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Abstract. Understanding and reducing uncertainty in model-based estimates of aerosol radiative forcing is crucial for 

improving climate projections. A key challenge is that differences between model output and observations can stem from 

uncertainties in input parameters (parametric uncertainty) or from deficiencies in model code and configuration (structural 

uncertainty), and these two causes are difficult to distinguish. Structural deficiencies limit efforts to reduce parametric 15 

uncertainty through observational constraint because they prevent models from being simultaneously consistent with multiple 

observations. However, no framework exists to detect structural deficiencies and assess their impact on parametric uncertainty. 

We propose a workflow to identify structural inconsistencies between observational constraints and diagnose potential 

structural deficiencies. Using a perturbed parameter ensemble, we sample uncertainty in aerosols, clouds, and radiation in the 

UK Earth System Model (UKESM), and evaluate model bias against in-situ observations of sulfate aerosol, sulfur dioxide, 20 

aerosol optical depth, and particle number concentration across Europe. Applying observational constraints reveals 

inconsistencies that no combination of the perturbed parameters can resolve. For example, sulfate concentrations in different 

regions cannot be matched simultaneously, and enforcing a compromise between region reduces skill across most variables. 

Additional examples include an inter-region inconsistency in SO2 and an inter-variable inconsistency between aerosol optical 

depth and sulfate. By examining the parameter sets retained by constraints, we trace inconsistencies to the parameterisations 25 

that may cause them and propose targeted changes to address them. This approach offers a pathway for evidence-based model 

development that supports more robust uncertainty reduction and improves climate projection skill. 

1. Introduction 

Earth System Models are essential tools for understanding and projecting climate change. However, these models cannot 

directly resolve many complex or small-scale processes, such as cloud formation or aerosol-cloud interactions, due to 30 

computational restrictions. Instead, unresolved processes are represented using parameterisations: mathematical equations with 

adjustable input parameters that approximate physical behaviour. Different choices of parameter values lead to different model 

outputs, so the use of parameterisations inevitably introduces parametric uncertainty for quantities that cannot be observed 
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such as aerosol radiative forcing, which contributes to the spread in climate projections (Peace et al., 2020; Watson-Parris and 

Smith, 2022). 35 

 

Modelling centres often adjust parameter values to improve agreement with observations through tuning, which involves 

expert-informed adjustments to a small number of key parameters to produce a single “best” parameter set for each model. 

Tuning, however, relies on subjective decisions; modelling teams determine which simulated variables to prioritise, which 

observations to use, and how to weigh them to best optimise their model (Hourdin et al., 2017). The result across multiple 40 

models is a “collection of carefully configured best estimates” (Knutti et al., 2010) that reflect expert judgement and available 

data, but not necessarily the full range of plausible outcomes. Although tuning is often necessary to produce stable and 

physically realistic simulations (Schmidt et al., 2017), it obscures other causes of error in the model (Rostron et al., 2025).  

 

These additional errors arise from the model’s inherent structural limitations. All models depend on choices about which 45 

physical processes to include, how they are formulated, the chosen spatial resolution used, and how the code is implemented. 

Since no model is perfectly structured to represent the real world, all models carry some degree of structural uncertainty. 

Structural uncertainty leads to model discrepancy or systematic error that cannot be resolved by adjusting parameters when 

compared to observations (Goldstein and Rougier, 2004; McNeall et al., 2016; Sexton et al., 2012). As a result, there is a risk 

that model tuning, when selecting parameter values that best match observations, will overcompensate for deficiencies in the 50 

model’s structure. The chosen parameter combinations may reproduce observations for the wrong reasons due to compensating 

model errors. As a result, they will not produce reliable output when used under novel conditions, like when the model is used 

for climate projections that inform policies (Golaz et al., 2013).  

 

Understanding the causes of a model’s structural uncertainty is an essential part of model development. However, it is 55 

complicated by the fact that parametric and structural uncertainties are entangled, making it difficult to determine whether 

discrepancies between model output and observations are due to parameter choices or deficiencies in the model's structure. 

Historically, structural uncertainty has been explored using multi-model ensembles (MMEs, or model intercomparisons) by 

comparing structurally different models (Collins, 2007; Flato et al., 2013). However, each model in an MME is typically 

subjectively tuned so only provides a limited view of its structure, as it is already pre-conditioned to match observations as 60 

well as its structure allows. In addition, many models share common components or code, so the effective diversity within an 

MME is often smaller than it appears (Masson and Knutti, 2011). The range of outputs generated by varying parameters within 

a single model has been shown to be as large as, or even larger than, the spread across multiple models (Murphy et al., 2004; 
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Yoshioka et al., 2019), which suggests that MMEs alone provide only a partial picture of parametric and structural uncertainty, 

and that a more systematic exploration of uncertainty is needed to separate these two main causes of model error. 65 

 

The parametric uncertainty of a model can be sampled using a perturbed parameter ensemble (PPE). PPEs are created by 

running the same model with different combinations of parameter values to capture the range of possible model outputs (Lee 

et al., 2011, 2012; Sexton et al., 2012, 2021; Yoshioka et al., 2019; Eidhammer et al., 2024). The information derived from 

PPEs can be extended using statistical emulators (e.g., Gaussian Process emulators) to predict model outputs for a much larger 70 

set of parameter combinations than were simulated (O’Hagan, 2006). PPEs and emulators form a key part of the Uncertainty 

Quantification (UQ) framework (Kennedy and O’Hagan, 2001), which aims to assess how different causes of uncertainty (e.g., 

parametric, structural, and observational) affect model output. 

 

Within this framework, history matching is a method used to reduce parametric uncertainty. Rather than identifying a single 75 

best-fitting parameter set, history matching rules out combinations of parameters that are observationally implausible, given 

defined thresholds of the uncertainties in the quantities being compared (Craig et al., 1997). Unlike tuning, this method avoids 

overfitting by retaining all parameter sets that remain observationally plausible. History matching has been applied both to full 

climate models (Williamson et al., 2013) and to individual components such as the NEMO ocean model (Williamson et al., 

2017), land surface models (Raoult et al., 2024), as well as aerosol models (Johnson et al., 2020; Regayre et al., 2020). 80 

 

History matching is designed to account for structural uncertainty. The “implausibility” of every model variant (a model run 

with a different combination of parameter values) is calculated and used to determine which parameter combinations are ruled 

out. The implausibility measure includes a structural error term as part of its definition. However, as there is no reliable way 

to quantify structural uncertainty, this term effectively reflects the modeller’s judgement about how wrong the model might 85 

be (Williamson et al., 2015). If the term is too small, plausible parameter sets may be incorrectly ruled out; if it is too large, 

implausible combinations may be retained. Consequently, the uncertainty in this term adds subjectivity to the process of ruling 

out parameter combinations, without necessarily bringing us closer to disentangling parametric and structural uncertainty. As 

a result, while history matching is more transparent than tuning because assumptions about uncertainty are explicitly stated, it 

still carries limitations when structural uncertainty is poorly understood (Brynjarsdóttir and OʼHagan, 2014).  90 

 

Unquantified structural uncertainties have limited the scientific community's ability to constrain uncertainty in predictions of 

aerosol radiative forcing (ΔFaer), the change in Earth’s radiative balance due to anthropogenic aerosol emissions. As the most 
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uncertain component of anthropogenic forcing (Forster et al., 2021), ΔFaer complicates estimates of climate sensitivity to 

greenhouse gases and affects projections of global temperature change (Andreae et al., 2005), limiting how confidently we can 95 

simulate future climate change and inform policy decisions. Despite extensive use of observational constraints to reduce 

parametric uncertainty (Johnson et al., 2020; Regayre et al., 2023), uncertainty in ΔFaer remains high (Regayre et al., 2025). 

Similar limitations have been reported in other recent studies, where applying large observational datasets led to only modest 

reductions in uncertainty in global-mean liquid water path adjustment (Mikkelsen et al., 2025) and effective radiative forcing 

from aerosol–cloud interactions, (ΔFaci, Song et al., 2024), both of which contribute directly to the overall uncertainty in ΔFaer.  100 

 

A clear illustration of the limits of observational constraints is found in Johnson et al. (2020), who used a history matching 

approach incorporating over 9,000 aerosol observations in an effort to substantially constrain ΔFaer. Yet, the resulting 

reductions in parametric uncertainty were minimal— 6 % for ΔFaci (the component of ΔFaer from aerosol–cloud interactions) 

and 34 % for ΔFari (the component from aerosol–radiation interactions). One reason for this limited constraint was that different 105 

observational datasets pulled model parameters towards opposite sides of their ranges, resulting in conflicting estimates of 

ΔFaer. These inconsistencies reduced the effectiveness of observational constraints, despite the size and diversity of the 

observational dataset, and suggest that we remain far from achieving the maximum feasible reduction in aerosol radiative 

forcing uncertainty.  

 110 

Such inconsistencies are symptomatic of structural model deficiencies, as they indicate that the model cannot reproduce all 

available observations simultaneously. Evidence of similar inconsistencies was found in McNeall et al., (2016), where 

constraining the climate model FAMOUS to match observations from the Amazon forest led to different parameter 

combinations being retained than when constraining the model to other forests. The model could represent features of 

individual forests, but its inability to represent all forests simultaneously implied that key processes are missing or overly 115 

simplified. The scale of this problem is systemic and substantial: in an attempt to reduce ΔFaci uncertainty in the UK Earth 

System Model (UKESM1; Sellar et al., 2019), Regayre et al., (2023) found that only 13 out of 450 cloud and aerosol 

measurements could be used before structural inconsistencies started weakening the constraint, which indicates that some of 

the remaining parametric uncertainty might be due to unaddressed structural deficiencies. If such deficiencies were identified 

and addressed, more observations could be used and tighter bounds on ΔFaci could potentially be achieved. Therefore, 120 

identifying the causes of inconsistent observational constraints and the structural deficiencies responsible for them is a 

necessary step towards improving model reliability and increasing model skill at simulating future climate. 
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There has been growing interest in using PPEs not only to quantify parametric uncertainty, but also to reveal structural 

deficiencies that cannot be resolved by tuning parameter values alone (Carslaw et al., 2025). For example, Furtado et al., 125 

(2023) and Rostron et al., (2023) used PPEs to explore parametric uncertainty in their models and detect discrepancies that 

persist across all parameter combinations. Couvreux et al., (2021) proposed a parameter calibration framework to identify 

parameters which limit model performance by introducing structural uncertainty, to be implemented during model 

development and tuning. Peatier et al., (2024) examined how variability across PPE simulations could provide information 

about the presence of structural error. Despite these innovations, there is currently no agreed framework to identify structural 130 

deficiencies that lead to conflicting observational constraints, and thus block progress in reducing parametric uncertainty. 

