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Abstract: 

The partial pressure of carbon dioxide (pCO₂) on the surface of the ocean is crucial for quantifying and evaluating 10 

the ocean carbon budget. Insufficient consideration of the effects at the sea area scale makes it difficult to 

comprehensively evaluate the spatiotemporal distribution characteristics and variation patterns of pCO₂. This 

study constructed a pCO2 evaluation dataset based on LDEO measurement data and multi-source data. After 

conducting correlation testing on a global, far sea, and near sea scale, an ocean surface pCO₂ evaluation model was 

constructed using multiple linear regression, convolutional neural network, gated recurrent unit, long short-term 15 

memory network, generalized additive model, extreme gradient boosting, least squares boosting, and random 

forest. Performance evaluation indicates that the random-forest model consistently achieves the best accuracy 

across all spatial scales, yielding a global RMSE of 6.123 μatm and an R² of 0.986. In the open ocean, RMSE 

decreases to 4.699 μatm and R² rises to 0.988, whereas in coastal waters RMSE increases to 8.044 μatm and R² 

declines to 0.972. Based on this, the annual sea surface pCO₂ distribution of 0.25°× 0.25°from 2000 to 2019 was 20 

reconstructed. The reconstructed field shows a typical equatorial high/polar low pattern, as well as an overall 

upward trend consistent with independent observations, with acceleration particularly evident in specific regions 

of subtropical coastal oceans. 
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Synopsis： 

This study reconstructs global ocean surface pCO₂ (2000–2019) using multi-source data and machine learning, 

identifying RF as the optimal model and revealing equatorial-high/polar-low patterns with rising trends. 

1. Introduction 

The partial pressure of carbon dioxide on the surface of the ocean (pCO₂) is an important indicator for measuring 30 

the exchange of CO2 between the ocean and the atmosphere, and can evaluate the contribution of the ocean's 

carbon absorption and storage capacity to the global carbon cycle(Falkowski et al., 2000; Jain, 2022) . 

Numerous scholars have conducted research on pCO₂ estimation and distribution reconstruction by combining 

satellite remote sensing data and machine learning algorithms. In the study of sea surface pCO2 in local sea areas, 

Telszewski et al. reconstructed the distribution of pCO₂ in the North Atlantic using self-organizing neural 35 
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networks (Telszewski et al., 2009); Landschützer et al. reconstructed the distribution map of Atlantic sea surface 

pCO₂ using self-organizing map feedforward neural network method (Landschützer et al., 2013). Chierici et al. 

evaluated the feasibility of jointly estimating sea surface pCO₂ in Antarctica and the Pacific region using ship 

borne measured data and remote sensing data (Chierici et al., 2011). Nakaoka et al. established a nonlinear 

relationship between sea surface pCO₂ and multiple parameters based on self-organizing neural networks, and 40 

reconstructed the spatiotemporal variation of sea surface pCO2 in the North Pacific (Nakaoka et al., 2013). 

Marrec et al. used multiple linear regression to estimate the sea surface pCO₂ in the waters of the Northwest 

European continental shelf (Wang et al., 2021). Gregor et al. proposed methods such as support vector regression 

and random forest regression to reconstruct the Southern Ocean surface pCO₂ (Gregor et al., 2017); Wang et al. 

reconstructed the distribution of pCO₂ on the surface of the Southern Ocean using correlation analysis and feed 45 

forward neural networks (Marrec et al., 2015). Lohrenz et al. reconstructed the sea surface pCO₂ in the northern 

Gulf of Mexico using regression tree algorithm (Lohrenz et al., 2021); Chen et al. compared the performance of 

various methods in estimating surface pCO₂ in the Gulf of Mexico (Chen et al., 2019); Fu et al. applied cubist 

models to estimate pCO₂ on the surface of the Gulf of Mexico (Fu et al., 2020). Zhang et al. constructed a sea 

surface pCO₂ regression model for the Baltic Sea region (Zhang et al., 2021). In the study of global ocean surface 50 

pCO2, Landschützer et al. expanded the research scope to the global level, reconstructed the pCO₂ distribution map 

from 1998 to 2011, and further extended it to 1982 to 2011 (Landschützer et al., 2014; Landschützer et al., 

2016). Gregor et al. reconstructed the pCO₂ distribution using various nonlinear regression methods (Gregor et al., 

2019). Zhong et al. used generalized regression neural network and stepwise regression algorithm to construct the 

pCO₂ distribution map (Guorong et al., 2020), and combined stepwise regression algorithm and feed forward 55 

neural network, constructed a 1°× 1°pCO₂ distribution map from 1992 to 2019 according to the 11 biogeochemical 

provinces defined by the self-organizing map method (Zhong et al., 2020). 

By summarizing previous research, the key limitations of current sea surface pCO2 are:  

(1) Insufficient Consideration of Spatial Heterogeneity 

Most existing studies either focus on a single local sea area (e.g., the North Atlantic, Gulf of Mexico, Baltic Sea) or 60 

adopt a unified global modeling framework, neglecting the significant differences in environmental conditions, 

driving factors, and pCO₂ variation characteristics between far sea areas and near sea areas. 

To address this issue, our study constructs a multi-scale analysis framework covering the global ocean, far sea 

areas (water depth > 200 meters), and near sea areas (water depth ≤ 200 meters). The research areas are divided 

into far sea areas and near sea areas based on water depth, and scale-specific pCO₂ evaluation models are 65 

established. For the environmentally stable far sea areas, we emphasize capturing long-term temporal 

dependencies and signals of large-scale hydrological and biological processes. For near sea areas affected by 

various complex factors, we incorporate region-specific driving factors and optimize the model structure to adapt 

to high variability. This targeted approach effectively improves the fitting accuracy and adaptability of the models 

in different sea area types. 70 

(2) Inadequate Adaptability Between Models and Driving Factors 

Existing studies mostly adopt fixed model structures or globally unified combinations of driving factors, failing to 

fully consider the requirements of environmental complexity differences in different sea areas for model 

adaptability. Additionally, the selection of driving factors lacks targeting, making it difficult for the models to 

accurately capture the core impact mechanisms of pCO₂ in different regions. 75 

We resolve this limitation through the comprehensive optimization of models and driving factors: we compared 

eight machine learning models and identified the Random Forest (RF) model as the optimal model across all scales. 

