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Abstract:

The partial pressure of carbon dioxide (pCO-) on the surface of the ocean is crucial for quantifying and evaluating
the ocean carbon budget. Insufficient consideration of the effects at the sea area scale makes it difficult to
comprehensively evaluate the spatiotemporal distribution characteristics and variation patterns of pCO2. This
study constructed a pCO, evaluation dataset based on LDEO measurement data and multi-source data. After
conducting correlation testing on a global, far sea, and near sea scale, an ocean surface pCO- evaluation model was
constructed using multiple linear regression, convolutional neural network, gated recurrent unit, long short-term
memory network, generalized additive model, extreme gradient boosting, least squares boosting, and random
forest. Performance evaluation indicates that the random-forest model consistently achieves the best accuracy
across all spatial scales, yielding a global RMSE of 6.123 patm and an R? of 0.986. In the open ocean, RMSE
decreases to 4.699 patm and R? rises to 0.988, whereas in coastal waters RMSE increases to 8.044 patm and R?
declines to 0.972. Based on this, the annual sea surface pCO: distribution of 0.25°x 0.25°from 2000 to 2019 was
reconstructed. The reconstructed field shows a typical equatorial high/polar low pattern, as well as an overall
upward trend consistent with independent observations, with acceleration particularly evident in specific regions

of subtropical coastal oceans.
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Synopsis:

This study reconstructs global ocean surface pCO2 (2000-2019) using multi-source data and machine learning,

identifying RF as the optimal model and revealing equatorial-high/polar-low patterns with rising trends.

1. Introduction

The partial pressure of carbon dioxide on the surface of the ocean (pCO:) is an important indicator for measuring
the exchange of CO, between the ocean and the atmosphere, and can evaluate the contribution of the ocean's

carbon absorption and storage capacity to the global carbon cycle(Falkowski et al., 2000; Jain, 2022) .

Numerous scholars have conducted research on pCO: estimation and distribution reconstruction by combining
satellite remote sensing data and machine learning algorithms. In the study of sea surface pCO: in local sea areas,
Telszewski et al. reconstructed the distribution of pCO: in the North Atlantic using self-organizing neural
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networks (Telszewski et al., 2009); Landschiitzer et al. reconstructed the distribution map of Atlantic sea surface
pCO: using self-organizing map feedforward neural network method (Landschiitzer et al., 2013). Chierici et al.
evaluated the feasibility of jointly estimating sea surface pCO- in Antarctica and the Pacific region using ship
borne measured data and remote sensing data (Chierici et al., 2011). Nakaoka et al. established a nonlinear
relationship between sea surface pCO. and multiple parameters based on self-organizing neural networks, and
reconstructed the spatiotemporal variation of sea surface pCO> in the North Pacific (Nakaoka et al., 2013).
Marrec et al. used multiple linear regression to estimate the sea surface pCO: in the waters of the Northwest
European continental shelf (Wang et al., 2021). Gregor et al. proposed methods such as support vector regression
and random forest regression to reconstruct the Southern Ocean surface pCO: (Gregor et al., 2017); Wang et al.
reconstructed the distribution of pCO: on the surface of the Southern Ocean using correlation analysis and feed
forward neural networks (Marrec et al., 2015). Lohrenz et al. reconstructed the sea surface pCO: in the northern
Gulf of Mexico using regression tree algorithm (Lohrenz et al., 2021); Chen et al. compared the performance of
various methods in estimating surface pCO:z in the Gulf of Mexico (Chen et al., 2019); Fu et al. applied cubist
models to estimate pCO: on the surface of the Gulf of Mexico (Fu et al., 2020). Zhang et al. constructed a sea
surface pCO: regression model for the Baltic Sea region (Zhang et al., 2021). In the study of global ocean surface
pCO,, Landschiitzer et al. expanded the research scope to the global level, reconstructed the pCO: distribution map
from 1998 to 2011, and further extended it to 1982 to 2011 (Landschiitzer et al., 2014; Landschiitzer et al.,
2016). Gregor et al. reconstructed the pCO: distribution using various nonlinear regression methods (Gregor et al.,
2019). Zhong et al. used generalized regression neural network and stepwise regression algorithm to construct the
pCO: distribution map (Guorong et al., 2020), and combined stepwise regression algorithm and feed forward
neural network, constructed a 1°x 1°pCO: distribution map from 1992 to 2019 according to the 11 biogeochemical

provinces defined by the self-organizing map method (Zhong et al., 2020).

By summarizing previous research, the key limitations of current sea surface pCO, are:

(1) Insufficient Consideration of Spatial Heterogeneity

Most existing studies either focus on a single local sea area (e.g., the North Atlantic, Gulf of Mexico, Baltic Sea) or

adopt a unified global modeling framework, neglecting the significant differences in environmental conditions,

driving factors, and pCO: variation characteristics between far sea areas and near sea areas.

