Reference Number: EGUSPHERE-2025-4791

RESPONSES TO REVIEWER TWO’S COMMENTS

We are grateful to Reviewer #2 for his/her insightful review. The provided comments have
contributed substantially to improving the paper. According to them, we have made significant
efforts to revise the manuscript, with the details explained as follows:

Point #1

COMMENT: Main Critique on Methodology and Physical Interpretation: The study employs
both the Response Time (RT) based on time-lag correlation and the Lag Time (LT) based on
run-theory event identification to analyze drought propagation from the dual dimensions of
statistical association and event evolution. However, | contend that there is a fundamental
difference in their underlying physical mechanisms. RT reflects the overall synchronicity or
"statistical memory" between long-series precipitation, runoff, and soil moisture. Its values are
typically larger (e.g., 5-8 months in this study), primarily capturing the integrated system
response driven by seasonal cycles, multi-year climate oscillations (e.g., ENSO), and the
long-term water storage capacity of basins. In contrast, LT, based on discrete event tracking,
focuses on the physical evolution of specific drought pulses within the hydrological cycle,
reflecting the instantaneous triggering mechanism of drought signals penetrating from the
atmosphere to the land surface; thus, its values are usually much smaller (e.g., 1.2-2.6 months).

The authors must go beyond simply listing these inconsistent indices in tables and provide a
rigorous physical explanation for this "numerical gap” in the Discussion section. Specifically,
does the long-period RT represent the smoothing effect of basin storage or seasonal cycles on
drought signals, while the short-lived LT captures the non-linear rapid response mechanism
when the system exceeds a threshold under extreme stress? Without clarifying why statistical
correlation and event evolution differ so significantly in magnitude from a physical perspective,
readers will find it difficult to judge which indices are more valuable for early warning, and may
even question the robustness of the results. Therefore, | expect the authors to add a dedicated
section in the revised manuscript to deeply discuss the physical coupling behind these
methodological differences and clearly indicate how to weigh the use of these distinct
propagation indices under different management needs.

RESPONSE: We sincerely thank the reviewer's insightful and constructive comments regarding
the methodological differences between response time (RT) and lag time (LT) and their physical
implications. We fully agree with the comments that a deeper physical interpretation of the RT
and LT results is essential to clarify the mechanism of drought propagation and to provide more
valuable insights for drought risk management. In the revised manuscript, we have incorporated
a dedicated subsection within the Discussion section (4.1. Physical interpretation of drought
propagation characteristics) to explicitly address this issue. In detail, the revised section is
provided as follows:

“4.1. Physical interpretation of drought propagation characteristics
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In this study, two distinct methodological frameworks were employed to quantify
drought propagation: (1) the response time derived from time-lag correlation analysis,
and (2) the lag time based on event identification using the run theory. Response time is
determined by identifying the accumulation period of a drought index (e.g., SPI) that
maximizes its correlation with a target drought index (e.g., SSI at a 1-month
accumulation timescale) (L&ez-Moreno et al., 2013; Zhang et al., 2022). This approach
reflects the overall synchronicity and statistical memory characteristics of various
drought conditions. Thus, the response time values are strongly influenced by long-term
variations in regional climatic and hydrological conditions, such as the seasonal cycle,
multi-year climate oscillations, and water storage capacity. The response time refers to
the system’s long-term state that retains a memory of past drought conditions. The
evaluation of response time is beneficial for seasonal drought predictability and
long-term drought preparedness. The response time also functions as an indicator of the
feasibility of using one type of drought index as a proxy for another. For example, due to
the lack of comprehensive observational data, the SPI with varying accumulation periods
can reflect hydrological, agricultural and groundwater drought conditions (Kumar et al.,
2016).

In comparison, lag time is derived from discrete drought events identified using the
multi-threshold run theory, which measures the time difference between the onset of one
drought event and the onset of another drought event. By focusing on event-based
dynamics, the lag time reflects the instantaneous triggering mechanism by which drought
signals propagate from the atmosphere to the land surface. Numerous previous studies
have analyzed the threshold of extreme stress that triggers drought propagation, using
methods such as copula functions, hydrological models, and machine learning (Geng et
al., 2024; Yang et al., 2025). The lag time captures the non-linear response mechanism
between different drought conditions at a short time scale, which is crucial for real-time
early warning and impact assessment.

