sentiment was that the ~~audience~~audience did not seem to receive the main message about seismic
503 data collection. Several years of thinking and building the right team, as well as obtaining funding
504 through EGU led to the model we have today.

505 Although the current model represents a significant improvement, one limitation is that we
506 have only one hydrophone to record the shot, but we have three OBS models at the bottom of
507 the tank, which sometimes leads to confusions. In addition, the hydrophone-microphone is often
508 more sensitive to the movement of the participants than to the actual balloon' explosion. Currently,
509 we are considering replacing it with piezoelectric sensors, placed close to each of the OBS models.
510 In the future, we plan to upgrade the experiment to use sonar for simulating collection of
511 bathymetry data. In addition, as the next stage of our project, we plan to properly film the
512 experiment and make the material available online in multiple languages to reach students
513 internationally. In parallel, we will also work on improving the quizzes by collaborating more
514 closely with school teachers to adapt them to the school curriculum. In addition, we will eliminate
515 multiple-choice questions as they pose problems at the evaluation stage (currently, the answer is
516 considered correct if at least two correct answers are selected). In parallel, we will also work on
517 improving the quizzes and Finally, we will be updating our presentation with the latest video
518 material as we continue to collect it while at sea.

519 Acknowledgements:

520 We would like to thank the European Geoscience Union (EGU) and the Institut de Physique du
521 Globe (IPGP) for the financial support of the model and for their assistance in organizing the
522 events. In particular, we want to thank Emmelyne Mitard (now at INSU-CNRS), Pierre-Olivier
523 Foucault (IPGP), Antoine Roux (now at INSU-CNRS), and Christina Orieschnig (EGU). We are
524 also grateful to the colleagues from Vienna University, Heidi Wienhäupl and Nils Bezwoda, for
525 preparing the materials we needed to conduct the experiment; we especially thank Xenia Hauser
526 and David Fischer (UV), who conducted the event in German during the Planet Day event at the
527 University of Vienna. We also thank the high school (led by Chloé Lardy), as well as all the
528 participants in the experiment. To build the LEGO ship, we had great help from Elodie Lebas,
529 Antoine and Jean-Guillaume ~~Fe~~gignon. We are grateful to Samuel Howell (JPSL), who provided
530 invaluable advice for the experiment's conception.

531 Data availability

532 No primary data sets were used in producing this article.

536 Ethical statement
537 For conducting of the quizzes, we closely followed the "Ethical Guidelines for Educational
538 Research" published by the British Educational Research Association. Before the quizzes, we
539 explained the process to the guardians (teachers and/or parents) and obtained their consent. All
540 quizzes were anonymous, and the results do not reveal any personal details of the participants.
541 Students had the right to withdraw from the quiz at any stage.

542
543 Video supplement
544 <https://sdrive.cnrs.fr/s/33SgMcHtpwWRKYe>

545
546 Author contributions
547 M.M. conceived the project; M.M. S.B. applied for the funding and built the model; S.M. conducted
548 analyses of the quizzes' results; M.M., S.B., S.M., D.H., T.L. conducted the experiments; M.M
549 wrote the initial draft of the manuscript with input from all co-authors.

550
551 Competing interests
552 The authors declare that they have no conflict of interest.

553 References:
554 Boon, W., de Haan, J., Duisterwinkel, C., Gould, L., Janssen, W., Jongsma, K., Milota, M.,
555 Radstake, M., Stevens, S., Strick, M., Swinkels, M., van Mil, M., van Sebille, E., Wanders, N. and
556 Yerkes, M.A.: Meaningful public engagement in the context of open science: reflections from early
557 and mid-career academics. *Research for All*, 6 (1), 23. DOI: <https://doi.org/10.14324/RFA.06.1.23>.
558 2022

559
560 Chen, J., Zhang, T., Tominaga, M., Escartin, J., Kang, R.: Ocean Sciences with the Spilhaus
561 Projection: A Seamless Ocean Map for Spatial Data Recognition. *Sci Data*; 10(1):410. doi:
562 10.1038/s41597-023-02309-6. PMID: 37355727; PMCID: PMC10290725, 2023.