To address this issue, our study constructs a multi-scale analysis framework covering the global ocean, far sea

areas (water depth > 200 meters), and near sea areas (water depth < 200 meters). The research areas are divided

into far sea areas and near sea areas based on water depth, and scale-specific pCO: evaluation models are

established. For the environmentally stable far sea areas, we emphasize capturing long-term temporal

dependencies and signals of large-scale hydrological and biological processes. For near sea areas affected by

various complex factors, we incorporate region-specific driving factors and optimize the model structure to adapt

to high variability. This targeted approach effectively improves the fitting accuracy and adaptability of the models

in different sea area types.

(2) Inadequate Adaptability Between Models and Driving Factors

Existing studies mostly adopt fixed model structures or globally unified combinations of driving factors, failing to

fully consider the requirements of environmental complexity differences in different sea areas for model

adaptability. Additionally, the selection of driving factors lacks targeting, making it difficult for the models to

accurately capture the core impact mechanisms of pCO: in different regions.

We resolve this limitation through the comprehensive optimization of models and driving factors: we compared

eight machine learning models and identified the Random Forest (RF) model as the optimal model across all scales.

Its advantage in capturing complex nonlinear relationships enables it to adapt to the environmental characteristics

of different sea areas. Meanwhile, based on Spearman correlation analysis and the SHAP (SHapley Additive
2



80 exPlanations) method, we screened key driving factors for each scale (e.g., Total alkalinity in sea water (talk)
serves as the secondary key factor at the global scale, while the contribution rate of mole concentration of
dissolved molecular oxygen in sea water (O2) significantly increases in near sea areas), ensuring the rationality and
targeting of driving factor selection.

(3) Low Reconstruction Resolution

85 Some existing studies lack the overall processing of spatiotemporal differences in multi-source data, resulting in
low spatial resolution of pCO: reconstruction products (mostly 1°x1° or coarser), which makes it difficult to
accurately reflect the spatiotemporal variation characteristics of pCO: within small scales.

We address this limitation through high-resolution and high-precision reconstruction strategies: by processing
multi-source data (including strict data matching, outlier handling, and data balancing strategies), we reconstructed

90 the annual pCO: distribution with a high resolution of 0.25°x0.25° from 2000 to 2019. The results demonstrate that

the accuracy of pCO: reconstruction is significantly improved compared with existing studies.
2. Methodology

2.1 Research Area

The global ocean, excluding the perennial ice-covered waters in the core area of the Arctic Ocean and the
95 permanently frozen areas around the Antarctic continent, has a total area of 336 million square kilometers,
accounting for approximately 92.8% of the global ocean surface area. This research focuses on the 0—10-meter
water layer in the ocean surface, which is a critical interface for air sea exchange. Due to the complex types of
water bodies, sea surface pCOs: is influenced by various factors. The global ocean was divided into research area
scales based on water depth, identifying the areas beyond the continental shelf (water depth > 200 meters) as far

100 sea areas and the areas within the range (water depth < 200 meters) as near sea areas.

2.2 Data sources

2.2.1 Actual measurement data

The measured data of pCO: is sourced from Global Surface pCO- (LDEO) Database V2019 (OCADS - Global
Surface pCO: (LDEO) Database (noaa. gov)). This dataset covers 14.2 million measured data from 1957 to 2019
105 using the equalizer CO: analyzer system in the global ocean. The dataset provides various types of sea surface
pCO: measured data. This study selected ocean surface pCO- values measured at actual temperatures from 2000 to

2019, which can truly reflect the pCO- level at the time of measurement.

2.2.2 Other data

A total of 25 potential influencing factors were selected for the study (Table 1), and their abbreviations are used for
110 convenience. These data are divided into three types of sources: in-situ observations, satellite observations, and

numerical models, with good spatiotemporal resolution and coverage, providing reliable data sources for research.

Table 1. Specific information about influencing factors (sort based on its resolution and name)

Spatia
i Abbre 1 Temporal
Variable name L . Data type DOI
viation resolut  resolution
ion
Mass concentration of . Satellite https://doi.org/10.48670/moi-002
. chl 0.036 Daily ]
chlorophyll a in sea water observations 81

Volume attenuation coefficient of kd490  0.036 Daily Satellite https://doi.org/10.48670/moi-002
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Sea water temperature to 0.25 Weekly .
Satellite 52
observations
. . Satellite https://doi.org/10.48670/moi-001
Eastward wind uwind 0.25 Monthly .
observations 81
i . Satellite https://doi.org/10.48670/moi-001
Northward wind vwind 0.25 Monthly .
observations 81
Aragonite saturation state in sea In-situ https://doi.org/10.48670/moi-000
ar 1 Monthly .
water observations 47
Calcite saturation state in sea In-situ https://doi.org/10.48670/moi-000
ca 1 Monthly .
water observations 47
Sea water ph reported on total In-situ https://doi.org/10.48670/moi-000
ph 1 Monthly .
scale observations 47
o In-situ https://doi.org/10.48670/moi-000
Total alkalinity in sea water talk 1 Monthly .
observations 47
Dissolved inorganic carbon in sea In-situ https://doi.org/10.48670/moi-000
tcos 1 Monthly .
water observations 47
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2.3 Data Processing