Its advantage in capturing complex nonlinear relationships enables it to adapt to the environmental characteristics 

of different sea areas. Meanwhile, based on Spearman correlation analysis and the SHAP (SHapley Additive 
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exPlanations) method, we screened key driving factors for each scale (e.g., Total alkalinity in sea water (talk) 80 

serves as the secondary key factor at the global scale, while the contribution rate of mole concentration of 

dissolved molecular oxygen in sea water (O₂) significantly increases in near sea areas), ensuring the rationality and 

targeting of driving factor selection. 

(3) Low Reconstruction Resolution 

Some existing studies lack the overall processing of spatiotemporal differences in multi-source data, resulting in 85 

low spatial resolution of pCO₂ reconstruction products (mostly 1°×1° or coarser), which makes it difficult to 

accurately reflect the spatiotemporal variation characteristics of pCO₂ within small scales. 

We address this limitation through high-resolution and high-precision reconstruction strategies: by processing 

multi-source data (including strict data matching, outlier handling, and data balancing strategies), we reconstructed 

the annual pCO₂ distribution with a high resolution of 0.25°×0.25° from 2000 to 2019. The results demonstrate that 90 

the accuracy of pCO₂ reconstruction is significantly improved compared with existing studies. 

2. Methodology 

2.1 Research Area 

The global ocean, excluding the perennial ice-covered waters in the core area of the Arctic Ocean and the 

permanently frozen areas around the Antarctic continent, has a total area of 336 million square kilometers, 95 

accounting for approximately 92.8% of the global ocean surface area. This research focuses on the 0–10-meter 

water layer in the ocean surface, which is a critical interface for air sea exchange. Due to the complex types of 

water bodies, sea surface pCO₂ is influenced by various factors. The global ocean was divided into research area 

scales based on water depth, identifying the areas beyond the continental shelf (water depth > 200 meters) as far 

sea areas and the areas within the range (water depth ≤ 200 meters) as near sea areas. 100 

2.2 Data sources 

2.2.1 Actual measurement data 

The measured data of pCO₂ is sourced from Global Surface pCO₂ (LDEO) Database V2019 (OCADS - Global 

Surface pCO₂ (LDEO) Database (noaa. gov)). This dataset covers 14.2 million measured data from 1957 to 2019 

using the equalizer CO₂ analyzer system in the global ocean. The dataset provides various types of sea surface 105 

pCO₂ measured data. This study selected ocean surface pCO₂ values measured at actual temperatures from 2000 to 

2019, which can truly reflect the pCO₂ level at the time of measurement. 

2.2.2 Other data 

A total of 25 potential influencing factors were selected for the study (Table 1), and their abbreviations are used for 

convenience. These data are divided into three types of sources: in-situ observations, satellite observations, and 110 

numerical models, with good spatiotemporal resolution and coverage, providing reliable data sources for research. 

Table 1. Specific information about influencing factors (sort based on its resolution and name) 

Variable name 
Abbre

viation 

Spatia

l 

resolut

ion 

Temporal 

resolution 
Data type DOI 

Mass concentration of 

chlorophyll a in sea water 
chl 0.036 Daily 

Satellite 

observations 

https://doi.org/10.48670/moi-002

81 

Volume attenuation coefficient of kd490 0.036 Daily Satellite https://doi.org/10.48670/moi-002
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downwelling radiative flux in sea 

water 

observations 81 

Ocean mixed layer thickness 

defined by sigma theta 

mlotst

* 
0.083 Daily 

Numerical 

models 

https://doi.org/10.48670/moi-000

21 

Sea water salinity so 0.083 Daily 
Numerical 

models 

https://doi.org/10.48670/moi-000

21 

Sea water potential temperature thetao 0.083 Daily 
Numerical 

models 

https://doi.org/10.48670/moi-000

21 

Eastward sea water velocity uo 0.083 Daily 
Numerical 

models 

https://doi.org/10.48670/moi-000

21 

Northward sea water velocity vo 0.083 Daily 
Numerical 

models 

https://doi.org/10.48670/moi-000

21 

Sea surface height above geoid zos 0.083 Daily 
Numerical 

models 

https://doi.org/10.48670/moi-000

21 

Sea surface density dos 0.125 Daily 

In-situ 

observations 

Satellite 

observations 

https://doi.org/10.48670/moi-000

51 

Sea surface salinity sos 0.125 Daily 

In-situ 

observations 

Satellite 

observations 

https://doi.org/10.48670/moi-000

51 

Mole concentration of nitrate in 

sea water 
no3 0.25 Daily 

Numerical 

models 

https://doi.org/10.48670/moi-000

19 

Mole concentration of dissolved 

molecular oxygen in sea water 
o2 0.25 Daily 

Numerical 

models 

https://doi.org/10.48670/moi-000

19 

Mole concentration of phosphate 

in sea water 
po4 0.25 Daily 

Numerical 

models 

https://doi.org/10.48670/moi-000

19 

Mole concentration of silicate in 

sea water 
si 0.25 Daily 

Numerical 

models 

https://doi.org/10.48670/moi-000

19 

Surface geostrophic eastward sea 

water velocity 
ugos 0.25 Daily 

Numerical 

models 

In-situ 

observations 

Satellite 

observations 

https://doi.org/10.48670/mds-003

27 

Surface geostrophic northward 

sea water velocity 
vgos 0.25 Daily 

Numerical 

models 

In-situ 

observations 

Satellite 

observations 

https://doi.org/10.48670/mds-003

27 

Ocean mixed layer thickness mlotst 0.25 Weekly 
In-situ 

observations 

https://doi.org/10.48670/moi-000

52 

https://doi.org/10.48670/moi-00021
https://doi.org/10.48670/moi-00021
https://doi.org/10.48670/moi-00021
https://doi.org/10.48670/moi-00021
https://doi.org/10.48670/moi-00051
https://doi.org/10.48670/moi-00051
https://doi.org/10.48670/moi-00051
https://doi.org/10.48670/moi-00051
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Satellite 

