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RESPONSES TO REVIEWER ONE’S COMMENTS

We are grateful to Reviewer #1 for his/her insightful review. The provided comments have
contributed substantially to improving the paper. According to them, we have made significant
efforts to revise the manuscript, with the details explained as follows:

Point #1

COMMENT: Novelty. (a) Which is the specific research gap that this work addresses? This is
currently not entirely clear from the title, abstract, and introduction. As the authors also
acknowledge in the introduction, global-scale drought propagation studies are already available.
I might see the originality of this work being the use of multiple datasets, but in this case, |
believe this could be better worked out throughout the manuscript. Not only in the title, abstract,
and introduction, to set the reader s expectations clear, but also later in the manuscript. (b) As a
reader, for instance, |1 would enjoy having more discussion on the most suitable dataset(s) for
drought applications. | see that providing a clear recommendation on this may be difficult from
the current analyses, since you do not have here observations to benchmark the datasets with,
but maybe you could still say something based on expectations on drought propagation that we
have from previous observation-based studies? (c) Also, I would find useful to have clear ranges
of variation for the drought propagation characteristics from the different datasets in the
abstract and conclusions, as an indication of the uncertainties in such characteristics.

RESPONSE: (a) We sincerely thank the reviewer for the essential comment on how to better
articulate the novelty and contribution of our work. We agree that our initial presentation did not
sufficiently highlight the distinctive research gap we are addressing. In the revised manuscript,
we have thoroughly revised the Title, Abstract, and Introduction to precisely define our specific
novelty and contribution, and have emphasized this message in the Discussion and Conclusion.
In detail, the revised parts are provided as follows:

Title: “Understanding meteorological, hydrological, and agricultural drought
propagation and their influencing factors in an ensemble of multiple datasets” (lines 1-3
of the revised manuscript)

Abstract: “Understanding the propagation of diverse drought conditions is necessary for
drought preparedness. This study conducted a comprehensive evaluation of the
propagation of meteorological, hydrological, and agricultural droughts across global land
areas from 1958 to 2024, based on an ensemble of reanalysis data (ERA5), land surface
model simulations (GLDAS), and merged observational datasets (TerraClimate). Two
distinct methodological frameworks were employed to characterize drought propagation:
time-lag correlation analysis and multi-threshold run theory. Based on standardized
drought indices derived from precipitation (meteorological), runoff (hydrological) and
soil moisture (agricultural), the drought propagation characteristics of response time (RT),
propagation rate (PR), and lag time (LT) were examined. Moreover, the climatic and
geographical factors influencing drought propagation were quantified using the SHapley
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Additive exPlanations (SHAP)-based attribution method. The results demonstrate the
propagation pathways of meteorological-hydrological-agricultural drought at the
global-scale, with the average RT, PR, and LT from meteorological to hydrological
drought at 5.0 months, 55.3%, and 1.23 months; from meteorological to agricultural
drought at 8.7 months, 30.3%, and 2.60 months; and from hydrological to agricultural
drought at 5.8 months, 35.0%, and 2.49 months, respectively. Notable temporal and
spatial heterogeneities are observed in the drought propagation characteristics, which are
closely influenced by with the regional climatic feature. Globally, temperature and
potential evapotranspiration are the primary factors influencing the propagation of
meteorological drought to hydrological drought, whereas precipitation plays a decisive
role in the propagation from meteorological or hydrological drought to agricultural
drought. The findings underscore the importance of taking climatic characteristics into
account in the development and implementation of regional drought risk management.”
(lines 9-26 of the revised manuscript)

Introduction: “Drought is one of the most frequent natural disasters and is generally
defined as a prolonged period of moisture deficits within the water cycle (Liu et al., 2020;
AghaKouchak et al., 2023). Under global warming, the magnitude, frequency, and spatial
extent of droughts have increased in recent decades, driven by precipitation variability
and increased atmospheric evaporative demand (Chen et al., 2025; Gebrechorkos et al.,
2025). The intensified droughts pose a significant threat to ecosystems and
socio-economic sectors, such as agricultural production (Hendrawan et al., 2022),
ecosystem productivity (Cao et al., 2022; Gu et al., 2025), and water resources (Fowler et
al., 2022; Liu et al., 2025; Xie et al., 2025). Moreover, multiple climate and hydrological
projections reveals a consistent drying trend across many regions during the 21st century
(Cook et al., 2020; Christian et al., 2023; Li et al., 2025). The increasing frequency and
intensity of droughts are expected to exacerbate water scarcity and ecosystem
degradation in the foreseeable future, thus posing significant threats to both the natural
environment and human society. Therefore, characterizing the spatio-temporal dynamics
of droughts is of crucial importance, as it has significant implications for adapting to and
mitigating the impacts of drought-related hazards.

Drought is a complex and multifaceted natural phenomenon (Wu et al., 2022). Although
a drought event typically originates from inadequate precipitation and excessive
evapotranspiration (referred to as meteorological drought), its impacts on human and
natural systems are closely related to subsequent development, such as diminished runoff
(hydrological drought), reduced soil moisture (agricultural drought), and declined
groundwater (groundwater drought). There exists a strong interrelationship among
different types of droughts, owing to the close linkage of their driving factors within the
hydrological cycle. The transition processes from one type of drought (i.e.,
meteorological drought) to another (i.e., hydrological drought) are referred to as drought
propagation (Apurv et al., 2017; Colombo et al., 2024). Understanding drought
propagation characteristics, such as propagation time, probability, and threshold, are
essential for elucidating drought occurrence and evolution mechanisms, which help
facilitate the effective drought monitoring and early warning systems. Over the past
decades, numerous studies have assessed the propagation characteristics of different
drought conditions, using identification methods such as time-lag correlation analysis
(L&pez-Moreno et al., 2013; Barker et al., 2016; Liu et al., 2023; Geng et al., 2024), run
theory (Aryal et al., 2024; Xiong et al., 2025), and event-coincidence analysis
(Baez-Villanueva et al., 2024). For example, Shi et al. (2022a) examined the response
time from meteorological and hydrological droughts using the maximum correlation
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coefficient method, and analyzed the variations in response time across different climatic
regions. Han et al. (2023) investigated the propagation pathways of various types of
droughts across China and revealed the long-chain propagation mechanisms involving
meteorological, hydrological, agricultural, and groundwater droughts. Aryal et al. (2024)
evaluated the propagation time from meteorological drought to hydrological and
agricultural drought across Australia, emphasizing the significant influence of climatic
conditions and drought indices in assessing drought propagation dynamics. Among the
aforementioned studies, correlation analysis and run theory are two of the most
commonly used methodologies for quantifying drought propagation (Zhang et al., 2022).
The time-lag correlation analysis based on standardized drought indices (SDIs) with
varying accumulation periods provides a direct and effective method for assessing the
response time among different drought types from a statistical perspective. However, the
correlation analysis can only reflect the average linear relationship between different
drought types, but cannot capture the variations among individual drought events (Zhou
et al., 2024; Brunner and Chartier-Rescan, 2024). In comparison, the run theory identifies
discrete drought events based on the time series of drought indices, thereby providing a
more physically meaningful interpretation of the time lag relationship among various
drought conditions. Although extensive research has been conducted to examine the
characteristics of drought propagation, the results of these studies are heavily dependent
on the datasets, evaluation methods, drought indices, and thresholds employed. A
comparison of the differences and consistencies in drought propagation characteristics
derived from different datasets and methods is desired to improve our understanding of
drought propagation, particularly at the global scale.

The propagation characteristics of different types of drought vary depending on climatic
conditions and underlying surface conditions (Apurv et al., 2017; Sattar et al., 2019;
Apurv and Cai, 2020). Over the past decades, a large number of attribution studies have
been conducted to quantify the impacts of climatic and geographical factors on drought
propagation, using methods such as statistical analysis (Gevaert et al., 2018), clustering
analysis (Liu et al., 2023), causality analysis (Shi et al., 2022b), and machine learning
models (Muthuvel and Qin, 2025). Data-driven machine learning approaches are
increasingly being employed in drought modeling due to their inherent advantages in
capturing nonlinear patterns from complex and high-dimensional data (Sundararajan et
al., 2021; Prodhan et al., 2022). Although machine learning models achieve satisfactory
simulation accuracy, their reliability remains questionable due to their black-box nature
and lack of physical interpretability (Rudin, 2019; Hassija et al., 2024). SHapley
Additive exPlanations (SHAP) provides a unified attribution framework for explaining
the machine learning outputs, enabling the interpretation of the causal relationships
between independent variables and dependent variables (Antwarg et al., 2021; Nohara et
al., 2022). Recently, SHAP-based attribution models have been utilized to investigate
drought dynamics across various temporal and spatial scales (Xue et al., 2024; Feng et al.,
2025). To the best of our knowledge, there is currently a lack of studies that analyze the
factors influencing drought propagation from the perspective of SHAP-based machine
learning.