Moreover, little attention has been given to identifying which model developments should be prioritised to most effectively 

improve model skill at simulating future climate. Without such a framework, there is a risk that model developments increase 

model complexity without delivering clear benefits (Proske et al., 2023). 

 135 

In this study, we develop an approach to a) detect structural inconsistencies between observational constraints and b) identify 

structural deficiencies that could cause them. We build on the work of Regayre et al., (2023) who identified a key structural 

inconsistency in observational constraints related to aerosol-cloud interactions. Our focus is on aerosol-radiation interactions 

in European winter, where we explore the performance of a UKESM1 PPE by examining the effect of sulfate aerosol mass 

concentration, sulfur dioxide concentration, aerosol optical depth, and particle number concentration as observational 140 

constraints. Specifically, we aim to answer the following questions: 1) what are the main inconsistencies between these aerosol 

observational constraints? 2) Can these inconsistencies help identify the structural deficiencies that limit our ability to reduce 

uncertainty in ΔFaer?  

 

The paper is organised as follows: in Sect. 2 we outline our methodologies to identify inconsistencies and infer potential 145 

structural deficiencies that may cause them. In Sect. 3.1 to 3.3, we evaluate the model’s performance against in-situ 

observations across the parametric space. In Sect. 3.4 to 3.6, we apply observational constraints and examine the 

inconsistencies that arise. In Sect. 4, we identify priorities for structural model development and discuss how this approach 

could be used more broadly to support uncertainty reduction in Earth system modelling. 
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2. Methods 150 

We use the PPE and statistical emulation methodology described in Regayre et al. (2023). In Sect. 2.1, we summarise the 

components of the model configuration that are relevant to the study. Section 2.2 presents the measurements used to compute 

model bias. In Sect. 2.3, we outline how the main causes of parametric uncertainty were identified for each model grid box, 

and in Sect. 2.4, how this information informed the spatial clustering of the study region. Section 2.5 then details the calculation 

of model bias within each cluster, while Sect. 2.6 explains our approach to applying observational constraints. Finally, Sect. 155 

2.7 defines the types and severities of observational inconsistency considered. 

2.1. Experimental design 

2.1.1. Model version 

The PPE used here was created using version 1 of the UKESM (UKESM1; Sellar et al., 2019), which is based on the 

HadGEM3-GC3.1 physical climate model (Williams et al., 2018) and includes coupling to the United Kingdom Chemistry 160 

and Aerosol (UKCA) model (Archibald et al., 2020). Simulations were run using the atmosphere-only configuration, 

UKESM1-A, which consists of the GA7.1 atmosphere (Walters et al., 2019) with additional updates to aerosol, cloud, and 

atmospheric structure as described in Mulcahy et al., (2020). The model resolution is N96 (1.875° × 1.25°, or approximately 

208 km × 139 km at the Equator), with 85 vertical levels extending up to 85 km. Horizontal winds above approximately 2 km 

were nudged towards ERA-Interim reanalysis data for the period December 2016 to November 2017. Sea surface temperatures 165 

and sea ice were prescribed for the same period. 

 

Each PPE member was forced using anthropogenic SO2 emissions from the years 2014 and 1850, consistent with those used 

in CMIP6 (Eyring et al., 2016). Emissions of carbonaceous aerosol from residential and fossil fuel sources followed CMIP6 

data for 1850, while present-day carbonaceous aerosol from biomass burning sources were prescribed using Copernicus 170 

Atmosphere Monitoring Service (CAMS) data for December 2016 to November 2017. Monthly mean output from a fully 

coupled UKESM simulation was used to prescribe ocean surface concentrations of dimethylsulfide (DMS) and chlorophyll, 

as well as atmospheric concentrations of gas-phase species, including OH and O3. Volcanic SO2 emissions included continuous 

and sporadic sources (Andres and Kasgnoc, 1998) and emissions from explosive eruptions (Halmer et al., 2002). Aerosol 

number concentrations were calculated prognostically using the GLOMAP-mode aerosol scheme (Mann et al., 2010, 2012), 175 

which represents five log-normal modes and includes sulfate, sea salt, black carbon, and organic carbon, internally mixed 

within each mode. 
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We use a version of UKESM1-A with structural changes described by Regayre et al. (2023). These include: a revised threshold 

for ice mass fraction above which nucleation scavenging is deactivated to allow aerosol transport into the Arctic (Browse et 180 

al., 2012); updated high-resolution lookup tables for aerosol optical properties (Bellouin et al., 2013), including mineral dust 

(Balkanski et al., 2007) and improved aerosol absorption; and the inclusion of an organically mediated aerosol nucleation 

parameterisation (Metzger et al., 2010), intended to improve the model's representation of remote marine and early industrial 

aerosol conditions, known to affect the magnitude of ΔFaer (Carslaw et al., 2013). 

2.1.2. Perturbed parameter ensemble and statistical emulation 185 

The PPE from Regayre et al. (2023) consists of 221 model simulations, with 37 perturbed parameters related to aerosols, 

clouds, and the physical atmosphere (detailed in Table A1). The selection of the perturbed parameters was based on those 

identified in previous PPEs as large causes of uncertainty in key outputs (Regayre et al., 2015, 2018; Sexton et al., 2021; 

Yoshioka et al., 2019), together with parameters associated with structural model developments (Mulcahy et al., 2018, 2020; 

Walters et al., 2019). Their perturbation ranges were determined using formal expert elicitation using the Sheffield Elicitation 190 

Framework (SHELF) approach described in Gosling (2018). The PPE was developed in two stages. In the first stage, the most 

implausible parts of the parameter space were identified and removed by comparing simulated shortwave fluxes with 

observations using a history-matching style approach. The second stage PPE was sampled from the remaining, more plausible 

parameter space and forms the focus of this analysis.  

 195 

Here, model output from the 221 PPE simulations, resolved at the grid-box level across Europe in January 2017, was used to 

train statistical emulators for four variables related to aerosol–radiation interaction forcing: sulfate aerosol mass concentration 

(“sulfate”), sulfur dioxide concentration (SO2), aerosol optical depth (AOD), and particle number concentration larger than 3 

nm diameter (N3). Gaussian Process emulators (O’Hagan, 2006) were constructed to represent the monthly mean of each 

variable as a continuous function across the 37-dimensional input parameter space, with each parameter jointly varied over its 200 

specified range (shown in Table A1). The emulators were then used to generate output for 1 million model variants at the grid-

box level, with a large reduction in computational cost compared to full climate model simulations. Emulator uncertainty was 

quantified and assessed against the spread of emulator output (Fig. B1). Grid boxes where emulator predictive uncertainty 

exceeded the spread in emulator output were excluded from the analyses to avoid relying on emulator predictions in regions 

of high predictive uncertainty. 205 
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2.2. Measurements 

We use in-situ aerosol measurements for January 2017 in Europe, aggregated to monthly means, for the four variables: sulfate, 

SO2, AOD, and N3. Measurements for sulfate, SO2, and AOD were obtained from the Globally Harmonised Observations in 

Space and Time (GHOST) dataset (Bowdalo, 2024a; Bowdalo et al., 2024b), which provides station-level monthly mean 

values. Sulfate measurements represent total particulate sulfate at the surface, reported in μg m⁻³. SO2 concentrations were 210 

measured as surface-level sulfur dioxide in nmol mol⁻¹ and converted to μg m⁻³. AOD data are level 2.0 observations measured 

at a wavelength of 440 nm from the AERONET network (Sinyuk et al., 2020). N3 represents the number concentration of 

particles larger than 3 nm, measured at the surface in particles per cm³. N3 data were directly obtained from the European 

Monitoring and Evaluation Programme (EMEP, http: //ebas.nilu.no/, last access: 27 January 2025; (Tørseth et al., 2012)). 

2.3. Causes of uncertainty 215 

The importance of each parameter as a cause of model uncertainty was estimated using Generalised Additive Models (GAMs) 

at the grid-box level, following (Regayre et al., 2025). GAMs were fitted to emulated model output for each variable within 

individual grid boxes using the pygam Python package (Servén and Brummitt, 2018). The fitted GAM functions were used to 

quantify the variance in model output attributable to each parameter, while allowing for non-linear effects (Strong et al., 2014). 

 220 

To quantify the parameter's contribution to output variance, we varied one parameter at a time across its sampled range while 

fixing all others at their median values. This approach isolates the marginal effect of the target parameter by removing 

variability introduced by changes in other parameters. The resulting 37 variances were summed to obtain the total parametric 

variance, and each parameter’s contribution was expressed as a proportion of this total. The resulting percentage contribution 

to parametric uncertainty reflects both the range over which each parameter was perturbed and the local importance of that 225 

parameter to model output. 

 

The GAMs were trained on the “unconstrained” subset of approximately 900,000 model variants, excluding those with 

prim_so4_diam values below ~10 nm, as defined in Regayre et al. (2025). In the original ensemble comprising 1,000,000 

model variants, such low diameters led to implausibly high particle number concentrations, which were ruled out as 230 

observationally implausible by Regayre et al. (2023). Including these variants would have artificially inflated the apparent 

importance of prim_so4_diam, thereby masking the contributions of other parameters (Regayre et al., 2025). 
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2.4. Spatial clustering of causes of uncertainty 

We applied k-means clustering, an unsupervised machine learning technique, to group grid boxes according to shared causes 

of parametric uncertainty. The clustering was implemented using the scikit-learn Python package (Pedregosa et al., 2011), and 235 

was based on the parameter percentage contributions to variance multiplied by the sign of variable dependence on parameter 

values from the GAM fit (Sect. 2.3). The number of clusters was chosen iteratively: we began with a high number relative to 

the size of the region (e.g. six for Europe) and reduced it if clusters showed redundant patterns in dominant parameters and 

their contributions. In some instances, clusters that spanned wide regions remained undivided even as the number of clusters 

increased. The clustering method preferentially split regions adjacent to grid boxes excluded for high emulator uncertainty 240 

because of distinct local patterns in causes of uncertainty. In these cases, we manually divided large clusters by masking all 

other grid boxes and applying k-means clustering again within the selected region following the same method. 

2.5. Evaluation of model-observation bias within clusters 

We evaluate model performance against observations within each cluster of shared causes of parametric uncertainty. For each 

PPE simulation, we compute the mean model value over the set of grid boxes containing observations within the uncertainty 245 

cluster, resulting in a cluster mean for each of the 221 PPE members. These cluster mean values are then used to train and 

validate the emulator for each cluster (Fig. B2). Leave-one-out cross-validation indicates that the emulators reproduce cluster-

mean PPE outputs with high accuracy overall (e.g., NRMSE ≤ 0.09), although some underprediction occurs for high values in 

certain clusters (e.g., sulfate and N3). These biases suggest that true values in these regions may be higher than emulated 

estimates; however, given the focus on relative differences across clusters, these limitations are unlikely to affect the main 250 

conclusions. 