observations 

Sea water temperature to 0.25 Weekly 

In-situ 

observations 

Satellite 

observations 

https://doi.org/10.48670/moi-000

52 

Eastward wind uwind 0.25 Monthly 
Satellite 

observations 

https://doi.org/10.48670/moi-001

81 

Northward wind vwind 0.25 Monthly 
Satellite 

observations 

https://doi.org/10.48670/moi-001

81 

Aragonite saturation state in sea 

water 
ar 1 Monthly 

In-situ 

observations 

https://doi.org/10.48670/moi-000

47 

Calcite saturation state in sea 

water 
ca 1 Monthly 

In-situ 

observations 

https://doi.org/10.48670/moi-000

47 

Sea water ph reported on total 

scale 
ph 1 Monthly 

In-situ 

observations 

https://doi.org/10.48670/moi-000

47 

Total alkalinity in sea water talk 1 Monthly 
In-situ 

observations 

https://doi.org/10.48670/moi-000

47 

Dissolved inorganic carbon in sea 

water 
tco2 1 Monthly 

In-situ 

observations 

https://doi.org/10.48670/moi-000

47 

2.3 Data Processing 

2.3.1 Data Matching 

To reduce the impact of spatial and temporal resolution differences in multi-source data, we adopted a dual 115 

matching strategy to process pCO₂ measured data and potential influencing factors. In the temporal dimension, 

influencing variables were first aligned with the in-situ pCO₂ observations; temporal gaps were subsequently 

infilled via nearest-time interpolation to ensure chronological consistency. In the spatial dimension, data points 

were aligned through precise geographic coordinate matching algorithms, and nearest neighbor interpolation was 

used to supplement missing points to improve spatial accuracy. After matching, each point contains the measured 120 

value of pCO₂, environmental variables, and corresponding spatiotemporal information (year, month, lat, lon). 

2.3.2 Analysis of Outliers 

The study conducted quality control on the matched data by removing missing values generated during the 

matching process. According to data statistics and previous research experience (Wu et al., 2024), measured data 

below 200 μatm and above 600 μatm are classified as outliers. The spatial distribution of outliers is mainly 125 

concentrated in coastal areas, reflecting the variability of land sea interaction effects. Outliers are valuable sample 

data for the study of pCO₂. Through comparative analysis of each route, it was found that many outliers matched 

the route, and it was determined that their outliers were caused by environmental changes rather than measurement 

errors. Therefore, valid outliers were retained and only obvious measurement error data were removed. For other 

environmental variable values, abnormal data was identified and removed based on the 3σcriterion (μ±3σ). 130 

2.3.3 Data Balancing 

The processed global ocean data was divided into far sea and near sea datasets (Figure 1a, b, c). Statistical analysis 

shows that the spatial and temporal distribution of data is uneven. Therefore, a 0.25°× 0.25°grid was used for 

spatial binning, and time binning was performed monthly to construct a spatiotemporal joint binning unit. The 
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granularity setting of this box not only meets the research accuracy requirements, but also maintains compatibility 135 

with the spatiotemporal resolution of multi-source data. 

Take the arithmetic mean of the data within each unit as the representative value, with the spatial position 

represented by the grid center point, and the time calculated as the weighted average based on the distribution of 

data points (Formula 1). This method effectively balances the data distribution while ensuring accuracy. 

tavg = 
∑ wi
n
i=1 ti

∑ wi
n
i=1

 (1) 

wi = Δti (2) 

In the formula, tavg is the weighted average time of the spatiotemporal box, n is the total amount of data in the 140 

spatiotemporal box, wi is the weight of the i-th data point, ti is the time of the i-th data point, and Δti is the sampling 

time interval between the i-th data point and the previous point. After data balancing processing, the dataset for this 

study was finally constructed, laying a solid data foundation for the construction of multi-scale models. 

 

(a) 

 

(b) 
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(c) 

Figure 1. The spatiotemporal distribution of datasets at different scales. (a)Global spatial distribution of 

ocean data. (b)Spatial distribution of data in far sea areas. (c)Spatial distribution of data in near sea areas. 145 

2.4 Spearman correlation analysis of pCO2 drivers 

The potential influencing factors involved do not fully follow a normal distribution, and there is a non-linear 

relationship between pCO₂. Therefore, selecting appropriate correlation indicators is particularly crucial. The 

Spearman correlation coefficient can effectively reveal the correlation between data (Formula 3).  

ρ = 1 - 
6∑ Di

2
n

i=1

n(n2-1)
 (3) 

 150 

In the formula, ρ represents the correlation coefficient, D represents the level difference of the variable, and n 

represents the sample size of the variable. The range of values for ρ is between -1 and 1, where -1 indicates a 

complete negative correlation between the influencing factors and pCO₂, 1 indicates a complete positive 

correlation, and 0 indicates no correlation. 

2.5 Model selection 155 

To evaluate the modeling ability of different algorithms for pCO₂, we constructed eight comparative models at 

different research regions, including multiple linear regression (MLR),convolutional neural network (CNN), gated 

recurrent unit (GRU), long short term memory (LSTM),generalized additive models (GAM), extreme gradient 

boosting (XGBoost), least squares boosting (LSBoost), and random forest (RF). MLR serves as a baseline that 

linearly links temperature, salinity and nutrients to sea-surface pCO₂. CNN extracts spatial features via 160 

convolution and pooling layers to produce fine-scale pCO₂ distributions, while GRU and LSTM, with their 

update-reset gates and memory cells, capture long-term temporal dependencies of oceanic periodic changes on 

pCO₂ for historical-to-future prediction. GAM relaxes the linearity assumption by modeling each predictor’s 

additive nonlinear effect on pCO₂. XGBoost and LSBoost iteratively optimize tree ensembles through gradient 

boosting or weighted residuals to uncover complex nonlinear relationships between high-dimensional features and 165 

pCO₂. Finally, RF constructs and averages many decision trees on random feature subsets, delivering robust pCO₂ 

estimates for large-scale ocean datasets. 

