
We thank both referees for their thoughtful and constructive suggestions. 

The referee reports are shown in blue, and our responses are shown in black. Changes 
to the manuscript are displayed using tracked changes: red underlined text indicates 
additions, and red scored-out text indicates deletions. 

During the review process, we identified an error in the wavelength used for AOD. We 
had mistakenly used 380 nm instead of 440 nm when comparing model output with 
observations. Correcting this mistake reduces the average AOD across Europe, which in 
turn reduces the degree of overestimation of AOD compared to observations. All figures 
and numbers cited in text have been updated with minor modifications. This correction 
does not affect the analysis or the conclusions of the study. 

Table 1: Corrected median AOD BNMBF. 

Variable 
Pink Cluster, 

Western Europe 

Green Cluster, 

Central 

Europe 

Blue Cluster, 

Northern 

Europe 

Orange 

Cluster, 

Southern 

Europe 

Sulfate -0.90 
-0.01 (-

0.24) 
0.28 – 

SO2 0.35 (-0.02) 1.10 (0.80) 0.65 (0.43) – 

AOD 1.911.36 (1.731.30) 
0.670.36 

(0.60) 
0.960.64 

3.012.29 

(2.451.96) 

N3 – 4.14 (2.66) 1.92 – 

 

In Figure 14b and c, the constraints on parameter values are less strong, as AOD is on 
average closer to observations. However, parameters are constrained towards the same 
part of the parameter space. 

Figure 14 (corrected): 

 

 



 

In Figure D1b, joint constraint to AOD and sulfate still leads a sharp increase in median 
BNMBF   for N3 clusters, although it is smaller than previously calculated (8, compared to 
14). We have changed line 774 to reflect this change. 

Figure D1b (corrected): 

 

Line 774: Figure D1b shows how this compromise affects N3, where median BNMBF 
increases sharply to 14doubles in the green cluster and 8 in the blue cluster. 
(approximately 3.5 times higher than before the compromise). 

 

Referee 1 

The authors provide a workflow for identifying structural uncertainties. They use 
emulators to create surrogate models and constrain plausible parameter combinations. 
By examining inconsistencies in observational constraints across variables and regions, 
they trace these inconsistencies back to the underlying parameterisations, links them 
to likely structural model issues, and explores their possible causes. 

The paper is well written and the figures provide sufficient visual context. There are a 
few minor concerns that the authors should address before publication. 

Comments: 

Line 23: region to regions 



Changed.  

Line 25: repeated “them” is vague — does it refer to inconsistencies or 
parameterisations? 

We have revised the sentence to clarify that the repeated ‘them’ refers to structural 
deficiencies. 

Line 25: By examining the parameter sets retained by constraints, we trace 
inconsistencies to the parameterisations that may cause them and propose targeted 
changes to address themthe underlying deficiency. 

Line 108: suggested 

Changed. 

Line 216. Give a brief definition of Generalised Additive Models (GAMs) 

We have added a sentence defining Generalised Additive Models.  

Line 218: The importance of each parameter as a cause of model uncertainty was 
estimated using Generalised Additive Models (GAMs) at the grid-box level, following 
(Regayre et al., 2025). GAMs are flexible statistical models that represent the 
relationship between predictors and a response as a sum of smooth, linear or non-
linear functions. GAMs were fittedWe fitted non-linear GAMs to emulated model output 
for each variable within individual grid boxes using the pygam Python package (Servén 
and Brummitt, 2018). The fitted GAM functions were used to quantify the variance in 
model output attributable to each parameter, while allowing for non-linear effects 
(Strong et al., 2014), following Regayre et al., (2025). 

Line 238: Does “six” refer to the number of grid boxes? Alternatively, is the question 
about how the number of clusters can be compared with the size of the region? 

We clarified that ‘six’ refers to the number of clusters used when first applying k-means 
clustering. 

Line 242: The number of clusters was chosen iteratively: we began with a high number 
relative to the size of the region (e.g. six clusters for Europe) and reduced it if clusters 
showed redundant patterns in dominant parameters and their contributions. 

Line 255: Is linear interpolation applied spatially or temporally during collocation? 