Reliable drought monitoring and an in-depth understanding of the underlying
mechanisms depend on datasets that accurately describe variations in drought-related
hydro-meteorological variables. For large-scale and global assessments, gauge
observations and gauge-based gridded datasets are often constrained by limited spatial
and temporal coverage, the occurrence of missing values, and challenges in data
accessibility (Wang et al., 2020; Gebrechorkos et al., 2024). Numerous satellites,
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reanalysis, earth system models, and merged datasets have been developed, providing
long-term and spatially continuous records of hydro-meteorological variables
(Abatzoglou et al., 2018; Hersbach et al., 2020). Over the past decades, extensive efforts
have been conducted to evaluate drought dynamics using different datasets at both
regional and global scales. For example, Yuan et al. (2023) assessed the global patterns
of flash drought, which is characterized by the rapid depletion of soil moisture, using
ERAS5 reanalysis and climate model datasets. Gebrechorkos et al. (2025) revealed the
critical role of atmospheric evaporative demand in accelerating global drought severity,
based on an ensemble of reanalysis, gridded observation, and hydrological model
datasets. Wu et al. (2025) conducted an assessment of the dynamic predictability of
agricultural drought across global land areas, utilizing the gridded observation, reanalysis,
and hydrological model datasets. However, inconsistent findings across studies can be
attributed to the inherent uncertainties and errors within different datasets; few
systematic comparisons have been conducted to quantify the discrepancies among the
multiple datasets in representing drought propagation characteristics (Chen et al., 2020;
Huang et al., 2025).

Although previous studies have evaluated drought propagation across various temporal
and spatial scales, a comprehensive assessment of the propagation characteristics of
meteorological, hydrological, and agricultural droughts—derived from ensembles of
multiple datasets—remains lacking, particularly at the global scale. Moreover,
comparisons among different evaluation methods are also needed to fully understand the
drought propagation process and its underlying influencing factors. Therefore, the
objectives of this study are as follows: (1) to assess the spatial and temporal patterns of
response time, propagation rate, and lag time across meteorological, hydrological, and
agricultural droughts—derived from an ensemble of multiple datasets; (2) to quantify the
main climatic and underlying surface factors that influence drought propagation
characteristics from the perspective of machine learning; (3) to compare the robustness
and uncertainty associated with different methods and datasets in characterizing drought
propagation.” (lines 28-110 of the revised manuscript)

(b) We agree that identifying the most appropriate dataset for drought applications is beneficial
for the community, especially for the practical implementation of drought risk management.
However, current research is unable to provide a single recommendation due to insufficient
continuous observation in both time and space. In response the reviewer’s comments, we have
added a discussion on the relative merits and potential suitability of different datasets in
characterizing drought propagation. Specifically, the revised paragraphs are provided as follows:

“A wide variety of meteorohydrological datasets are available for drought monitoring
and evaluation. However, a consensus on the most suitable datasets for assessing drought
propagation remains elusive across different applications and specific regions. Our
results, derived from an ensemble of three different datasets (i.e., ERA5, GLDAS, and
TerraClimate), reveal both robust global patterns and notable uncertainties in quantifying
drought propagation characteristics. Consistent spatial patterns of drought propagation
characteristics—such as shorter RT and LT in tropical and subtropical regions, and longer
RT and LT in high-latitude and arid regions—across multiple datasets demonstrate the
robustness of drought propagation mechanisms under climatic control. This agreement
underscores the fundamental dynamics of drought propagation, which are independent of
the methodology and forcing datasets. However, the magnitudes of drought propagation,
especially in the meteorological to hydrological pathway, also demonstrate significant
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inter-datasets variability (Figs. 2, 5, and 6). This divergence highlights the inherent
uncertainty in drought propagation assessments and points to the distinct strengths and
limitations of each dataset.

ERAS5 is a high-resolution reanalysis dataset derived from the Integrated Forecasting
System, which is forced by atmospheric observations. It generally exhibits higher values
of RTun, RTha, LTun, and LTya, and lower values of PRy and PRy, in high-latitude
regions (Figs. S3-S6). This may more accurately represent the drought propagation in
snow-dominated systems where runoff generation processes are complex and exhibit
seasonal lags. GLDAS is an ensemble of multiple land surface models and exhibits
intermediate drought propagation characteristics with relatively high spatial consistency
in correlation coefficients (Fig. S4). This result indicates that the land surface model
demonstrates a more robust pattern of drought propagation, and its process-consistent
parameterizations may better represent the interrelationships among different drought
types. TerraClimate, a statistically downscaled and bias-corrected dataset, consistently
yielded the shortest RTy and LTy and the highest PRy, particularly in the mid- to
low-latitudes. While this result aligns with the expectation of rapid response in
rainfall-dominated regions, the empirical water balance model in TerraClimate may also
lead to an overestimation of propagation speed and sensitivity. Our findings rely on the
ensemble of multiple datasets, thus avoiding the bias of any single dataset and providing
a more robust and consistent understanding of drought propagation.” (lines 489-512 of
the revised manuscript)

(c) We thank the reviewer for this crucial suggestion to enhance the transparency and robustness
of our key findings. In the revised manuscript, we have added two metrics to evaluate drought
propagation variability across different datasets: the coefficient of variation (CV) and the mean
absolute deviation (MAD). The corresponding Results and Discussion section has also been
revised, as provided below:
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Figure 2. Spatial patterns of CV and MAD across the ERA5, GLDAS, and TerraClimate
datasets for the response time from meteorological to hydrological droughts (RTw),
from meteorological to agricultural droughts (RTwa), and from hydrological to
agricultural droughts (RTya). Larger values of the CV and MAD signify a more
substantial disparity among distinct datasets.
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“Moreover, the response time also varied across different datasets (Figs. S3 and S4). For
example, consistently low RTyy values were observed in the TerraClimate dataset,
whereas high RTyy values were observed in the ERAS and GLDAS datasets. On average,
the fluctuation ranges of RTyu, RTwa and RTya among different datasets were [1.96,
7.06] month, [7.87, 10.65] month, and [4.95, 8.00] month, respectively. To quantify the
differences among various datasets, two metrics (i.e., CV and MAD) were calculated,
and their spatial patterns are shown in Fig. 2. Larger values of CV and MAD indicate
more substantial differences among different datasets. The lowest values of CV and
MAD were observed in the RTy,, followed by the RTya and RTyy. This result indicates
that the RTya showed relatively small variation across different datasets over global land
areas, except in the high-latitude regions of the Northern Hemisphere. In contrast,
substantial disparities existed in the RTyy and RTya evaluations derived from different
datasets, particularly in North America, the Sahara, central Asia, and central Australia.
Specifically, consistently low RTyy values were observed in the TerraClimate dataset,
whereas high RTyy values were predominantly found in the high latitudes of the
Northern Hemisphere (Fig. S3). Regarding the maximum correlation of RTyy, RTya, and
RTya, the GLDAS dataset generally exhibited higher correlation coefficients, whereas
the ERAS and TerraClimate datasets displayed obviously spatial heterogeneity (Fig. S4).
This indicates that the response time among different droughts is more reliably
represented in the GLDAS dataset.” (lines 267-280 of the revised manuscript)
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Figure 5. Spatial patterns of CV and MAD across the ERA5, GLDAS, and TerraClimate
datasets for the propagation rate from meteorological to hydrological droughts (PRyy),
from meteorological to agricultural droughts (PRy,), and from hydrological to
agricultural droughts (PRya).
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Figure 6. Spatial patterns of CV and MAD across the ERA5, GLDAS, and TerraClimate
datasets for the lag time from meteorological to hydrological droughts (LT ), from
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meteorological to agricultural droughts (LTwa), and from hydrological to agricultural
droughts (LTna)-

“Figs. 5 and 6 illustrate the spatial patterns of CV and MAD for propagation rate and lag
time. The spatial patterns of propagation rate and lag time across the ERA5, GLDAS,
and TerraClimate datasets are shown in Figs. S3 and S4. For different datasets, the
average fluctuation ranges of PRy, PRua and PRya are [44.3, 72.8]%, [26.9, 33.6]%,
and [24.9, 43.5]%, and those of LTy, LTya and LTy, are [0.69, 1.49] month, [2.05, 3.03]
month, and [1.87, 3.46] month, respectively. Consistent with the response time results,
the PRya and LTya exhibited smallest differences across different datasets with low CV
and MAD. In comparison, the relatively large differences were observed in the PRy,
PRua, LTun, and LTya, especially in regions where in-situ observations are scarce. The
highest PRy and lowest LTy values are found in the TerraClimate datasets, with PRy
values in the low and middle latitudes approaching 90% and LTy values approaching
less than 1 month, respectively.” (lines 331-339 of the revised manuscript)

Point #2

COMMENT: Agricultural drought definition and propagation from hydrological to
agricultural droughts. The adopted agricultural drought definition and the choice of
investigating hydrological-to-agricultural drought propagation is not entirely clear to me.
Agricultural droughts are introduced in the paper as ‘reduced soil moisture’ (L40), coherently
with extensive previous literature (Van Loon, 2015) which refers to agricultural or soil moisture
droughts as deficits in the root-zone soil moisture mainly impacting the agricultural sector,
following meteorological droughts and potentially leading to hydrological droughts (i.e., deficits
in runoff and groundwater, Van Loon, 2015). Previous works therefore mostly investigated the
propagation from meteorological to agricultural and then to hydrological droughts, by finding
shorter propagation times from meteorological to agricultural droughts than from
meteorological to hydrological droughts (e.g., Odongo et al., 2023; Teutschbein et al., 2025).
Could you clarify why you chose to investigate the propagation from hydrological to agricultural
droughts instead of the other way round? Also, are you considering soil moisture data from the
upper or deeper layers? This is not specified in the methods. In the discussion, agricultural
droughts are said to affect the ‘deeper soil moisture’ (L393), which may point to the use of deep
soil moisture data only, but I ask you to clarify earlier on this important piece of information for
the general understanding of the work. The use of deep soil moisture would (partly) explain to
me both the choice of investigating this drought propagation pathway and the results, showing
longer propagation times for agricultural than for hydrological droughts with respect to the
meteorological ones. Yet, if this is the case, | wonder whether the use of the term agricultural
droughts is the most suitable here, given the interest in the upper soil layer by the agricultural
sector.