Our results provide a globally consistent comparison of the response time and lag time
for meteorological, hydrological, and agricultural drought propagation. The response
time of drought propagation (average RTwu, RTua, and RTya of 5.0 [2.7, 6.7] months,
8.7 [5.0, 11.3] months, and 5.8 [2.3, 7.3] months) is generally longer than the lag time
(average LTwun, LTwma, and LTya of 1.23 [0.68, 1.68] months, 2.60 [1.71, 2.92] months,
and 2.49 [1.68, 2.51] months). This numerical gap arises from differences in the
methodology, but both approaches indicate a consistent propagation pathway for
meteorological, hydrological, and agricultural droughts, with similar spatial patterns. In
addition, the machine learning-based attribution method also identifies similar impact
factors, which indicates the consistency of drought propagation mechanisms revealed by
response time and lag time. This aligns with the conceptual framework of drought
propagation, where precipitation deficits (meteorological drought) first influence runoff
generation over the land surface (hydrological drought), and subsequently affect soil
moisture in the root zone (agricultural drought).” (lines 435-466 of the revised
manuscript)

Point #2

COMMENT: The paper analyzes three pathways: M —H, M —A, and H—A. To what extent is
the propagation of H—A independent of M? That is, if meteorological drought (M) has already
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directly driven agricultural drought (A), is the contribution of hydrological drought (H) to A
merely a "shadow" of M?

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. In this study, we
analyzed three drought propagation pathways: from meteorological to hydrological drought,
from meteorological to agricultural drought, and from hydrological to agricultural drought.
Generally, drought propagation is regarded as a hierarchical top-down process. Our results
demonstrate the pathway of meteorological-hydrological agricultural droughts. Meteorological
drought, primarily caused by precipitation deficits, can cascade to other hydrological variables
in the water cycle. As defined by the runoff variations, hydrological droughts are influenced by
meteorological droughts and then propagate to agricultural droughts (deficits in soil moisture).
We agree the reviewer’s comment that the contribution of hydrological drought to agricultural
drought is influenced by the meteorological drought. In fact, drought propagation is a complex
process, as it is driven by the close interrelationships among various hydrological variables. The
current analysis in our manuscript is hardly to distinguish the propagation of hydrological to
agricultural droughts that is independent of the impact of meteorological drought. Accordingly,
in the revised manuscript, we have added the discussion about the uncertainties in our analysis.
Specifically, the revised paragraphs are provided as follows:

“4.4. Uncertainties and implications in drought propagation evaluation

Drought propagation evaluation relies heavily on drought indices for monitoring and
characterizing various drought types. Considering the data availability and the continuity
in both temporal and spatial dimensions at the global scale, we employed the SPI, SR,
and SSI to represent meteorological, hydrological, and agricultural droughts. Our results
demonstrated the propagation pathway of meteorological-hydrological-agricultural
droughts, which is consistent with previous studies that employed similar indices (Han et
al., 2023; Mei et al., 2025). As a multifaceted phenomenon, hydrological drought is a
broad term that is related not only to runoff but also to streamflow and the levels of
groundwater, lakes, and reservoirs (Van Loon, 2015). Using the drought indices derived
from streamflow, the propagation from agricultural to hydrological droughts has also
been identified in many studies, particularly at the watershed scale (Odongo et al., 2023;
Teutschbein et al., 2025). Runoff is the volume of water that originates from precipitation
and flows over the land surface; it is not directly equal to the streamflow in stream
channels. A deficit in runoff can directly affect the availability of soil moisture due to
reduced recharge to the root zone, representing the propagation from hydrological
drought to agricultural drought. In comparison, soil moisture retains precipitation that
falls on the land surface and then delays the propagation time form precipitation to
streamflow (McColl et al., 2017).” (lines 513-526 of the revised manuscript)

Point #3

COMMENT: In desert regions with extremely low precipitation, the correlation between SPI and
SRI is often meaningless. How were these extreme climatic zones handled in your global
assessment, and are the conclusions applicable there?