We do not use linear interpolation to calculate model-observations bias. The cluster-
mean average only uses model values from grid boxes that match observation site 
locations only. However, grid boxes are compared to point locations from observations 
which contributes to representation error. Temporally, both in-situ observation and 
model output are monthly means. We have removed the word “collocated” in the text 
and clarified this paragraph to avoid any misunderstanding.  



Line 256: Model–observation bias is calculated for each model variant (i = 1 to 1,000,000) 
using normalised mean bias factors following Yu et al., (2006). N denotes the number of 
observational sites in the cluster. For each site j, we use a single observed value (𝑂𝑗) and 
pair it with the modelled value (𝑀𝑖𝑗) from the grid box containing that site for every model 
variant i. Both observations and model values are monthly averages.  

 Here, N is the number of observational sites in the cluster. Each site contributes a 
single observed value O, collocated with one modelled value 𝑀𝑖  from each model 

variant. Thus, for a given model variant i, the cluster-mean model value is 𝑀𝑖  =

 
1

𝑁
∑ 𝑀𝑖𝑗

𝑁
𝑗=1  and the cluster-mean observation is 𝑂  =  

1

𝑁
∑ 𝑂𝑗

𝑁
𝑗=1 . The normalised mean 

bias factor (BNMBF) is then calculated as follows: […] 

 

Line 275: what is the definition of ‘model variants that are common’? 

We apply joint constraints by selecting the intersection between the two sets of model 
variants kept for individual constraints. We have clarified this definition in the text.  

Line 281: For joint observational constraints, we identify the set of model variants that 
are common to all individual constraints that form the joint constraint.the model 
variants that are common to each individual constraint set. 

Line 299. If the parameter space does not converge across different observational 
constraints, does this indicate structural uncertainty and suggest that the model 
structure needs refinement rather than relying on tuning? 

This interpretation is correct. We have modified the text to make this point clearer. 

Line 305: In the ideal case, all observational constraints would guide the model toward 
the same part of parameter space. That is, each constraint would support convergence 
towards parameter combinations that produce simulations consistent with several 
observed variablestoward the parameter combination that best represents the real 
system. When constraints do not converge, it indicates that the model would need to be 
tuned differently to match each variable and that, having exhausted the parameter 
space, no model variant exists that is consistent with multiple observations. In history-
matching terminology, this situation is referred to as the “terminal case” (Salter et al., 
2019). Such lack of convergence suggests a structural deficiency rather than a problem 
that can be resolved through tuning alone. We therefore define this lack of convergence 
between constraints as a potential structural inconsistency.In such cases, the model is 
not realistic which suggests a potential structural deficiency. We define this lack of 
convergence between constraints as a structural inconsistency. 

 

Line 326-7: Can the inconsistency also be attributed to emulator uncertainty? 



Emulator uncertainty could contribute to apparent inconsistencies, particularly where 
emulators do not validate well or have large uncertainty. To account for these 
possibilities in this study, we validate the skill of our emulators and quantify their 
uncertainty across the parameter space as described in Appendix B. Additionally, we 
remove the small subset of grid boxes with high emulator uncertainty from the analysis. 
We also keep emulator skill validation in mind when interpreting results. However, we 
consider emulator uncertainty less likely to affect conclusions than the other 
uncertainties mentioned. We have updated the text to acknowledge it alongside other 
possible explanations. 

Line 336: We interpret the existence of an inconsistency as evidence of a potential 
structural deficiency in the model. However, such an inconsistency is not definitive 
proof of structural error; other explanations are possible, including larger- than- 
estimated observational error,  or the possibility that important parameters have not 
been perturbed, or emulator uncertainty, especially for variables with lower emulation 
skill.  

Line 370 (Figure 3): Does each circle or triangle represent one observational site 
collocated with a model grid box? You may want to clarify this in the caption. 

Thank you for the suggestion.  

Figure 3 caption: Observed values and their position within the PPE range in January 
2017 across Europe for the four variables. Markers are located at observational sites, 
and each site is compared to the nearest model grid box. Triangles indicate 
observations outside the PPE range. Circles represent observations within the PPE 
range. 