2.6 Performance evaluation 
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The datasets at different research regions were randomly divided into training, validation, and testing sets in an 

8:1:1 ratio. Five statistical methods, Mean Absolute Error (MAE, μatm) – the average absolute difference 170 

between predicted and in-situ pCO₂, indicating overall bias; Mean Absolute Percentage Error (MAPE, %)–the 

relative error scaled by the observed pCO₂, enabling comparison across regions with contrasting background 

concentrations; Mean Squared Error (MSE, μatm²) – the squared deviations averaged over all samples, 

emphasizing larger pCO₂ discrepancies; Root Mean Squared Error (RMSE, μatm) – the square root of MSE, 

providing a metric in the original pCO₂ units that is sensitive to outliers; Coefficient of Determination (R²) – the 175 

proportion of pCO₂ variance explained by the model, with values approaching unity signifying high predictive 

skill. 

MAE = 
1

n
∑ |ŷ

i
-y

i
|

n

i=1

 (4) 

MAPE = 
100%

n
∑ |

ŷi-yi

yi

|
n

i=1

 (5) 

MSE = 
1

n
∑ (ŷ

i
-y

i̇
)

2
n

i=1

 (6) 

RMSE = √
1

n
∑ (ŷ

i
-y

i
)

2
n

i=1

 (7) 

R² = 1 - 
∑ (yi-ŷi)

2n

i=1

∑ (yi-y̅i)
2n

i=1

 (8) 

In the formula, n is the number of pCO₂ observations; y
i
 denotes the in-situ measured pCO₂ (μatm) for the i-th 

sample, ŷ
i
 is the corresponding model-estimated pCO₂, y̅

i
 represents the mean of all measured pCO₂ values. 

3. Results and discussion 180 

3.1 Correlation detection 

3.1.1 Interaction detection 

Interactive detection of variables was conducted in global oceans, far sea areas, and near sea areas (Figure 2). The 

concentration of chlorophyll and the volume attenuation coefficient of downwelling radiative flux have a ρ-value 

of 1 at all research area scales, indicating collinearity in numerical values. However, they respectively reflect 185 

marine biological activity and optical properties, providing comprehensive information for fitting surface pCO2. 

The ρ value between the aragonite saturation state in sea water and aragonite in seawater is also 1, and they are 

positively correlated with the same magnitude of change. This usually stems from chemical equilibrium processes 

in seawater, where the dissolution and precipitation processes are influenced by similar physical and chemical 

conditions. The correlation between sea water potential temperature and sea water temperature is extremely high, 190 

but their physical meanings are different. The former reflects the equivalent temperature after considering pressure, 

while the latter reflects the actual temperature. Both can comprehensively capture temperature characteristics and 

improve the accuracy of surface pCO₂ evaluation. 
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（a） 

 

（b） 
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（c） 

Figure 2. Results of interaction detection between variables at different research area scales. (a)Global 

Ocean Interaction Detection Results. (b)Interaction detection results in far sea areas. (c)Interactive 195 

detection results in near sea areas. 

3.1.2 Single factor detection 

The correlation between surface pCO₂ and various influencing factors (Figure 3) was analyzed. The results 

indicate that at different regional scales, there is a significant negative correlation between pCO₂ and ph, meaning 

that the stronger the acidity of seawater, the higher the surface pCO₂; the stronger the alkalinity, the lower the 200 

surface pCO₂. At the same time, surface pCO₂ is significantly positively correlated with temperature. In far sea 

areas, the negative correlation between pCO₂ and chlorophyll concentration and diffuse reflectance attenuation 

coefficient is more significant, indicating that it has higher stability and balance in regulating pCO₂. In contrast, the 

above correlation in near sea areas is weaker due to land-based pollution, human activities, and environmental 

changes, but the negative correlation between pCO₂ and seawater acidity is stronger. When selecting variables, the 205 

study included factors with a p-value greater than 0.1 or less than -0.1 in the screening range to ensure the validity 

of the results and improve model performance (Table 2). Additionally, SHAP method was used to quantitatively 

evaluate the contributions of various influencing factors to surface pCO₂ (Ge, Patino, Todisco, & Evans, 2022). 

There were differences in the contributions of influencing factors at different scales. The ph is the core driving 

factor at all scales, but its contribution intensity follows a distribution pattern of "far sea areas > global oceans > 210 

near sea areas"; The contribution of other factors shows significant regional heterogeneity, such as talk being the 

second key factor at the global ocean scale, while the contribution rate of o₂ in near sea areas has significantly 

increased, making ar a region specific factor. 

Table 2. Selection results of influencing factors at different area scales 

Research scale Influence factor 

Global Ocean 
ph、o2、chl、kd490、dos、uwind、po4、lon、zos、month、sos、year、talk、ca、so、ar、

to、thetao 

Far sea 
ph、chl、kd490、o2、dos、lon、uwind、po4、zos、month、sos、talk、so、ca、ar、year、

to、thetao 

Near sea 
ph、o2、po4、lat、dos、no3、chl、kd490、mlotst*、tco2、lon、 month、ca、ar、sos、

so、talk、to、thetao 
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（a） （b） （c） 

Figure 3. Single factor detection results at different research area scales. (a)Global ocean single factor 215 

detection results. (b)Far sea single factor detection results. (c)Near sea single factor detection results 