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. We agree that in
hyper-arid regions—where precipitation is extremely low and highly erratic—the calculation of
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the SPI and SRI becomes statistically unstable, and the correlation between SPI and SRI in such
environments can indeed be uninterpretable. Accordingly, we have added a discussion of the
uncertainties associated with drought propagation in hyper-arid regions. The revised paragraph
is provided below:

“Due to the inherent variability of drought-related variables, significant uncertainties
exist within hydrometeorological datasets (Bador et al., 2020). Our findings depend on
an ensemble of three datasets (i.e., ERAS5, GLDAS, and TerraClimate), which helps
avoid biased and incomplete evaluations of drought propagation that could result from
relying on a single dataset. We conducted a comparative analysis of drought propagation
characteristics derived from multiple datasets, systematically evaluating their consistency
and discrepancies (Figs. S3-S6). The results underscore the impact of input data
uncertainties on the assessment of drought propagation, with notable discrepancies
predominantly observed in the hyper-arid, high-latitude, and high-evaluation regions.
Specifically, in hyper-arid regions—where precipitation is extremely low and highly
erratic—the calculation of the SPI and SRI becomes statistically unstable; consequently,
the correlation between SPI and SRI in such environments can indeed be uninterpretable.
This is primarily attributed to the scarcity of in-situ stations capable of providing
continuous spatial and temporal observations in these regions. The data assimilation
systems and land surface models employed across different datasets to fill missing
observations inevitably introduce uncertainties in both model parameters and structural
configurations.” (lines 528-539 of the revised manuscript)

Point #4

COMMENT: The authors selected eight factors for attribution. What was the rationale for
selecting these specific factors? Why were underlying surface characteristics, such as land use
types, not included? These physical surface features often have a more direct impact on drought
propagation (especially PR and LT) than NDVI.

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. We agree with the
reviewer’s comment that there are a large number of factors that influence drought propagation,
such as soil properties and geology factors. In our analysis, the selection of these factors as
model predictors is due to the reason that (1) a large number of previous studies have
demonstrated the importance of climatic factors in drought propagation (Apurv et al., 2017;
Sattar et al., 2019; Apurv and Cai, 2020); (2) our research focused on the process of drought
propagation at a 1=x1°grid scale; however, soil properties and other geological factors are not
easily aggregated at such a relatively coarse spatial resolution. Accordingly, we have
substantially expanded the Methods and Results section to emphasize the details of model
development and evaluation. The revised sentences are provided as follows:

“According to previous studies, climatic conditions are among the most important factors
influencing drought propagation characteristics (Aryal et al., 2024). To explore the
relative importance of long-term climatic conditions for drought propagation, the average
values (1958-2024) of eight climatic and physiographic variables, including precipitation,
temperature, potential evapotranspiration, runoff, soil moisture, aridity index, elevation,
and vegetation condition, were selected as model predictors. The corresponding drought
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propagation characteristics (i.e., response time, propagation rate, and lag time) were
selected as target variables. The Extreme Gradient Boosting (XGBoost) model was
employed to model the relationships between climatic predictors and drought

propagation target variables. The XGBoost model is an efficient and robust
gradient-boosted decision tree algorithm that is widely applied in classification and
regression tasks within the field of water resources engineering (Chen and Guestrin, 2016;
Niazkar et al., 2024). To account for spatial autocorrelation, spatial block

cross-validation was employed on the training set to prevent overfitting. The global grid
was partitioned into 43 spatially contiguous blocks according to the IPCC ARG reference
land regions (lturbide et al., 2020). In each fold, ten blocks were held out for validation,
and the XGBoost model was trained on the remaining blocks. Model performance was
evaluated using the coefficient of determination (R2) and root mean square error (RMSE),
averaged across all held-out blocks.” (lines 225-238 of the revised manuscript)

Point #5

COMMENT: Global grid data exhibit strong spatial autocorrelation. If all grid points are fed
directly into the XGBoost model, the model may suffer from overfitting or yield erroneous
significance levels. Have the authors attempted to prove the robustness of the model?

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. We agree that global
gridded data exhibit strong spatial autocorrelation, which can lead to overfitting and thus reduce
the generalizability of our findings. In our analysis, spatial block cross-validation was employed
to account for spatial autocorrelation. The global grids were partitioned into 43 spatially
contiguous blocks according to the IPCC ARG reference land regions (lturbide et al., 2020). In
each fold, ten blocks were held out for validation, and the XGBoost model was trained on the
remaining blocks. In the updating manuscript, we have added the sentence in the Methods
section to make it clearer. The revised sentences are provided as follows:

“According to previous studies, climatic conditions are among the most important factors
influencing drought propagation characteristics (Aryal et al., 2024). To explore the
relative importance of long-term climatic conditions for drought propagation, the average
values (1958-2024) of eight climatic and physiographic variables, including precipitation,
temperature, potential evapotranspiration, runoff, soil moisture, aridity index, elevation,
and vegetation condition, were selected as model predictors. The corresponding drought
propagation characteristics (i.e., response time, propagation rate, and lag time) were
selected as target variables. The Extreme Gradient Boosting (XGBoost) model was
employed to model the relationships between climatic predictors and drought

propagation target variables. The XGBoost model is an efficient and robust
gradient-boosted decision tree algorithm that is widely applied in classification and
regression tasks within the field of water resources engineering (Chen and Guestrin, 2016;
Niazkar et al., 2024). To account for spatial autocorrelation, spatial block

cross-validation was employed on the training set to prevent overfitting. The global grid
was partitioned into 43 spatially contiguous blocks according to the IPCC ARG reference
land regions (lturbide et al., 2020). In each fold, ten blocks were held out for validation,
and the XGBoost model was trained on the remaining blocks. Model performance was
evaluated using the coefficient of determination (R2) and root mean square error (RMSE),
averaged across all held-out blocks.” (lines 225-238 of the revised manuscript)
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“Using different drought propagation characteristics as the target variables, nine
XGBoost models were established. The validation sets of these models yielded
satisfactory evaluation results (Table S1), which can substantiate the attribution results.”
(lines 385-387 of the revised manuscript)

The added table:

Table S1. The performance metrics in validation sets for each XGBoost model

Model

name RTun RTma RTua PRwnw PRma PRuya LTun  LTma  LTwa

R? 0.653 0.878 0.858 0.824 0.944 0913 0.646 0.581 0.652

RMSE 1.736 1.779 1.667 4.613 3.252 4.416 1177 4221 1411
Point #6

COMMENT: In the Introduction, please emphasize that meteorological, hydrological, and
agricultural systems are not isolated but are coupled through the hydrological cycle.

RESPONSE: We sincerely appreciate the reviewer’s valuable suggestion. We fully agree that
meteorological, hydrological, and agricultural droughts are interconnected through the
hydrological cycle—a connection that provides a stronger and more physically grounded
foundation for our study. Accordingly, we have revised the Introduction in the updated version
to incorporate this conceptual emphasis. The revised sentences are provided as follows:

“There exists a strong interrelationship among different types of droughts, owing to the
close linkage of their driving factors within the hydrological cycle.” (lines 43-45 of the
revised manuscript)

Point #7

COMMENT: Add a mention of the "Propagation Threshold" in the Introduction.

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. Propagation threshold is
an important concept for understanding drought propagation dynamics. Accordingly, we have

incorporated this concept in the Introduction, and the revised sentences are provided as follows:

“Understanding drought propagation characteristics, such as propagation time,
probability, and threshold, are essential for elucidating drought occurrence and evolution
mechanisms, which help facilitate the effective drought monitoring and early warning
systems.” (lines 46-49 of the revised manuscript)

Point #8



COMMENT: In the Data section, the spatial resolution of different datasets should be clarified,
and any resampling operations must be mentioned.

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. In this study, three
different datasets were employed to assess the drought propagation characteristics, which have
different spatial resolutions. To ensure spatial and temporal consistency, the period from 1958 to
2024 was selected as the reference period, and all datasets were uniformly interpolated onto a
1<<1 <latitude—longitude grid using bilinear interpolation. In the updating version, we have
rewritten the section “2.1 Datasets” to make it clearer, and the revised parts are provided as
follows:

“2.1 Datasets

Monthly precipitation, runoff, and soil moisture were derived from the ERAS5, the Global
Land Data Assimilation System (GLDAS), and TerraClimate datasets to calculate the
drought indices. ERAS is the fifth-generation global atmospheric reanalysis product
developed by the European Centre for Medium-Range Weather Forecasts. It integrates
extensive records of both in-situ and satellite observations through an ensemble-based
data assimilation system (Hersbach et al., 2020). Precipitation in ERAS was generated by
the atmospheric component of the Integrated Forecasting System, whereas runoff and
soil moisture were simulated by a land surface model (Boussetta et al., 2021). The soil
moisture in ERA5 was aggregated to 1 meter volumetric soil water using weighted data
from three layers: 0—7 cm, 7-28 cm, and 28-100 cm. GLDAS is a multi-model ensemble
comprising three land surface models—Noah, Catchment, and the Variable Infiltration
Capacity—which integrate satellite and in-situ observations through advanced land
surface modeling techniques. The soil moisture in GLDAS models has different soil
layer structures, all of which were weighted to the root zone depth of 1 meter to be
consistent with ERAS. TerraClimate integrates multiple datasets, including WorldClim,
Climate Research Unit, and Japanese 55-year Reanalysis, to generate
hydro-meteorological variables (Abatzoglou et al., 2018). The soil moisture in the
TerraClimate refers to the plant extractable soil water based on the root zone storage
capacity, as modeled by an empirical water balance model. To ensure spatial and
temporal consistency, the period from 1958 to 2024 was selected as the reference period,
and all datasets were uniformly interpolated onto a 1<l “latitude—longitude grid using
bilinear interpolation.