RESPONSE: We sincerely appreciate the reviewer's insightful comments. (a) Agricultural
drought definition. In this study, we considered the soil moisture in the root zone layers within a
depth of 1 meter to define the agricultural drought. The soil moisture data were derived from the
ensemble of ERAS5, GLDAS, and TerraClimate datasets, which have different soil layer
structures. Thus, we aggregated volumetric soil water content to a 1-meter depth using weighted
data from different soil layers. For example, the soil moisture in ERA5 was aggregated to 1
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meter volumetric soil water using weighted data from three layers: 0—7 cm, 7-28 cm, and
28-100 cm. In the updated versions, we have revised the sections “2.1 Datasets” and “2.2
Drought definition and drought indices” to clarify the details of the soil moisture data utilized
and the definition of agricultural drought. In addition, the description of the drought propagation
mechanism in the discussion section has been rephrased as well. The revised paragraphs are
provided as follows:

“2.1 Datasets

Monthly precipitation, runoff, and soil moisture were derived from the ERAS5, the Global
Land Data Assimilation System (GLDAS), and TerraClimate datasets to calculate the
drought indices. ERAS is the fifth-generation global atmospheric reanalysis product
developed by the European Centre for Medium-Range Weather Forecasts. It integrates
extensive records of both in-situ and satellite observations through an ensemble-based
data assimilation system (Hersbach et al., 2020). Precipitation in ERAS was generated by
the atmospheric component of the Integrated Forecasting System, whereas runoff and
soil moisture were simulated by a land surface model (Boussetta et al., 2021). The soil
moisture in ERA5 was aggregated to 1 meter volumetric soil water using weighted data
from three layers: 0—7 cm, 7-28 cm, and 28-100 cm. GLDAS is a multi-model ensemble
comprising three land surface models—Noah, Catchment, and the Variable Infiltration
Capacity—which integrate satellite and in-situ observations through advanced land
surface modeling techniques. The soil moisture in GLDAS models has different soil
layer structures, all of which were weighted to the root zone depth of 1 meter to be
consistent with ERAS. TerraClimate integrates multiple datasets, including WorldClim,
Climate Research Unit, and Japanese 55-year Reanalysis, to generate
hydro-meteorological variables (Abatzoglou et al., 2018). The soil moisture in the
TerraClimate refers to the plant extractable soil water based on the root zone storage
capacity, as modeled by an empirical water balance model. To ensure spatial and
temporal consistency, the period from 1958 to 2024 was selected as the reference period,
and all datasets were uniformly interpolated onto a 1<l “latitude—longitude grid using
bilinear interpolation.

In addition, the temperature and potential evapotranspiration (PET) were also obtained
from the ensemble of ERA5, GLDAS, and TerraClimate datasets. Potential
evapotranspiration in these datasets was calculated using the Penman-Monteith method
(Abatzoglou et al., 2018). The Normalized Difference Vegetation Index (NDVI) was
obtained directly from the Advanced Very High Resolution Radiometer instruments
operated by the National Oceanic and Atmospheric Administration (NOAA) (Pinzon and
Tucker, 2014). The elevation dataset was obtained from the ETOPO Global Relief Model
developed by the National Centers for Environmental Information
(https://www.ncei.noaa.gov/products/etopo-global-relief-model). The aridity index
dataset was derived from the Global Aridity Index and Potential Evapotranspiration
Database—Version 3 (Zomer et al., 2022).” (lines 112-136 of the revised manuscript)

“2.2 Drought definition and drought indices

Drought is a complex phenomenon related to multiple variables in the water cycle, and
there is no universally accepted definition in the current literature (Van Loon, 2015).
Drought propagation is a hierarchical top-down process in which meteorological drought,
caused by insufficient precipitation, can propagate to other hydrological variables
(Teutschbein et al., 2025). A large number of drought indices and datasets have been
developed to characterize varying drought conditions at different spatial and temporal
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scales (AghaKouchak et al., 2023; Gebrechorkos et al., 2025). To provide a consistent
and comparable assessment of drought propagation, standardized drought indices (SDIs)
derived from precipitation, runoff, and soil moisture were used to define meteorological,
hydrological, and agricultural droughts. The SDI time series were obtained by fitting the
drought variables of interest to a suitable probability distribution and subsequently
normalizing the probabilities to generate a standardized time series. Three SDIs,
including Standardized Precipitation Index (SPI) (McKee et al., 1993), Standardized
Runoff Index (SRI) (Shukla and Wood, 2008), and Standardized Soil Moisture Index
(SSI) (Hao and AghaKouchak, 2013), were computed by fitting parametric probability
distributions, specifically the Gamma, log-normal, and normal distributions, respectively.
The maximum likelihood estimation (MLE) method was utilized to estimate the
parameters of the probability distributions, with the initial values determined based on
the L-moments estimation (Stagge et al., 2015). Compared with other drought indices,
the SDI is not only simple and efficient to calculate, but also applicable to diverse
climates due to its consistent calculation procedure (Zarch et al., 2015; Adnan et al.,
2018). Meanwhile, SDI can be calculated using drought-related variables across multiple
time scales, thus enhancing its effectiveness in analyzing drought propagation.” (lines
137-154 of the revised manuscript)

“4.1. Physical interpretation of drought propagation characteristics

In this study, two distinct methodological frameworks were employed to quantify
drought propagation: (1) the response time derived from time-lag correlation analysis,
and (2) the lag time based on event identification using the run theory. Response time is
determined by identifying the accumulation period of a drought index (e.g., SPI) that
maximizes its correlation with a target drought index (e.g., SSI at a 1-month
accumulation timescale) (L&ez-Moreno et al., 2013; Zhang et al., 2022). This approach
reflects the overall synchronicity and statistical memory characteristics of various
drought conditions. Thus, the response time values are strongly influenced by long-term
variations in regional climatic and hydrological conditions, such as the seasonal cycle,
multi-year climate oscillations, and water storage capacity. The response time refers to
the system’s long-term state that retains a memory of past drought conditions. The
evaluation of response time is beneficial for seasonal drought predictability and
long-term drought preparedness. The response time also functions as an indicator of the
feasibility of using one type of drought index as a proxy for another. For example, due to
the lack of comprehensive observational data, the SPI with varying accumulation periods
can reflect hydrological, agricultural and groundwater drought conditions (Kumar et al.,
2016).

In comparison, lag time is derived from discrete drought events identified using the
multi-threshold run theory, which measures the time difference between the onset of one
drought event and the onset of another drought event. By focusing on event-based
dynamics, the lag time reflects the instantaneous triggering mechanism by which drought
signals propagate from the atmosphere to the land surface. Numerous previous studies
have analyzed the threshold of extreme stress that triggers drought propagation, using
methods such as copula functions, hydrological models, and machine learning (Geng et
al., 2024; Yang et al., 2025). The lag time captures the non-linear response mechanism
between different drought conditions at a short time scale, which is crucial for real-time
early warning and impact assessment.

Our results provide a globally consistent comparison of the response time and lag time
for meteorological, hydrological, and agricultural drought propagation. The response
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time of drought propagation (average RTwn, RTua, and RTya of 5.0 [2.7, 6.7] months,
8.7 [5.0, 11.3] months, and 5.8 [2.3, 7.3] months) is generally longer than the lag time
(average LTun, LTwma, and LTya of 1.23 [0.68, 1.68] months, 2.60 [1.71, 2.92] months,
and 2.49 [1.68, 2.51] months). This numerical gap arises from differences in the
methodology, but both approaches indicate a consistent propagation pathway for
meteorological, hydrological, and agricultural droughts, with similar spatial patterns. In
addition, the machine learning-based attribution method also identifies similar impact
factors, which indicates the consistency of drought propagation mechanisms revealed by
response time and lag time. This aligns with the conceptual framework of drought
propagation, where precipitation deficits (meteorological drought) first influence runoff
generation over the land surface (hydrological drought), and subsequently affect soil
moisture in the root zone (agricultural drought).” (lines 435-466 of the revised
manuscript)