 

Model–observation bias is calculated for each model variant (i = 1 to 1,000,000) using normalised mean bias factors following 

Yu et al., (2006). Here, N is the number of observational sites in the cluster. Each site contributes a single observed value O, 

collocated with one modelled value 𝑀𝑖  from each model variant. Thus, for a given model variant i, the cluster-mean model 255 

value is 𝑀𝑖  =  
1

𝑁
∑ 𝑀𝑖𝑗

𝑁
𝑗=1  and the cluster-mean observation is 𝑂  =  

1

𝑁
∑ 𝑂𝑗

𝑁
𝑗=1 . The normalised mean bias factor (BNMBF) is 

calculated as follows: 

𝐵𝑁𝑀𝐵𝐹,𝑖 = {
1 −  

𝑂

𝑀𝑖
, if 𝑀𝑖 <  𝑂 

𝑀𝑖

𝑂
− 1, if 𝑀𝑖 >  𝑂

     (1) 
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2.6. Application of observational constraints 

The steps in Sect. 2.5 provide the model–observation bias for each of the 1,000,000 model variants. Observational constraints 260 

are then applied by retaining only those variants with the smallest absolute 𝐵NMBF, which correspond to those closest to the 

mean observed value. We apply observational constraints to the original set of 1,000,000 model variants, rather than the 

“unconstrained” subset of ~900,000 used for clustering (Sect. 2.4). While low prim_so4_diam values are excluded from 

uncertainty analyses due to their unrealistic nature, including them here helps illustrate the effect structural deficiencies in 

observational constraints. 265 

 

Observational uncertainties are not directly incorporated into the constraint process. Instead, we retain a threshold of 5,000 

model variants (0.5 %) closest to observations to prevent over-constraint, given the presence of unquantified measurement 

errors. This threshold was also used by Regayre et al. (2023), and was chosen to approximate the proportion of model variants 

retained using a more rigorous history matching approach that explicitly accounts for observational uncertainty, emulation 270 

uncertainty and other model-to-observation comparison uncertainties (Johnson et al., 2020; Regayre et al., 2020). In this 

research, observational constraints are not used to identify a single “best” model variant or to quantify parametric uncertainty. 

Rather, they are used as tools to explore model responses to constraints and to identify potential structural deficiencies. 

 

For joint observational constraints, we identify the model variants that are common to each individual constraint set. In cases 275 

where no common variants are found, we define the constraints as inconsistent, using definitions that follow in Sect. 2.7. To 

explore the extent of the inconsistency and assess how conflicting constraints might be accommodated, we progressively relax 

individual constraints until at least around 300 model variants are retained in the overlapping set. We define this as a 

compromise between inconsistent observational constraints, following Regayre et al. (2023). 

 280 

When observations are outside of the range of the model output of PPE members, they are not used in the calculation of model-

observation bias (Sect. 2.5) and are therefore not included in the process of observational constraints. An observation outside 

the PPE range is a clear indication of the presence of a structural model deficiency, as it means that no amount of parameter 

retuning will bring the model into agreement with the observations. In these cases, we provide hypotheses on potential 

consequences for our results.  285 

 

While observations outside the PPE range are excluded from the constraint process, they are retained for evaluation purposes. 

Because these values lie beyond the range represented by the ensemble, they cannot be meaningfully used for constraint. 
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However, they remain important for assessing model skill and identifying potential structural limitations. To ensure a complete 

evaluation, we assess the impact of each observational constraint on model–observation bias across all available observations, 290 

including those outside the PPE range. For example, when constraining using SO2, only SO2 observations within the PPE range 

for all regions are used in the constraint, but model skill is evaluated using all available observations for sulfate, AOD, and 

particle number concentration, even those outside the PPE range. Similarly, when constraining toward AOD, we use only 

AOD observations within the PPE range for the constraint, but evaluate model skill against all sulfate, SO2, and particle number 

observations. 295 

2.7. Definitions of potential structural inconsistencies 

In the ideal case, all observational constraints would guide the model toward the same part of parameter space. That is, each 

constraint would support convergence toward the parameter combination that best represents the real system. When constraints 

do not converge, it indicates that the model would need to be tuned differently to match each variable and that, having 

exhausted the parameter space, no model exists that is consistent with multiple observations. In history-matching terminology, 300 

this is referred to as the “terminal case” (Salter et al., 2019). In such cases, the model is not realistic which suggests a potential 

structural deficiency. We define this lack of convergence between constraints as a structural inconsistency. 

 

The concept is related to Keith Beven’s definition of a behavioural model, where a parameter set is considered “behavioural” 

if it cannot be rejected as observationally implausible (Beven, 2006). In our context, we identify cases where the model may 305 

be partially behavioural (i.e., satisfying individual constraints) but not universally behavioural across different aspects of the 

model (e.g., variables, regions). 

 

Here, we define two levels of structural inconsistency to characterise ways in which convergence may fail (Fig. 1).  

• Level 1 inconsistencies happen when observational constraint of one aspect of the model degrades performance in 310 

another, and vice versa – i.e., making the model skilful for one aspect makes it less skilful for another. In this case, 

although the two constraints do not converge, there exist model variants (parts of parameter space) capable of 

matching both observations simultaneously, but these variants are on average less skilful for both aspects than for 

either when considered individually.  

• Level 2 inconsistencies happen when the constraint of one aspect of the model eliminates any agreement with another. 315 

In this case, there exist no model variants capable of matching both observations simultaneously, meaning that no 

combination of parameters can satisfy both constraints at once. 
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Figure 1. Schematic showing the possible levels of inconsistency between two observational constraints. The shaded regions are the 320 
parts of parameter space that match one observation type. The diagram only represents the 2-dimensional aspects of what is in our case a 

37-dimensional problem.  

We also distinguish types of inconsistency: inter-variable (between different observed variables) and inter-regional (the same 

variable observed in different regions, defined as clusters of grid boxes that share dominant causes of uncertainty).  

 325 

We interpret the existence of an inconsistency as evidence of a potential structural deficiency in the model. However, such an 

inconsistency is not definitive proof of structural error; other explanations are possible, including larger than estimated 

observational error or the possibility that important parameters have not been perturbed. Conversely, not finding an 

inconsistency does not guarantee that the model is free from structural deficiencies. Some errors may only be detectable under 

specific model setups, such as with different spatial or temporal resolutions, or when perturbing different parameters. Our 330 

approach allows us to identify and address those inconsistencies that are detectable, and exploring plausible reasons for them 

provides actionable information for guiding model development priorities. 

3. Results 

We divide the analysis into six steps to identify potential structural inconsistencies in the model and assess their impact on 

model skill. First, we assess the parametric uncertainty ranges of the PPE for sulfate, SO2, AOD, and N3 in January, and 335 

compare them to observations to provide a baseline for understanding model behaviour and bias (Sect. 3.1). Second, we 

identify the key parameters driving uncertainty by clustering model grid boxes over Europe into sub-regions based on shared 

causes of uncertainty (Sect. 3.2). Third, we quantify model-observation biases within each uncertainty cluster before applying 
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observational constraints (Sect. 3.3). We then provide an example of using sulfate concentration observational constraints to 

reveal a potential structural inconsistency between two regional clusters (Sect. 3.4). We explore the consequences of this 340 

inconsistency when combining constraints (Sect. 3.5). Finally, we extend the analysis to identify other structural 

inconsistencies across the variables and discuss their implications for model skill (Sect. 3.6). 

3.1. The model, its parametric uncertainty and comparison with observations 

Prior to emulation, we begin by quantifying the average magnitude of model variables and their variability across the PPE in 

Fig. 2, which shows the PPE median (left column) and inter-quartile range (right column). Average sulfate and SO2 345 

concentrations are highest in the Balkans and Eastern Europe, near anthropogenic emission sources. In that region, sulfate 

concentrations range from 7 to 20 µg/m³, and SO2 concentrations range from 20 to 100 µg/m³. Particle number concentration 

is also highest across mainland Europe, with median values from 7,000 to above 25,000 cm-3 in Eastern Europe and between 

3,000 and 10,000 cm-3 in Western Europe. For AOD, the highest median values are near volcanic emission sources in Southern 

Italy (between 0.5 and 0.6) and near sea salt emission sources over the North Sea and the Atlantic Ocean (around 0.3). 350 

 

Figure 2. PPE median (left) and interquartile range (right) for the four model variables in January 2017 across Europe. 

The interquartile ranges for sulfate, SO2, and particle number concentrations follow the same spatial pattern as the median, 

with higher uncertainty in regions where the median is also high. However, the interquartile range for AOD has a lower value 

than its median inland (IQR = 0.1 but median = 0.15), except in Southern Italy and Greece (Fig. 2c). This difference may be 355 

because AOD integrates contributions from multiple aerosol types, but only a subset was perturbed in the PPE (e.g., sea salt 
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and sulfate, but not dust, nor carbonaceous aerosol), which may have limited the variation across ensemble members relative 

to the median. 

 

We next assess how well the model perturbed parameter range overlaps with in-situ observations for each model variable. 360 

Figure 3 shows in-situ observations relative to the empirical distribution of the PPE output across the 221 members. 

Observed sulfate concentrations are well represented by the model across the perturbed parameter space. In Fig. 3a, most 

sulfate concentration observations are within the 90 % credible interval of the PPE distribution. One exception is a site in 

Slovakia, where observed concentrations are lower than all modelled values in a region with relatively high sulfate (Fig. 2a). 

Overall, the model parameter uncertainty spans sulfate concentrations at each station. 365 

For N3 (Fig. 3d), most observations are within the PPE range; however, three observations from Southern France, Switzerland, 

and Northern Italy are below the PPE distribution, indicating that all PPE members overestimate particle number concentration 

at these sites. In addition, two nearby observations are positioned near the lower edge of the PPE range (between the 5th 

percentile and the distribution boundary), which suggests that modelled N3 is consistently overestimated in this region.  
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 370 

Figure 3. Observed values and their position within the PPE range in January 2017 across Europe for the four variables. Triangles 

indicate observations outside the PPE range. Circles represent observations within the PPE range.  

Figure 3b shows that the model overestimates SO2 concentrations at most measurement stations, with many observations below 

the lowest PPE member. This PPE-observation discrepancy suggests that the model has a structural deficiency that causes a 

high SO2 concentration bias over central Europe, that cannot be overcome by perturbing the parameters in this PPE. Outside 375 

this area, some observations are within or near the 90 % credible interval. A plausible source of this structural deficiency is 

the emission height treatment in UKESM1, where all anthropogenic SO2 emissions are injected at the surface rather than 

distributed vertically. This treatment leads to higher anthropogenic SO2 concentrations close to source regions, but that are 

more efficiently removed by dry deposition (Mulcahy et al., 2020). 

