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Abstract. Understanding the propagation of diverse drought conditions is necessary for drought preparedness. This study 

conducted a comprehensive analysis of the propagation characteristics across meteorological, hydrological, and agricultural 

droughts from 1958 to 2024 over global land areas, based on an ensemble of ERA5, GLDAS, and TerraClimate datasets. 10 

Using standardized drought indices at different accumulation periods, three drought propagation characteristics, including 

response time (RT), propagation rate (PR), and lag time (LT), were examined based on time-lag correlation analysis and 

multi-threshold run theory. The climatic and geographical feature factors that influence drought propagation were 

quantitatively evaluated using a SHapley Additive exPlanations (SHAP)-based attribution method. The results demonstrate 

the propagation pathways of meteorological-hydrological-agricultural drought at the global-scale, with the average RT, PR, 15 

and LT from meteorological to hydrological drought at 5.0 months, 55.3%, and 1.23 months; from meteorological to 

agricultural drought at 8.7 months, 30.3%, and 2.60 months; and from hydrological to agricultural drought at 5.8 months, 

35.0%, and 2.49 months, respectively. Notable temporal and spatial heterogeneities are observed in the drought propagation 

characteristics, which are closely influenced by with the regional climatic feature. Globally, temperature and potential 

evapotranspiration are the primary factors influencing the propagation of meteorological drought to hydrological drought, 20 

whereas precipitation plays a decisive role in the propagation from meteorological or hydrological drought to agricultural 

drought. The findings underscore the importance of taking climatic characteristics into account in the development and 

implementation of regional drought risk management. 

1 Introduction 

Drought is one of the most frequent natural disasters and is generally defined as a prolonged period of moisture deficits 25 

within the water cycle (Liu et al., 2020; AghaKouchak et al., 2023). Under global warming, the magnitude, frequency, and 

spatial extent of droughts have significantly increased in recent decades, primarily as a result of rising atmospheric 

evaporative demand (Chen et al., 2025; Gebrechorkos et al., 2025). The intensified droughts pose a significant threat to 

ecosystems and socio-economic sectors, such as agricultural production (Hendrawan et al., 2022), ecosystem productivity 
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(Cao et al., 2022; Gu et al., 2025), and water resources (Fowler et al., 2022; Liu et al., 2025). Moreover, multi-model 30 

ensemble of climate and hydrological projections reveals a consistent drying trend across many regions during the 21st 

century (Cook et al., 2020; Christian et al., 2023; Li et al., 2025). The increasing frequency and intensity of droughts are 

expected to exacerbate water scarcity and ecosystem degradation in the foreseeable future, thus posing significant threats to 

both the natural environment and human society. Therefore, characterizing the spatio-temporal dynamics of droughts is of 

crucial importance, as it has significant implications for adapting to and mitigating the impacts of drought-related hazards. 35 

 

Drought is a complex and multifaceted natural phenomenon within water cycle (Wu et al., 2022). Although a drought event 

typically originates from inadequate precipitation and excessive evapotranspiration (referred to as meteorological drought), 

its impacts on human and natural systems are closely related to subsequent development, such as diminished runoff 

(hydrological drought), and reduced soil moisture (agricultural drought). The transition processes from one type of drought 40 

(i.e., meteorological drought) to another (i.e., hydrological drought) are commonly referred to as drought propagation (Apurv 

et al., 2017; Colombo et al., 2024). Understanding drought propagation characteristics is essential for elucidating drought 

occurrence and evolution mechanisms, which help facilitate the effective drought monitoring and early warning systems. 

Over the past decades, numerous studies have investigated the propagation characteristics of various types of drought at both 

regional (Aryal et al., 2024; Geng et al., 2024) and global scales (Zhu et al., 2021, Shi et al., 2022; Liu et al., 2023), using 45 

methods such as correlation analysis (Han et al., 2023), run theory (Xiong et al., 2025), hydrological models (Gevaert et al., 

2018; Yang et al., 2024), copula functions (Wu et al., 2022; Yang et al., 2024), causality analysis (Shi et al., 2022), complex 

network theory (Konapala et al., 2022) and machine learning models (Muthuvel and Qin, 2025). For example, Shi et al. 

(2022) examined the response time from meteorological and hydrological droughts using the maximum correlation 

coefficient method, and analyzed the variations in response time across different climatic regions. Han et al. (2023) 50 

investigated the propagation pathways of various types of droughts across China and revealed the long-chain propagation 

mechanisms involving meteorological, hydrological, agricultural, and groundwater droughts. Aryal et al. (2024) evaluated 

the propagation time from meteorological drought to hydrological and agricultural drought across Australia, emphasizing the 

significant influence of climatic conditions and drought indices in assessing drought propagation dynamics. Among the 

aforementioned studies, correlation analysis and run theory are two of the most commonly used methodologies for 55 

quantifying drought propagation from a statistical perspective (Zhang et al., 2022). The time-lagged correlation analysis 

based on standardized drought indices (SDIs) with varying accumulation periods provides a direct and effective method for 

assessing the response time among different drought types. However, the correlation analysis can only reflect the average 

linear relationship between different drought types, but cannot capture the variations among individual drought events (Zhou 

et al., 2024; Brunner and Chartier-Rescan, 2024). In comparison, the run theory identifies discrete drought events based on 60 

the time series of drought indices, thereby providing a more physically meaningful interpretation of the time lag relationship 

among various drought conditions. Although extensive research has been conducted to examine the characteristics of 

drought propagation, the results of these studies are heavily dependent on the datasets, evaluation methods, drought indices, 
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and thresholds employed. Consistent and comparable drought propagation assessment is desired for improving our 

understanding of drought propagation, particularly at a global scale. 65 

 