3.2 Model construction and evaluation 

3.2.1 Construction and evaluation of global ocean surface pCO2 model 

Based on the correlation analysis results of the above factors, this study selected key driving factors to construct 

and evaluate a global sea surface pCO₂ reconstruction model. Owing to the large amount of data, we randomly 220 

selected some data from all the fitting results to show the observation performance. Different models exhibit 

significant performance differences in evaluating surface pCO₂ at the global ocean scale (Figure 4). Specifically, 

there is a significant gap between the model values of MLR, CNN, and GRU and the true values, especially in the 

low value (<300 μatm) and high value (>500 μatm) ranges where the fitting effect is poor (Table 3). The deviation 

is due to the model's insufficient ability to capture nonlinear relationships in complex marine environments, 225 

limitations in handling extreme values, and the model's own structure is not sufficient to adapt to complex data 

features. The LSTM and GAM models have relatively large errors and poor performance, indicating deficiencies 

in capturing the characteristics of surface pCO₂ changes. When extreme fluctuations occur in surface pCO₂, the 

fitting ability significantly decreases. The comprehensive performance of XGBoost and LSBoost has significantly 

improved, with MAE reduced to 15 μatm~18 μatm, RMSE reduced to 25 μatm~30 μatm, and R² exceeding 0.7. 230 

The effective explanation of multivariate nonlinear relationships and the application of model ensemble strategies 

have improved the accuracy of the two models within the normal range (300 μatm~500 μatm), but the extreme 

values processing still needs to be improved. The performance of RF is the best among all models, with MAE 

reduced to below 4 μatm, RMSE reduced to around 6 μatm, and R² reaching above 0.9. It not only achieves 

accurate fitting in the range of 300 μatm~500 μatm values, but also in the low and high value ranges. The good 235 

adaptability of RF to high-dimensional data and a large number of samples makes it perform well in fitting tasks in 

complex marine environments. 

Table 3. Performance parameters of different models in the global ocean 

Model MAE/μatm MAPE MSE/μatm² RMSE/μatm R² 

T
ra

in
in g
 

RF 3.895 0.011 46.162 6.794 0.983 
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LSBoost 15.626 0.045 664.186 25.772 0.783 

XGBoost 17.262 0.051 908.879 30.148 0.703 

GAM 19.903 0.058 1398.695 37.399 0.543 

LSTM 18.664 0.055 1430.072 37.816 0.533 

GRU 19.053 0.056 1480.157 38.473 0.516 

CNN 19.903 0.058 1484.621 38.531 0.515 

MLR 19.952 0.058 1615.155 40.189 0.472 

V
al

id
at

io
n

 

RF 3.902 0.011 46.099 6.790 0.983 

LSBoost 15.604 0.045 661.203 25.714 0.788 

XGBoost 17.255 0.051 910.387 30.173 0.708 

GAM 19.905 0.058 1429.372 37.807 0.541 

LSTM 18.675 0.055 1463.378 38.254 0.529 

GRU 19.059 0.056 1515.286 38.927 0.513 

CNN 19.901 0.058 1520.882 38.999 0.511 

MLR 19.969 0.058 1656.093 40.695 0.468 

T
es

ti
n

g
 

RF 3.697 0.010 37.485 6.123 0.986 

LSBoost 15.602 0.045 660.401 25.698 0.785 

XGBoost 17.284 0.051 914.165 30.235 0.703 

GAM 19.916 0.058 1399.851 37.415 0.545 

LSTM 18.690 0.055 1431.489 37.835 0.535 

GRU 19.079 0.056 1483.044 38.510 0.518 

CNN 19.927 0.058 1488.331 38.579 0.516 

MLR 19.982 0.058 1621.378 40.266 0.473 

   
（a）MLR 

   
（b）CNN 
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（c）GRU 

   
（d）LSTM 

   
（e）GAM 

   
（f）XGBoost 

   
（g）LSBoost 
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（h）RF 

   

（a）MLR 

   

（b）CNN 

   

（c）GRU 

   

（d）LSTM 
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（e）GAM 

   

（f）XGBoost 

   

（g）LSBoost 

   

（h）RF 

Figure 4. Model performance at the global ocean 

3.2.2 Construction and evaluation of surface pCO2 model in far sea areas 240 

The far sea environment is relatively stable, and the model performance has been improved (Table 4). The bias of 

MLR, CNN, and GRU models has been reduced, with MAE ranging from 14 μatm to 15 μatm, RMSE above 26 

μatm, and R² remaining around 0.6. The MAE of LSTM and GAM is around 14 μatm; RMSE is above 25 μatm, 

and R² is around 0.64. The performance of the two models has improved compared to extreme value ranges, thanks 

to the ability of LSTM to process time series data and capture the dynamic characteristics of surface pCO₂ over 245 

time, and GAM fitted the relationship between surface pCO₂ and influencing factors by constructing a nonlinear 

additive model. XGBoost and LSBoost perform even better in far sea areas, especially with high fitting accuracy in 

the range of 300 μatm~500 μatm, MAE around 11 μatm~13 μatm, RMSE reduced to below 23 μatm, and R² 

increased to around 0.8. The model performance of RF in far sea areas is also optimal, relying on strong 
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generalization ability and feature selection mechanisms to effectively address the variability factors in marine 250 

environments. 

Table 4. Performance parameters of different models in the far sea areas 

Model MAE/μatm MAPE MSE/μatm² RMSE/μatm R² 

T
ra

in
in

g
 

RF 3.068 0.009 27.456 5.240 0.985 

LSBoost 11.509 0.033 337.852 18.381 0.813 

XGBoost 13.191 0.038 500.054 22.362 0.723 

GAM 14.066 0.040 623.501 24.970 0.654 

LSTM 14.160 0.041 647.853 25.453 0.641 

GRU 14.377 0.041 665.920 25.805 0.631 

CNN 14.882 0.043 681.120 26.098 0.623 

MLR 15.274 0.044 737.902 27.164 0.591 

V
al

id
at

io
n

 