 380 
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Modelled AOD is also mostly overestimated, particularly in Southern Europe. Figure 3c shows that observations in Southern 

Italy, in Spain and in the Alps are lower than the PPE range. In addition, all observations around the Mediterranean and in 

Spain are below the 5th percentile of the PPE distribution. The largest bias in Southern Italy is near the Mount Etna volcano, 

which is continuously degassing and sporadically erupts. This suggests the reason for the bias is likely to be related to choices 

made during model configuration: continuous volcanic emissions were prescribed as an average over 1970s-1997 (Andres and 385 

Kasgnoc, 1998), but were compared here to observations from January 2017, when volcanic activity near Mount Etna was 

lower than average (Delle Donne et al., 2019). This PPE-observation discrepancy may also affect comparisons over the wider 

Mediterranean region where observations are close to the lower edge of the PPE distribution. Some observations in the UK, 

central and Eastern Europe are also below the 5th percentile of the PPE distribution, which suggests that the model also 

overestimates AOD overall in Europe. 390 

 

Structural deficiencies manifesting as observations outside the parameter uncertainty range are the easiest to detect. In the rest 

of the paper, our goal is to move beyond these most obvious cases and identify more subtle indicators of potential structural 

deficiency. 

3.2. Clusters of shared causes of parametric uncertainty 395 

In this section, we explore the regional causes of parametric uncertainty by grouping grid boxes into clusters that share causes 

of parametric uncertainty (Sect. 2.4). In Fig. 4 and 5, every grid box within a cluster is influenced by the same set of key 

parameters, with approximately the same contribution from each parameter. Therefore, we expect an observational constraint 

within a cluster to reduce uncertainty across the cluster. However, this effect is not guaranteed to be uniform: while a parameter 

may contribute a similar amount of uncertainty in different grid boxes, the model’s sensitivity to that parameter (the local 400 

gradient) can vary with local conditions, which could lead to differences in the degree of uncertainty reduction within the 

cluster. 

 

Our methodology allow us to identify (1) which parameters contribute most to model uncertainty in the set of ~900,000 model 

variants (Sect. 2.3) in each region, and (2) define sub-regions that can be compared against one another to investigate inter-405 

region inconsistencies (Sect. 2.4). We chose to compare clusters instead of geographic boundaries because geographic regions 

are arbitrary and may group grid boxes influenced by very different aerosol processes. Clustering based on shared causes of 

uncertainty is a better reflection of the model’s underlying processes and should therefore help identify spatial structural 
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inconsistencies. Here, we describe the most important causes of parametric uncertainty for sulfate concentrations, SO2 

concentrations, AOD, and N3 across the uncertainty clusters. 410 
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Figure 4. Clusters of shared causes of parametric uncertainty for (a) sulfate concentration and (b) SO2 concentrations in January 

2017. Based on the sample of around 900,000 model variants (parameter combinations) after removing prim_so4_diam < 10 nm. The legend 

identifies the first 4 key parameters driving uncertainty in each cluster. The percentage of variance caused by each parameter is shown in the 

pie charts, displayed anticlockwise from most to least important. Masked grid boxes (in white) indicate regions where emulator uncertainty 415 
exceeds the spread of the emulated response, see Fig. B1. 

Figure 4a shows that more than 75 % of parametric uncertainty in sulfate concentration in Europe is caused by the dry 

deposition of the accumulation mode aerosol (dry_dep_acc, a loss process) and the acidity of cloud droplets 

(cloud_drop_acidity, a parameter that affects the O3 + SO2 → sulfate oxidation rate in cloud water (Turnock et al. 2019)) in 

each cluster. However, the order of importance and proportions of sulfate uncertainty caused by these parameters changes 420 

between clusters, as do contributions from other key parameters. In Central Europe (green cluster), the region with the highest 

sulfate emissions (Fig. 2a), cloud_drop_acidity contributes most to parametric uncertainty (60 %), likely because the region is 

inland and polluted, hence cloud acidity has a stronger influence on sulfate formation. In Northern Europe (blue cluster), 

dry_dep_acc contributes more to parametric uncertainty (65 %) than cloud_drop_acidity (25 %), likely due to the remoteness 

of the region which allows sinks to have a larger influence on concentrations than sources. There is also a small contribution 425 

from dms as a source (3 %), likely due to the proximity of this region to the Atlantic Ocean. In Western Europe (pink cluster), 

dry_dep_acc and cloud_drop_acidity contribute equally to uncertainty (around 40 %). The Mediterranean region (red cluster) 

is distinct as partly influenced by SO2 emissions from volcanic sources (volc_so2, 10 %) and the yellow cluster appears to 

surround the white grid boxes excluded due to high emulator uncertainty. 

 430 

Figure 4b shows that SO2 concentration over Europe is mainly controlled by the regional anthropogenic SO2 emission rate 

parameter (anth_so2_eur) and parameters that affect its atmospheric lifetime by deposition (dry_dep_so2) or loss by formation 

of sulfate (cloud_drop_acidity). In Central Europe (green cluster), the most important contributors are dry_dep_so2 (65 %) 

and anth_so2_eur (18 %), which may reflect local anthropogenic emissions that likely drive the high SO2 concentrations seen 

in Fig. 2b. In Western Europe (pink cluster), anth_so2_eur is most important (46 %), consistent with moderately high 435 

anthropogenic emissions from the UK and Spain. In Scandinavia (dark blue cluster), anth_so2_eur is slightly less important 

(13 %), ranked third after dry_dep_so2 (50 %) and cloud_drop_acidity (30 %), which could reflect the more remote nature of 

the region. These same parameters drive uncertainty, in different combinations with other key parameters, in the grid boxes 

surrounding Spain (orange cluster), Eastern Europe (yellow cluster), and the marine (light blue) cluster. 

 440 
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Figure 5. Clusters of shared causes of parametric uncertainty for (a) aerosol optical depth and (b) particle number concentration in 

January 2017. All other features are identical to Fig. 4. 

Figure 5a shows the main parameters causing uncertainty in AOD in Europe are sea_salt (natural source), dry_dep_acc 

(deposition), and cloud_drop_acidity (formation of sulfate aerosol). In Central Europe (green cluster), cloud_drop_acidity, 445 
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sea_salt, and dry_dep_acc contribute similar amounts (more than 20 % each), suggesting that sulfate aerosol formation and 

deposition processes contribute to AOD along with natural sources. In the Atlantic Ocean and Northern Europe (blue cluster), 

sea_salt contributes most to parametric uncertainty (75 %), likely due to strong marine influence and winds transporting sea 

salt particles inland. Clusters around the Mediterranean (purple and orange) are both influenced by volc_so2 (around 9 %), 

which suggests that the PPE-to-observation discrepancy linked to volcanology shown in Fig. 3c is likely to extend to all 450 

observations in the red and purple clusters (all of which are below the 5th percentile of PPE values). 

 

Figure 5b shows the main parameters causing uncertainty in N3 in Europe are carb_ff_diam (diameter of carbonaceous aerosol 

from fossil fuels), prim_so4_diam (diameter of sub-grid-scale sulfate particles at emission), and dry_dep_acc (deposition). 

Parameter controlling the size of particles are most important near point emission sources: for a fixed emission mass flux, 455 

reducing the size of particles will increase the number of aerosol particles emitted. In Central Europe (green cluster), 

carb_ff_diam and prim_so4_diam and contribute most to parametric uncertainty (each around 20 %), suggesting that source 

emissions dominate in polluted regions. In the Atlantic Ocean and Northern Europe (blue cluster), dry_dep_acc contributes 

most (36 %), likely due to the region being more remote, and thus having a higher proportion of accumulation mode aerosol. 

In Western Europe and the Mediterranean region (pink cluster), contributions are similar to the other two clusters, with a small 460 

additional contribution from the offline oxidant OH concentration scaling factor (oxidants_oh, 7 %). 

 

The uncertainty clusters described in this section will be used as sub-regions of Europe throughout the rest of the paper to 

evaluate whether observational constraints are consistent across clusters. Clusters with too few observations (sulfate: red, 

yellow; SO2: light blue, orange; N3: pink), or where all observations are outside the range of the PPE (SO2: yellow), are 465 

excluded from further analysis.  

3.3. Model-observation bias in uncertainty clusters 

In this section, we evaluate model–observation bias using the normalised mean bias factor (BNMBF, Eq. (1)) across the 

parametric range within each cluster of shared causes of uncertainty identified in Sect. 3.2. Evaluating BNMBF for the original 

distribution of model variants helps assessing model skill across clusters and variables and forms the basis for applying 470 

observational constraints and detecting structural inconsistencies. 
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Figure 6 shows boxplots indicating the distribution of BNMBF across the 1,000,000 emulated model variants for each variable, 

within their respective uncertainty clusters: pink (Western Europe), green (Central Europe), blue (Northern Europe), and 

orange (Southern Europe). Although clusters do not map exactly onto the same region for each variable, we refer to them in 475 

this way for ease of comparison. The largest biases are in N3, AOD and SO2 which are all biased high in the model on average. 

For sulfate, there is more regional variation with some clusters biased high and others biased low. While we highlight median 

biases (the horizontal line inside the box, and Table 1) to capture general tendencies, the full distributions of model variants 

span observed values, which suggests that consistent observational constraint across variables and regions remains feasible at 

this stage. 480 

 

Figure 6. Boxplots to show the distribution of the normalised model-observation mean bias factor (BNMBF) over the original set of 

model variants, across variables and clusters. The coloured patches on the x-axis correspond to the cluster colours from Fig. 4 and 5. The 

boxes show the interquartile range (IQR) of the distribution. The horizontal line inside the box shows the median (50th percentile). The 

whisker (vertical line) extends to 1.5 × IQR. The data points are the model variants outside the whisker's range (outliers). Cluster colours are 485 
consistent across regions: green for Central Europe, blue for Northern Europe/Scandinavia, and pink for Western Europe (UK/Spain). 

Table 1. Median normalised model-observation mean bias factor (BNMBF) over the original set of model variants, across variables 

and clusters. Where two values are given, the second in brackets corresponds to the median bias after excluding observations outside the 

PPE range. Clusters with too few observations to evaluate are indicated with a dash (–).  
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Variable 
Pink Cluster, 

Western Europe 

Green Cluster, 

Central Europe 

Blue Cluster, 

Northern Europe 

Orange Cluster, 

Southern Europe 

Sulfate -0.90 -0.01 (-0.24) 0.28 – 

SO2 0.35 (-0.02) 1.10 (0.80) 0.65 (0.43) – 

AOD 1.91 (1.73) 0.67 (0.60) 0.96 3.01 (2.45) 

N3 – 4.14 (2.66) 1.92 – 

 490 

N3 is highly overestimated in Central and Northern Europe. On average, particle number concentration in Central Europe has 

a higher positive bias (green cluster, bias = 4.14) than in Northern Europe (blue cluster, bias = 1.92). After excluding 

observations outside the PPE range in the green cluster, the bias decreases to 2.62. Boundary layer nucleation was included in 

this model version (with perturbed rates) using the organically mediated scheme of Metzger et al. (2010), which is not 

implemented in the release version of UKESM1. The lack of new particle formation in the release version likely result in lower 495 

apparent bias than reported here. However, this result indicates a structural deficiency in the representation of particle number. 