Figure3: The number of available data points in 3d (N₃) is significantly lower than in the 
other plots (sulfate, SO₂, and AOD). Could you clarify the reason for this difference? In 
addition, the spatial locations of data points do not appear to match across the 
observed variables. This brings me back to a previous question: are the observational 
data points collocated with the model grid when comparing observations to model 
outputs? 

The lower number of data points for N₃ reflects the limited availability of observational 
data for particle number concentration in Europe during January 2017. 

Regarding spatial locations, the observational networks for these variables are not 
identical, so site locations vary between datasets. For model–observation comparison, 
we use the model value at the grid box corresponding to each observational site 
(nearest grid box), without interpolation or averaging.  

Line 503-505: Could the possible explanations also include removal processes (e.g., 
dry_dep_acc, cloud_drop_acidity) as indicated by Figure 5c? 



We agree that underestimated removal processes could also contribute to the positive 
AOD bias. We have added this as an additional possible explanation in the text. 

Line 519: The region-wide positive bias suggests that the model is systematically 
overestimating aerosol sources, size or radiative properties, or underestimating removal 
processes.. 

 

Line 655-665: you may want to label the three groups in Figure 11d. In Figure 11d, you 
could use boxes to highlight the different groups, so that it’s easier to link the figure with 
the corresponding text descriptions. 

Thank you for the suggestion. We have added two boxes to highlight the groups of 
different behaviour in the figure and modified the text accordingly.  

 

 

Line 675: The combined inter-region sulfate constraint shows two main groups of 
parameter combinations, with a small third group bridging the gap between them (black 



points; Fig. 11d). Most model variants that fit the compromise have low 
cloud_drop_acidity and mid- to high-range dry_dep_acc (box 1; Fig. 11d), whilst a 
smaller set have very high cloud_drop_acidity and very mid- to low-range low 
dry_dep_acc (box 2; Fig. 11d). A small number of variants have mid-range values for 
both parameters, giving sulfate concentrations between the two main groups. 

Figure 2B: The emulator uncertainty for N₃ seems large. Does this substantially affect 
your observational constraints? 

The emulator uncertainty for N₃ (Fig. B2) is indeed larger, primarily because the 
emulator tends to underpredict very high simulated N₃ values (>30,000 cm⁻³). However, 
this does not substantially affect the observational constraint based on N₃ because the 
observations themselves are much lower than these extremes (<3500 cm⁻³). 
Constraining to observations selects model variants with N₃ values well below 10,000 
cm⁻³, which the emulator predicts accurately. 

The underprediction of high N₃ does influence the figures: the median BNMBF for N₃ in 
Figures 6, 12, 13 and D1 may in reality be higher than shown. This is acceptable 
because N₃ constraints are not central to our analysis. N₃ is included primarily to 
illustrate the negative consequences of compromising between structurally 
inconsistent constraints (Section 3.6.1), where joint constraint to AOD and sulfate leads 
to low values of prim_so4_diam, causing N₃ to increase sharply. In line 774, we show 
that the joint AOD–sulfate constraint selects model variants with high N₃, which results 
in the median BNMBF for N₃ doubling. However, these model variants correspond to the 
region where the emulator underpredicts N₃. With a perfect emulator, the increase in 
median BNMBF would likely be even greater. 

We have added the following statements to clarify the consequences of emulator 
underprediction.  

Line 773: Figure D1b shows how this compromise affects N3, where median BNMBF 
sharply doubles in the green cluster in the blue cluster. However, high N3 values tend to 
be underpredicted by the emulator (Fig. B2), so the true increase in median BNMBF would 
likely be even greater. 

 

Referee 2 

Review of “Detection of structural deficiencies in a global aerosol model to explain 
limits in parametric uncertainty reduction” by Prévost et al. 