2.3.1 Data Matching

To reduce the impact of spatial and temporal resolution differences in multi-source data, we adopted a dual
matching strategy to process pCO: measured data and potential influencing factors. In the temporal dimension,
influencing variables were first aligned with the in-situ pCO: observations; temporal gaps were subsequently
infilled via nearest-time interpolation to ensure chronological consistency. In the spatial dimension, data points
were aligned through precise geographic coordinate matching algorithms, and nearest neighbor interpolation was
used to supplement missing points to improve spatial accuracy. After matching, each point contains the measured

value of pCO:, environmental variables, and corresponding spatiotemporal information (year, month, lat, lon).
2.3.2 Analysis of Outliers

The study conducted quality control on the matched data by removing missing values generated during the
matching process. According to data statistics and previous research experience (Wu et al., 2024), measured data
below 200 patm and above 600 patm are classified as outliers. The spatial distribution of outliers is mainly
concentrated in coastal areas, reflecting the variability of land sea interaction effects. Outliers are valuable sample
data for the study of pCO.. Through comparative analysis of each route, it was found that many outliers matched
the route, and it was determined that their outliers were caused by environmental changes rather than measurement
errors. Therefore, valid outliers were retained and only obvious measurement error data were removed. For other

environmental variable values, abnormal data was identified and removed based on the 3ocriterion (u+30).
2.3.3 Data Balancing

The processed global ocean data was divided into far sea and near sea datasets (Figure 1a, b, ). Statistical analysis

shows that the spatial and temporal distribution of data is uneven. Therefore, a 0.25°x 0.25°grid was used for

spatial binning, and time binning was performed monthly to construct a spatiotemporal joint binning unit. The
5
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granularity setting of this box not only meets the research accuracy requirements, but also maintains compatibility

with the spatiotemporal resolution of multi-source data.

Take the arithmetic mean of the data within each unit as the representative value, with the spatial position
represented by the grid center point, and the time calculated as the weighted average based on the distribution of

data points (Formula 1). This method effectively balances the data distribution while ensuring accuracy.

Tl witi
tavg = m (1)
w; = Atl (2)

In the formula, tas is the weighted average time of the spatiotemporal box, n is the total amount of data in the
spatiotemporal box, w; is the weight of the i-th data point, t; is the time of the i-th data point, and At; is the sampling
time interval between the i-th data point and the previous point. After data balancing processing, the dataset for this

study was finally constructed, laying a solid data foundation for the construction of multi-scale models.

Year

(b)
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Figure 1. The spatiotemporal distribution of datasets at different scales. (a)Global spatial distribution of

ocean data. (b)Spatial distribution of data in far sea areas. (c)Spatial distribution of data in near sea areas.

2.4 Spearman correlation analysis of pCO> drivers

The potential influencing factors involved do not fully follow a normal distribution, and there is a non-linear
relationship between pCO:. Therefore, selecting appropriate correlation indicators is particularly crucial. The

Spearman correlation coefficient can effectively reveal the correlation between data (Formula 3).

6)

In the formula, p represents the correlation coefficient, D represents the level difference of the variable, and n
represents the sample size of the variable. The range of values for p is between -1 and 1, where -1 indicates a
complete negative correlation between the influencing factors and pCO:, 1 indicates a complete positive

correlation, and 0 indicates no correlation.
2.5 Model selection

To evaluate the modeling ability of different algorithms for pCO., we constructed eight comparative models at
different research regions, including multiple linear regression (MLR),convolutional neural network (CNN), gated
recurrent unit (GRU), long short term memory (LSTM),generalized additive models (GAM), extreme gradient
boosting (XGBoost), least squares boosting (LSBoost), and random forest (RF). MLR serves as a baseline that
linearly links temperature, salinity and nutrients to sea-surface pCO.. CNN extracts spatial features via
convolution and pooling layers to produce fine-scale pCO: distributions, while GRU and LSTM, with their
update-reset gates and memory cells, capture long-term temporal dependencies of oceanic periodic changes on
pCO: for historical-to-future prediction. GAM relaxes the linearity assumption by modeling each predictor’s
additive nonlinear effect on pCO2. XGBoost and LSBoost iteratively optimize tree ensembles through gradient
boosting or weighted residuals to uncover complex nonlinear relationships between high-dimensional features and
pCOs.. Finally, RF constructs and averages many decision trees on random feature subsets, delivering robust pCO-

estimates for large-scale ocean datasets.