 

AOD is overestimated across all clusters. On average, the bias is highest in Southern Europe (orange cluster, bias = 3.01) and 

Western Europe (pink cluster, bias = 1.9), and smaller in Northern Europe (blue cluster, bias = 0.96) and Central Europe (green 

cluster, bias = 0.67). After excluding observations outside of the PPE range that are associated with clear structural deficiencies, 500 

likely related to volcanic emissions (Fig. 3 and Sect. 2.6), average model bias decreases in all clusters, but AOD remains 

overestimated. The region-wide positive bias suggests that the model is systematically overestimating aerosol sources, size or 

radiative properties. Possible explanations include: (a) carbonaceous aerosol emissions being too high across Europe (we 

perturbed emission diameters but not emission mass fluxes); (b) inaccuracies in aerosol radiative properties, potentially tied to 

incorrect size distributions; or (c) sea salt emissions being overestimated—especially since sea salt dominates parametric 505 

uncertainty in the blue and red clusters (Fig. 5a).  

 

Surface SO2 concentrations are generally overestimated by the PPE across Europe, although the magnitude of the 

overestimation varies by region. On average, SO2 is overestimated in Western Europe (pink cluster, bias = 0.35), approximately 

twice as much in Northern Europe (blue cluster, bias = 0.65), and again nearly double in Central Europe (green cluster, bias = 510 

1.10). As shown in Fig. 3b, many SO2 observations, are outside the PPE range, particularly in Central Europe, which drives 

the large overestimation in all clusters. We hypothesise that this bias arises from the model’s treatment of anthropogenic SO2 

emissions, which are injected at the surface rather than vertically distributed (Sect. 3.1). After excluding observations outside 

https://doi.org/10.5194/egusphere-2025-4795
Preprint. Discussion started: 7 October 2025
c© Author(s) 2025. CC BY 4.0 License.



23 

 

 

 

 

 

of the PPE range, model bias decreases. On average, the bias in the pink cluster approaches zero (bias = -0.02), while the blue 

and green cluster remain overestimated, following a similar ratio: green (bias = 0.80) is approximately double that of blue (bias 515 

= 0.43). 

 

For sulfate concentrations, the sign and magnitude of model bias are region-specific. On average, sulfate is underestimated in 

Western Europe (pink cluster, bias = -0.50) and to a lesser degree in Central Europe (green cluster, bias = -0.13), yet is 

overestimated in Northern Europe (blue cluster, bias = 0.18). The fact that concentrations are overestimated in some regions 520 

and underestimated in others, may point to missing emission sources or to regionally varying production and removal processes 

that are not fully captured by the model, which could suggest a need for regime-aware parametrisations (e.g. Qian et al., 2024). 

However, there may be parts of the sampled parameter space that minimise the biases in all three clusters, which we explore 

in Sect. 3.4. 

3.4. Inconsistency between observational constraints  525 

We now assess inter-region consistency when applying observational constraints (Sect. 2.7). First, we present our 

categorisation of inter-region inconsistencies (between uncertainty clusters) using model constraint to observed sulfate 

concentrations as an example. Then, we extend our analysis to evaluate inter-region inconsistencies for other variables. 

 

Figure 7 shows how constraining the model to sulfate mass concentration observations in one region affects model skill at 530 

simulating sulfate concentrations elsewhere. Constraint to match observations in one region achieves near-perfect agreement 

there at the expense of degrading model skill elsewhere in all cases. In the original distribution, sulfate concentrations in 

Western Europe (pink cluster) are underestimated on average across the parameter space. When the model is constrained to 

match observations in the pink cluster, sulfate concentrations increase not only in that cluster, but also in the green and blue 

clusters, which increases their existing positive biases (Fig. 7a). The opposite happens when the model is constrained to the 535 

Northern Europe (blue) cluster, where concentrations are on average overestimated: sulfate concentrations decrease across all 

regions, including the pink and green clusters, again increasing the negative bias in those clusters (Fig. 7c). The model’s only 

response to regional constraints is to shift sulfate concentrations across the continent, which means that adjusting 

concentrations in one region inevitably affects others. 
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 540 

Figure 7. Boxplots to show the effect of observational constraint on the distribution of the normalised model-observation mean bias 

factor (BNMBF) in sulfate concentration after observational constraint. The grey boxplots are identical to those in Fig. 6, for sulfate 

clusters in Fig. 4a. Overlaid coloured boxplots show the BNMBF distribution for the 5,000 model variants closest to observations for sulfate 

mass concentration in (a) the pink cluster (Western Europe) and (b) the green cluster (Central Europe) and (c) the blue cluster (Northern 

Europe). 545 

The opposing effects of these regional observational constraints clearly illustrate the model’s inability to represent regional 

variations in sulfate concentrations simultaneously, even though the model simulations sample combinations of 37 parameters. 

Parameter combinations that improve agreement in one region entirely remove agreement in another: after applying 

observational constraints from either pink or blue clusters, the BNMBF distribution for the other no longer crosses zero. As a 

result, the model can either reproduce observed sulfate concentrations in Western Europe or in Northern Europe, but not both 550 

simultaneously, when using a global-mean approach to aerosol processes (which is the case with aerosol removal parameter, 

dry_dep_acc, and the cloud droplet acidity parameter, cloud_drop_acidity). The inability to identify parameter sets that 

simultaneously satisfy constraints across clusters is evidence of a level 2 inter-region structural inconsistency in sulfate 

concentrations (Sect. 2.7). 

 555 
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We further analyse the effect of observational constraints on other variables and clusters using two metrics: percentile position 

of the observation within the model distribution and median BNMBF, as exemplified in Fig. 8. The change in median BNMBF 

shows whether the centre of the distribution of model variants shifts towards or away from the observed value after applying 

the constraint. However, a lower absolute median BNMBF could be achieved by increasing precision without increasing 

accuracy, so even though the average bias is reduced, the distribution may not span the observed value (e.g. blue constraint in 560 

Fig. 8 example schematic). Thus, we additionally use the percentile position of the observed values to simultaneously quantify 

the effect of constraints on precision and accuracy. 

 

Figure 8. Schematic illustrating the two metrics used to assess the effect of observational constraints on other variables and clusters: 

the median BNMBF (distribution shift) and the percentile position of the observation within the model distribution. Three example 565 
observational constraints are applied to the original set of model variants in dashed grey. The green distribution shows a case where both 

metrics improve; the red shows both worsening; and the blue shows an improvement in median BNMBF (higher precision) but a shift in the 

observation’s percentile position away from the distribution centre (lower accuracy). 

Figure 9 shows the effect of sulfate constraints presented in Fig. 7 on both precision and accuracy. In Fig. 9a, constraining the 

model to the observations in the pink cluster selects the variants closest to that observation. As a result, the pink arrow points 570 

to the origin, indicating near-zero mean bias and a percentile position of the observation near the centre of the constrained 

model distribution. However, the effect of this constraint on the green and blue clusters in Fig. 9a is to increase median BNMBF 

(shown by arrows pointing upwards) and to shift the observation’s percentile position away from the distribution centre (arrows 

pointing to the right). The green and blue arrows point to 0/100, meaning that the observed sulfate concentration is outside the 

constrained distribution. The same pattern is seen in Fig. 9c when constraining to the blue cluster: Although the arrows point 575 

downward, they still move away from the zero line, indicating a larger (negative) median bias and reduced agreement. After 

applying the green constraint (Fig. 9b), the median BNMBF in the pink cluster improves slightly, but the observation is outside 

the constrained distribution, meaning that no model variants match observations in that region. In the blue cluster, both the 
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median BNMBF and the percentile position of the observation worsen. So, improving agreement in one cluster worsens 

agreement in the other two. 580 

 

Figure 9. Effect of regional sulfate observational constraints on model performance in sulfate clusters. The x-axis represents the 

percentile of the BNMBF distribution across model variants at which the observed value is located. The y-axis shows the median normalised 

mean bias factor (BNMBF) of the distribution. Panels represent the effect of (a) constraint to the pink cluster, (b) constraint to the green cluster, 

and (c) constraint to the blue cluster, on all sulfate clusters. Arrows connect the positions of the unconstrained distribution (arrow start) to 585 
the observationally constrained distribution (arrow end). Arrow line styles indicate the constraint's effect: solid for degradation in both 

median BNMBF and percentile position of the observation, dotted for improvement in both, and dash-dot for improvement in one but 

degradation in the other. For any distribution of model values with a positive median BNMBF (model > observation), the observed value 

corresponds to a percentile less than 50 within that distribution (see Fig. 8). 

We now examine which parameter values are ruled out by constraining sulfate in each cluster region (Fig. 10), to better 590 

understand the inter-region inconsistency. After constraint, the pink and green clusters favour similar values across key 

parameters except cloud_drop_acidity (Fig. 10a and b), suggesting this is the main parameter affecting sulfate differences 

between them. In contrast, favoured parameter values differ more between constraints to the pink and blue clusters. For the 

pink cluster (Fig. 10a), model variants that match high sulfate concentrations have lower cloud droplet acidity (promoting 

sulfate formation from SO2), lower dry deposition of sulfate and SO2 (increasing aerosol lifetime and SO2 concentrations), and 595 

higher regional anthropogenic emissions (providing more SO2 for conversion). In contrast, in Fig. 10c, model variants that 

favour low sulfate concentrations in the blue cluster have higher cloud droplet acidity (suppressing sulfate formation from 
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SO2) and mid-range dry deposition values, likely because sulfate is not strongly biased there, so lower deposition values are 

not more effective in bringing the model into agreement with observations. 

 600 

Figure 10. Marginal probability density functions (PDFs) of model parameters after observational constraint, for the 4 model 

parameters contributing most to sulfate concentration uncertainty across Europe (Fig. 4). PDFs are created using the input settings of the set 

of 5,000 model variants that best agree with observed sulfate concentrations in (a) the pink cluster, (b) the green cluster, and (c) the blue 

cluster. The y-axis scale is fixed for each parameter across panels to facilitate comparison between clusters: lower PDF values indicate a 

greater reduction in model variants with those parameter values. Marginal probability density functions for all 37 parameters are shown in 605 
Fig. C1 (pink), C4 (green) and C2 (blue). 