This study describes a framework for diagnosing and identifying potential sources of 
structural uncertainties within models using a combination of Perturbed Parameter 
Ensemble (PPE) data (generated using the UKESM) and observational data constraint. 
The structural uncertainty in question focuses on aerosol-radiation parameterizations 



within UKESM, and targets European winter observations of sulfate aerosol, sulfur 
dioxide, AOD, and aerosol particle number concentration. The framework outlined here 
(1) carefully identifies the key causes of parametric uncertainty in the simulation of the 
four observable quantities mentioned above; this uncertainty then (2) informs k-means 
spatial clustering of key parameter influence in three to four main modes over Europe 
which are then emulated to produce a robust array of parameter combinations for each 
cluster and calculate emulator bias in corresponding observational datapoints; next (3) 
observational constrains are applied to corresponding clusters to isolate members that 
reduce bias while simultaneously identifying how the single cluster constraints 
contribute to other cluster bias and illuminate structural bias through diagnosis of 
model precision vs accuracy; finally, this leads to (4) exploration of structural 
uncertainties and their potential causes. 

This work had several key findings that stood out. One is that constraint to observations 
in a given sector does not necessarily improve model-observational agreement in other 
sectors. While this is not the first study to describe this, they support previous work with 
similar findings (summarized in their introduction) by adding a quantitative analysis of 
this phenomenon. This also informed inter-sector comparisons showing that the 
constraints within a sector could lead to competing behavior in different variables. In 
some cases, improving overall model constraints meant greatly weakening the 
constraint to observations, introducing more error in the model-to-observation 
comparisons. This all laid the groundwork for characterizing structural uncertainty in 
aerosol-radiation interactions in UKESM based on cluster and parameter overlap, 
identifying different degrees of structural error and potential causes. 

While my expertise doesn’t lie in many of the statistical methods applied in this work, I 
found the paper compelling, interesting, well written, and logically organized. I thought 
the findings were well-supported by analysis and references, and the figures and 
application told a cohesive story. The one concern I had stems from a question that I 
became a bit fixated on as I read the paper: how do you know if the uncertainty is 
structural or related to the design of your PPE (i.e., missing parameter(s))? In some 
regards, this is still a structural uncertainty, but it comes from the structure of your PPE 
instead of your model. The authors do acknowledge the gray area of the structural 
uncertainty quantification before diving into their results as well as identifying 
parametric choice as a possible structural flag (they mention this briefly in Section 
3.6.1). However, I would have liked to hear their thoughts regarding the potential 
contribution to inferred structural uncertainty that could come from the actual PPE 
design. Perhaps this was deemed small through history matching? This was unclear to 
me, and barring some misunderstanding on my part, it seemed an especially important 
part of the discussion to include in Section 3.6.1 and in the flowchart. Please see my 
one major comment and the minor comments below for more information. 



Overall, I recommend this paper be accepted after minor revisions. 

  

Major comment: 

It seems like the PPE design can have strong implications for the structural uncertainty 
quantification proposed herein, and the degree to which this is contributing wasn’t 
always clear. This seemed most apparent when reading the interpretation of the AOD-
Sulfate discrepancy in Section 3.6.1, where the authors do mention that this spread 
could be caused by lack of exploration of the parameter space. While they mention that 
nitrate and carbonaceous emissions may be factors, could this also be due to a lack of 
dust emission and RI parameters in their PPE? Assuming dust has a significant 
contribution to AOD in the European winter along with nitrate and carbonaceous 
aerosol, if their PPE had included dust emission and RI parameters it seems the 
discrepancy between AOD and sulfate may not have existed as dust could have been 
changed within its uncertainty while sulfate could remain unchanged (same for nitrate 
and carbon). 

I think this should be explored briefly by the authors through some supplemental 
description of aerosol species contributions to AOD across their time period. If dust or 
carbonaceous aerosol have a larger impact than sulfate then this may inform the PPE 
design.  

I would also appreciate a bit more discussion as to the role that the PPE plays in 
interpretation of structural error. If it is significant and could be identified by some key 
characteristics such as the divergent parametric behavior noted in Section 3.6.1, it 
might also be worth adding a connection in Fig. 16 (potentially between “Identify related 
parameterization” and “create PPE”) that describes some expert elicitation on PPE 
design. Please see minor comments for in-text details. 

We thank the reviewer for this comprehensive comment. The points raised here are 
expanded upon in the minor comments, where we address them in detail. 