2.6 Performance evaluation
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The datasets at different research regions were randomly divided into training, validation, and testing sets in an
8:1:1 ratio. Five statistical methods, Mean Absolute Error (MAE, patm) — the average absolute difference
between predicted and in-situ pCO-, indicating overall bias; Mean Absolute Percentage Error (MAPE, %)-the
relative error scaled by the observed pCO-, enabling comparison across regions with contrasting background
concentrations; Mean Squared Error (MSE, patm?) — the squared deviations averaged over all samples,
emphasizing larger pCO: discrepancies; Root Mean Squared Error (RMSE, patm) — the square root of MSE,
providing a metric in the original pCO:- units that is sensitive to outliers; Coefficient of Determination (R?) — the
proportion of pCO: variance explained by the model, with values approaching unity signifying high predictive
skill.

n
MAE = 12‘:1|yi-yi| @)

n

_100% "
MAPE = Tzi:1
— 1 1 o 2
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In the formula, n is the number of pCO- observations; y, denotes the in-situ measured pCO- (patm) for the i-th

)A/i'yi
Yi

®)

RMSE = (7
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sample, §, is the corresponding model-estimated pCO:, y, represents the mean of all measured pCO- values.
3. Results and discussion

3.1 Correlation detection

3.1.1 Interaction detection

Interactive detection of variables was conducted in global oceans, far sea areas, and near sea areas (Figure 2). The
concentration of chlorophyll and the volume attenuation coefficient of downwelling radiative flux have a p-value
of 1 at all research area scales, indicating collinearity in numerical values. However, they respectively reflect
marine biological activity and optical properties, providing comprehensive information for fitting surface pCOs.
The p value between the aragonite saturation state in sea water and aragonite in seawater is also 1, and they are
positively correlated with the same magnitude of change. This usually stems from chemical equilibrium processes
in seawater, where the dissolution and precipitation processes are influenced by similar physical and chemical
conditions. The correlation between sea water potential temperature and sea water temperature is extremely high,
but their physical meanings are different. The former reflects the equivalent temperature after considering pressure,
while the latter reflects the actual temperature. Both can comprehensively capture temperature characteristics and

improve the accuracy of surface pCO: evaluation.
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Figure 2. Results of interaction detection between variables at different research area scales. (a)Global
Ocean Interaction Detection Results. (b)Interaction detection results in far sea areas. (c)Interactive

detection results in near sea areas.

3.1.2 Single factor detection

The correlation between surface pCO: and various influencing factors (Figure 3) was analyzed. The results
indicate that at different regional scales, there is a significant negative correlation between pCO: and ph, meaning
that the stronger the acidity of seawater, the higher the surface pCO:; the stronger the alkalinity, the lower the
surface pCO.. At the same time, surface pCO: is significantly positively correlated with temperature. In far sea
areas, the negative correlation between pCO: and chlorophyll concentration and diffuse reflectance attenuation
coefficient is more significant, indicating that it has higher stability and balance in regulating pCO.. In contrast, the
above correlation in near sea areas is weaker due to land-based pollution, human activities, and environmental
changes, but the negative correlation between pCO- and seawater acidity is stronger. When selecting variables, the
study included factors with a p-value greater than 0.1 or less than -0.1 in the screening range to ensure the validity
of the results and improve model performance (Table 2). Additionally, SHAP method was used to quantitatively
evaluate the contributions of various influencing factors to surface pCO- (Ge, Patino, Todisco, & Evans, 2022).
There were differences in the contributions of influencing factors at different scales. The ph is the core driving
factor at all scales, but its contribution intensity follows a distribution pattern of "far sea areas > global oceans >
near sea areas"; The contribution of other factors shows significant regional heterogeneity, such as talk being the
second key factor at the global ocean scale, while the contribution rate of 0 in near sea areas has significantly

increased, making ar a region specific factor.

Table 2. Selection results of influencing factors at different area scales

Research scale Influence factor

ph. 02 chl. kd490. dos. uwind. pos. lon. zos. month. sos. year. talk. ca. so. ar.

Global Ocean
to. thetao
. ph. chl. kd490. o0,. dos. lon. uwind. pos. zos. month. sos. talk. so. ca. ar. year.
ar sea
to. thetao
ph. 02+ pos. lat. dos. nos. chl. kd490. mlotst*. tco,. lon. month. ca. ar. sos.
Near sea

so. talk. to. thetao
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Figure 3. Single factor detection results at different research area scales. (a)Global ocean single factor

detection results. (b)Far sea single factor detection results. (c)Near sea single factor detection results
3.2 Model construction and evaluation