RF 3.061 0.009 27.110 5.207 0.985 

LSBoost 11.532 0.032 338.102 18.388 0.814 

XGBoost 13.243 0.038 511.318 22.612 0.719 

GAM 14.143 0.040 644.144 25.380 0.646 

LSTM 14.219 0.040 667.947 25.845 0.632 

GRU 14.441 0.041 686.351 26.198 0.622 

CNN 14.929 0.042 701.278 26.482 0.614 

MLR 15.336 0.043 758.818 27.547 0.582 

T
es

ti
n

g
 

RF 2.900 0.008 22.082 4.699 0.988 

LSBoost 11.521 0.032 339.772 18.433 0.813 

XGBoost 13.223 0.038 508.771 22.556 0.720 

GAM 14.104 0.040 638.362 25.266 0.649 

LSTM 14.201 0.040 663.510 25.759 0.635 

GRU 14.423 0.041 681.866 26.113 0.625 

CNN 14.914 0.042 696.718 26.395 0.617 

MLR 15.316 0.043 754.142 27.462 0.585 

3.2.3 Construction and evaluation of surface pCO2 model in near sea areas 

Due to various complex factors, the spatiotemporal distribution of surface pCO₂ in the near sea area exhibits high 255 

variability, resulting in a decrease in the performance of the constructed surface pCO2 models. Table 5 results show 

that MLR, CNN, and GRU have limitations in handling complex nonlinear relationships. In the low and high value 

ranges, the MAE of the three models reaches over 34μatm, RMSE reaches over 62 μatm, and R² is below 0.5. 

LSTM constructs a nonlinear additive model through its gating mechanism and GAM, which improves the fitting 

ability to a certain extent. The MAE of the model is in the range of 33 μatm~34 μatm; the RMSE is in the range of 260 

56 μatm~58 μatm, and the R² remains in the range of 0.55~0.60, but there is still deviation in the extreme 

numerical range. XGBoost and LSBoost improved the accuracy of fitting extreme values by constructing multiple 

weak learners to combine the fitting results. The MAE of both models decreased to around 23 μatm~27 μatm, the 

RMSE remained around 35 μatm~42 μatm, and the R²increased to the range of 0.75~0.85. RF constructed multiple 

decision trees and integrated the fitting results to adapt to the variability and variability of the near sea environment, 265 

demonstrating robust fitting performance. Its MAE was below 5 μatm; RMSE was about 8 μatm, and R² remained 

above 0.95, significantly outperforming other models. 
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Table 5. Performance parameters of different models in the near sea areas 

Model MAE/μatm MAPE MSE/μatm² RMSE/μatm R² 

T
ra

in
in

g
 

RF 5.396 0.016 98.332 9.916 0.977 

LSBoost 23.673 0.071 1267.869 35.607 0.833 

XGBoost 27.298 0.083 1783.422 42.231 0.765 

GAM 34.088 0.102 3058.776 55.306 0.597 

LSTM 32.738 0.100 3273.977 57.219 0.569 

GRU 34.022 0.103 3754.637 61.275 0.505 

CNN 36.309 0.110 3989.599 63.163 0.474 

MLR 36.264 0.109 4426.775 66.534 0.417 

V
al

id
at

io
n

 

RF 5.346 0.016 93.028 9.645 0.978 

LSBoost 23.604 0.071 1263.495 35.546 0.832 

XGBoost 27.234 0.083 1766.706 42.032 0.765 

GAM 34.040 0.102 3033.228 55.075 0.596 

LSTM 32.686 0.100 3259.080 57.088 0.566 

GRU 33.987 0.103 3727.152 61.050 0.504 

CNN 36.239 0.110 3955.729 62.895 0.474 

MLR 36.188 0.109 4387.955 66.242 0.416 

T
es

ti
n

g
 

RF 4.756 0.014 64.708 8.044 0.972 

LSBoost 23.564 0.071 1244.921 35.283 0.839 

XGBoost 27.299 0.083 1788.363 42.289 0.769 

GAM 34.204 0.102 3134.086 55.983 0.595 

LSTM 32.911 0.100 3394.342 58.261 0.562 

GRU 34.236 0.103 3904.309 62.485 0.496 

CNN 36.465 0.110 4132.316 64.283 0.466 

MLR 36.405 0.109 4594.537 67.783 0.406 

3.3 Independent validation of the model 270 

The surface pCO₂ models were independently validated at different regional scales, inputting data independent of 

the model construction, comparing the accuracy of the fitted values with the true values, and evaluating the 

applicability and accuracy of the model in complex marine environments. The scatter plot with true values as the 

x-axis and fitted values as the y-axis was drawn, with colors representing kernel density to reflect the distribution 

trend of points. At the global ocean scale (Figure 5), the scatter distribution of MLR, CNN, GRU, LSTM, and 275 

GAM shows a large elliptical shape, and the fitted values deviate significantly from the true values, especially 

around the extreme value of pCO2 on the sea surface. The scatter distributions of XGBoost and LSBoost have 

shrunk. The RF model has the best fitting performance, with a clear convergence of the scatter distribution, 

concentrated on Y=X line, and can effectively avoid errors in the extreme value region, indicating that its fitted 

value is consistent with the true value and has good stability. 280 
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（g） （h） 

Figure 5. Independent verification performance of the models in the global ocean, right axis: Normalized 

probability density of model residuals. ((a) MLR, (b) CNN, (c) GRU, (d) LSTM, (e) GAM, (f) XGBoost, (g) 

LSBoost, (h)RF) 

In far sea areas (Figure 6), the scatter points of MLR, CNN, GRU, LSTM, GAM, and XGBoost models exhibit 

elliptical distribution and diverge at both ends, indicating their limitations in dealing with extreme fluctuations of 285 

surface pCO₂. The scatter distribution ellipse of the LSBoost model significantly shrinks, and the divergence 

situation converges at extreme values, improving the fitting accuracy. The scatter distribution of the RF model is a 

flat ellipse, with the minimum difference between the fitted value and the true value, effectively reducing extreme 

errors. 

  
（a） （b） 
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（c） （d） 

  
（e） （f） 

  
（g） （h） 

Figure 6. Independent verification performance of the models in the far sea areas, right axis: Normalized 290 

probability density of model residuals. ((a) MLR, (b) CNN, (c) GRU, (d) LSTM, (e) GAM, (f) XGBoost， 

(g) LSBoost, (h)RF) 

In the independent validation of models in near sea areas, each model showed different performances (Figure 7). 