(b) Propagation from hydrological to agricultural droughts. As described in the references of
Van Loon (2015) and Teutschbein et al. (2025), drought propagation is generally regarded as a
hierarchical top-down process. Meteorological drought, primarily caused by precipitation deficits,
can cascade to other hydrological variables in the water cycle. From this perspective, numerous
studies have evaluated the propagation of meteorological drought to other types of drought.
Hydrological drought is a broad term referring to negative anomalies in surface and subsurface
water, including groundwater levels, lake water levels, and river discharge. When hydrological
drought is defined by streamflow, the pathway of drought propagation is from meteorological to
agricultural and then to hydrological droughts (Teutschbein et al., 2025). In comparison, when
hydrological drought is defined by runoff, it shows that hydrological drought propagates to
agricultural drought (Han et al., 2023), as shown in Figure 3 in the reference of Van Loon (2015).
In our analysis, we characterized meteorological, hydrological, and agricultural droughts based
on standardized drought indices (SDIs) derived from precipitation, runoff, and soil moisture.
These hydrological variables were directly obtained from three different datasets (i.e., ERAS5,
GLDAS, and TerraClimate), where runoff is the volume of water that originates from
precipitation and flows over the land surface. It is not directly equal to the streamflow in the
stream channels. The utilization of runoff to represent hydrological drought mainly stems from
the fact that our study focuses on the propagation of droughts at the global scale. The runoff
exhibits a substantial advantage regarding data availability, featuring continuity in both temporal
and spatial dimensions. In the revised manuscript, we have revised the "2.2 Drought definition
and drought indices" section of the methodology to elucidate the drought indices employed in
this study. In addition, we have incorporated comparisons with other studies in the discussion
section to clarify the reasons for the study’s focus on the propagation from hydrological to
agricultural droughts and to emphasize the significance of drought indices in understanding
drought propagation. In detail, the revised paragraphs are provided as follows:

“Drought propagation evaluation relies heavily on drought indices for monitoring and
characterizing various drought types. Considering the data availability and the continuity
in both temporal and spatial dimensions at the global scale, we employed the SPI, SR,
and SSI to represent meteorological, hydrological, and agricultural droughts. Our results
demonstrated the propagation pathway of meteorological-hydrological-agricultural
droughts, which is consistent with previous studies that employed similar indices (Han et
al., 2023; Mei et al., 2025). As a multifaceted phenomenon, hydrological drought is a
broad term that is related not only to runoff but also to streamflow and the levels of
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groundwater, lakes, and reservoirs (Van Loon, 2015). Using the drought indices derived
from streamflow, the propagation from agricultural to hydrological droughts has also
been identified in many studies, particularly at the watershed scale (Odongo et al., 2023;
Teutschbein et al., 2025). Runoff is the volume of water that originates from precipitation
and flows over the land surface; it is not directly equal to the streamflow in stream
channels. A deficit in runoff can directly affect the availability of soil moisture due to
reduced recharge to the root zone, representing the propagation from hydrological
drought to agricultural drought. In comparison, soil moisture retains precipitation that
falls on the land surface and then delays the propagation time form precipitation to
streamflow (McColl et al., 2017).” (lines 512-524 of the revised manuscript)

Point #3

COMMENT: Trend analysis. (a) Important methodological details on this are missing. The
analysis is briefly described in the Results section (L251-252), but how this moving-window
trend analysis exactly works is not totally clear. From my understanding, you calculate the
various metrics (e.g., propagation time) for each year based on a moving window consisting of
(the next?) 30 years and then apply a trend analysis on the annual values that you obtained. If
this is the case, how do you deal with potential autocorrelation from partially overlapping raw
data? | would suggest expanding on this point and moving the current description of this
analysis to the Methods section (e.g., to a new subsection between the current 2.4 and 2.5).
Please also provide full name and appropriate references for the statistical tests used here (i.e.,
the ‘M-K test’ currently mentioned in the text). (b) Finally, what do you mean by ‘monotonic
trend’in the pie charts in e.g. Fig. 3?7 From my understanding, it refers to the greyish areas in the
maps, with trend slopes close to zero. Did you set any lower and upper limits on the trend slopes
to discriminate these ‘monotonic trends’? If so, please specify. (¢) And why are these monotonic
trends not appearing in the pie charts in Fig. 5 and 6, even though greyish areas are reported in
the corresponding maps?

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. (a) We acknowledge
that the description of the moving-window trend analysis in the original manuscript was
insufficient. In this study, we employed a moving window approach to evaluate the temporal
pattern of drought propagation characteristics. For each grid, the response time, propagation rate,
and lag time between different types of droughts were calculated using a 30-year moving
window that advanced one year at a time, thereby generating an annual time series for the period
from 1987 to 2024. To avoid the potential autocorrelation from overlapping data, we conducted
the Trend-Free Pre-Whitening (TFPW) procedure prior to the MK test to address potential
autocorrelation (Yue et al., 2002). The TFPW-MK test effectively removes the influence of serial
correlation on trend significance, providing a more robust assessment. In the revised manuscript,
we have added a new subsection, “2.6 Trend analysis of drought propagation,” to make these
critical methodological details clear. In detail, the revised paragraphs are provided as follows:

“2.6 Trend analysis of drought propagation

Temporal evolution of drought propagation characteristics was assessed through a
moving window approach. For each grid, the drought propagation characteristics (i.e.,
response time, propagation rate, and lag time) between different types of droughts were
calculated using a 30-year moving window that advanced one year at a time, thereby
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generating an annual time series for the period from 1987 to 2024. The significance of
the time series trend was assessed using the Mann-Kendall (MK) test, where a trend was
considered statistically significant at the p-value < 0.05 (Mann, 1945; Kendall, 1975).
Given that the series is derived from a moving window with overlapping data, we
conducted the Trend-Free Pre-Whitening (TFPW) procedure prior to the MK test to
address potential autocorrelation (Yue et al., 2002). The TFPW-MK test effectively
removes the influence of serial correlation on trend significance, providing a more robust
assessment. In addition, the magnitude of the trend was estimated using Sen's slope
estimator (Sen, 1968).” (lines 201-210 of the revised manuscript)

(b) In this study, a monotonic trend is defined as the situation where Sen's slope is equal to 0.
Accordingly, we have incorporated an explanation of the monotonic trend in Figure 3 to enhance
its clarity. In detail, the revised parts are provided as follows:

A Run Sen’s slope (month/year) B Percentages of Ryy time series trend
90°N 1.3%
= 0.4 Il Significant increase
60°N [E
Nonsignificant increase
30°N
0 53.5% Monotonic trend
0
Nonsignificant decrease
30°S
04 I Significant decrease
60°S = : 129
120°W 60°W 0° 60°E 120°E )
C Rwa Sen’s slope (month/year) D Percentages of Rua time series trend
90°N 0.4 20%

Il Significant increase
60°N
Nonsignificant increase
30°N
1] 35.1% Monotonic trend

Nonsignificant decrease
30°S

I Significant decrease

60°S = 04 18%
120°W  B0°W 0° 60°E 120°E

Sen’s slope (month/year)  F  Percentages of Rua time series trend

90°N 0.4 0.9 %
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60°N R w
Nonsignificant increase

30°N 3
¥ A Y 55.9% Monotonic trend
0° (4 IV
= \C Nonsignificant decrease
30°s “
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60°S N ' 09%
120°W 60°W 0° 60°E 120°E .

Figure 3. Spatial patterns of time series trends in RTyy, RTwa and RTya across global
land areas. The blank grids signify that, within at least one time-window in the time
series of response time obtained from the moving window, the correlation coefficient is
not statistically significant. The black dots indicate the statistical significance of the time
series trend, where the p-value of the TFPW-MK test is less than 0.05. A significant
increase (decrease) indicates that the Sen's slope is greater (less) than 0 and that the
p-value of the TFPW-MK test is less than 0.05. A nonsignificant increase (decrease)
indicates that the Sen's slope is greater (less) than 0 and that the p-value of the
TFPW-MK test is greater than 0.05. A monotonic trend indicates that Sen's slope is equal
to 0.

(c) Figs. 5 and 6 represent the spatial patterns of time series trends for the propagation rate and
lag time, which exhibit a temporal pattern that is entirely inconsistent with that of the lag time (as
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shown in Fig. 3). Although there are gray areas on the heat map, its Sen's slope is not exactly
equal to 0, so it was not displayed on the pie chart.

Point #4

COMMENT: Language and readability. I find the paper generally well structured, but rather
lengthy and sometimes convoluted. | think the reading flow could be improved by reducing
redundant expressions (e.g., couldn't ‘feature factors’ be simply ‘features’or ‘factors’?),
repetitions between sections (e.g., L105-107 already said in the previous section), and rather
obvious statements (e.g., ‘with positive correlation with rP > 0, and negative correlation with rP
< 0’, L156-157). | also noticed many abbreviations, especially in Sect. 2.1 Datasets (e.g.,
ECMWEF, CLSM, etc), which seem to me not used anymore in the paper. | would suggest
removing them and making sure that abbreviations are always introduced the first time they are
used (currently not the case, see e.g., ML at L73). Consistent notation throughout the text and
across the text and the figures (currently not the case, see e.g., Eq.1 and Fig. 1b, d, and f) would
also ease the readability of the paper. In summary, | see room for improvement, with another
careful round of proofreading focused on language.

