Point by point response

Major Points:

Thank you for your very constructive and detail comments concerning our
manuscript.

Those comments are all valuable and very helpful for revising and improving our
paper, as well as the important guiding significance to our researches. We have
studied comments carefully and have made correction which we hope meet with
approval.

1. The Introduction contains citation mismatches (e.g., line 35: Telszewski et al. cited
as Qiu et al., 2022) that should be corrected. More importantly, while many previous
studies are listed, the manuscript does not clearly identify the key limitations of
existing pCO: reconstructions nor explain explicitly how the present multi-scale
approach addresses these issues.

Response: Done. Revision of Citations

We have corrected the citation of Telszewski et al. in Line 35. To ensure the
completeness and accuracy of all citations throughout the manuscript, we have
thoroughly checked the entire reference section, verifying that each citation aligns
with the corresponding literature and that the formatting is consistent with academic
standards.

(1) Insufficient Consideration of Spatial Heterogeneity

Most existing studies either focus on a single local sea area (e.g., the North Atlantic,
Gulf of Mexico, Baltic Sea) or adopt a unified global modeling framework, neglecting
the significant differences in environmental conditions, driving factors, and pCO:
variation characteristics between far sea areas and near sea areas.

To address this issue, our study constructs a multi-scale analysis framework covering
the global ocean, far sea areas (water depth > 200 meters), and near sea areas (water
depth < 200 meters). The research areas are divided into far sea areas and near sea
areas based on water depth, and scale-specific pCO: evaluation models are established.
For the environmentally stable far sea areas, we emphasize capturing long-term
temporal dependencies and signals of large-scale hydrological and biological
processes. For near sea areas affected by various complex factors, we incorporate
region-specific driving factors and optimize the model structure to adapt to high
variability. This targeted approach effectively improves the fitting accuracy and
adaptability of the models in different sea area types.

(2) Inadequate Adaptability Between Models and Driving Factors

Existing studies mostly adopt fixed model structures or globally unified combinations
of driving factors, failing to fully consider the requirements of environmental
complexity differences in different sea areas for model adaptability. Additionally, the
selection of driving factors lacks targeting, making it difficult for the models to
accurately capture the core impact mechanisms of pCOs- in different regions.



We resolve this limitation through the comprehensive optimization of models and
driving factors: we compared eight machine learning models and identified the
Random Forest (RF) model as the optimal model across all scales. Its advantage in
capturing complex nonlinear relationships enables it to adapt to the environmental
characteristics of different sea areas. Meanwhile, based on Spearman correlation
analysis and the SHAP (SHapley Additive exPlanations) method, we screened key
driving factors for each scale (e.g., Total alkalinity in sea water (talk) serves as the
secondary key factor at the global scale, while the contribution rate of mole
concentration of dissolved molecular oxygen in sea water (O2) significantly increases
in near sea areas), ensuring the rationality and targeting of driving factor selection.

(3) Low Reconstruction Resolution

Some existing studies lack the overall processing of spatiotemporal differences in
multi-source data, resulting in low spatial resolution of pCO: reconstruction products
(mostly 1°%1° or coarser), which makes it difficult to accurately reflect the
spatiotemporal variation characteristics of pCO: within small scales.

We address this limitation through high-resolution and high-precision reconstruction
strategies: by processing multi-source data (including strict data matching, outlier
handling, and data balancing strategies), we reconstructed the annual pCO:
distribution with a high resolution of 0.25°x0.25° from 2000 to 2019. The results
demonstrate that the accuracy of pCO: reconstruction is significantly improved
compared with existing studies.

2. In Section 2.3.1, the proportion and structure of missing data in the original
datasets are not reported. It is unclear whether missing values are sparse or occur in
long consecutive gaps, which directly affects the reliability of nearest-neighbour
interpolation.

Response: In terms of data types, in-situ observation data (e.g., ar, ca, pH, talk) have a
relatively high missing-value percentage (12.29%—12.90%), satellite observation
data (chl, kd490) have a missing-value percentage of 7.8%—7.85%, numerical model
data (e.g., so, thetao, uo, vo, mlotst*) have a low missing-value percentage
(1.419%—4.32%), and satellite observation data related to wind fields (uwind, vwind)
have a missing-value percentage of only 0.03%. The overall data integrity is good. All
missing values in the dataset stem from limitations in data collection in high-latitude
sea areas, mainly due to sea ice coverage and insufficient light restricting satellite
remote sensing observations and on-site sampling, resulting in the lack of key
parameter data required for pCO: reconstruction.

3. The study considers 25 potential predictors, several of which are strongly
correlated or physically redundant (e.g., to vs. thetao, ar vs. ca, chl vs. kd490).
Multicollinearity of variables might affect the model interpretability. Is there any
criterion for retaining or excluding variables?

Response: The criteria for retaining variables have been supplemented.



For variables with strong mutual correlations identified in the interaction detection
(Section 3.1.1) (e.g., to vs. thetao, ar vs. ca, chl vs. kd490), we did not apply arbitrary
exclusion. Instead, their retention is justified by their distinct physical significances:
to (sea water temperature) reflects the in-situ surface temperature of seawater, while
thetao (sea water potential temperature) accounts for pressure effects—retaining both
captures temperature dynamics across ocean layers, which is crucial for simulating
CO: solubility under varying hydrostatic pressure conditions. ar (aragonite saturation
state in sea water) and ca (calcite saturation state in sea water) arise from seawater
carbonate equilibrium but respond differently to changes in pH and total alkalinity,
enhancing the model’s ability to resolve subtle chemical shifts that regulate pCO.. chl
(mass concentration of chlorophyll a in sea water) directly indicates biological
activity (e.g., phytoplankton photosynthesis), while kd490 (volume attenuation
coefficient of downwelling radiative flux in sea water) reflects optical properties (e.g.,
turbidity, light penetration)—together, they provide independent constraints on the
biological and physical processes governing pCOs..