The propagation characteristics of different types of drought vary depending on climatic conditions and underlying surface 

conditions (Apurv et al., 2017; Sattar et al., 2019; Apurv and Cai, 2020; Liu et al., 2023). Previous studies shown that the 

drought propagation is highly related to the climatic and geographical factors (Gevaert et al., 2018; Liu et al., 2023). Limited 

research has been conducted on quantifying the impacts of these factors on drought propagation. Data-driven machine 70 

learning approaches are increasingly being employed in drought modeling due to their inherent advantages in capturing 

nonlinear patterns from complex and high-dimensional data (Sundararajan et al., 2021; Prodhan et al., 2022). Moreover, the 

SHapley Additive exPlanations (SHAP) provides a unified attribution framework for explaining the ML outputs, enabling 

the interpretation of the causal relationships between independent variables and dependent variables (Antwarg et al., 2021; 

Nohara et al., 2022). Recently, SHAP-based attribution models have been utilized to investigate drought dynamics across 75 

various temporal and spatial scales (Xue et al., 2024; Feng et al., 2025). To the best of our knowledge, there is currently a 

lack of studies that analyze the factors influencing drought propagation from the perspective of SHAP-based machine 

learning. 

 

Reliable drought monitoring and an in-depth understanding of the underlying mechanisms depend on datasets that accurately 80 

describe variations in drought-related hydro-meteorological variables. For large-scale and global assessments, gauge 

observations and gauge-based gridded datasets are often constrained by limited spatial and temporal coverage, the 

occurrence of missing values, and challenges in data accessibility (Wang et al., 2020; Gebrechorkos et al., 2024). Numerous 

satellites, reanalysis, earth system models, and merged datasets have been developed, providing long-term and spatially 

continuous records of hydro-meteorological variables (Abatzoglou et al., 2018; Hersbach et al., 2020). Over the past decades, 85 

extensive efforts have been conducted to evaluate drought dynamics using different datasets at both regional and global 

scales. For example, Yuan et al. (2023) assessed the global patterns of flash drought, which is characterized by the rapid 

depletion of soil moisture, using ERA5 reanalysis and climate model datasets. Gebrechorkos et al. (2025) revealed the 

critical role of atmospheric evaporative demand in accelerating global drought severity, based on an ensemble of reanalysis, 

gridded observation, and hydrological model datasets. Wu et al. (2025) conducted an assessment of the dynamic 90 

predictability of agricultural drought across global land areas, utilizing the CRU gridded observation, ERA5 reanalysis, and 

GLDAS hydrological model datasets. However, inconsistent findings across studies can be attributed to the inherent 

uncertainties and errors within different datasets; few systematic comparisons have been conducted to quantify the 

discrepancies among the multiple datasets in representing drought propagation characteristics. 

 95 

Although previous studies have evaluated drought propagation across various temporal and spatial scales, a comprehensive 

global assessment of the propagation characteristics of meteorological, hydrological, and agricultural droughts remains 
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lacking, and the underlying influencing factors are not yet fully understood. Therefore, the objectives of this study are as 

follows: (1) to assess the spatial and temporal patterns of response time, propagation rate, and lag time across meteorological, 

hydrological, and agricultural droughts; (2) to quantify the main climatic and underlying surface feature factors that 100 

influence drought propagation characteristics from the perspective of machine learning; (3) to evaluate the reliability and 

uncertainty associated with multi-dataset ensembles in drought propagation assessments. 

2 Data and methodology 

2.1 Datasets 

Datasets play a crucial role in characterizing drought conditions. For large-scale studies, in-situ stations for hydro-105 

meteorological variables are insufficient to cover all global terrestrial regions, and their temporal series are also limited in 

duration. To ensure the reliability of the drought propagation analysis, the hydro-meteorological variables (i.e., precipitation, 

potential evapotranspiration, runoff, and soil moisture) used to calculate drought indices in our study were derived from 

three different datasets, including ERA5, the Global Land Data Assimilation System (GLDAS), and TerraClimate. Multiple 

datasets not only avoid the bias relying on a single dataset, but also provide a more comprehensive understanding of drought 110 

propagation from various perspectives of water cycle modelling. 