In addition, the temperature and potential evapotranspiration (PET) were also obtained
from the ensemble of ERA5, GLDAS, and TerraClimate datasets. Potential
evapotranspiration in these datasets was calculated using the Penman-Monteith method
(Abatzoglou et al., 2018). The Normalized Difference Vegetation Index (NDVI) was
obtained directly from the Advanced Very High Resolution Radiometer instruments
operated by the National Oceanic and Atmospheric Administration (NOAA) (Pinzon and
Tucker, 2014). The elevation dataset was obtained from the ETOPO Global Relief Model
developed by the National Centers for Environmental Information
(https://www.ncei.noaa.gov/products/etopo-global-relief-model). The aridity index
dataset was derived from the Global Aridity Index and Potential Evapotranspiration
Database—WVersion 3 (Zomer et al., 2022).” (lines 112-136 of the revised manuscript)

Point #9



COMMENT: More details need to be added to Section 2.4.

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. In the revised
manuscript, we have added more details about the lag time and propagation rate derived from
the multi-threshold run theory. Specifically, the revised paragraphs are provided as follows:

2.4 Lag time analysis based on run theory

Run theory is a commonly used method for analyzing drought characteristics, which
defines the initiation and termination of a drought event based on the drought index. In
this study, the drought events were identified using a multi-threshold run theory, which
has advantages in avoiding the unreasonable splitting of persistent droughts and filtering
out minor drought episodes, thus providing more accurate identification of drought
events (Fleig et al., 2006; Ma et al., 2021). Potential drought events were initially
identified using an intermediate threshold (X, = 0). Subsequently, the adjacent drought
events with an interval of one month and whose drought index values were below a high
threshold (X; = 1) within that month were combined. Finally, the potential drought
events with one month length and whose drought index value is greater than a low
threshold (X, = -1) were ruled out.

After using run theory to identify the initiation and termination of drought events, the
propagation rate and lag time between the two types of droughts can be evaluated.
Taking meteorological and agricultural droughts as an example, the propagation from
meteorological drought to agricultural drought is defined as the occurrence of an
agricultural drought event during the period in which a meteorological drought occurs.
Thus, the propagation rate (PRya) and lag time (LTya) can be mathematically expressed
as follows (Sattar et al., 2019):

n
Pun = —-x100% )
Z G-M Ji _TA,i)
LT = (€))

n
where n is number of meteorological drought events that propagate to agricultural
drought events; m is the total number of meteorological drought events during the study
period; TM,i is the starting time of meteorological drought event i, and TA,i is the
starting time of agricultural drought event i. To elucidate the propagation of drought
across different types, the SPI, SRI, and SSI at a 1-month accumulation period were used
to represent meteorological, hydrological, and agricultural drought, respectively.
Consistent with the analysis of drought response time, we analyzed the propagation rate
and lag time between meteorological and hydrological droughts (PRuy and LTyh),
between meteorological and agricultural droughts (PRya and LTya), and between
hydrologcial and agricultural droughts (PRua and LTya).” (lines 171-189 of the revised
manuscript)

Point #10

COMMENT: It is suggested to add a brief explanation of "Non-significant areas™ in Section 3.1.



RESPONSE: We sincerely appreciate the reviewer’s helpful comment. In the revised
manuscript, we have added a brief explanation of non-significant trend of time series trend in the
Fig. 3. In detail, the revised sentences is provided as follows:
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Figure 3. Spatial patterns of time series trends in RTyn, RTma and RTya across global
land areas. The blank grids signify that, within at least one time-window in the time
series of response time obtained from the moving window, the correlation coefficient is
not statistically significant. The black dots indicate the statistical significance of the time
series trend, where the p-value of the TFPW-MK test is less than 0.05. A significant
increase (decrease) indicates that the Sen's slope is greater (less) than 0 and that the
p-value of the TFPW-MK test is less than 0.05. A nonsignificant increase (decrease)
indicates that the Sen's slope is greater (less) than 0 and that the p-value of the
TFPW-MK test is greater than 0.05. A monotonic trend indicates that Sen's slope is equal
to 0.