4. At line 153, “p-value” appears to be used where the Spearman correlation coefficient (p) is
intended.

Response: Done.

5. In Figure 4, the x-axis label “Sample size” is unclear, as no sampling or
subsampling experiment is described in the text. In addition, the legend format in
Figure 7 should be made consistent with Figures 5 and 6 to facilitate comparison.

Response: Done.

To clarify the data presentation logic of Figure 4, we have supplemented an
explanatory note in its title: Given the large volume of data, plotting all data points
would result in visual clutter. Therefore, we randomly selected representative data
points to illustrate the performance of different models. The selected data fully cover
the global ocean, far sea, and near sea scales, as well as low, medium, and high pCO:
ranges.

We appreciate your attention to the consistency of figure formats. Figure 7
(Independent verification performance of the models in the near sea areas) has been
revised, and its legend structure—including model abbreviations, full names, and the
right-axis label "Normalized probability density of model residuals"—is fully
consistent with Figure 5 (Global Ocean) and Figure 6 (Far sea areas), ensuring the
consistency of comparison logic.

The slight differences in the color bar (color scheme of scatter points) are a deliberate
design aimed at better distinguishing the three spatial scales (global, far sea, near sea)
while maintaining the same color mapping principle (kernel density is represented by
color depth, with darker colors indicating higher concentration of data points). This
design does not alter the information structure of the legend or the physical meaning
of the data.



6. Language should be double-checked. For example, in line 221, the term “the
model” is used without specifying which model is being discussed.

Response: Done.

We have modified it to "the constructed surface pCO. models" to clearly indicate that
it refers to all eight comparative models (including MLR, CNN, GRU, etc.) built for
the near sea areas in Section 3.2.3.

7. Sections 3.1-3.3 already provide detailed model performance metrics. In Section
3.4, additional accuracy statistics (e.g., line 284) are reported without clearly
explaining how they differ from earlier results (e.g., independent validation versus
internal testing).Please Clearly distinguish internal model evaluation from
independent validation of reconstructed products and avoid redundant reporting.

Response: Done.

The internal model evaluation and the independent validation of reconstructed
products are not redundant, as they serve distinct roles:

(1) Internal Model Evaluation (Sections 3.2.1-3.2.3)The core objective of this section
is to select the optimal model: by comparing the fitting performance of eight machine
learning models (MLR, CNN, GRU, LSTM, GAM, XGBoost, LSBoost, RF) across
different spatial scales (global ocean, far sea, near sea), the optimal model for each
scale is identified (the RF model ultimately performs best across all scales).The data
basis is the processed dataset described in Section 2.3.3, which is randomly split into
a training set, validation set, and testing set at an 8:1:1 ratio. All three subsets are
derived from the same integrated dataset (LDEO in-situ measurements + multi-source
influencing factors).The core metrics focus on "model-to-data" fitting accuracy,
including MAE, MAPE, MSE, RMSE, and R? of each model on the training,
validation, and testing sets (Table 3—5). For example, the RF model at the global scale
achieves a testing set RMSE of 6.123 patm and R? of 0.986. These metrics only
reflect the model’s ability to fit and generalize to similar structured data, without
involving product validation in real marine environments.

(2) Independent Validation of Reconstructed Products (Section 3.4)The core objective
of this section is to verify product reliability: targeting the 0.25°x0.25° resolution
(2000-2019) sea surface pCO: reconstructed products generated by the RF model,
this section evaluates their applicability and prediction accuracy in real marine
environments.The validation data adopts external datasets completely independent of
the internal evaluation dataset, including unused LDEO in-situ measurements (not
involved in model training/testing) and publicly available observation data such as the
Hawaii Ocean Time Series (HOT). These datasets have inherently different
characteristics from the internal evaluation dataset.The core metrics focus on
"product-to-reality" simulation accuracy, also reporting MAE, MAPE, MSE, RMSE,
and R2 However, these metrics are derived from the comparison between
reconstructed products and independent validation data (e.g., global-scale independent
validation RMSE = 19.901 patm, R? = 0.816), which reflects the application value of
the products in complex real environments and is not redundant with the internal



evaluation metrics.

8. The descriptions of machine-learning models (CNN, LSTM, GRU, RF, XGBoost,
LSBoost) are largely conceptual. Critical implementation details—such as network
architectures,  hyperparameters, feature  normalization, and optimization
procedures—are missing. How are the training/validation/testing splitted?

Response: We would like to clarify that although hyperparameter tuning of algorithms
is not the core focus of this study, it is crucial for the model results. We have
supplemented relevant explanations as follows:

Regarding the hyperparameter tuning of machine learning algorithms, we adopted
standard tuning strategies and parameter ranges widely accepted in the field of
oceanographic parameter estimation. The purpose of this tuning is to ensure the basic
stability and reliability of each model, rather than conducting innovative exploration
or comparative analysis of tuning methods. Through control experiments, we verified
that within a reasonable range of hyperparameters, the relative performance ranking
of the eight models remains consistent, and the optimal status of the Random Forest
(RF) model across all scales is not affected by minor parameter adjustments. This
confirms that the research conclusions (e.g., the superiority of the RF model, the
spatiotemporal variation characteristics of pCO:) do not depend on specific
hyperparameter combinations, further supporting that hyperparameter tuning is not
the focus of this study.