It is clear that our model is structurally incapable of representing regional variations in sulfate formation. Although the pink 

and green clusters favour similar parameter values after constraint (Fig. 10a and b), they remain inconsistent (pink and green 

arrows in Fig. 9a and b). In our simulations, cloud_drop_acidity is prescribed globally, so has no dependence on regional 

atmospheric composition. Introducing a scheme that allows acidity to vary with composition (Turnock et al., 2019), would 610 

likely worsen the agreement: acidity would decrease in remote regions and increase sulfate production (blue cluster), while 

increasing in polluted regions and suppressing sulfate production (pink and green), contrary to the tendency required to match 

observations. Thus, cloud_drop_acidity alone cannot resolve the inconsistency; additional processes that vary regionally are 

needed to consistently match inter-cluster observations. 

 615 
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Another potential contributing factor to this inconsistency is that our PPE uses a simplified representation of SO2 oxidation. 

The simulations include the gas-phase oxidation pathway (OH) and one aqueous-phase pathway (O3), with their concentrations 

prescribed using monthly mean output from a fully coupled UKESM model run, averaged over the 1979–2014 period, and 

then perturbed in our PPE (oxidants_oh and oxidants_o3). Hydrogen peroxide, the dominant oxidant for aqueous phase SO2 

oxidation in winter (Gao et al., 2024), is only partially dynamic: its production and loss are modelled, but its concentration is 620 

limited by the prescribed oxidant fields and does not vary with regional conditions. Since hydrogen peroxide concentrations 

are typically higher in more polluted regions (green and pink clusters), SO2 oxidation to sulfate in those areas may not be 

sufficient.  

 

Altogether, the inconsistency highlights the need for interactive chemistry with appropriate regionally dependent oxidant 625 

production and sulfate formation mechanisms to provide the model with other alternatives to cloud droplet acidity for balancing 

regional sulfate concentrations. Using simplified, globally averaged chemistry is a common approach in many climate models 

to reduce aerosol complexity, but can lead to structural inconsistencies which limit the model’s ability to match different 

regional observations at the same time. In the next section, we examine the consequences of this inter-regional inconsistency 

in sulfate concentration.  630 

3.5. Compromised constraint in the presence of structural inconsistencies 

In this section, we explore whether a compromise between the two inconsistent constraints can be achieved by weakening the 

constraints applied to two seemingly inconsistent observations (Sect. 3.4). We achieve this by increasing the number of retained 

model variants. Retaining 5,000 model variants in our observational constraints is a subjective choice, which was designed to 

reflect the presence of unquantified observational and emulator uncertainty (Sect. 2.6). This approach allows us to test whether 635 

the structural inconsistency persists under looser selection criteria, and to understand how the set of parameter values 

considered acceptable shifts when the constraints are relaxed. 

 

Figure 11 shows the effect of retaining more model variants in a 2-d parameter space defined by the two most important (Fig. 

4) and most strongly constrained (Fig. 10) parameters in the pink and blue clusters, dry_dep_acc and cloud_drop_acidity. 640 

Figure 11a shows that the pink and blue sulfate constraints are concentrated around opposite ends of the 2-d plane. While 

probability density functions overlap slightly along the diagonal, there are no model variants that satisfy both constraints at the 

same time. The overlap is an illusion caused by reducing the 37 parameter influences on sulfate concentration into a 2-d view 
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and indicates that a combination of the remaining 35 parameters is contributing to the structural inconsistency (so, visual 

inconsistency would only be visible in higher dimensions). Relaxing the threshold to retain 25,000 (2.5 %, Fig. 11b) and 50,000 645 

(5 %, Fig. 11c) of the original set of model variants weakens the constraints because the additional model variants retained 

have larger biases on average. Retaining more model variants creates more visual overlap along the diagonal of the 2-d 

marginal view in parameter space as the degree of compromise between constraints grows. However, no model variants satisfy 

both constraints with this degree of compromise.  

 650 

Agreement between the two constraints can only be achieved by more aggressively relaxing the two constraints to retain 

235,000 model variants (23.5 %) in each case, a significant compromise. Even with this degree of compromise, only 422 model 

variants (less than 0.2 % of those retained) satisfy both the pink and blue sulfate constraints (compromise shown in black in 

Fig. 11d). 

 655 

The combined inter-region sulfate constraint shows two main groups of parameter combinations, with a small third group 

bridging the gap between them (Fig. 11d). Most model variants that fit the compromise have low cloud_drop_acidity and mid- 

to high-range dry_dep_acc, whilst a smaller set have very high cloud_drop_acidity and very low dry_dep_acc. In the first 

case, lower acidity allows more sulfate to form, while moderate to high dry deposition removes aerosol faster, leading to mid 

to high sulfate concentrations. In the second group, higher acidity limits sulfate production, but very low deposition means 660 

less is removed, resulting in mid to low concentrations. Both combinations produce similar sulfate levels through different 

mechanisms; an example of equifinality, where multiple parameter combinations can produce the same model output (Beven, 

2006). A small number of variants have mid-range values for both parameters, giving sulfate concentrations between the two 

main groups. However, neither of these combined parameter effects corresponds to either of the individual cluster constraints 

in Fig. 9. Marginal PDFs of all 37 parameters for this compromise are shown in Fig. C3.  665 
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Figure 11. Scatter plots indicating the density of constrained model variants over the marginal 2-d view of parameter space defined 

by the two parameters dry_dep_acc and cloud_drop_acidity. Pink and blue points and associated distributions represent parameter values 

constrained to match sulfate observations in each cluster associated using the closest (a) 5,000, (b) 25,000, (c) 50,000 and (d) 235,000 model 670 
variants. The cross marks the combined parameter values used in the release version of UKESM1. In (d), the black points and associated 

distribution represent a subset of 422 out of 470 000 model variants that agree with observations in both pink and blue clusters.  

Even when allowing a larger uncertainty in both constraints, the model is incapable of achieving a low bias in both regions at 

the same time. Figure D1a shows the effect of this compromise on all variables and clusters. On average, model variants are 

still negatively biased in the pink cluster (median BNMBF = -0.37), still positively biased in the blue cluster (median BNMBF = 675 

0.21), and the observed values are outside the constrained distributions in both clusters. As a result, the compromise achieves 
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only tolerable agreement with observations in both clusters, rather than a close match in either. The constraint is therefore no 

longer optimal, consistent with the hypothesis proposed by Regayre et al. (2023) that structural inconsistencies demand a 

compromise in the tightness of constraint achieved. In addition, the compromise causes a strong degradation for most other 

variables (Fig. D1). Except for N3, where the initial overestimation is slightly reduced, the result is a reduced or null likelihood 680 

of matching observations, with observed values sometimes located outside the constrained distributions and an increased bias 

on average. 

 

In summary, resolving the structural inconsistency between clusters requires considerably relaxing the strength of constraint 

for each observation, thereby increasing the degree of model-to-observation error in each region. This process mirrors model 685 

tuning, or calibration, where agreement to multiple observations is balanced to mask the effects achieved via compromise 

(Elsaesser et al., 2025). Tuning and calibration approaches that neglect structural inconsistencies will achieve weaker overall 

constraints and a general degradation of model performance at simulating the state of the atmosphere. We suggest 

compromising model performance in this way is one of the key reasons climate projections of aerosol-cloud interaction forcing 

have uncertainty that has persisted through several generations of climate model development. 690 

3.6. Other potential structural inconsistencies 

We categorise several other potential structural inconsistencies in this section, identified using constraints to match 

observations of the four variables in each cluster. Figure 12 and 13 extend the use of the constraint-effect metrics to show the 

effect of each constraint on all other clusters and variables (inter-cluster and inter-variable), as exemplified in Fig. 9 for sulfate 

concentration inter-cluster constraints. Overall, there is very little consistency across the four variables over Europe. No 695 

variable within any cluster, when used as a constraint, reliably pushes other variables to better match observations within the 

same or other clusters. Sect. 3.6.1 and 3.6.2 cover the main inconsistencies.  
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Figure 12. Effect of sulfate and SO2 observational constraints on model performance (precision and accuracy) across all variables 700 
and clusters. Marker colours correspond to regions in Fig. 4 and 5, with green for Central Europe, blue for Northern Europe/Scandinavia, 

and pink for UK/Spain. All other features are identical to Fig. 9.  
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Figure 13. Effect of AOD and N3 observational constraints on model performance across all variables and clusters. All features are 

identical to Fig. 12. 705 
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3.6.1. AOD-Sulfate inconsistency 

Aerosol sulfate is a large component of AOD in polluted regions, so it is useful to evaluate their consistency. In our PPE, 

constraining either sulfate or AOD degrades model skill for the other variable. Sulfate constraints reduce model performance 

across all AOD clusters (Fig. 12a–c). In every case, constraint to sulfate reduces AOD agreement with observations. For the 710 

pink and green clusters, it also increases overall AOD bias (higher median BNMBF), while for the blue cluster, it slightly reduces 

AOD median bias. Similarly, applying AOD constraints in any cluster reduces model skill across all sulfate clusters, and shifts 

distributions away from the observations (Fig. 13a–d). A similar issue was reported by Johnson et al. (2020), where joint 

constraints on AOD, PM2.5, and sulfate led to conflicting parameter values and reduced the ability to constrain ΔFaer. 

 715 

This inter-variable inconsistency is most clearly illustrated in the green AOD and sulfate clusters. On average, modelled AOD 

is overestimated and modelled sulfate is underestimated in the green clusters (Fig. 6). Therefore, constraint of AOD to match 

observations favours model variants associated with lower sulfate concentrations, which exacerbates the sulfate negative bias 

(Fig. 13b). In the other direction, constraint of sulfate to observations favours model variants associated with higher sulfate 

concentrations, which amplifies the existing positive AOD bias (Fig. 12b). However, unlike the inter-region inconsistency 720 

presented in Sect. 3.4, there exist combinations of the 37 parameters that match both sulfate and AOD observations at the same 

time without reducing the strength of constraint. Therefore, we classify this inter-variable inconsistency as level 1: the model 

can match the observations simultaneously, but the constraints do not converge, and the skill of the model is worse for both 

variables than if they were constrained separately (see Sect. 2.7).  

 725 

Any adjustment to sulfate also affects AOD in our set of model variants. Therefore, there is limited flexibility to adjust AOD 

without affecting sulfate. Contributions to AOD in the model are dust, sulfate, sea salt, organic carbon, and black carbon 

aerosol, but only emissions of sea salt and sulfate, as well as dimethylsulfide aerosol precursor gasses (dms) were perturbed. 

AOD is also affected by the emission diameters of primary aerosol, which we perturbed.  

 730 

Model variants that match higher observed sulfate concentrations in the green cluster are more likely to have relatively low 

values of both dry_dep_so2 and dry_dep_acc (Fig. 14a). Lower dry_dep_so2 allows more SO2 to remain available for 

conversion to sulfate, while lower dry_dep_acc slows the removal of sulfate particles from the atmosphere. The 

cloud_drop_acidity parameter is also constrained towards central values to moderate aqueous-phase production of sulfate. In 
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contrast, model variants that match lower AOD are more likely to have low sea salt emissions (sea_salt) and lower sulfate 735 

concentrations, achieved through higher cloud_drop_acidity and higher dry_dep_acc values (Fig. 14b). 