3.2.1 Construction and evaluation of global ocean surface pCO, model

Based on the correlation analysis results of the above factors, this study selected key driving factors to construct
and evaluate a global sea surface pCO: reconstruction model. Owing to the large amount of data, we randomly
selected some data from all the fitting results to show the observation performance. Different models exhibit
significant performance differences in evaluating surface pCO: at the global ocean scale (Figure 4). Specifically,
there is a significant gap between the model values of MLR, CNN, and GRU and the true values, especially in the
low value (<300 patm) and high value (>500 patm) ranges where the fitting effect is poor (Table 3). The deviation
is due to the model's insufficient ability to capture nonlinear relationships in complex marine environments,
limitations in handling extreme values, and the model's own structure is not sufficient to adapt to complex data
features. The LSTM and GAM models have relatively large errors and poor performance, indicating deficiencies
in capturing the characteristics of surface pCO: changes. When extreme fluctuations occur in surface pCOz, the
fitting ability significantly decreases. The comprehensive performance of XGBoost and LSBoost has significantly
improved, with MAE reduced to 15 patm~18 patm, RMSE reduced to 25 patm~30 patm, and R? exceeding 0.7.
The effective explanation of multivariate nonlinear relationships and the application of model ensemble strategies
have improved the accuracy of the two models within the normal range (300 patm~500 patm), but the extreme
values processing still needs to be improved. The performance of RF is the best among all models, with MAE
reduced to below 4 patm, RMSE reduced to around 6 patm, and R? reaching above 0.9. It not only achieves
accurate fitting in the range of 300 patm~500 patm values, but also in the low and high value ranges. The good
adaptability of RF to high-dimensional data and a large number of samples makes it perform well in fitting tasks in

complex marine environments.

Table 3. Performance parameters of different models in the global ocean

Model MAE/patm MAPE MSE/patm? RMSE/patm R?
E :g RF 3.895 0.011 46.162 6.794 0.983

11
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Figure 4. Model performance at the global ocean

3.2.2 Construction and evaluation of surface pCO, model in far sea areas

The far sea environment is relatively stable, and the model performance has been improved (Table 4). The bias of
MLR, CNN, and GRU models has been reduced, with MAE ranging from 14 patm to 15 patm, RMSE above 26
patm, and R? remaining around 0.6. The MAE of LSTM and GAM is around 14 patm; RMSE is above 25 patm,
and R? is around 0.64. The performance of the two models has improved compared to extreme value ranges, thanks
to the ability of LSTM to process time series data and capture the dynamic characteristics of surface pCO- over
time, and GAM fitted the relationship between surface pCO: and influencing factors by constructing a nonlinear
additive model. XGBoost and LSBoost perform even better in far sea areas, especially with high fitting accuracy in
the range of 300 patm~500 patm, MAE around 11 patm~13 patm, RMSE reduced to below 23 patm, and R?

increased to around 0.8. The model performance of RF in far sea areas is also optimal, relying on strong
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generalization ability and feature selection mechanisms to effectively address the variability factors in marine

environments.
Table 4. Performance parameters of different models in the far sea areas
Model MAE/patm MAPE MSE/patm? RMSE/patm R?
RF 3.068 0.009 27.456 5.240 0.985
LSBoost 11.509 0.033 337.852 18.381 0.813
XGBoost 13.191 0.038 500.054 22.362 0.723
%D GAM 14.066 0.040 623.501 24.970 0.654
E LSTM 14.160 0.041 647.853 25.453 0.641
GRU 14.377 0.041 665.920 25.805 0.631
CNN 14.882 0.043 681.120 26.098 0.623
MLR 15.274 0.044 737.902 27.164 0.591
RF 3.061 0.009 27.110 5.207 0.985
LSBoost 11.532 0.032 338.102 18.388 0.814
= XGBoost 13.243 0.038 511.318 22.612 0.719
'% GAM 14.143 0.040 644.144 25.380 0.646
% LSTM 14.219 0.040 667.947 25.845 0.632
- GRU 14.441 0.041 686.351 26.198 0.622
CNN 14.929 0.042 701.278 26.482 0.614
MLR 15.336 0.043 758.818 27.547 0.582
RF 2.900 0.008 22.082 4.699 0.988
LSBoost 11.521 0.032 339.772 18.433 0.813
XGBoost 13.223 0.038 508.771 22.556 0.720
%D GAM 14.104 0.040 638.362 25.266 0.649
é LSTM 14.201 0.040 663.510 25.759 0.635
GRU 14.423 0.041 681.866 26.113 0.625
CNN 14914 0.042 696.718 26.395 0.617
MLR 15.316 0.043 754.142 27.462 0.585

3.2.3 Construction and evaluation of surface pCO, model in near sea areas

Due to various complex factors, the spatiotemporal distribution of surface pCO: in the near sea area exhibits high
variability, resulting in a decrease in the performance of the constructed surface pCO, models. Table 5 results show
that MLR, CNN, and GRU have limitations in handling complex nonlinear relationships. In the low and high value
ranges, the MAE of the three models reaches over 34patm, RMSE reaches over 62 patm, and R? is below 0.5.
LSTM constructs a nonlinear additive model through its gating mechanism and GAM, which improves the fitting
ability to a certain extent. The MAE of the model is in the range of 33 patm~34 patm; the RMSE is in the range of
56 patm~58 patm, and the R? remains in the range of 0.55~0.60, but there is still deviation in the extreme
numerical range. XGBoost and LSBoost improved the accuracy of fitting extreme values by constructing multiple
weak learners to combine the fitting results. The MAE of both models decreased to around 23 patm~27 patm, the
RMSE remained around 35 patm~42 patm, and the R%increased to the range of 0.75~0.85. RF constructed multiple
decision trees and integrated the fitting results to adapt to the variability and variability of the near sea environment,
demonstrating robust fitting performance. Its MAE was below 5 patm; RMSE was about 8 patm, and R? remained

above 0.95, significantly outperforming other models.
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Table 5. Performance parameters of different models in the near sea areas