Point #11

COMMENT: Figure 2 uses a unified global timeline. Since seasons are opposite in the Northern
and Southern Hemispheres, the high response values in February—April might be entirely driven
by the Northern Hemisphere. Should these be discussed separately?

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. We agree that drought
propagation exhibits distinct seasonal variations and differs between the Northern and Southern

Hemispheres. Accordingly, we have split the original Fig. 2 into separate panels for the Northern
and Southern Hemispheres to better illustrate these hemispheric differences in seasonal patterns.
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In the revised manuscript, the original Fig. 2 has been moved to the Supplementary Materials,

and the revised version is presented below:
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Figure S1. Box plots of RT,V.H, RTwa and RTya for each calendar month in the Southern

May

Jun

5

Q
QJ

Pearson correlation Pearson correlation

Pearson correlation

0.5

05

05

B cor(SPI,SRI)

T

R

e W

=

I—

1—

e ————

il

D cor(SPI,SSI)

"

i

———— | —

| —
i

F cor(SRI,SS)

e —

ik

P | |

I —

c o 5 = c > O
® QO o o
gu_§<§5’,ﬁ<m02m

Hemisphere, along with the corresponding Pearson correlation coefficients.

Propagation time Propagation time
(month) (month)

Propagation time
(month)

24

12

24

12

24

12

A RTun

[ A

e e e

1 fmmmm——————

P
I B N
[
1 I
;* I
TEZ
I 5 £ B
S8553853253338
S P=<=235280248

Pearson correlation Pearson correlation

Pearson correlation

0.5

0.5

0.5

B cor(SPI,SRI)

ail

—_— 1

——— e | —

|

I

—

D cor(SPI,SSlI)

—_——

|

- —+—
e

—_——— | —

—

—_—

11—

———

I —

——
s m— ]

= >
§6 & T
S w2

C

-

> o
C o0 ©

2853 < $ o028
Figure S2. Box plots of RTyn, RTua and RTya for each calendar month in the Northern

Hemisphere, along with the corresponding Pearson correlation coefficients.
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“The response times among meteorological, hydrological, and agricultural droughts also
exhibit obvious seasonal variations (Figs. S1 and S2). Shorter response times and higher
correlation coefficients were observed during the summer season (June—-August in the
Northern Hemisphere, and December—February in the Southern Hemisphere).” (lines
257-260 of the revised manuscript)

Point #12

COMMENT: Human activities can significantly alter the PR and LT of drought propagation.
Have the authors considered quantifying human activities? Although this is challenging, |
suggest a rough discussion on this topic.

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. We agree that human
activities—such as water abstraction, reservoir regulation, and land-use change—can profoundly
modify natural drought propagation processes by altering catchment storage and flow pathways,
thereby influencing both the propagation rate (PR) and lag time (LT). In our analysis, we
focused on understanding drought propagation under the predominant influence of climate and
natural conditions. Quantitatively disentangling the effect of human activities on drought
propagation is indeed exceptionally challenging due to the scarcity of consistent, high-resolution
datasets on human activities, particularly at the global scale. In response to the reviewer’s
comment, we have added a paragraph in the Discussion section addressing this topic, and the
revised paragraphs are provided as follows:

“In addition, human activities—such as water abstraction, reservoir regulation, and
land-use change—can profoundly modify natural drought propagation processes by
altering catchment storage and flow pathways, thereby influencing drought propagation.
Future research could also focus on quantitatively disentangling the effects of human
activities on drought propagation.” (lines 546-549 of the revised manuscript)

Point #13

COMMENT: I strongly recommend placing the propagation maps generated by each individual
dataset in the Supplementary Materials.

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. Accordingly, we have

added the propagation maps derived from different datasets in the Supplementary Materials. In
detail, the revised parts are provided as follows:
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Figure S3. Spatial patterns of average RTun, RTwa, and RTya across global land areas in
the ERA5, GLDAS, and TerraClimate datasets.
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Figure S4. Spatial patterns of maximum Pearson correlation coefficients for RTyy, RTua,
and RTya across global land areas in the ERA5, GLDAS, and TerraClimate datasets.
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Figure S5. Spatial patterns of average PRun, PRua, and PRy across global land areas in
the ERA5, GLDAS, and TerraClimate datasets.
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Figure S6. Spatial patterns of average LTun, LTwa, and LTya across global land areas in
the ERA5, GLDAS, and TerraClimate datasets.
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