563
564 [Dragoset, B., A historical reflection on reflections. The Leading Edge, 24\(s1\), 2005 s46–s70.doi:10.1190/1.2112392](https://doi.org/10.1190/1.2112392)

565
566
567 [Ewing, M., and F. Press, Seismic measurements in ocean basins. Journal of Marine Research 14, \(4\). 1955 https://elischolar.library.yale.edu/journal_of_marine_research/853](https://elischolar.library.yale.edu/journal_of_marine_research/853)

568
569
570 Jensen, E. and Holliman, R. Norms and values in UK science engagement practice'. *International
571 Journal of Science Education, Part B: Communication and public engagement*, 6 (1), 68–88.
572 <https://doi.org/10.1080/21548455.2014.995743>, 2014.

573
574 Jonauskaite, D., Dael, N., Chèvre, L. Althaus, B., Tremea, A., Charalambides, L., & Mohr, C.: Pink
575 for Girls, Red for Boys, and Blue for Both Genders: Colour Preferences in Children and
576 Adults. *Sex Roles* 80, 630–642, <https://doi.org/10.1007/s11199-018-0955-z>, 2019.

577
578 Land-Zandstra, A. M., Strick, M., Peeters, W., and De Jong, P.: Het meten van impact van
579 wetenschapscommunicatie: Eindrapport IMPACTLAB, Zenodo [data set],
580 <https://doi.org/10.5281/zenodo.7884384>, (version in English is available online:
581 <https://impactlab.sites.uu.nl/en/>), 2023.

582
583 [Lehmann, I., Seismology in the days of old: Eos, v. 68, no. 3, pp. 33- 35, 1987.](https://doi.org/10.1029/2004GL01987)

584

585 Lubetkin, M., Seafloor Futures Ocean-Archive.org Digital Residency 2023–2024;
586 <https://garden.ocean-archive.org/seafloor-futures/>, 2024

587

588 [Mohorovičić A., Potres od 8. X 1909/Das Beben vom 8. X 1909, Godišnje izvješće zagrebačkog](#)
589 [meteorološkog opservatorija za godinu 1909, Zagreb, 1-56 pp. 1910; English translation: Skoko,](#)
590 [D., Earthquake of 8 October 1909, Geofizika, 9, 3-55, 1992.](#)

591

592 Moser, S. C.: Communicating climate change: history, challenges, process and future directions,
593 WIREs Clim. Change, 1, 31–53, <https://doi.org/10.1002/wcc.11>, 2009.

594

595 Moser, S. C.: Reflections on climate change communication research and practice in the second
596 decade of the 21st century: what more is there to say?, WIREs Climate Change, 7, 345–369,
597 <https://doi.org/10.1002/wcc.403>, 2016.

598

599 Reincke, C.M., Bredenoord, A.L. and Van Mil, M.H. From deficit to dialogue in science
600 communication. EMBO Reports, 21 (9), 1–4. <https://doi.org/10.15252/embr.202051278>, 2020.

601 Smith, D.A., L. Petricolas, T. Schwerin, S. Shipp, and J. G. Manning, Science and Science
602 Education Go Hand-in-Hand: The Impact of the NASA Science Mission Directorate Education
603 and Public Outreach Program, Ensuring STEM Literacy: a National Conference on STEM
604 Education and Public Outreach ASP Conference Series, Vol. 483, 2014

605 Strick, M. and Helfferich, S.: Active ingredients of science communication impact: a quantitative study at a science festival,
606 J. Sci. Commun., 22, N01, <https://doi.org/10.22323/2.22020801>, 2023.

607

608 [Staples, R.K., R.W., Hobbs, and R.S., White, A comparison between airguns and explosives as](#)
609 [wide-angle seismic sources. Geophysical Prospecting, 47: 313-](#)
610 [339. https://doi.org/10.1046/j.1365-2478.1999.00134.x, 1999](#)

611

612 Thomas G, Durant J (1987) Why should we promote the public understanding of science? In:
613 Shortland M (ed.) *Scientific Literacy Papers*. Oxford: Rewley House, pp. 1–14.

614

615 [U.S. Geological Survey. Earthquake Lists, Maps, and Statistics. \(2022\).](#)

616

617 Vergunst N., T. Varol, and E. van Sebille, Designing and evaluating a public engagement activity
618 about sea level rise, Geosci. Commun., 8, 67–80, 2025 <https://doi.org/10.5194/gc-8-67-2025>,
619 2025.

620

621