Model MAE/patm MAPE MSE/patm? RMSE/patm R’
RF 5.396 0.016 98.332 9.916 0.977
LSBoost 23.673 0.071 1267.869 35.607 0.833
XGBoost 27.298 0.083 1783.422 42.231 0.765
%D GAM 34.088 0.102 3058.776 55.306 0.597
E LSTM 32.738 0.100 3273.977 57.219 0.569
GRU 34.022 0.103 3754.637 61.275 0.505
CNN 36.309 0.110 3989.599 63.163 0.474
MLR 36.264 0.109 4426.775 66.534 0.417
RF 5.346 0.016 93.028 9.645 0.978
LSBoost 23.604 0.071 1263.495 35.546 0.832
- XGBoost 27.234 0.083 1766.706 42.032 0.765
'«% GAM 34.040 0.102 3033.228 55.075 0.596
% LSTM 32.686 0.100 3259.080 57.088 0.566
- GRU 33.987 0.103 3727.152 61.050 0.504
CNN 36.239 0.110 3955.729 62.895 0.474
MLR 36.188 0.109 4387.955 66.242 0.416
RF 4.756 0.014 64.708 8.044 0.972
LSBoost 23.564 0.071 1244.921 35.283 0.839
XGBoost 27.299 0.083 1788.363 42.289 0.769
%D GAM 34.204 0.102 3134.086 55.983 0.595
é LSTM 32911 0.100 3394.342 58.261 0.562
GRU 34.236 0.103 3904.309 62.485 0.496
CNN 36.465 0.110 4132.316 64.283 0.466
MLR 36.405 0.109 4594.537 67.783 0.406

3.3 Independent validation of the model

The surface pCO: models were independently validated at different regional scales, inputting data independent of
the model construction, comparing the accuracy of the fitted values with the true values, and evaluating the
applicability and accuracy of the model in complex marine environments. The scatter plot with true values as the
x-axis and fitted values as the y-axis was drawn, with colors representing kernel density to reflect the distribution
trend of points. At the global ocean scale (Figure 5), the scatter distribution of MLR, CNN, GRU, LSTM, and
GAM shows a large elliptical shape, and the fitted values deviate significantly from the true values, especially
around the extreme value of pCO, on the sea surface. The scatter distributions of XGBoost and LSBoost have
shrunk. The RF model has the best fitting performance, with a clear convergence of the scatter distribution,
concentrated on Y=X line, and can effectively avoid errors in the extreme value region, indicating that its fitted

value is consistent with the true value and has good stability.
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Figure 5. Independent verification performance of the models in the global ocean, right axis: Normalized
probability density of model residuals. ((a) MLR, (b) CNN, (c¢) GRU, (d) LSTM, (e) GAM, (f) XGBoost, (g)
LSBoost, (h)RF)

In far sea areas (Figure 6), the scatter points of MLR, CNN, GRU, LSTM, GAM, and XGBoost models exhibit
elliptical distribution and diverge at both ends, indicating their limitations in dealing with extreme fluctuations of
surface pCO-. The scatter distribution ellipse of the LSBoost model significantly shrinks, and the divergence
situation converges at extreme values, improving the fitting accuracy. The scatter distribution of the RF model is a

flat ellipse, with the minimum difference between the fitted value and the true value, effectively reducing extreme
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Figure 6. Independent verification performance of the models in the far sea areas, right axis: Normalized
probability density of model residuals. ((a) MLR, (b) CNN, (c) GRU, (d) LSTM, (e) GAM, (f) XGBoost,
(g) LSBoost, (h)RF)

In the independent validation of models in near sea areas, each model showed different performances (Figure 7).
The scatter of MLR, CNN, GRU, and LSTM shows an irregular distribution, with significant differences between
the fitted values and the true values, and severe divergence in high-value areas. This is due to the high variability in
near sea areas, which makes it difficult for the model to cope with. The scatter distribution of GAM and XGBoost

has begun to show an elliptical shape, which has certain adaptability to complex environments. The scatter
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distribution of LSBoost shows a clear elliptical shape, which improves the fitting stability. The RF model shows
significant improvement in performance, with overall convergence of scatter distribution and no significant
300 divergence in both low and high value oceans. It can effectively reduce extreme errors and reconstruct surface

pCO: with high accuracy in complex near sea environments.
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Figure 7. Independent verification performance of the models in the near sea areas, right axis: Normalized
probability density of model residuals. ((a) MLR, (b) CNN, (c) GRU, (d) LSTM, (e) GAM, (f) XGBoost,
(g) LSBoost, (h)RF)