 

 

Figure 14. Marginal PDFs of six key model parameters contributing to the AOD–sulfate inconsistency in the green cluster (Central 

Europe). Panels show posterior PDFs after applying observational constraints for (a) AOD (5,000 variants), (b) sulfate concentrations (5.000 740 
variants), and (c) the intersection of both constraints ("compromise"; 333 variants). The y-axis scale is fixed for each parameter across panels 

to facilitate comparison between clusters: lower PDF values indicate a greater reduction in model variants with those parameter values. PDFs 

for all 37 parameters are shown in Fig. C4 (sulfate), C5 (AOD), and C6 (compromise). 

Constraints to AOD and sulfate in the green clusters lead to conflicting values for dry_dep_acc and dry_dep_so2. To increase 

sulfate, both parameters are more likely to be low, whereas to reduce AOD they are more likely to be high. As a result, when 745 

forcing a compromise between the inconsistent constraints (Fig. 14c), dry_dep_acc and dry_dep_so2 remain effectively 

unconstrained. Instead, sea_salt and prim_so4_diam are pushed towards extreme values as the only remaining degrees of 

freedom for reducing AOD without further degrading sulfate concentrations. In particular, prim_so4_diam is constrained to 

extremely low values deemed observationally implausible in previous work (Regayre et al., 2023). Figure D1b shows how this 

compromise affects N3, where median BNMBF increases sharply to 14 in the green cluster and 8 in the blue cluster 750 

(approximately 3.5 times higher than before the compromise). 

 

In UKESM1, GLOMAP does not account for ammonium nitrate emissions nor chemistry (Mann et al., 2010; Mulcahy et al., 

2020). Observational studies show that nitrate can account for a large fraction of PM2.5 in Europe during winter (Ricciardelli 

et al., 2017; Salameh et al., 2015) and that PM2.5 correlates strongly with AOD (van Donkelaar et al., 2010). This omission 755 

likely contributes to the AOD-Sulfate inconsistency by placing excessive burden on sulfate and sea salt to explain observed 

AOD. A nitrate aerosol scheme is available in recent model versions (Jones et al., 2021), which may help address this 

inconsistency. Furthermore, carbonaceous aerosol emissions were not perturbed in this PPE (Regayre et al., 2023). Expanding 
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the set of perturbed emissions in future PPEs will help determine whether the apparent inconsistency reflects incomplete 

exploration of parameter space rather than a structural limitation. 760 

3.6.2. SO2 inter-cluster inconsistency 

Existing structural limitations already lead to SO2 overestimation in every cluster (Sect. 3.1; Mulcahy et al. 2020), and our 

suggested change to reduce sulfate inter-region inconsistency (e.g. interactive chemistry; Sect. 3.4) could reduce biases 

across all SO2 clusters. Here, we use our PPE to uncover potential additional factors driving SO2 inconsistency beyond these 

known limitations. 765 

 

SO2 constraint effects suggest a structural inconsistency between clusters. On average, modelled SO2 concentrations are 

overestimated in all three clusters. However, constraining SO2 towards the pink cluster reduces agreement with observed values 

in the green and blue clusters (Fig. 12d). Similarly, constraining SO2 in the green or blue clusters makes the bias in the pink 

cluster worse and results in a less central percentile position for the observation (Fig. 12e and f). This is evidence of a level 2 770 

inter-cluster inconsistency: no model variants can simultaneously match observations in individual clusters. 

 

 

Figure 15. Marginal PDFs of three model parameters contributing to SO2 uncertainty after applying observational constraints. 

Shown for (a) the pink cluster (UK/Spain), (b) the green cluster (Central Europe), (c) the blue cluster (Northern Europe), each with 5,000 775 
variants, and (d) their intersection ("compromise"; 386 variants). The y-axis scale is fixed for each parameter across panels to facilitate 

comparison between clusters: lower PDF values indicate a greater reduction in model variants with those parameter values. PDFs for all 37 

parameters are shown in Fig. C7 (pink), C8 (green), C9 (blue) and C10 (compromise). 

Constraint to observed SO2 in the pink cluster does not strongly rule out any part of the parameter space, as SO2 concentrations 

were already close to observations (Fig. 15a). Model variants that match observed SO2 concentrations in the green and blue 780 
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clusters are more likely to have low cloud_drop_acidity, fast dry deposition of SO2 (high dry_dep_so2), and low anthropogenic 

SO2 emissions from Europe (anth_so2_eur), all of which help reduce SO2 by increasing removal or reducing emissions (Fig. 

15b and c). When all three clusters are constrained together, the result is a combination of low cloud_drop_acidity and extreme 

high values of dry_dep_so2 and anth_so2_eur, which are seemingly inconsistent with the individual constraints (Fig. 15d). 

 785 

The compromise in parameter constraints can be understood by considering which parameters contribute to uncertainty in each 

cluster. The combined constraint favours model variants with high dry_dep_so2, which increases the removal rate of SO2 from 

the atmosphere and reduces biases in the green and blue clusters. However, high dry deposition would excessively lower SO2 

in the pink cluster where concentrations are already centred on observations. Instead, model variants with very high 

anth_so2_eur are favoured to offset SO2 removal in this cluster where anthropogenic emissions are relatively high. Increasing 790 

anthropogenic emissions to extreme levels has less effect on the green and blue clusters, where SO2 concentrations are more 

sensitive to dry_dep_so2 than to anth_so2_eur (Fig. 4b). As a result, model variants with extreme emissions and removal rates 

are retained in the compromise that matches observations in all three clusters, even though none of the individual constraints 

on their own would favour such extreme parameter values and are in fact more likely to have low anth_so2_eur values. 

4. Discussion and conclusions 795 

This research is part of an overarching goal to develop a workflow for identifying opportunities for model development that 

address structural model deficiencies and enable more robust parametric uncertainty reduction in the UKESM1 aerosol scheme. 

Here, we (1) identified the main inconsistencies between aerosol observational constraints in European winter, (2) related these 

inconsistencies to likely structural deficiencies in the model, and (3) provided insight into the possible causes of these 

deficiencies. 800 

 

We propose a generalisable workflow that uses inconsistencies between observational constraints as a diagnostic tool to 

identify underlying structural errors in the model. Our workflow (Fig. 16), identifies where combinations of constraints are 

inconsistent, and classifies their severity as either level 2 or level 1. Level 2 inconsistencies (most severe), occur when no 

parameter combination can match observations across multiple aspects of the model. Level 1 inconsistencies (moderate) arise 805 

when some model variants can still match all observations, but where the constraints might improve skill in one aspect of the 

model, they lead to degradation in others.  
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Figure 16. Proposed workflow to identify structural inconsistencies between observational constraints, assess the structural 

deficiencies that cause them, and formulate corresponding structural model changes. 810 

Once inconsistencies are identified, we analyse which parameter combinations are retained by each individual constraint and 

their combination. Constraints that pull parameters in opposing directions provide actionable information on which parts of 

the model code are responsible for the inconsistency. This information allows us to trace the issue back to specific 

parameterisations and assess whether the way processes are represented is consistent with physical understanding. When 

constraints are in clear conflict, they often point directly to process-level assumptions that are missing, misrepresented, or 815 

oversimplified. However, not all inconsistencies lead to clear opposing trends in parameter space. The disagreement may be 

subtler, either because the constraint is weak or because it involves multiple interlinked parameters. Understanding these more 

complex cases would likely require higher-dimensional visualisation to identify how the inconsistency links back to multiple 

parameters and their interdependencies.  
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 820 

Identifying which parameterisations may be responsible for inconsistencies, and why, is not straightforward. In practice, this 

step relies on expert judgement supported by deep domain knowledge. It draws on a range of external sources, including 

laboratory studies, literature reviews and process-resolving simulations such as large eddy simulations (LES), to assess where 

existing parameterisations deviate from physical reality. These insights guide the formulation of informed structural change 

hypotheses about ways to address the structural inconsistencies. Ideally, the process should be operationalised (Carslaw et al., 825 

2025), with a cycle of proposed change implementation and repeat application of the inconsistency detection workflow. The 

intention is that each cycle will either reduce existing inconsistencies or reveal new ones that were previously hidden. Over 

time, this iterative process would gradually improve model structure and understanding. 

 

To identify the main inconsistencies for our case study, we evaluated UKESM1 against aerosol observations by exploring the 830 

range of uncertainty in its input parameters. Observational constraints on sulfate, SO2, AOD, and particle number concentration 

over Europe in winter revealed structural inconsistencies between regions and between variables in the same region. The main 

inconsistencies are summarised in Table 2.  Most code changes suggested in Table 2 have already been implemented in newer 

model versions, so there is potential to test whether these structural changes improve consistency between observational 

constraints in a new PPE. This next stage in the cycle of model evaluation and development would allow us to extend our 835 

analysis across seasons, regions, and additional variables to provide a more complete understanding of remaining model 

deficiencies related to inter-region, inter-variable and inter-seasonal inconsistencies. 

 

Table 2. Summary of key inconsistencies with corresponding level of severity, hypothesised structural deficiencies, and proposed 

model developments to address them. 840 

Inconsistency 

detected 
Severity 

Likely related structural 

deficiency 
Potential solution 

Sulfate inter-region Level 2 
Lack of complexity in regional 

sulfate chemistry 

Interactive chemistry (StratTrop, Archibald et 

al. 2020) 

AOD-sulfate inter-

variable 
Level 1 Missing aerosol emissions 

Nitrate scheme (Jones et al., 2021), 

perturbation of carbonaceous aerosol emissions 

SO2 inter-region Level 2 

Surface anthropogenic emissions; 

possibly compounded by Etna 

volcanic SO2 treatment 

Vertically distributed anthropogenic emissions, 

perturbation of volc_so2 over lower values 
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While we were able to identify potential structural inconsistencies where the model cannot simultaneously satisfy multiple 

observational constraints, we also encountered several overarching structural deficiencies where model values spanned by the 

PPE fail to match observations. For example, particle number concentrations were highly overestimated. SO2 concentrations 

were generally overestimated across Europe, likely because emissions were released at the surface rather than distributed 845 

vertically through the atmosphere (Ahsan et al., 2023). AOD was consistently overestimated in some regions, likely because 

of using mean volcanic SO2 emissions that are much higher than occurred during the period we analysed. 