 

Minor comments 

Line 75: Does history matching operate on an unchanging set of selected parameters 
that vary in their values (i.e., a single PPE), or does it operate on multiple PPEs with 
different parameter lists? Please clarify here and/or in the paper. This gets at a concern I 
have throughout reading this paper which is how one separates the unexplored 
parametric uncertainty (i.e., from missing parameters in your PPE) from structural 
uncertainty. Perhaps history matching gives some confidence in that separation, but if 
the list of parameters remains the same, it seems one may be missing or 



mischaracterizing the parametric uncertainty from parameters that haven't been 
included in the parameter set. 

History matching was not used in this study; it was mentioned in the introduction to 
provide context for alternative approaches to reducing parametric uncertainty. History 
matching typically operates on a single PPE with a fixed set of parameters. It does not 
generally involve multiple PPEs with different parameter lists. 

History matching does not resolve the challenge of separating unexplored parametric 
uncertainty from structural deficiencies. The implausibility metric used in history 
matching accounts for uncertainty in observations, emulator uncertainty and structural 
uncertainty. The uncertainty arising from an incomplete PPE would need to be absorbed 
into the structural uncertainty term, which is very difficult to estimate and therefore 
often arbitrary. 

We address the implications of incomplete PPE design in response to related following 
comments. 

Lines 282-284: “it means that no amount of parameter retuning will bring the model into 
agreement with the observations” – this is true, but this is tied to the chosen parameter 
ranges. How much confidence is there in the preexisting parameter ranges, and could 
they be expanded? Also, could it be that the inclusion of another parameter to the PPE 
might change model sensitivity to preexisting parameter ranges, potentially changing 
the status of the structurally deficient members? 

It is true that this statement only applies to the PPE design (chosen parameters and 
their ranges). However, our choice of parameters is based on more than a decade 
of evaluating causes of aerosol forcing uncertainty in several generations of PPEs with 
the same model. We aim to include a representation of all key processes that affect the 
responses analysed in our PPE design. Parameter responses and ranges are tested 
using one-at-a-time (OAT) tests, and parameters that were previously included but 
found to be inactive have been interchanged in and out of successive PPE designs. 
Furthermore, the elicited parameter ranges are deliberately wide to ensure that all 
realistic options are spanned. 

Line 289: An observation outside the PPE range is a clear indication of the presence of a 
structural model deficiency, as it means that no amount of parameter retuning will bring 
the model into agreement with the observations, given the parameters that were 
included in the PPE and the wide range of values they were perturbed over.. 

Lines 498-500: Are you able to speak to the variation in AOD bias across Europe? Is the 
lower bias in Northern Europe related to being close to the source with more consistent 
seasalt exposure, while the other regions are impacted more by the more unique 
dynamical conditions that might transport seasalt into the mainland of Europe? 



We agree that there is clear variation in AOD bias across Europe, with Southern and 
Western Europe having the largest positive bias and Northern and Central Europe 
having smaller bias. As noted in the text, the high bias in Southern Europe is likely 
influenced by overestimated volcanic SO₂ emissions (Fig. 3 and Sect. 2.6). It is true that 
both Northern and Central Europe clusters have sea salt as a dominant source of 
aerosol (new Fig. E1, explained below) and dominant contributor to parametric 
uncertainty (Fig. 4). However, it is difficult to give definite reasons for this variation in 
bias as we cannot quantify the extent of overestimation coming from excessive volcanic 
SO2 emissions. The parameter range used for volc_so2 was too narrow to capture the 
full uncertainty, hence limited our ability to assess its contribution to the bias. We plan 
to use a wider range in future PPEs, as outlined in Table 2. 

Line 522: change ‘parametrisations’ to ‘parameterisations’ 

Changed.  

Line 594: “…model variants that match high sulfate concentrations…” - I'm fairly certain 
this is in reference to Figure 7, but it would be nice for the reader to have a reference to 
that figure for clarification. 

Agreed. Added a reference to Figure 7. 

Line 610: For the pink cluster (Fig. 10a), model variants that match higher than average 
sulfate concentrations (Fig. 7a) have lower cloud droplet acidity (promoting sulfate 
formation from SO2), lower dry deposition of sulfate and SO2 (increasing aerosol lifetime 
and SO2 concentrations), and higher regional anthropogenic emissions (providing more 
SO2 for conversion). 