RESPONSE: We sincerely thank the reviewer for the thorough and constructive feedback on the
language, clarity, and presentation of our manuscript. We agree that the manuscript could be
more concise and polished to improve readability. Accordingly, we have performed a line-by-line
edit to eliminate redundant expressions in the revised manuscript. Examples corrected include:
Changed the “feature factors™ to “factors”

Removed the “with positive correlation with rP > 0, and negative correlation with rP < 0”
Delete the repetition sentences in the Dataset section

Removed the unnecessary abbreviations in Section 2.1 Datasets

Checked all the abbreviations in the manuscript (e.g., ML)

Checked consistent notation throughout the text and figures

Point #5

COMMENT: References. | appreciate the referencing to very recent literature on the topic, yet |
believe that also additional references to (older) seminal papers on droughts and drought
propagation characteristics would be appropriate (e.g., L&ez-Moreno et al., 2013 and Barker et
al., 2016 for the correlation analysis, other papers that I referred to above).

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. We agree that citing
seminal works is crucial for properly contextualizing our study within the historical development
of the field and for acknowledging foundational concepts. According to the reviewer’s comments,
we have incorporated these references into the revised manuscript. Specifically, the revised
sentences and the corresponding references are provided below:

“Over the past decades, numerous studies have assessed the propagation characteristics
of different drought conditions, using identification methods such as time-lag correlation
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analysis (L&pez-Moreno et al., 2013; Barker et al., 2016; Liu et al., 2023; Geng et al.,
2024), run theory (Aryal et al., 2024; Xiong et al., 2025), and event-coincidence analysis
(Baez-Villanueva et al., 2024).” (lines 49-52 of the revised manuscript)

The added references:

Ldpez-Moreno, J. |., Vicente-Serrano, S. M., Zabalza, J., Beguer g, S., Lorenzo-Lacruz,
J., Azorin-Molina, C., and Moran-Tejeda, E.: Hydrological response to climate variability
at different time scales: A study in the Ebro basin, J. Hydrol., 477, 175-188,
doi:10.1016/j.jhydrol.2012.11.028, 2013.

Barker, L. J., Hannaford, J., Chiverton, A., and Svensson, C.: From meteorological to
hydrological drought using standardised indicators, Hydrol. Earth Syst. Sc., 20,
2483-2505, d0i:10.5194/hess-20-2483-2016, 2016.

Point #6

COMMENT: Abstract, | would appreciate introducing the datasets and methods you used in
general terms (e.g., reanalyses for ERA5 and so on), to facilitate readers potentially not familiar
with these specific datasets and methods.

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. We agree that
describing the datasets and methods in more general terms will significantly improve the
accessibility of our manuscript. In response, we have revised the description of the datasets and
methods in the abstract to make it clearer. In detail, the revised sentences are provided as
follows:

Abstract: “Understanding the propagation of diverse drought conditions is necessary for
drought preparedness. This study conducted a comprehensive evaluation of the
propagation of meteorological, hydrological, and agricultural droughts across global land
areas from 1958 to 2024, based on an ensemble of reanalysis data (ERA5), land surface
model simulations (GLDAS), and merged observational datasets (TerraClimate). Two
distinct methodological frameworks were employed to characterize drought propagation:
time-lag correlation analysis and multi-threshold run theory. Based on standardized
drought indices derived from precipitation (meteorological), runoff (hydrological) and
soil moisture (agricultural), the drought propagation characteristics of response time (RT),
propagation rate (PR), and lag time (LT) were examined. Moreover, the climatic and
geographical factors influencing drought propagation were quantified using the SHapley
Additive exPlanations (SHAP)-based attribution method. The results demonstrate the
propagation pathways of meteorological-hydrological-agricultural drought at the
global-scale, with the average RT, PR, and LT from meteorological to hydrological
drought at 5.0 months, 55.3%, and 1.23 months; from meteorological to agricultural
drought at 8.7 months, 30.3%, and 2.60 months; and from hydrological to agricultural
drought at 5.8 months, 35.0%, and 2.49 months, respectively. Notable temporal and
spatial heterogeneities are observed in the drought propagation characteristics, which are
closely influenced by with the regional climatic feature. Globally, temperature and
potential evapotranspiration are the primary factors influencing the propagation of
meteorological drought to hydrological drought, whereas precipitation plays a decisive
role in the propagation from meteorological or hydrological drought to agricultural
drought. The findings underscore the importance of taking climatic characteristics into
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account in the development and implementation of regional drought risk management.”
(lines 9-26 of the revised manuscript)

Point #7

COMMENT: L26-28, | suggest rephrasing since, from my understanding, Gebrechorkos et al.
(2025) showed that increases in atmospheric evaporative demand significantly contributed to
recent increases in drought severity, but not as primary factor.

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. Upon re-examining the
cited study, we agree that Gebrechorkos et al. (2025) emphasized the significant role of increased
atmospheric evaporative demand in recent drought severity, while not identifying it as the
primary factor. Accordingly, we have revised the sentence to accurately reflect the role of
increased atmospheric evaporative demand in the recent increase in drought severity. In the
updated manuscript, the revised sentence is provided as follows:

“Under global warming, the magnitude, frequency, and spatial extent of droughts have
increased in recent decades, driven by precipitation variability and increased atmospheric
evaporative demand (Chen et al., 2025; Gebrechorkos et al., 2025).” (lines 29-31 of the
revised manuscript)

Point #8

COMMENT: L4243, | believe defining here drought propagation characteristics would be
beneficial for readers who may not be familiar with them and to ease the readability of the rest of
the manuscript.

RESPONSE: We sincerely appreciate the reviewer’s helpful suggestion. As recommended, we
have revised this sentence to offer supplementary clarifications regarding the definition of the
drought propagation characteristics. In detail, the revised sentence is provided as follows:

“Understanding drought propagation characteristics, such as propagation time,
probability, and threshold, are essential for elucidating drought occurrence and evolution
mechanisms, which help facilitate the effective drought monitoring and early warning
systems.” (lines 46-49 of the revised manuscript)

Point #9

COMMENT: L44-48, many different methods are currently mixed together in this sentence and
specifically: methods used to generate the datasets needed for drought propagation studies (e.g.,
hydrological models), methods used to quantify drought propagation characteristics (e.g.,
correlation analysis and run theory), and methods used to attribute these characteristics to their
controls (e.g., ML). | suggest clarifying this point, for instance by splitting this long sentence into
several ones. In addition, maybe add event-coincidence analysis as another method to quantify

16



drought propagation characteristics as proposed by Baez-Villanueva et al. (2024)? Finally, |
would suggest removing the mention to the complex network theory since this is used for spatial
drought propagation, which is not the topic of this paper, or alternatively, specifying this point
and what spatial drought propagation is.

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. Accordingly, in the
revised manuscript, we have rewritten this sentence to emphasize the methods for identifying
drought propagation characteristics. The sentences and references related to datasets and
attribution methods have been integrated into other paragraphs. In addition, we have added the
method of event-coincidence analysis and removed the complex network theory. The revised
sentence is provided as follows:

“Over the past decades, numerous studies have assessed the propagation characteristics
of different drought conditions, using identification methods such as time-lag correlation
analysis (L&pez-Moreno et al., 2013; Barker et al., 2016; Liu et al., 2023; Geng et al.,
2024), run theory (Aryal et al., 2024; Xiong et al., 2025), and event-coincidence analysis
(Baez-Villanueva et al., 2024).” (lines 49-52 of the revised manuscript)

Point #10
COMMENT: L52, I suggest introducing the concept of groundwater droughts earlier.

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. Accordingly, we have
incorporated a concise description of the concept of groundwater droughts in the earlier sentence.
The revised sentence is provided as follows:

“Although a drought event typically originates from inadequate precipitation and
excessive evapotranspiration (referred to as meteorological drought), its impacts on
human and natural systems are closely related to subsequent development, such as
diminished runoff (hydrological drought), reduced soil moisture (agricultural drought),
and declined groundwater (groundwater drought).” (lines 40-43 of the revised
manuscript)

Point #11

COMMENT: L64-65, | would say that all the global-scale analyses cited before are ‘consistent’
and ‘comparable’ within themselves since they use common methods and datasets for the whole
globe. 1 would suggest rephrasing this sentence to the exact research gap you are aiming at
addressing with your work (see also comment #1).

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. The original sentence
was imprecise and did not effectively emphasize the research gap. Following the reviewer's
comment #1, we have summarized the research gap regarding the differences and consistencies
in drought propagation characteristics derived from different datasets and methods. Accordingly,
the revised sentence is provided as follows:
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“A comparison of the differences and consistencies in drought propagation characteristics
derived from different datasets and methods is desired to improve our understanding of
drought propagation, particularly at the global scale.” (lines 67-69 of the revised
manuscript)

Point #12

COMMENT: L69-70, | do not fully agree with this sentence, which seems to me also
contradicting the previous one. Literature on the factors controlling drought propagation across
different climatic and geographical regions is rather vast now (see e.g., Xiong et al. 2025 and
other reviews on the topic, also cited in the text).

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. We agree with your
observation that the literature on the factors controlling drought propagation is extensive and has
grown significantly. Our study focused on identifying the factors influencing drought
propagation from the perspective of a SHAP-based attribution approach. We acknowledge that
the original phrasing was ambiguous and could be perceived as contradictory. Accordingly, we
have revised the corresponding sentences to eliminate the contradictory description. The revised
sentences are as follows:

“Over the past decades, a large number of attribution studies have been conducted to
quantify the impacts of climatic and geographical factors on drought propagation, using
methods such as statistical analysis (Gevaert et al., 2018), clustering analysis (Liu et al.,
2023), causality analysis (Shi et al., 2022b), and machine learning models (Muthuvel and
Qin, 2025).” (lines 72-75 of the revised manuscript)

Point #13
COMMENT: L93, could you provide some references of these comparisons?