The scatter of MLR, CNN, GRU, and LSTM shows an irregular distribution, with significant differences between 

the fitted values and the true values, and severe divergence in high-value areas. This is due to the high variability in 295 

near sea areas, which makes it difficult for the model to cope with. The scatter distribution of GAM and XGBoost 

has begun to show an elliptical shape, which has certain adaptability to complex environments. The scatter 
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distribution of LSBoost shows a clear elliptical shape, which improves the fitting stability. The RF model shows 

significant improvement in performance, with overall convergence of scatter distribution and no significant 

divergence in both low and high value oceans. It can effectively reduce extreme errors and reconstruct surface 300 

pCO₂ with high accuracy in complex near sea environments. 

  
（a） （b） 

  
（c） （d） 

  
（e） （f） 
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（g） （h） 

Figure 7. Independent verification performance of the models in the near sea areas, right axis: Normalized 

probability density of model residuals. ((a) MLR, (b) CNN, (c) GRU, (d) LSTM, (e) GAM, (f) XGBoost， 

(g) LSBoost, (h)RF) 

3.4 Reconstruction of surface pCO2 305 

The multi-source data was input into the constructed RF model at different area scales, with extracting the variable 

values of influencing factors from the multi-source data grid by grid to fit the surface pCO₂ values of the 

corresponding grid. If there are missing values in a certain grid in the multi-source data, the corresponding surface 

pCO₂ value at that location will be output as a blank value, ensuring that the reconstructed results are completely 

based on the original data. The blank values are mainly due to the systematic exclusion of land pixels and the 310 

limitations of data acquisition in high latitude sea areas: the former is excluded because it does not participate in 

ocean processes, while the latter is due to the lack of satellite data for key parameters caused by sea ice coverage or 

insufficient light, resulting in the inability to reconstruct the values in the region. The final generation of the 

surface pCO₂ distribution map for the year 2000~2019 at 0.25°× 0.25°is based on the original data. 

The reconstruction results of surface pCO₂ at the global ocean scale are consistent with the distribution 315 

characteristics of LDEO actual observation data, confirming that the RF model can effectively capture the spatial 

distribution pattern of global ocean surface pCO₂. Through the reconstruction results (Figure 8), it was found that 

the spatial distribution of surface pCO₂ exhibits a clear latitude dependence, with a distribution pattern of "high at 

the equator and low at the poles". The independent observation data based on the route was compared with the 

reconstruction results obtained at the closest collection time. The global ocean surface pCO₂ reconstruction result 320 

showed MAE of 11.067 μatm, MAPE of 0.037, MSE of 396.060 μatm², RMSE of 19.901 μatm, and R2 of 0.816. 

This indicates that the deviation between the reconstructed results and the actual observed data is small, and can 

accurately reflect the average distribution characteristics of surface pCO₂. 
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Figure 8. Surface ocean pCO2 products in the global ocean 325 

  

（a）Zhong et al.(2022) product 
（b）Copernicus global ocean surface carbon 

product 

Figure 9. Comparison of surface ocean pCO₂ products from different studies 

Compared with other existing studies on the reconstruction of surface pCO₂ (Figure 9), these methods are highly 

consistent with our results in the reconstructed spatial model pattern (Zhong et al., 2022; Chau et al., 2021; Chau 

et al., 2022). Although different studies have used different data sources, models, or methods, similar conclusions 

can be drawn when describing the overall distribution characteristics of pCO₂ on the global ocean surface, which to 330 

some extent verifies the reliability and accuracy of the reconstructed results. This study uses high-resolution data 

and RF models to make the reconstruction results more detailed, especially in the high latitude marginal sea areas 

of the North and South Poles. 

The reconstruction results of the far sea region showed that the surface pCO₂ in the equatorial low latitude region 

was higher, while the surface pCO₂ in the polar high latitude region was lower (Figure 10). We evaluated the 335 

difference in fitting accuracy between the far sea regional model and the global ocean model in the far sea areas, by 

comparing independent observation data based on flight routes with the reconstructed results of the two models. 

The results showed that the MAE of the far-sea model was 9.060   μatm, the MAPE was 0.027, the MSE was 

269.511 μatm², the RMSE was 16.417μatm, and R² was 0.826; the MAE of the global model was 9.125 μatm, the 

MAPE was 0.027, the MSE was 275.582 μatm², the RMSE was 16.601 μatm, and R² was 0.822.The reconstruction 340 

accuracy of the far sea area model has slightly improved compared to the global ocean model in the far sea area 

(Figure 11), indicating that the optimization of the far sea area model in local areas has improved the 
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reconstruction accuracy. However, the global ocean model can still provide accurate surface pCO₂ fitting in the far 

sea area by adapting to the overall ocean environment. 

To verify the accuracy of the time series reconstruction of the model, a comparative analysis was conducted on the 345 

temporal changes between the observation data of the Hawaii Ocean Time series (HOT) and the reconstruction 

results of the global ocean and far sea areas (Figure 12). The results showed that the temporal trends of both scales 

were consistent with the actual measurement data of the Hawaii observation station. Research has shown that the 

model performs well in fitting the dynamic changes of time series and can accurately reflect the temporal evolution 

of surface pCO₂. 350 

 

Figure 10. Surface ocean pCO₂ products in the far sea areas 

 

Figure 11. Comparison of reconstruction accuracy in the far sea areas using different scale models, right 

axis: Normalized probability density of model residuals. 355 
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Figure 12. Independent verification based on time-series observation stations 

The reconstruction results of surface pCO₂ in the near sea area showed (Figure 13) that the surface pCO₂ values in 

the low latitude near sea areas on both sides of the equator were higher, which was closely related to factors such as 

high seawater temperature and vigorous evaporation. The seawater temperature in high latitude oceans is lower, 360 

causing changes in ocean circulation and mixing processes, and the overall trend of surface pCO₂ is decreasing. A 

comparison was made between the fitting accuracy of the near sea area model and the global ocean model in the 

near sea region. The results showed that the MAE of the near-shore model was 20.145 μatm, the MAPE was 0.065, 

the MSE was 983.726 μatm², the RMSE was 31.364 μatm, and R² was 0.797; the MAE of the global model was 

20.324 μatm, the MAPE was 0.065, the MSE was 999.147 μatm², the RMSE was 31.609 μatm, and R² was 0.794. 365 

The reconstruction effect of the near sea area model has been improved compared to the reconstruction results of 

the global ocean model in the near sea area (Figure 14), indicating that the use of RF can model the complex 

marine environment in the near sea area and accurately reflect the distribution characteristics of surface pCO₂ in 

the region. 