 

ERA5 is the fifth-generation global atmospheric reanalysis product developed by the European Centre for Medium-Range 

Weather Forecasts (ECMWF) (https://cds.climate.copernicus.eu/). It integrates extensive records of both in-situ and satellite 

observations through an ensemble-based data assimilation system (Hersbach et al., 2020). GLDAS is a multi-model 115 

ensemble comprising three land surface models—Noah, Catchment (CLSM), and the Variable Infiltration Capacity (VIC)—

which integrate satellite and in-situ observations through advanced land surface modeling techniques 

(https://ldas.gsfc.nasa.gov/). TerraClimate is a high-spatial-resolution, merged hydro-meteorological dataset that covers 

global terrestrial surfaces for the period from 1958 to 2024 (https://doi.pangaea.de/10.1594/PANGAEA.909132). 

TerraClimate integrates multiple datasets, such as WorldClim, Climate Research Unit (CRU), and Japanese 55-year 120 

Reanalysis (JRA-55), to generate hydro-meteorological variables. Potential evapotranspiration in the TerraClimate is 

calculated using the Penman-Monteith method, while runoff and soil moisture are estimated through an empirical water 

balance model (Abatzoglou et al., 2018). 

 

In addition, the Normalized Difference Vegetation Index (NDVI) was obtained directly from the Advanced Very High 125 

Resolution Radiometer (AVHRR) instruments operated by the National Oceanic and Atmospheric Administration (NOAA) 

(Pinzon and Tucker, 2014). The evaluation dataset was obtained from the ETOPO Global Relief Model developed by the 

National Centers for Environmental Information (https://www.ncei.noaa.gov/products/etopo-global-relief-model). The 
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aridity index dataset was derived from the Global Aridity Index and Potential Evapotranspiration Database—Version 3 

(Zomer et al., 2022). 130 

2.2 Calculation of drought indices 

Effective drought monitoring relies on drought indices to detect various drought conditions. In this study, standardized 

drought indices (SDIs) derived from precipitation, runoff and soil moisture were employed to characterize meteorological, 

hydrological and agricultural droughts, as well as their propagations. The SDI time series were obtained by fitting the 

drought variables of interest to a suitable probability distribution and subsequently normalizing the probabilities to generate a 135 

standardized time series. Three SDIs, including Standardized Precipitation Index (SPI) (McKee et al., 1993), Standardized 

Runoff Index (SRI) (Shukla and Wood, 2008), and Standardized Soil Moisture Index (SSI) (Hao and AghaKouchak, 2013), 

were computed by fitting parametric probability distributions, specifically the Gamma, log-normal, and normal distributions, 

respectively. The maximum likelihood estimation (MLE) method was utilized to estimate the parameters of the probability 

distributions, with the initial values determined based on the L-moments estimation (Stagge et al., 2015). Compared with 140 

other drought indices, the SDI is not only simple and efficient to calculate, but also applicable to diverse climates due to its 

consistent calculation procedure. Meanwhile, SDI can be calculated using drought-related variables across multiple time 

scales, thus enhancing its effectiveness in analyzing drought propagation. 

2.3 Response time analysis based on correlation coefficient 

The response times among meteorological, hydrological, and agricultural droughts were analyzed using correlation analysis. 145 

Assuming that a high correlation coefficient indicates a strong relationship, the correlation analysis between drought indices 

with different accumulation periods can be conducted to determine the response time of different drought types (Zhang et al., 

2022). For example, the response time from meteorological drought to agricultural drought is determined by the 

accumulation period of SPI that corresponds to the maximum correlation coefficient with the SSI at a 1-month accumulation 

period. A shorter accumulation period of SPI to 1-month SSI indicates a more rapid agricultural drought response to 150 

meteorological drought conditions. The correlation coefficient is calculated using Pearson’s correlation coefficient 

formulated as follows (Pearson, 1896): 
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where rP represents the Pearson’s correlation coefficient between SPI-n (n is the accumulation period, n = 1, 2, …, n) and 

SSI-1; x  and y  represent the average value of SPI and SSI, respectively; xi and yi represents the SPI and SSI values in the 155 

time i, respectively. The Pearson's correlation coefficient is ranged from -1 to 1, with positive correlation with rP > 0, and 

negative correlation with rP < 0. We evaluated the response times from meteorological drought to hydrological drought 
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(RMH), from meteorological drought to agricultural drought (RMA), and from hydrological drought to agricultural drought 

(RHA) by analyzing the correlations between SPI and SRI, between SPI and SSI, and between SRI and SSI, respectively. 

2.4 Lag time analysis based on run theory 160 

Run theory is a commonly used method for analyzing drought characteristics, which defines the initiation and termination of 

a drought event based on the drought index. In this study, the drought events were identified using the run theory of multiple 

thresholds (Fleig et al., 2006; Ma et al., 2021). Potential drought events were initially identified using an intermediate 

threshold (X0 = 0). Subsequently, the adjacent drought events with an interval of one month and whose drought index values 

were below a high threshold (X1 = 1) within that month were combined. Finally, the potential drought events with on month 165 

length and whose drought index value is greater than a low threshold (X2 = -1) were ruled out. 