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. Accordingly, we have
added references comparing different datasets in characterizing the processes of drought
propagation. In the updating manuscript, the revised sentence is provided as follows:

“However, inconsistent findings across studies can be attributed to the inherent
uncertainties and errors within different datasets; few systematic comparisons have been
conducted to quantify the discrepancies among the multiple datasets in representing
drought propagation characteristics (Chen et al., 2020; Huang et al., 2025).” (lines
98-100 of the revised manuscript)

The added references:

Chen, N., Li, R., Zhang, X., Yang, C., Wang, X., Zeng, L., and Niyogi, D.: Drought
propagation in Northern China Plain: A comparative analysis of GLDAS and MERRA-2
datasets, J. Hydrol., 588, 125026, doi:10.1016/j.jhydrol.2020.125026, 2020.

Huang, K., Zhang, H., Cui, G,, Wang, Y., Yin, M., and Du, J.: Drought propagation in
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china: Uncertainties originate more from dataset choice than drought index selection,
Atmos. Res., 308, 108555, doi:10.1016/j.atmosres.2024.108555, 2025.

Point #14

COMMENT: L105, I would argue that data quality is crucial for any study, not only drought
studies. It may also be a matter of personal taste, but | do not see as really needed these very
general sentences, which also contribute to making the paper quite lengthy in my view (see also
comment #4).

RESPONSE: We sincerely appreciate the reviewer’s useful comment. We agree that data quality
is a universal concern across all scientific studies; however, the previous sentence is a general
statement and is therefore unnecessary in the “Data and Methodology” section. In response, we
have revised the paragraphs regarding the datasets, and the revised paragraphs are provided
below:

“2.1 Datasets

Monthly precipitation, runoff, and soil moisture were derived from the ERAS, the Global
Land Data Assimilation System (GLDAS), and TerraClimate datasets to calculate the
drought indices. ERAS is the fifth-generation global atmospheric reanalysis product
developed by the European Centre for Medium-Range Weather Forecasts. It integrates
extensive records of both in-situ and satellite observations through an ensemble-based
data assimilation system (Hersbach et al., 2020). Precipitation in ERAS was generated by
the atmospheric component of the Integrated Forecasting System, whereas runoff and
soil moisture were simulated by a land surface model (Boussetta et al., 2021). The soil
moisture in ERA5 was aggregated to 1 meter volumetric soil water using weighted data
from three layers: 0—7 cm, 7-28 cm, and 28-100 cm. GLDAS is a multi-model ensemble
comprising three land surface models—Noah, Catchment, and the Variable Infiltration
Capacity—which integrate satellite and in-situ observations through advanced land
surface modeling techniques. The soil moisture in GLDAS models has different soil
layer structures, all of which were weighted to the root zone depth of 1 meter to be
consistent with ERAS5. TerraClimate integrates multiple datasets, including WorldClim,
Climate Research Unit, and Japanese 55-year Reanalysis, to generate
hydro-meteorological variables (Abatzoglou et al., 2018). The soil moisture in the
TerraClimate refers to the plant extractable soil water based on the root zone storage
capacity, as modeled by an empirical water balance model. To ensure spatial and
temporal consistency, the period from 1958 to 2024 was selected as the reference period,
and all datasets were uniformly interpolated onto a 1 <1 “latitude—longitude grid using
bilinear interpolation.

In addition, the temperature and potential evapotranspiration (PET) were also obtained
from the ensemble of ERA5, GLDAS, and TerraClimate datasets. Potential
evapotranspiration in these datasets was calculated using the Penman-Monteith method
(Abatzoglou et al., 2018). The Normalized Difference Vegetation Index (NDVI) was
obtained directly from the Advanced Very High Resolution Radiometer instruments
operated by the National Oceanic and Atmospheric Administration (NOAA) (Pinzon and
Tucker, 2014). The elevation dataset was obtained from the ETOPO Global Relief Model
developed by the National Centers for Environmental Information
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(https://www.ncei.noaa.gov/products/etopo-global-relief-model). The aridity index
dataset was derived from the Global Aridity Index and Potential Evapotranspiration
Database—Version 3 (Zomer et al., 2022).” (lines 112-136 of the revised manuscript)

Point #15

COMMENT: L118 ‘high-spatial-resolution’, explicitly mentioning the resolution of this and all
other datasets would help the readers in my opinion.

RESPONSE: We sincerely appreciate the reviewer’s useful comment. In fact, the ERAS,
GLDAS, and TerraClimate datasets have different temporal and spatial resolutions. To ensure
spatial and temporal consistency, the period from 1958 to 2024 was selected as the reference
period, and all datasets were uniformly interpolated onto a 11 “latitude—longitude grid using
bilinear interpolation. In the updating manuscript, we have revised the sentences to make it
clearer. The revised sentences are provided as follows:

“To ensure spatial and temporal consistency, the period from 1958 to 2024 was selected
as the reference period, and all datasets were uniformly interpolated onto a 1 %<1 <
latitude—longitude grid using bilinear interpolation.” (lines 126-127 of the revised
manuscript)

Point #16

COMMENT: L121-123, | appreciate the details provided here on how potential
evapotranspiration, runoff and soil moisture are computed in this dataset. Could you provide
such details also for the other datasets? I think they would give to the reader more context, also
on the differences you detect among them.

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. Potential
evapotranspiration in these datasets was calculated using the Penman—Monteith method; runoff
and soil moisture were simulated by the land surface models in ERA5 and GLDAS, while in
TerraClimate they were simulated by an empirical water balance model. Accordingly, we have
revised the sentences to provide more detailed information about the datasets. The revised
paragraphs are provided below:

“2.1 Datasets

Monthly precipitation, runoff, and soil moisture were derived from the ERADS, the Global
Land Data Assimilation System (GLDAS), and TerraClimate datasets to calculate the
drought indices. ERAS is the fifth-generation global atmospheric reanalysis product
developed by the European Centre for Medium-Range Weather Forecasts. It integrates
extensive records of both in-situ and satellite observations through an ensemble-based
data assimilation system (Hersbach et al., 2020). Precipitation in ERA5 was generated by
the atmospheric component of the Integrated Forecasting System, whereas runoff and
soil moisture were simulated by a land surface model (Boussetta et al., 2021). The soil
moisture in ERA5 was aggregated to 1 meter volumetric soil water using weighted data
from three layers: 0—7 cm, 7-28 cm, and 28-100 cm. GLDAS is a multi-model ensemble
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comprising three land surface models—Noah, Catchment, and the Variable Infiltration
Capacity—which integrate satellite and in-situ observations through advanced land
surface modeling techniques. The soil moisture in GLDAS models has different soil
layer structures, all of which were weighted to the root zone depth of 1 meter to be
consistent with ERAS. TerraClimate integrates multiple datasets, including WorldClim,
Climate Research Unit, and Japanese 55-year Reanalysis, to generate
hydro-meteorological variables (Abatzoglou et al., 2018). The soil moisture in the
TerraClimate refers to the plant extractable soil water based on the root zone storage
capacity, as modeled by an empirical water balance model. To ensure spatial and
temporal consistency, the period from 1958 to 2024 was selected as the reference period,
and all datasets were uniformly interpolated onto a 1<l “latitude—longitude grid using
bilinear interpolation.

In addition, the temperature and potential evapotranspiration (PET) were also obtained
from the ensemble of ERA5, GLDAS, and TerraClimate datasets. Potential
evapotranspiration in these datasets was calculated using the Penman-Monteith method
(Abatzoglou et al., 2018). The Normalized Difference Vegetation Index (NDVI) was
obtained directly from the Advanced Very High Resolution Radiometer instruments
operated by the National Oceanic and Atmospheric Administration (NOAA) (Pinzon and
Tucker, 2014). The elevation dataset was obtained from the ETOPO Global Relief Model
developed by the National Centers for Environmental Information
(https://www.ncei.noaa.gov/products/etopo-global-relief-model). The aridity index
dataset was derived from the Global Aridity Index and Potential Evapotranspiration
Database—WVersion 3 (Zomer et al., 2022).” (lines 112-136 of the revised manuscript)

Point #17

COMMENT: L140-143, some references to support these statements would be appreciated since
the differences between a standardized approach and other methods for drought identification
are well discussed in many papers now.

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. Accordingly, in the
revised manuscript, we have added references to support the statement regarding the advantages
of SDI. In detail, the revised sentence is provided as follows:

“Compared with other drought indices, the SDI is not only simple and efficient to
calculate, but also applicable to diverse climates due to its consistent calculation
procedure (Zarch et al., 2015; Adnan et al., 2018).” (lines 151-152 of the revised
manuscript)

The added references:

Adnan, S., Ullah, K., Shuanglin, L., Gao, S., Khan, A. H., and Mahmood, R.:
Comparison of various drought indices to monitor drought status in Pakistan, Clim.
Dynam., 51, 1885-1899, doi:10.1007/s00382-017-3987-0, 2018.