Line 598: “…likely because sulfate is not strongly biased there…” - Please justify this 
statement with a figure reference or clarification. Fairly certain you are referencing Fig. 2 
but being more explicit in this section will make it easier to follow for the reader. 

The statement refers to Figure 7, which shows that sulfate bias in the blue cluster is, on 
average, less pronounced compared to the pink cluster.  We have revised the sentence 
to explain this point more clearly and added an explicit reference to Fig. 7. 

Line 613: In contrast, in Fig. 10c, model variants that favourwith lower sulfate 
concentrations in the blue cluster have higher cloud droplet acidity (suppressing sulfate 
formation from SO2) and mid-range dry deposition values., likely because sulfate is not 
strongly biased there, so lower deposition values are not more effective in bringing the 
model into agreement with observations. The constraints on parameter values for the 
blue cluster are weaker because bias there is, on average, smaller than in the pink 
cluster (Fig. 7c and a). 

 



Line 657: Please consider referencing the black points in this citation. Something like: 
'(black points; Fig. 11d)'. 

Agreed and added. Thank you for the suggestion.  

Line 708: ‘Aerosol sulfate is a large component of AOD in polluted regions…’ - Please 
quantify in supplementary or cite where this statement comes from. How large a 
contribution does sulfate have on average to AOD in the time periods analyzed here? I 
think something like a mass weighted contribution of all aerosol species to AOD could 
serve as a good reference. 

Thank you for the suggestion. We have added Fig. E1 in the appendix, which shows the 
contribution of each modal aerosol species to total mass mixing ratio. In the green 
cluster, which this statement referred to, the main aerosol components are sea salt 
(ranging from 50% to 70 %), sulfate (ranging from 20 to 45%) and organic carbon 
(ranging from 15% to 30%). We have revised the sentence to indicate that sulfate is an 
important component of AOD in this cluster rather than the dominant one, and we now 
reference Fig. E1 to support this statement. 

Line 730: Sulfate aerosol is an important component of AOD in Central Europe 
(contributes from 20 to 45% of total aerosol mass mixing ratio, Fig. E1), Aerosol sulfate 
is a large component of AOD in polluted regions, so it is useful to evaluate their 
consistency. 

Additional figure:   



 

Figure E1. Percent contribution of individual aerosol species to the total column aerosol mass (kg m⁻²) in January 2017 

across Europe, based on the PPE ensemble mean. Maps show the spatial distribution of contributions from (a) sea salt, (b) 

sulfate, (c) black carbon, and (d) organic carbon. Percentages are calculated from vertically integrated modal aerosol mass 

mixing ratios. Dust is not included because it is not represented as a modal species in the model. 

 

Line 726-729: This is interesting. I wonder if a high sensitivity to dust is driving your AOD 
overestimation. This may be structural, but it seems it could also be parametric. On this 
note, how do you differentiate structural deficiencies from parametric uncertainty that 
wasn't addressed? Couldn't a dust emission parameter be contributing to structural 
uncertainty due to its not being included in the perturbed parameter list? 

Thank you for raising this point. We have added Appendix Fig. E2 to show the 
contribution of dust to total AOD. While dust can be an important component of aerosol 
in other seasons and regions, its contribution in European winter is minimal in our 
model (<5%), so it is unlikely to drive the AOD overestimation and to contribute to the 
inconsistency between AOD and sulfate.  

Additional figure:  



 

Figure E2. Percent contribution of dust to total AOD in January 2017 across Europe, based on the PPE ensemble mean.  

We agree that dust emission flux could be an important parameter to include in future 
PPEs to provide a more complete analysis of aerosol uncertainty. 

We have added a reference to Fig. E1 and Fig. E2 in this paragraph. 

Line 751: Contributions to AOD in the model are dust, sulfate, sea salt, organic carbon, 
and black carbon aerosol (Fig. E1) and dust (Fig. E2), but only emissions of sea salt and 
sulfate, as well as dimethylsulfide aerosol precursor gasses (dms) were perturbed. AOD 
is also affected by the emission diameters of primary aerosol, which we perturbed.  