 

After using run theory to identify the initiation and termination of drought events, the propagation rate and lag time between 

the two types of droughts can be evaluated. Taking meteorological and agricultural droughts as an example, the propagation 

from meteorological drought to agricultural drought is defined as the occurrence of an agricultural drought event during the 170 

period in which a meteorological drought occurs. Thus, the propagation rate (PMA) and lag time (LTMA) can be 

mathematically expressed as follows (Sattar et al., 2019): 
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where n is number of meteorological drought events that propagate to agricultural drought events; m is the total number of 175 

meteorological drought events during the study period; TM,i is the starting time of meteorological drought event i, and TA,i is 

the starting time of agricultural drought event i. Consistent with the analysis of drought response time, we analyzed the 

propagation rate and lag time between meteorological and hydrological droughts (PMH and LTMH), between meteorological 

and agricultural droughts (PMA and LTMA), and between hydrologcial and agricultural droughts (PHA and LTHA) by utilizing 

the SPI, SRI, and SSI at a one-month accumulation scale. 180 

2.5 SHAP-based attribution analysis 

The characteristics of drought propagation are closely associated with regional climatic and geographical features. In this 

study, we quantified the feature factors that influence drought propagation characteristics across global land areas using the 

SHapley Additive exPlanations (SHAP) method. SHAP is an effective method for interpreting the outputs of machine 
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learning models, which are often treated as black-box systems, based on principles derived from cooperative game theory 185 

(Nohara et al., 2022). The explanation model in the SHAP method can be represented as follows (Antwarg et al., 2021): 
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where G(x) is the simulated drought propagation characteristics; φ0 is the average predicted drought propagation 

characteristics; and φi represents the SHAP value for feature factor i. For a machine learning model f and input instance x, the 

SHAP value φi for feature factor i can be formula as: 190 
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where N is the set of all feature factors, and S is a subset of feature factor excluding feature factor i. The SHAP value φi can 

quantify the magnitude and direction of feature factors influencing on the model predictions. In our analysis, the drought 

propagation characteristics (i.e., response time, propagation rate and lag time) are simulated using the Extreme Gradient 

Boosting (XGBoost) model based on eight climatic and physiographical feature factors, including precipitation, temperature, 195 

potential evapotranspiration, runoff, soil moisture, aridity index, evaluation, and vegetation condition. The XGBoost model 

is an efficient and robust gradient-boosted decision tree algorithm that is widely applied in classification and regression tasks 

within the field of water resources engineering (Chen and Guestrin, 2016; Niazkar et al., 2024). 
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3 Results 

3.1 Response time and correlation of drought indices 200 

 

Figure 1. Spatial patterns of average RTMH, RTMA and RTHA across global land areas, and the corresponding maximum Pearson 

correlation coefficients. The blank grids indicate that the correlation between different drought indices is not statistically 

significant. 

 205 

Figure 1 illustrates the spatial patterns of response times between meteorological, hydrological and agricultural droughts 

based on the ensemble of three datasets. The average RTMH, RTMA and RTHA across global land areas are 5.0 months, 8.7 

months, and 5.8 months, respectively, with corresponding interquartile ranges (IQRs) being [2.7, 6.7] months, [5.0, 11.3] 

months, and [2.3, 7.3] months. The results indicate that hydrological drought responds more rapidly to meteorological 

drought compared to agricultural drought. Notable spatial heterogeneity is observed in the response times of various types of 210 

drought, with shorter propagation time in the regions of southeastern Asia, central Africa, South America, and North 

America. The maximum correlation coefficients reflect the reliability of the response time evaluation derived from 
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correlation analysis. Figures 1B, 1D and 1F display the spatial patterns of the maximum Pearson correlation coefficients, 

with the IQRs for SPI-SRI, SPI-SSI, and SRI-SSI being [0.43, 0.80], [0.51, 0.68], and [0.52, 0.70], respectively. The 

correlation coefficient between SPI and SRI in the mid- to low-latitude regions (30°S~30°N) is relatively high, suggesting a 215 

strong reliability in the response time from meteorological drought to hydrological drought in these areas. In comparison, 

aside from the high-latitude regions of the Northern Hemisphere, the correlation coefficients between SPI and SSI, as well as 

SRI and SSI, exhibit relatively strong correlations (> 0.5) across most regions. 

 

Figure S1 illustrates the similar results based on different datasets, and the corresponding maximum Pearson correlation 220 

coefficients are presented in Figure S2. There are notable differences in response time and maximum correlation across 

different datasets, particularly in mid- to high-latitude regions. For the response time, consistent low RTMH values are 

observed in the TerraClimate dataset across global land areas, while high RTMH values are predominantly found in the high 

latitudes of the Northern Hemisphere. Among the three datasets, the relatively higher RTMA values are observed in the 

GLDAS dataset, while relatively higher RTMA values are found in the TerraClimate dataset. For the maximum correlation of 225 

RTMH, RTMA, and RTHA, the GLDAS dataset generally exhibits higher correlation coefficients, while the ERA5 and 

TerraClimate datasets display significant spatial heterogeneity. Particularly, the relatively low correlation coefficients (< 0.3) 

are observed in the high latitudes of the Northern Hemisphere. This indicates that the propagation among different droughts 

is more consistently represented in the GLDAS dataset. 