Zarch, M. A. A., Sivakumar, B., and Sharma, A.: Droughts in a warming climate: A
global assessment of Standardized precipitation index (SPI) and Reconnaissance drought
index (RDI), J. Hydrol., 526, 183-195, doi:10.1016/j.jhydrol.2014.12.065, 2015.
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Point #18

COMMENT: L154, which is the maximum accumulation period n that you tested? | assume 24
months from Fig. 1, but please specify.

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. The 24 months is the
maximum accumulation period for calculating the response time of drought propagation. In the
updating manuscript, we have revised the sentence to make it clearer. The revised sentence is:

“The correlation coefficient is calculated using Pearson’s correlation coefficient
formulated as follows (Pearson, 1896):

zin:l(xi _7)(yi _y)
" R RO s (1)

=L\ i=1 V71
where rp represents the Pearson’s correlation coefficient between SPI-n (n is the
accumulation period, n=1, 2, ..., 24) and SSI-1; X and Yy represent the average
value of SPI and SSI, respectively; x; and y; represents the SPI and SSI values in the time
i, respectively.” (lines 162-167 of the revised manuscript)

Point #19

COMMENT: L163-166, clarification on why you applied these rules for drought selection
would be appreciated.

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. In this study, a
multi-threshold run theory was employed to identify the drought events. This approach has
advantages in avoiding the unreasonable splitting of persistent droughts and filtering out minor
drought episodes, thus providing more accurate identification of drought events. Accordingly, we
have revised the sentences to clarify why we use this method to identify drought events. The
revised sentence is provided as follows:

“Run theory is a commonly used method for analyzing drought characteristics, which
defines the initiation and termination of a drought event based on the drought index. In
this study, the drought events were identified using a multi-threshold run theory, which
has advantages in avoiding the unreasonable splitting of persistent droughts and filtering
out minor drought episodes, thus providing more accurate identification of drought
events (Fleig et al., 2006; Ma et al., 2021). Potential drought events were initially
identified using an intermediate threshold (X, = 0). Subsequently, the adjacent drought
events with an interval of one month and whose drought index values were below a high
threshold (X; = 1) within that month were combined. Finally, the potential drought
events with one month length and whose drought index value is greater than a low
threshold (X, = -1) were ruled out.” (lines 172-179 of the revised manuscript)

Point #20
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COMMENT: (a) L195-196, | assume the factors that you use as model predictors regarding
precipitation, temperature, potential evapotranspiration, runoff, soil moisture, and vegetation
conditions are long-term averages, but | encourage you to specify this point in the text. If so,
which period did you consider for averaging? (b) Also, why did you choose these specific factors?
Other factors regarding e.g. soil or geology would also be important in my view. (c) In general,
additional details on the models would be beneficial (e.g., training and validation periods,
achieved model performances, etc).

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. (a) In this study, the
model predictors, including precipitation, temperature, potential evapotranspiration, runoff, soil
moisture, and vegetation conditions, are long-term averages over the period 1958-2024. In the
revised manuscript, we have rewritten the descriptions of the model predictors and target
variables to improve clarity. (b) We agree with the reviewer’s comment that there are a large
number of factors that influence drought propagation, such as soil properties and geology factors.
In our analysis, the selection of these factors as model predictors is due to the reason that (1) a
large number of previous studies have demonstrated the importance of climatic factors in drought
propagation (Apurv et al., 2017; Sattar et al., 2019; Apurv and Cai, 2020); (2) our research
focused on the process of drought propagation at a 1°>1<grid scale; however, soil properties
and other geological factors are not easily aggregated at such a relatively coarse spatial
resolution. (c) We thank the reviewer for this suggestion, which helps improve the
reproducibility and transparency of our work. Accordingly, we have substantially expanded the
Methods and Results section to emphasize the details of model development and evaluation. The
revised sentences are provided as follows:

“According to previous studies, climatic conditions are among the most important factors
influencing drought propagation characteristics (Aryal et al., 2024). To explore the
relative importance of long-term climatic conditions for drought propagation, the average
values (1958-2024) of eight climatic and physiographic variables, including precipitation,
temperature, potential evapotranspiration, runoff, soil moisture, aridity index, elevation,
and vegetation condition, were selected as model predictors. The corresponding drought
propagation characteristics (i.e., response time, propagation rate, and lag time) were
selected as target variables. The Extreme Gradient Boosting (XGBoost) model was
employed to model the relationships between climatic predictors and drought

propagation target variables. The XGBoost model is an efficient and robust
gradient-boosted decision tree algorithm that is widely applied in classification and
regression tasks within the field of water resources engineering (Chen and Guestrin, 2016;
Niazkar et al., 2024). To account for spatial autocorrelation, spatial block

cross-validation was employed on the training set to prevent overfitting. The global grid
was partitioned into 43 spatially contiguous blocks according to the IPCC ARG reference
land regions (lturbide et al., 2020). In each fold, ten blocks were held out for validation,
and the XGBoost model was trained on the remaining blocks. Model performance was
evaluated using the coefficient of determination (R?) and root mean square error (RMSE),
averaged across all held-out blocks.” (lines 225-238 of the revised manuscript)

Point #21

COMMENT: Fig.1, caption, please expand the abbreviations (in other captions as well, in the
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supplementary figures too). Also, some details are missing in this specific caption (e.g., inner
plots - where axes are not labelled — and p value for statistical significance). | recommend you
having another check that all information needed to fully understand the figures are reported in
the captions, including those in the supplementary.

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. Accordingly, we have
supplemented all the information required in the figures throughout the manuscript, including in
the supplementary materials. The revised Figure 1 is provided as follows:

Response
time (month)

Pearson
correlation

A Ruy B cor(SPI, SRI)
N

60°S

90°N

60°E

Response
time (month)

24

—L 0

Response
time (month)
24

120°W

Pearson
correlation

120°W

60°W

F cor(SRI, SSI)

60°E

Pearson
correlation

B60°N |

30°N ]
& 05

0° ﬂwlm\ ‘

30°S
0

v 2

60°S

0 60°S

120°W 60°W 0° 60°E 120°E 120°W 60°W 0° 60°E 120°E
Figure 1. Spatial patterns of average response time from meteorological to hydrological
droughts (RTyy), from meteorological to agricultural droughts (RTya), and from
hydrological to agricultural droughts (RTwa), and the corresponding Pearson correlation
coefficients derived from the ensemble of ERA5, GLDAS, and TerraClimate datasets.
The blank grids indicate that the correlation between different drought indices is not
statistically significant (p-value < 0.05). The inner plots show the histograms of response
time and maximum correlation across global land areas.

Point #22

COMMENT: L212-213, it is not entirely clear to me what you mean by ‘maximum correlation
coefficients’. I suggest rephrasing. I would say that the robustness of your assessments comes
from the relatively high correlation coefficients in Fig. 1 and their statistical significance.

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. In this study, the
maximum correlation coefficients represent the highest value in the correlation analysis when the
response time is identified. To avoid ambiguous expressions, we have rephrased the relevant
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sentences to make it clearer. In detail, the revised sentences are provided as follows:

“The robustness of the response time evaluation can be attributed to the relatively high
correlation coefficients presented in Fig. 1. The IQRs of corresponding correlation
coefficients of SPI-SRI, SPI-SSI, and SRI-SSI are [0.43, 0.80], [0.51, 0.68], and [0.52,
0.70], respectively (Figs. 1B, 1D, and 1F). The correlation coefficients of response times
are relatively high in the mid- to low-latitude regions (30<5-30N), suggesting strong
robustness of the response time measurements in these regions. The response times
among meteorological, hydrological, and agricultural droughts also exhibit obvious
seasonal variations (Figs. S1 and S2). Shorter response times and higher correlation
coefficients were observed during the summer season (June—August in the Northern
Hemisphere, and December—February in the Southern Hemisphere).” (lines 252-260 of
the revised manuscript)

Point #23

COMMENT: Fig. 2, wouldn t considering relative months from the start of the local water year
rather than calendar months easier here? This would allow not to mix different processes
occurring in the same months in the northern and southern hemispheres. Also, units for
correlation coefficients are missing in the axes labels.

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. We agree that the
previous Fig. 2 is confusing because it conflates different processes occurring in the same month
due to seasonal differences between the Northern and Southern Hemispheres. In the revised
manuscript, the previous Fig. 2 has been moved to the supplementary material, and we have
separated the results for the Northern and Southern Hemispheres into two different figures. In
detail, the revised parts are provided as follows:
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Figure S1. Box plots of RTyu, RTuwaand RTya for each calendar month in the Southern
Hemisphere, along with the corresponding Pearson correlation coefficients.
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Figure S2. Box plots of RTMH, RTwma and RTya for each calendar month in the Northern
Hemisphere, along with the corresponding Pearson correlation coefficients.

“The response times among meteorological, hydrological, and agricultural droughts also
exhibit obvious seasonal variations (Figs. S1 and S2). Shorter response times and higher
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correlation coefficients were observed during the summer season (June—August in the
Northern Hemisphere, and December—February in the Southern Hemisphere).” (lines
257-260 of the revised manuscript)

Point #24

COMMENT: Fig. 3, caption, which correlation is not statistically significant in blank grid cells?
If I understand this analysis correctly (see comment #3), you computed multiple correlations here.
Please specify.