3.4 Reconstruction of surface pCO,

The multi-source data was input into the constructed RF model at different area scales, with extracting the variable
values of influencing factors from the multi-source data grid by grid to fit the surface pCO: values of the
corresponding grid. If there are missing values in a certain grid in the multi-source data, the corresponding surface
pCO: value at that location will be output as a blank value, ensuring that the reconstructed results are completely
based on the original data. The blank values are mainly due to the systematic exclusion of land pixels and the
limitations of data acquisition in high latitude sea areas: the former is excluded because it does not participate in
ocean processes, while the latter is due to the lack of satellite data for key parameters caused by sea ice coverage or
insufficient light, resulting in the inability to reconstruct the values in the region. The final generation of the

surface pCO: distribution map for the year 2000~2019 at 0.25°x 0.25°is based on the original data.

The reconstruction results of surface pCO: at the global ocean scale are consistent with the distribution
characteristics of LDEO actual observation data, confirming that the RF model can effectively capture the spatial
distribution pattern of global ocean surface pCO.. Through the reconstruction results (Figure 8), it was found that
the spatial distribution of surface pCO: exhibits a clear latitude dependence, with a distribution pattern of "high at
the equator and low at the poles". The independent observation data based on the route was compared with the
reconstruction results obtained at the closest collection time. The global ocean surface pCO: reconstruction result
showed MAE of 11.067 patm, MAPE of 0.037, MSE of 396.060 patm?, RMSE of 19.901 patm, and R? of 0.816.
This indicates that the deviation between the reconstructed results and the actual observed data is small, and can

accurately reflect the average distribution characteristics of surface pCOs..
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Compared with other existing studies on the reconstruction of surface pCO: (Figure 9), these methods are highly
consistent with our results in the reconstructed spatial model pattern (Zhong et al., 2022; Chau et al., 2021; Chau
etal., 2022) . Although different studies have used different data sources, models, or methods, similar conclusions

330 can be drawn when describing the overall distribution characteristics of pCO: on the global ocean surface, which to
some extent verifies the reliability and accuracy of the reconstructed results. This study uses high-resolution data
and RF models to make the reconstruction results more detailed, especially in the high latitude marginal sea areas
of the North and South Poles.

The reconstruction results of the far sea region showed that the surface pCOs- in the equatorial low latitude region
335 was higher, while the surface pCO: in the polar high latitude region was lower (Figure 10). We evaluated the
difference in fitting accuracy between the far sea regional model and the global ocean model in the far sea areas, by
comparing independent observation data based on flight routes with the reconstructed results of the two models.
The results showed that the MAE of the far-sea model was 9.060 patm, the MAPE was 0.027, the MSE was
269.511 patm?, the RMSE was 16.417patm, and R? was 0.826; the MAE of the global model was 9.125 patm, the
340 MAPE was 0.027, the MSE was 275.582 patm?, the RMSE was 16.601 patm, and R* was 0.822.The reconstruction
accuracy of the far sea area model has slightly improved compared to the global ocean model in the far sea area

(Figure 11), indicating that the optimization of the far sea area model in local areas has improved the
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reconstruction accuracy. However, the global ocean model can still provide accurate surface pCO: fitting in the far

sea area by adapting to the overall ocean environment.

345 To verify the accuracy of the time series reconstruction of the model, a comparative analysis was conducted on the
temporal changes between the observation data of the Hawaii Ocean Time series (HOT) and the reconstruction
results of the global ocean and far sea areas (Figure 12). The results showed that the temporal trends of both scales
were consistent with the actual measurement data of the Hawaii observation station. Research has shown that the
model performs well in fitting the dynamic changes of time series and can accurately reflect the temporal evolution

350 of surface pCO:x.
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The reconstruction results of surface pCO: in the near sea area showed (Figure 13) that the surface pCO- values in
the low latitude near sea areas on both sides of the equator were higher, which was closely related to factors such as
high seawater temperature and vigorous evaporation. The seawater temperature in high latitude oceans is lower,
causing changes in ocean circulation and mixing processes, and the overall trend of surface pCO: is decreasing. A
comparison was made between the fitting accuracy of the near sea area model and the global ocean model in the
near sea region. The results showed that the MAE of the near-shore model was 20.145 patm, the MAPE was 0.065,
the MSE was 983.726 patm?, the RMSE was 31.364 patm, and R? was 0.797; the MAE of the global model was
20.324 patm, the MAPE was 0.065, the MSE was 999.147 patm?, the RMSE was 31.609 patm, and R? was 0.794.
The reconstruction effect of the near sea area model has been improved compared to the reconstruction results of
the global ocean model in the near sea area (Figure 14), indicating that the use of RF can model the complex
marine environment in the near sea area and accurately reflect the distribution characteristics of surface pCO: in

the region.
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Figure 13. Surface ocean pCO: products in the near sea areas
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3.5 Spatiotemporal analysis of surface pCO»