 370 

Figure 13. Surface ocean pCO₂ products in the near sea areas 
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Figure 14. Comparison of reconstruction accuracy in the near sea areas using different scale models, right 

axis: Normalized probability density of model residuals. 

3.5 Spatiotemporal analysis of surface pCO2 375 

At the global oceanic scale (Figure 15), the equatorial region experiences strong solar radiation and high 

temperatures, resulting in relatively low solubility of CO₂. Additionally, the presence of upwelling brings deep 

seawater rich in CO₂ to the surface, leading to an increase in surface pCO₂ concentration. Due to the low 

temperature environment in polar oceans, the solubility of CO₂ in seawater significantly increases. The sea ice 

coverage and strong wind fields in polar waters promote gas exchange between the atmosphere and the ocean, 380 

resulting in relatively low concentrations of pCO₂ on the sea surface. The surface pCO₂ in the Antarctic region is 

generally higher than that in the Arctic region, because the circulation system transports a large amount of 

seawater with high surface pCO₂ from low latitudes to high latitudes. At the same time, the melting and formation 

of sea ice also have an important impact on the distribution of surface pCO₂. Due to the wider coverage of sea ice, 

the Arctic region is less affected by the North Atlantic warm current, and its surface pCO₂ concentration is lower 385 

compared to the Antarctic region. In terms of time, the global ocean surface pCO₂ shows a trend of increasing year 

by year, which is related to global warming. The rising sea temperature in mid latitude waters leads to a decrease in 

CO2 solubility and promotes an increase in surface pCO₂ concentration. 
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Figure 15. Annual spatiotemporal variations of surface ocean pCO₂ in the globle ocean 

In the far sea areas (Figure 16), the surface pCO₂ is higher in the low latitude areas near the equator, particularly in 390 

the eastern equatorial Pacific. Mainly due to the upwelling of seawater in the region, which brings cold water rich 

in CO2 from deep layers to the surface of the ocean, resulting in an increase in pCO₂ concentration on the sea 

surface. In the mid to high latitudes of the far sea region, the surface pCO₂ shows a low characteristic, which is due 

to the ocean circulation pattern promoting the mixing of surface seawater and deep seawater, resulting in relatively 

low surface pCO₂ concentration. The low temperature and strong biological pumping effect enhance the 395 

absorption of atmospheric CO2 by the ocean, leading to a low surface pCO₂ concentration. In terms of time, the 

surface pCO₂ shows a trend of increasing year by year, especially after 2015. This is closely related to global 

climate change, changes in ocean circulation patterns, and the impact of human activities. 



29 
 

 

 

 



30 
 

 

 

Figure 16. Annual spatiotemporal variations of surface ocean pCO₂ in the far sea areas 

The exchange of CO₂ between seawater and atmosphere is frequent, and the surface pCO₂ value is relatively high. 400 

In mid to high latitude oceans, low-temperature seawater, polar cold water sinking, and deep seawater upwelling 

result in relatively low concentrations of pCO₂. The reconstruction results of surface pCO₂ in the near sea area 

(Figure 17) show that the equatorial region has strong solar radiation, high temperature seawater, and the influence 

of tropical cyclones and trade winds.The distribution characteristics of surface pCO₂ are significant along the 

eastern coast of Asia in the mid latitude region of the Northern Hemisphere. The surface pCO₂ in the Yellow Sea 405 

and Bohai Sea oceans is significantly lower than that in the coastal areas of eastern North America, which is related 

to the East Asian monsoon circulation and complex marine ecosystems. The surface pCO₂ in the border waters 

between Southeast Asia, the Indian Peninsula, North America, and South America is relatively high. Due to the 

influence of monsoon climate and tropical cyclones, high sea temperatures, as well as marine pollution caused by 

human activities, have collectively led to an increase in surface pCO₂. Temporally, the surface pCO₂ in near sea 410 

areas has been increasing year by year. Due to the increase in temperature in low latitude sea areas, the solubility of 

CO₂ in seawater decreases, and the upward trend of surface pCO₂ is more pronounced. 
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Figure 17. Annual spatiotemporal variations of surface ocean pCO₂ in the near sea areas 

4. Conclusion 

This study is based on a multi-scale analysis framework of the global ocean, far sea areas, and near sea areas. Using 415 

LDEO measured data combined with multi-source data, multiple machine learning models were used to construct 

and reconstruct the annual surface pCO₂ distribution of 0.25°× 0.25°from 2000 to 2019, revealing its 

spatiotemporal variation patterns and driving mechanisms. The research results indicate that the Random Forest 

(RF) model exhibits optimal performance at different scales and can effectively capture the spatiotemporal 

distribution characteristics of surface pCO₂. The distribution pattern of surface pCO₂ shows a pattern of "high at 420 

the equator and low at the poles" in space, and an increasing trend year by year in time. Different oceans exhibit 

different characteristics of changes due to the combined effects of natural factors and human activities. The acidity 

and alkalinity of seawater are the main driving factors for changes in surface pCO₂, and the contributions of other 

influencing factors vary at different scales. 

Although this study has achieved certain results, the complexity of ocean carbon sinks still needs further 425 

exploration. Future research can focus on optimizing models, developing hybrid models, and combining advanced 

algorithms with ocean mechanism models; At the same time, we will strengthen interdisciplinary studies such as 
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oceanography, ecology, and climatology to comprehensively reveal the process of ocean carbon cycling and 

provide scientific basis for addressing climate change. 
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