 

Line 758-760: I think this statement is very important and may require additional 
elaboration. What stands out to me is that dust/nitrate/carbonaceous emissions and 
dust optical properties were not perturbed within your PPE framework, both of which 
could have a large impact on your AOD. I'm not sure how sensitive dust in the UKESM is 
to meteorological conditions or if it is directly emitted, but I see this as a potential target 
in this comparison. If dust is indeed the culprit for the AOD overestimate, then sulfate is 
getting pushed into unrealistic concentrations to account for it. This is also a parametric 
source of uncertainty, but does this get lumped in with structural uncertainty by virtue of 
its not being included in the parameter list? 

As noted above, dust emissions and optical properties were not perturbed in this PPE, 
but we have shown that dust contributes only minimally to AOD in this study. Nitrate 
was not included in the model and therefore could not be perturbed, and is indeed one 
of the potential structural deficiencies that we later identify. We agree that the omission 



of carbonaceous emissions is significant, particularly given the large contribution of 
organic carbon to AOD in the green cluster (Appendix Fig. E1). This omission could 
contribute to the inconsistency described in Section 3.6.1, as discussed in Line 784. We 
have elaborated the statement in the manuscript. 

Line 785: Furthermore, carbonaceous aerosol emissions were not perturbed in this PPE 
(Regayre et al., 2023). Expanding the set of perturbed emissions in future PPEs will help 
determine whether the apparent inconsistency reflects incomplete , even though organic 
carbon accounts for approximately 15–30% of total aerosol mass mixing ratio in this 
cluster (Fig. E1). Including carbonaceous emissions in future PPEs will be important for 
assessing whether the apparent inconsistency reflects incomplete exploration of 
parameter space rather than a structural limitation. 

We have also added a paragraph in the Discussion section acknowledging that the 
presence of unexplored parametric uncertainties contributes to ambiguity when 
diagnosing structural deficiencies with the current workflow.   

Added paragraph, line 852: The effectiveness of our workflow as a tool for detecting 
structural deficiencies depends on the completeness of the PPE design. If important 
sources of parametric uncertainty are omitted, inconsistencies can fall into a grey area 
where it is difficult to tell whether they arise from unexplored parameter space or from 
genuine structural error. Future PPEs should aim for more comprehensive coverage of 
uncertain processes to reduce this ambiguity and improve confidence in attributing 
inconsistencies to structural deficiencies. 

Line 861: Ideally, the process should be operationalised (Carslaw et al., 2025) as an 
iterative cycle: applying the inconsistency detection workflow, implementing structural 
changes and refining parameter space coverage, then reapplying the workflow to 
evaluate improvements., with a cycle of proposed change implementation and repeat 
application of the inconsistency detection workflow. The intention is that each cycle will 
either reduce existing inconsistencies or reveal new ones that were previously hidden. 
Over time, this iterative process would gradually improve model structure and 
understanding. This iterative process should gradually improve model structure and 
understanding over time. 

Figure 16, ‘identify related parameterization’  ‘what structural deficiency affects the 
parameterisation’: Could another option be that the parameter space may be missing a 
key contributor to the chosen model diagnostic (i.e., AOD)? In this case, would it be 
necessary to reformulate the PPE or add an additional parameter? Not sure how to 
identify when this is the case as it may be considered a structural issue but I see this as 
a potential addition to this workflow. 



Thank you for the useful suggestion. We have added a node in the schematic to suggest 
that refining the coverage of sources parametric uncertainty during the PPE design is an 
important step in this iterative workflow.  

 

Line 815: “…they often point directly to process-level assumptions that are missing, 
misrepresented, or oversimplified.” - I think this is a key comment that could be built on 
for interrogating the PPE design. 

The statement was intended to describe how inconsistencies between constraints can 
be used to diagnose structural deficiencies, such as missing or oversimplified process 
representations, assuming the PPE design includes all relevant sources of parametric 
uncertainty. We have not changed this section, as the limitation regarding incomplete 
PPE design is already addressed in the added paragraph on line 852 following a previous 
comment. 

 

 