 230 
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Figure 2. Box plots of RTMH, RTMA and RTHA in each calendar month across global land areas, and the corresponding maximum 

Pearson correlation coefficients. 

 

Figure 2 shows box plots illustrating the response times among meteorological, hydrological, and agricultural droughts in 235 

each calendar month, and the corresponding maximum Pearson correlation coefficients. The response time exhibits distinct 

fluctuations across various months, revealing a seasonal pattern of drought propagation. Shorter propagation times and 

higher correlation coefficients are observed during the period from June to September, which corresponds to the summer 

months in the Northern Hemisphere. The shortest response times for RTMH, RTMA, and RTHA are consistently recorded in 

August, with average values of 3.5 months, 5.6 months, and 3.6 months, respectively. In contrast, longer response times are 240 

observed during the colder seasons, with the longest response times for RTMH, RTMA, and RTHA occurring in February (5.6 

months), April (7.7 months), and March (5.4 months), respectively. This result indicates the influence of seasonal 

temperature variations on the drought propagation patterns. For example, during the cold season, precipitation is typically 

retained in the form of snowpack, thereby delaying the propagation of meteorological drought to hydrological drought. 

 245 
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Figure 3. Spatial patterns of temporal trends in RTMH, RTMA and RTHA across global land areas. The blank grids indicate that the 

correlation between different drought indices is not statistically significant. The black dots indicate the statistical significance of 

the time series trend, where the p-values from the M-K test are less than 0.05. 

 250 

Figure 3 presents the spatial patterns of the time series trends for RTMH, RTMA, and RTHA, calculated using 30-year moving 

windows based on the Sen’s slope estimator and the M-K test. The temporal trends in response time across different drought 

types demonstrate notable spatial heterogeneity. The grids exhibiting a monotonic time series trend account for 53.4%, 

35.1%, and 55.9% of the total grid for RTMH, RTMA, and RTHA, respectively. In contrast, the percentages of statistically 

significant increases range from 23.0% to 26.9%, whereas the percentages of statistically significant decreases fall within the 255 

range of 18.3% to 31.8%. For the RTMH, regions exhibiting increasing trends are primarily located in Europe, northwestern 

Asia, central Africa, and North America, while decreasing trends are sporadically observed across Asia. The decreasing 

trends of RTMA are primarily observed in the mid- to high-latitudes of the Northern Hemisphere, while increasing trends are 

predominantly evident in Central Asia and North America. In contrast, aside from the obvious increase observed in Central 
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Asia, no clear spatial distribution pattern can be identified in the time series trend of RTHA. This result indicates that the 260 

response time of various drought conditions can vary across different regions, exhibiting significant interannual variability. 

3.2. Propagation rate and lag time of drought events 

 

Figure 4. Spatial patterns of propagation rate (PRMH, PRMA and PRHA) and lag time (LTMH, LTMA and LTHA) across global land 

areas. 265 

 

Figure 4 illustrates the spatial patterns of propagation rate and lag time across global land areas. The propagation rate 

represents the linkages between two kinds of drought events. A high propagation rate indicates that subsequent drought 

events are more sensitive to prior drought events. Among three pairs of drought propagation, the propagation rate from 

meteorological to hydrological droughts is highest, with a global average PRMH value of 55.3% and an IQR of [46.4, 63.2]%. 270 

Spatially, a higher PRMH (larger than 60%) tends to occur in mid- and low-latitude regions as well as in low-altitude areas, 

and is often associated with a shorter LTMH (less than 1 month). The average LTMH across global land areas is 1.23 months, 

with IQR of [0.68, 1.68] months. Consistent with the correlation analysis between SPI and SRI, the propagation from 
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meteorological drought to hydrological drought is significantly influenced by regional temperature conditions. Tropical and 

subtropical regions exhibit a higher propagation rate and a shorter lag time from meteorological drought to hydrological 275 

drought. The average PRMA and PRHA over global land areas are 30.3% and 35.0%, respectively, with the IQRs being [19.3, 

41.5]% and [23.0, 47.6]%; and average LTMA and LTHA are 2.60 and 2.49 months, with the IQRs being [1.71, 2.92] and 

[1.68, 2.51] months. The higher PRMA and PRHA (larger than 40%) along with the shorter LTMA and LTHA (less than 2 month) 

trend to occur in humid regions, such as eastern North America, South America, central Africa, and southeastern Asia. 

 280 

Figures S3 and S4 show spatial patterns of propagation rate and lag time in the ERA5, GLDAS, and TerraClimate datasets. 

Consistent with the results of the response time analysis, the highest PRMH and LTMH values are found in the TerraClimate 

datasets, with PRMH values in the low and middle latitudes approaching 90% and LTMH values approaching less than 1 month, 

respectively. In the ERA5 dataset, the relatively low PRMH and high LTMH values are found in the high latitudes of the 

Northern Hemisphere; while in the GLDAS dataset, the relatively low PRMH and high LTMH values are found in the hyper-285 

arid regions, such as Sahara and the Arabian Peninsula. The highest PRMH value is detected in the ERA5 dataset, with an 

average value of 33.6% across global land areas, followed by GLDAS (30.2%) and TerraClimate (26.9%). The average 

PRMA values are 2.05 months, 2.70 months, and 3.03 months for the ERA5, GLDAS, and TerraClimate datasets, respectively. 