 

We also tested the practice of forcing a compromise between inconsistent constraints. To do so, we relaxed individual 

constraints until enough retained model variants could satisfy both sets of observations simultaneously. This approach was a 850 

way to explore what may happen when tuning structurally deficient models to match observations despite structural 

inconsistencies. We found clear limitations to this approach: it results in a model that performs only moderately well across 

most observed variables, risks “making the model right for the wrong reasons” (which can reduce skill in future climate 

simulations), and can worsen model performance for variables not included in the constraint process (e.g. particle number 

concentration when constraining sulfate and AOD simultaneously). In this study, key inconsistencies persist even after increase 855 

the number of model variants kept in observational constraints, suggesting that the identified deficiencies cannot be explained 

by observational uncertainty alone. We consider this approach appropriate given that our aim is not to tightly constrain aerosol 

forcing, but to identify where the model fails to simultaneously match observations.  

 

Our results add context to recent efforts to constrain ΔFaer using PPEs and history-matching type techniques. Studies like 860 

Johnson et al. (2020) have shown that observational constraints can sometimes pull the model towards opposing values of 

aerosol forcing, limiting the reduction in uncertainty, whilst Regayre et al. (2020) showed observations have unequal value as 

model constraints. Regayre et al. (2023) identified a very small subset of observational constraints as suitable for narrowing 

aerosol forcing uncertainty, because many were inconsistent when applied together. The structural deficiencies and 

inconsistencies we identified in this paper help explain why such limitations arise. By revealing where and why the model 865 

cannot simultaneously match observations, we suggest that this method reveals which aspects of the model need improvement 

to make more observational constraints usable in constraint-based efforts to reduce aerosol forcing uncertainty. Combined with 

efforts to apply observational constraints that align with the dominant causes of aerosol forcing uncertainty (Regayre et al., 

2025), this approach should bring us closer to achieving the maximum feasible reduction in ΔFaer (limited by observational 

https://doi.org/10.5194/egusphere-2025-4795
Preprint. Discussion started: 7 October 2025
c© Author(s) 2025. CC BY 4.0 License.



41 

 

 

 

 

 

uncertainty, emulator uncertainty, and representation errors), and improve our ability to confidently constrain future climate 870 

change and inform policy decisions. 

 

We suggest that progress in model development should prioritise the identification of structural deficiencies, rather than 

increasing model complexity (and associated uncertainty) without sufficient justification. The workflow presented in this paper 

(Fig. 16) supports a shift toward a more evidence-based model development approach that prioritises changes most likely to 875 

reduce uncertainty and improve predictive skill. 

 

Ultimately, this analysis framework would benefit from being extended across multiple models. For example, multi-model 

PPE efforts use several models with different structures while sampling similar sources of parametric uncertainty. Applying 

the same observational constraints across these models would reveal differences in how consistently they match observations 880 

and allow more robust attribution of inconsistencies to structural deficiencies, based on the differences in process 

representations. 
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Appendix A 

Table A1. Description of the 37 parameters perturbed, from Regayre et al., (2023). 

Parameter name Min Max 
Defaul

t 
Description 

Perturbation 

type 

a_ent_1_rp 0 0.5 0.23 Cloud top entrainment rate scale factor Physical 

atmosphere 

ai 0 5e-2 2.57e-

2 

Scaling coefficient for ice mass dependence 

on diameter 

Physical 

atmosphere 

ait_width 1.2 1.8 1.59 Modal width of Aitken modes Aerosol process 

anth_so2_asi 0.6 1.5 1 Anthropogenic SO2 emission flux scale factor 

– Asia 

Anthropogenic 

aerosol emission 

anth_so2_chi 0.6 1.5 1 Anthropogenic SO2 emission flux scale factor 

– China 

Anthropogenic 

aerosol emission 
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anth_so2_eur 0.6 1.5 1 Anthropogenic SO2 emission flux scale factor 

– Europe 

Anthropogenic 

aerosol emission 

anth_so2_nam 0.6 1.5 1 Anthropogenic SO2 emission flux scale factor 

– North America 

Anthropogenic 

aerosol emission 

anth_so2_r 0.6 1.5 1 Anthropogenic SO2 emission flux scale factor 

– Rest of the world 

Anthropogenic 

aerosol emission 

autoconv_exp_lw

p 

2.15 3.31 2.47 Exponent of liquid water path in 

autoconversion power law 

Physical 

atmosphere 

autoconv_exp_nd -3 -1 -1.79 Exponent of cloud droplet concentration (Nd) 

in autoconversion power law 

Physical 

atmosphere 

bc_ri 0.2 0.8 0.565 Imaginary part of the black carbon refractive 

index 

Aerosol process 

bl_nuc 0.1 10 1 Boundary layer nucleation rate scale factor Aerosol process 

bparam -0.15 -0.13 -0.14 Coefficient of the spectral shape parameter 

(β) for effective radius 

Physical 

atmosphere 

bvoc_soa 0.32 3.68 1 

 

Biogenic monoterpene production rate of 

secondary organic aerosol scale factor 

Natural aerosol 

emission 

carb_bb_diam 90 300 110 Emission diameter of carbonaceous aerosol 

from biomass burning sources 

Natural aerosol 

emission 

carb_ff_diam 30 90 60 Emission diameter of carbonaceous aerosol 

from fossil fuel sources 

Aerosol process 

carb_res_diam 90 500 150 Emission diameter of carbonaceous aerosol 

from residential sources 

Anthropogenic 

aerosol emission 

cloud_drop_acidit

y 

1e-7 2.51e-

5 

1e-5 Cloud droplet acidity Aerosol process 

cloud_ice_thresh 0.1 0.5 N/A Threshold of cloud ice water fraction for 

scavenging 

Aerosol process 

conv_plume_scav 0 0.5 0.5 Scavenging efficiency (fraction of aerosol 

removed) of Aitken mode aerosol in 

convective clouds 

Aerosol process 

c_r_correl 0 1 0.9 Cloud and rain sub-grid horizontal spatial 

colocation 

Physical 

atmosphere 

dbsdtbs_turb_0 0 1e-3 1.5e-4 Cloud erosion rate Physical 

atmosphere 
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dms 0.33 3 1 Dimethyl-sulfide emission flux scale factor Natural aerosol 

emission 

dry_dep_acc 0.1 10 1 Dry deposition velocity of accumulation 

mode aerosol 

Aerosol process 

dry_dep_ait 0.5 2 1 Dry deposition velocity of Aitken mode 

aerosol 

Aerosol process 

dry_dep_so2 0.2 5 1 Dry deposition velocity of SO2 Aerosol process 

kappa_oc 0.2 0.65 0.65 Hygroscopicity parameter (κ) for organic 

aerosol – affects wet diameter and clear-sky 

radiative flux 

Aerosol process 

m_ci 0 3 1 Ice fall speed scale factor Physical 

atmosphere 

oxidants_o3 0.7 1.3 1 Offline oxidant O₃ concentration scale factor Aerosol process 

oxidants_oh 0.7 1.3 1 Offline oxidant OH concentration scale factor Aerosol process 

prim_moc 0.4 6 1 Primary marine organic carbon emission flux 

scale factor 

Natural aerosol 

emission 

prim_so4_diam 3 100 150 Emission diameter of 50 % of new sub-grid 

sulfate particles; remaining 50 % emitted into 

coarse mode 

Anthropogenic 

aerosol emission 

rain_frac 0.3 0.7 0.3 Fraction of cloud-covered area where rain 

removes aerosol 

Aerosol process 

sea_salt 0.25 4 1 Sea salt emission flux scale factor Natural aerosol 

emission 

sig_w 0.25 1.75 1 Standard deviation of shallow-cloud updraft 

velocity scale factor 

Aerosol process 

two_d_fsd_factor 1 2 1.4 Scale factor for cloud condensate variance–

cloud cover–convection relationship 

Physical 

atmosphere 

volc_so2 0.71 2.38 1 Volcanic SO2 emission flux scale factor Natural aerosol 

emission 
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Appendix B 910 

 

Figure B1. Emulator uncertainty relative to the spread of emulated values across model variants. The colour bar shows the ratio of 

the mean predicted standard deviation to the standard deviation of predicted means. Red grid boxes (metric > 1) indicate regions where 

emulator uncertainty exceeds the inter-variant spread and are excluded from further analysis. Blue grid boxes (metric ≤ 1) indicate more 

reliable emulator behaviour. 915 
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Figure B2. Leave-one-out cross-validation (LOOCV) of emulator predictions for clusters defined in Fig. 4 and 5. Each point represents 

the predicted (y-axis) versus the observed model output (x-axis), averaged over grid boxes with observations in the corresponding cluster. 

Error bars showing the emulator's predicted standard deviation. The dotted line indicates the 1:1 agreement line. LOOCV was performed by 

training the emulator while leaving out one of the 221 PPE members at a time, then predicting its output. 920 
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Appendix C 

 

Figure C1. Marginal PDFs for all 37 parameters after constraint towards sulfate concentrations observations in the pink cluster 

(Western Europe).  

 925 
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Figure C2. Marginal PDFs for all 37 parameters after constraint towards sulfate concentrations observations in the blue cluster 

(Northern Europe). 
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 930 
Figure C3. Marginal PDFs for all 37 parameters after compromise between sulfate concentrations constraints in the pink and blue 

clusters. The compromise consists of 422 common model variants after weakening constraint to individual clusters to 235,000 model 

variants each. 
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Figure C4. Marginal PDFs for all 37 parameters after constraint towards sulfate concentrations observations in the green cluster 935 
(Central Europe). 
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Figure C5. Marginal PDFs for all 37 parameters after constraint towards AOD observations in the green cluster (Central Europe). 
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Figure C6. Marginal PDFs for all 37 parameters after compromise between AOD and sulfate concentration constraints in the green 940 
cluster. The compromise consists of 333 common model variants after weakening constraint to individual clusters to 40,000 model variants 

each.  
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Figure C7. Marginal PDFs for all 37 parameters after constraint towards SO2 concentrations observations in the pink cluster 

(Western Europe). 945 
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Figure C8. Marginal PDFs for all 37 parameters after constraint towards SO2 concentrations observations in the green cluster 

(Central Europe). 
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Figure C9. Marginal PDFs for all 37 parameters after constraint towards SO2 concentrations observations in the blue cluster 950 
(Northern Europe). 
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Figure C10. Marginal PDFs for all 37 parameters after compromise between the pink, green and blue SO2 concentration constraints. 

The compromise consists of 386 common model variants after weakening constraint to individual clusters to 55,000 model variants each. 

 955 

https://doi.org/10.5194/egusphere-2025-4795
Preprint. Discussion started: 7 October 2025
c© Author(s) 2025. CC BY 4.0 License.



57 

 

 

 

 

 

Appendix D 

 

Figure D1. Effect of compromise between observational constraints on other variables/clusters. (a) Compromise between the pink and 

blue clusters for sulfate concentrations, with marginal PDFs shown in Fig. C3 (422 model variants). (b) Compromise between AOD and 

sulfate in the green cluster, with marginal PDFs shown in Fig. C6 (333 model variants). (c) Joint constraint for the pink, green and blue 960 
cluster for SO2 concentrations, with marginal PDFs shown in Fig. C10 (386 model variants). 
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