At the global oceanic scale (Figure 15), the equatorial region experiences strong solar radiation and high
temperatures, resulting in relatively low solubility of CO.. Additionally, the presence of upwelling brings deep
seawater rich in CO: to the surface, leading to an increase in surface pCO: concentration. Due to the low
temperature environment in polar oceans, the solubility of CO: in seawater significantly increases. The sea ice
coverage and strong wind fields in polar waters promote gas exchange between the atmosphere and the ocean,
resulting in relatively low concentrations of pCO- on the sea surface. The surface pCO: in the Antarctic region is
generally higher than that in the Arctic region, because the circulation system transports a large amount of
seawater with high surface pCO: from low latitudes to high latitudes. At the same time, the melting and formation
of sea ice also have an important impact on the distribution of surface pCO-. Due to the wider coverage of sea ice,
the Arctic region is less affected by the North Atlantic warm current, and its surface pCO: concentration is lower
compared to the Antarctic region. In terms of time, the global ocean surface pCO: shows a trend of increasing year
by year, which is related to global warming. The rising sea temperature in mid latitude waters leads to a decrease in

CO: solubility and promotes an increase in surface pCO: concentration.
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Figure 15. Annual spatiotemporal variations of surface ocean pCO: in the globle ocean

In the far sea areas (Figure 16), the surface pCO: is higher in the low latitude areas near the equator, particularly in
the eastern equatorial Pacific. Mainly due to the upwelling of seawater in the region, which brings cold water rich
in CO; from deep layers to the surface of the ocean, resulting in an increase in pCO: concentration on the sea
surface. In the mid to high latitudes of the far sea region, the surface pCO: shows a low characteristic, which is due
to the ocean circulation pattern promoting the mixing of surface seawater and deep seawater, resulting in relatively
low surface pCO: concentration. The low temperature and strong biological pumping effect enhance the
absorption of atmospheric CO, by the ocean, leading to a low surface pCO: concentration. In terms of time, the
surface pCO- shows a trend of increasing year by year, especially after 2015. This is closely related to global

climate change, changes in ocean circulation patterns, and the impact of human activities.
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Figure 16. Annual spatiotemporal variations of surface ocean pCO: in the far sea areas

The exchange of CO. between seawater and atmosphere is frequent, and the surface pCO- value is relatively high.
In mid to high latitude oceans, low-temperature seawater, polar cold water sinking, and deep seawater upwelling
result in relatively low concentrations of pCO:. The reconstruction results of surface pCO: in the near sea arca
(Figure 17) show that the equatorial region has strong solar radiation, high temperature seawater, and the influence
of tropical cyclones and trade winds.The distribution characteristics of surface pCO: are significant along the
eastern coast of Asia in the mid latitude region of the Northern Hemisphere. The surface pCO: in the Yellow Sea
and Bohai Sea oceans is significantly lower than that in the coastal areas of eastern North America, which is related
to the East Asian monsoon circulation and complex marine ecosystems. The surface pCO: in the border waters
between Southeast Asia, the Indian Peninsula, North America, and South America is relatively high. Due to the
influence of monsoon climate and tropical cyclones, high sea temperatures, as well as marine pollution caused by
human activities, have collectively led to an increase in surface pCO.. Temporally, the surface pCO: in near sea
areas has been increasing year by year. Due to the increase in temperature in low latitude sea areas, the solubility of

CO: in seawater decreases, and the upward trend of surface pCO: is more pronounced.
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Figure 17. Annual spatiotemporal variations of surface ocean pCO: in the near sea areas

4. Conclusion

This study is based on a multi-scale analysis framework of the global ocean, far sea areas, and near sea areas. Using
LDEO measured data combined with multi-source data, multiple machine learning models were used to construct
and reconstruct the annual surface pCO: distribution of 0.25°x 0.25°from 2000 to 2019, revealing its
spatiotemporal variation patterns and driving mechanisms. The research results indicate that the Random Forest
(RF) model exhibits optimal performance at different scales and can effectively capture the spatiotemporal
distribution characteristics of surface pCO.. The distribution pattern of surface pCO: shows a pattern of "high at
the equator and low at the poles" in space, and an increasing trend year by year in time. Different oceans exhibit
different characteristics of changes due to the combined effects of natural factors and human activities. The acidity
and alkalinity of seawater are the main driving factors for changes in surface pCO-, and the contributions of other

influencing factors vary at different scales.

Although this study has achieved certain results, the complexity of ocean carbon sinks still needs further
exploration. Future research can focus on optimizing models, developing hybrid models, and combining advanced

algorithms with ocean mechanism models; At the same time, we will strengthen interdisciplinary studies such as

32



430

435

440

445

450

455

460

oceanography, ecology, and climatology to comprehensively reveal the process of ocean carbon cycling and

provide scientific basis for addressing climate change.
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