This suggests that the ERA5 reanalysis reveal a significant global sensitivity of agricultural drought to meteorological 

drought. Similarly, agricultural drought exhibits greater sensitivity to hydrological drought, as evidenced by the simulations 290 

in the GLDAS dataset. The average PRHA values are 36.4%, 43.5%, and 24.9% for ERA5, GLDAS, and TerraClimate 

datasets, respectively, while the corresponding average LTHA values are 3.46 months, 1.87 months, and 2.08 months. 
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Figure 5. Spatial patterns of temporal trends in the PRMH, PRMA and PRHA across global land areas. 295 

 

Figures 5 and 6 illustrate the spatial distributions of temporal trends in propagation rate and lag time across global land areas, 

based on a 30-year moving window analysis from year 1958 to 2024. The PRMH shows a significant decline across 49.0% of 

global land areas, while the corresponding LT MH exhibits a notable decrease in 47.8%. This indicates a reduced propagation 

from meteorological drought to hydrological drought in nearly half of the global land area. In contrast, the PMH (LT MH) 300 

shows a significant increase across 28.1% (29.6%) of global areas, particularly in the North America and South America. 

Although more than 42.5% (50.9%) of the land area exhibits a significant decreasing trend in PRMA (LTMA), notable 

increasing trends are observed in the western North America, central South America, and central Africa. This result indicates 

that the sensitivity of agricultural drought to meteorological drought exhibits significant spatial heterogeneity. For the PRHA, 

the land areas experiencing increasing trends (significant percentages of 46.7%) are more extensive than those showing 305 

decreasing trends (significant percentages of 31.7%). Notable increase trends are observed in the western North America, 
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central South America, central Africa, Europe, and northern Asia. Similar spatial patterns are observed in the LTHA, with 

significant increases and decreases accounting for 37.0% and 38.3%, respectively. 

 

 310 

Figure 6. Spatial patterns of temporal trends in the LTMH, LTMA and LTHA across global land areas. 
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3.3. SHAP-based attribution of drought propagation characteristics 

 

Figure 7. Scatter plots of SHAP values for feature factors influencing response time, propagation rate, and lag time across global 315 
land areas. (P-precipitation, T-temperature, PET-potential evapotranspiration, R-runoff, SM-soil moisture, AI-aridity index, 

DEM-evaluation, NDVI-vegetation condition). 

 

Spatial analysis of drought propagation indicates that regional climatic conditions and physiographical characteristics 

significantly influence the patterns and dynamics of drought propagation. In this study, we conducted an in-depth analysis of 320 

the influence of climate, topography and vegetation conditions on the processes of drought propagation, using a SHAP-based 

attribution method. Figure 7 presents the SHAP values of eight feature factors that influence drought propagation 

characteristics across global land areas, including precipitation, temperature, potential evapotranspiration, runoff, soil 

moisture, aridity index, evaluation, and vegetation condition. The SHAP value reflects both the direction and magnitude of 

the influence of feature factors on drought propagation characteristics. A positive SHAP value indicates that the feature has 325 

contributed to an increase in response time, propagation rate, and lag time. For example, taking the influence of temperature 
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on the RMH as an example, the SHAP value indicates that high temperatures have shortened the response time of 

meteorological drought to hydrological drought (Figure 7A). The scatter plots of SHAP values indicate that precipitation, 

temperature, potential evapotranspiration, runoff, aridity index, and NDVI are all positively correlated with the three drought 

propagation characteristics. Particularly, the evaluation is negatively correlated with drought propagation characteristics, 330 

whereas soil moisture exhibits an inconsistent correlation with these characteristics. 

 

 

Figure 8. Ranking of feature factors influencing drought propagation characteristics based on the absolute SHAP value. 

 335 

Figure 8 presents the ranking of feature factors that influence drought propagation characteristics, based on the absolute 

SHAP values, which is consistent with the scatter plots of SHAP values. The greater the absolute value of SHAP, the more 

significant its influence on the characteristics of drought propagation. Temperature and potential evapotranspiration are the 

most significant factors that influence the propagation of meteorological drought into hydrological drought. The average 
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absolute SHAP values of temperature (potential evapotranspiration) for RTMH, PRMH, and LTMH are 0.65 (0.37), 3.34 (2.14), 340 

and 0.13 (0.24), respectively, ranking first (fourth), first (second), and second (first) among all influencing factors. This 

result indicates that in warm regions characterized by higher average temperatures and potential evapotranspiration, 

hydrological drought is more sensitive to meteorological drought, thus having a faster response time and a shorter lag time. 

In comparison, precipitation serves as the main influencing factor in the propagation from meteorological and hydrological 

droughts to hydrological drought. Among all feature factors considered for RTMA, RTHA, PRMA, PRHA, LTMA, and LTHA, 345 

precipitation exhibits the highest average absolute SHAP value. The differences in SHAP values among other feature factors 

are not obvious and vary depending on the distinct characteristics of drought propagation. In humid regions, agricultural 

drought trends to be more sensitive to meteorological and hydrological drought conditions. 

 

 350 

Figure 9. Box plots of drought propagation characteristics across global land areas classified by the percentiles of key feature 

factors. 
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Figure 9 presents the boxplots of response time, propagation rate, and lag time across global land areas, grouped based on 

the percentiles of key feature factors identified through SHAP attribution analysis. The propagation from meteorological 355 

drought to hydrological drought is mainly influenced by regional temperature and PET. In the 20th to 70th percentiles of 

temperature and PET, both RMH and LTMH decrease as temperature and PET increase, while PMH increases as temperature 

and PET increase. This result indicates that as temperature and PET increase, hydrological drought becomes more sensitive 

to meteorological drought, and this relationship remains robust within the intermediate ranges of temperature and PET. For 

example, the average RTMH is 6.61 months in the 20th to 30th percentiles, decreasing to 3.43 months in the 60th to 70th 360 

percentiles; meanwhile, the average RTMH is 6.88 months in the 0th to 10th percentiles and 4.60 months in the 90th to 100th 

percentiles. In comparison, the propagations from meteorological and hydrological droughts to agricultural drought are 

mainly derived by the regional precipitation patterns. The average RTMA, RTHA, LTMA, and LTHA consistently decrease with 

increasing percentiles of precipitation, whereas the average PRMA, PRHA increase with increasing percentiles of precipitation. 

This indicates that agricultural drought driven by soil moisture deficits is more sensitive to meteorological and hydrological 365 

droughts in humid regions, showing a strong linear correlation with regional precipitation patterns. 

4. Discussion 

4.1. Comparison of different propagation characteristics 

Drought propagation is a critical characteristic of multiple drought conditions, which provides valuable information for 

monitoring and predicting drought dynamics. In this study, three drought propagation characteristics (i.e., response time, 370 

propagation rate, and lag time) across meteorological, hydrological, and agricultural droughts were comprehensively 

evaluated over global land areas. These characteristics reflect distinct aspects of the drought propagation signal within the 

hydrological cycle, as determined by various methodological approaches (Zhang et al., 2022). The response time is 

calculated by identifying the maximum Pearson correlation coefficient between two types of drought indices over various 

accumulation periods. This method facilitates a consistent comparison of drought propagation across diverse climatic regions 375 

and minimizes the subjectivity inherent in the evaluation of drought propagation. The response time also functions as an 

indicator of the feasibility of using one type of drought index as a proxy for another. For example, due to the lack of 

comprehensive observational data, the SPI with varying accumulation periods can reflect hydrological, agricultural and 

groundwater drought conditions (Kumar et al., 2016). In comparison, the propagation rate and lag time are calculated based 

on the drought events as defined by the multi-threshold run theory, which offers a more physically interpretable approach 380 

than correlation analysis. The event-based analysis incorporating threshold exceedances also captures nonlinear relationships 

among various drought conditions. The correlation analysis and run theory methods each possess distinct advantages and 

limitations. Our findings provide a systematic comparison of the consistency and discrepancies between these two 

approaches in characterizing the processes of drought propagation. 

 385 
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Consistently, the average response time (RTMH = 5.0 [2.7, 6.7] months, RTMA = 8.7 [5.0, 11.3] months, RTHA = 5.8 [2.3, 7.3] 

months), propagation rate (PRMH = 55.3 [46.4, 63.2]%, PRMA = 30.3% [19.3, 41.5]%, PRHA = 35.0 [23.0, 47.6]%) and lag 

time (LTMH = 1.23 [0.68, 1.68] months, LTMA = 2.60 [1.71, 2.92] months, LTHA = 2.49 [1.68, 2.51] months) over global land 

areas highlight that hydrological drought responds more rapidly to meteorological drought compared to agricultural drought. 

Our findings demonstrate the propagation pathway of meteorological-hydrological-agricultural droughts at the global scale, 390 

which is consistent with previous findings on drought propagation at the regional scale (Han et al., 2023). This is consistent 

with the conceptual framework of drought propagation, where precipitation deficits (meteorological drought) first influence 

surface soil moisture and runoff (hydrological drought), and subsequently affect deeper soil moisture (agricultural drought). 

A similar global assessment of multiple types of droughts was also conducted by Liu et al. (2023), whose results indicate that 

the globally average RTMH and RTMA are 3.5 months and 5.7 months, respectively. This discrepancy arises from the 395 

inconsistent datasets utilized in characterizing response time of drought propagation. In our study, we rely on an ensemble of 

three advanced datasets recently developed, thereby providing more reliable estimates of response time across various 

drought conditions. 

4.2. Main factors influencing drought propagation 

Across the global land areas, the characteristics of drought propagation exhibit notable temporal and spatial heterogeneity. 400 

Regions such as South America, eastern North America, central Africa, and southeastern Asia demonstrate shorter response 

times, higher propagation rates, and longer lag times across meteorological, hydrological, and agricultural droughts (Figures 

1 and 4). From year 1958 to 2024, 41.3% to 58.7% of global land areas exhibited significant temporal trends in response 

time, whereas 75.3% to 78.4% areas showed significant temporal trends in propagation rate and lag time (Figures 3, 5 and 6). 

In this study, we used XGBoost models with a SHAP-based attribution method to quantify the impacts of climatic, 405 

topographic, and vegetation-related feature factors on drought propagation. Our findings demonstrate that temperature and 

PET are the key factors influencing the propagation from meteorological to hydrological drought, while precipitation 

predominantly determines the propagation from meteorological/hydrological to agricultural drought. This is consistent with 

previous studies highlighting the significant role of climate characteristics in drought propagation (Apurv et al., 2017). In the 

tropical and subtropical regions (with temperatures and PET ranging from the 20th to the 70th percentiles), the increases in 410 

temperature and PET are expected to reduce both RTMH and LTMH, while simultaneously increasing PRMH (Figure 9). This is 

primarily attributed to the mechanism by which temperature influences the water cycle, leading to a lagged response of 

runoff to changes in precipitation. In cold regions and during cold reasons, precipitation is stored in the form of snow and 

glaciers, which subsequently melt and contribute to runoff during the following warm season. Therefore, the sensitivity of 

hydrological drought to meteorological drought is significantly influenced by temperature variations. In comparison, the 415 

sensitivity of agricultural drought to meteorological and hydrological droughts is closely associated with the regional 

average precipitation. This is because deep soil layers and aquifers in humid regions generally exhibit high saturation levels, 

where fluctuations in soil moisture demonstrate a more significant response to variations in precipitation and runoff. 
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4.3. Uncertainties in drought propagation evaluation 

Due to the inherent variability of drought-related variables, significant uncertainties exist within hydrometeorological 420 

datasets (Bador et al., 2020). Our findings depend on an ensemble of three datasets (i.e., ERA5, GLDAS, and TerraClimate), 

which helps avoid biased and incomplete evaluations of drought propagation that could result from relying on a single 

dataset. We conducted a comparative analysis of drought propagation characteristics derived from multiple datasets, 

systematically evaluating their consistency and discrepancies (Figures 11-13). The results underscore the impact of input 

data uncertainties on the assessment of drought propagation, with notable discrepancies predominantly observed in the 425 

hyper-arid, high-latitude, and high-evaluation regions. This is primarily attributed to the scarcity of in-situ stations capable of 

providing continuous spatial and temporal observations in these regions. The data assimilation systems and land surface 

models employed across different datasets to fill missing observations inevitably introduce uncertainties in both model 

parameters and structural configurations. Generally, this study provides a comprehensive assessment of multiple drought 

propagation characteristics across global land areas, which has significant implications for the development and 430 

improvement of drought monitoring and early warning systems. In tropical and sub-tropical regions, real-time monitoring of 

meteorological drought can improve the forecasting of hydrological drought; whereas in humid regions, drought indices 

based on precipitation and runoff could provide more accurate predictions of agricultural drought risks. Future research 

could focus on improving the accuracy of predicting future drought changes by incorporating the mechanisms of drought 

propagation into predictive models. 435 

5. Conclusions 

In this study, we systematically assessed the propagation characteristics of multiple drought types across global land areas. 

The SPI, SRI, and SSI time series at different accumulation periods from 1958 to 2024 were obtained by integrating the 

ERA5, GLDAS, and TerraClimate datasets, representing meteorological, hydrological, and agricultural drought conditions, 

respectively. Based on the correlation analysis and run theory, the response time, propagation rate, and lag time across 440 

meteorological, hydrological, and agricultural droughts were examined. Furthermore, the XGBoost-SHAP model was 

utilized to quantify the crucial feature factors that influence drought propagation. Main finding are: (1) The average response 

time (RTMH = 5.0 months, RTMA = 8.7 months, RTHA = 5.8 months), propagation rate (PRMH = 55.3%, PRMA = 30.3%, PRHA 

= 35.0%), and lag time (LTMH = 1.23 months, LTMA = 2.60 months, LTHA = 2.49 months) confirm the propagation pathway 

of meteorological-hydrological-agricultural drought at global scale. (2) Over the past six decades, approximately 40% of the 445 

landmass demonstrates temporal variations in the response time of drought propagation, while approximately 70% of the 

landmass shows temporal changes in both propagation rate and lag time. (3) Among the eight climatic, topographic, and 

vegetation-related feature factors, temperature and potential evapotranspiration are the primary factors influencing the 

propagation from meteorological drought to hydrological drought, primarily due to the lagging effects associated with snow 

melting processes. (4) In comparison, precipitation predominantly determines the propagation from meteorological or 450 
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hydrological drought to agricultural drought, due to the hydrological process effects of deep soil moisture and aquifer water. 

In summary, our study presents a multiple data-driven, global perspective on the propagation of meteorological, hydrological, 

and agricultural drought conditions, offering significant implications for drought monitoring and early warning systems in 

the context of global warming. 
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