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. In the Fig. 3, the blank
grid cell indicate that, within at least one time-window in the time series of response time
obtained from the moving window, the correlation coefficient is not statistically significant.
Accordingly, in the revised manuscript, we have added the relevant description to make it clearer.
The revised figure is provided as follows:
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Figure 3. Spatial patterns of time series trends in RTyy, RTwa and RTya across global
land areas. The blank grids signify that, within at least one time-window in the time
series of response time obtained from the moving window, the correlation coefficient is
not statistically significant. The black dots indicate the statistical significance of the time
series trend, where the p-value of the TFPW-MK test is less than 0.05. A significant
increase (decrease) indicates that the Sen's slope is greater (less) than 0 and that the
p-value of the TFPW-MK test is less than 0.05. A nonsignificant increase (decrease)
indicates that the Sen's slope is greater (less) than 0 and that the p-value of the
TFPW-MK test is greater than 0.05. A monotonic trend indicates that Sen's slope is equal
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to 0.

Point #25

COMMENT: (a) Fig. 4, which dataset does this figure refer to? The same comment applies also
to other figures. | assume all the figures in the main text refer to the ensemble mean, but I would
recommend specifying this somewhere. (b) With respect to this specific figure, | would also
suggest correcting the label in the colour bars in panels a, ¢, and e to ‘Propagation rate’ rather
than ‘Response rate’ for consistency with the rest of the manuscript and specifying in the caption
the different y-axis in panel b as compared to panels d and f. (c) An additional comment on the
analysis behind this figure: could the very low propagation rates in panels ¢ and e be due to the
time scale that you use? From my understanding, you are not considering any time lag between
drought types, even though you show that some drought types can occur well after others in e.g.,
Fig. 1.

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. (a) Fig. 4 presents the
propagation rate and lag time derived from the ensemble mean of the ERA5, GLDAS, and
TerraClimate datasets. In the revised manuscript, we have added an explanation of the datasets
used in Figure 4. (b) We have corrected the label in the color bars in panels a, ¢, and e from
“response rate” to “propagation rate”. In addition, we have added an explanation of different
y-axis in panel b as compared to panels d and f. In detail, the specific modifications are as
follows:
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Figure 4. Spatial patterns of propagation rate (PRyn, PRua and PRya) and lag time (LT,
LTwma and LTya) derived from the ensemble of ERAS5, GLDAS, and TerraClimate
datasets across global land areas. The inner plots show the histograms of propagation rate
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and lag time across global land areas. The value of LTy is lower those that of LTy and
LTwa, SO it is assigned a different color bar.

(c) In this study, the propagation rate and lag time are derived from discrete events identified
through run theory analysis. In this process, meteorological, hydrological, and agricultural
droughts were determined using the SPI, SRI, and SSI at a 1-month accumulation period. We
agree with the reviewer’s comment that, when considering the time lag between different
drought types, the propagation rate among droughts may increase. However, this approach may
obscure the actual correlations between different types of droughts. In the revised manuscript, we
have rewritten the sentence in the section “2.4 Lag time analysis based on run theory” to clarify
the accumulation period of drought indices in our study. In detail, the revised sentence is
provided as follows:

“To elucidate the propagation of drought across different types, the SPI, SRI, and SSl at a
1-month accumulation period were used to represent meteorological, hydrological, and
agricultural drought, respectively. Consistent with the analysis of drought response time,
we analyzed the propagation rate and lag time between meteorological and hydrological
droughts (PRwn and LTy, between meteorological and agricultural droughts (PRya and
LTwma), and between hydrologcial and agricultural droughts (PRpa and LTya).” (lines
190-194 of the revised manuscript)

Point #26

COMMENT: Fig. 5, why are the blank areas here the same across the three maps? This is not
the case in Fig. 3, which makes sense to me. Also, please add more information to this caption, in
a similar way to what done for Fig. 3.

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. Fig. 5 (Fig.7 in the
updating manuscript) presents the time series trend of PRyy, PRma and PRya, which is
calculated using the run theory. Unlike the lag time derived from correlation analysis that
considered the statistical significance in Fig. 3, the propagation rate can be calculated from the
grid with continuous meteorological and hydrological data. Therefore, the blank grids indicate
that the data is missing in one of the ERA5, GLDAS, and TerraClimate datasets, which is same
across the three maps. In the revised manuscript, we have added relevant explanations to clarify
this content. In detail, the revised sentences are provided as follows:

“The propagation rate and lag time derived from the runoff theory can be calculated from
the grid using continuous meteorological and hydrological data; therefore, blank grids
indicate missing data in at least one of the ERAS5, GLDAS, or TerraClimate datasets.”
(lines 367-369 of the revised manuscript)

Point #27

COMMENT: Fig. 6 shows decreasing trends in the lag time between meteorological and
hydrological droughts in large portions of Europe and northern Asia that are not reflected in the
propagation time though (Fig. 3). Do you have an explanation for such discrepancies? Also, |
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see that attributing these trends to their causes might be outside of the scope of this current paper,
but I think that some discussion on potential causes of these trends would still be valuable.

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. The apparent
discrepancy between the trends in response time (Fig. 3) and those in lag time (Fig. 7 in the
revised manuscript) is indeed a critical observation, and we agree that discussing its potential
causes significantly enhances the scientific value of the manuscript. Accordingly, we have added
a Discussion section (Section 4.1: Physical Interpretation of Drought Propagation Characteristics)
to analyze the reasons for the differences in lag time and response time. The revised paragraphs
are provided as follows:

“4.1. Physical interpretation of drought propagation characteristics

In this study, two distinct methodological frameworks were employed to quantify
drought propagation: (1) the response time derived from time-lag correlation analysis,
and (2) the lag time based on event identification using the run theory. Response time is
determined by identifying the accumulation period of a drought index (e.g., SPI) that
maximizes its correlation with a target drought index (e.g., SSI at a 1-month
accumulation timescale) (L&ez-Moreno et al., 2013; Zhang et al., 2022). This approach
reflects the overall synchronicity and statistical memory characteristics of various
drought conditions. Thus, the response time values are strongly influenced by long-term
variations in regional climatic and hydrological conditions, such as the seasonal cycle,
multi-year climate oscillations, and water storage capacity. The response time refers to
the system’s long-term state that retains a memory of past drought conditions. The
evaluation of response time is beneficial for seasonal drought predictability and
long-term drought preparedness. The response time also functions as an indicator of the
feasibility of using one type of drought index as a proxy for another. For example, due to
the lack of comprehensive observational data, the SPI with varying accumulation periods
can reflect hydrological, agricultural and groundwater drought conditions (Kumar et al.,
2016).

In comparison, lag time is derived from discrete drought events identified using the
multi-threshold run theory, which measures the time difference between the onset of one
drought event and the onset of another drought event. By focusing on event-based
dynamics, the lag time reflects the instantaneous triggering mechanism by which drought
signals propagate from the atmosphere to the land surface. Numerous previous studies
have analyzed the threshold of extreme stress that triggers drought propagation, using
methods such as copula functions, hydrological models, and machine learning (Geng et
al., 2024; Yang et al., 2025). The lag time captures the non-linear response mechanism
between different drought conditions at a short time scale, which is crucial for real-time
early warning and impact assessment.

Our results provide a globally consistent comparison of the response time and lag time
for meteorological, hydrological, and agricultural drought propagation. The response
time of drought propagation (average RTwu, RTwa, and RTya of 5.0 [2.7, 6.7] months,
8.7 [5.0, 11.3] months, and 5.8 [2.3, 7.3] months) is generally longer than the lag time
(average LTwun, LTwma, and LTya of 1.23 [0.68, 1.68] months, 2.60 [1.71, 2.92] months,
and 2.49 [1.68, 2.51] months). This numerical gap arises from differences in the
methodology, but both approaches indicate a consistent propagation pathway for
meteorological, hydrological, and agricultural droughts, with similar spatial patterns. In
addition, the machine learning-based attribution method also identifies similar impact
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factors, which indicates the consistency of drought propagation mechanisms revealed by
response time and lag time. This aligns with the conceptual framework of drought
propagation, where precipitation deficits (meteorological drought) first influence runoff
generation over the land surface (hydrological drought), and subsequently affect soil
moisture in the root zone (agricultural drought).” (lines 437-468 of the revised
manuscript)

Point #28

COMMENT: L327-328, ‘the SHAP value indicates that high temperatures have shortened the
response time of meteorological drought to hydrological drought’, I stumbled a bit here. |
suggest rephrasing, for instance by using present tenses, not to evoke changes over time, which is
not what you are looking at with your SHAP-analysis. This comment applies also to L409-411.

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. We agree with the
reviewer’s comment that the impacts of climatic and geographical factors are not reflected in the
temporal changes observed in our analysis. In the revised manuscript, we have rephrased the
sentences to avoid ambiguous descriptions. Specifically, the revised sentences are provided as
follows:

“The meteorological-to-hydrological drought propagation characteristics are primarily
influenced by regional temperature and PET, with the non-monotonic behaviour
predominantly observed in the 30th to 70th percentiles of temperature and PET. In this
percentile range, both PTyy and LTy decrease as temperature and PET increase, while
PRwn increases as temperature and PET increase.” (lines 423-426 of the revised
manuscript)

Point #29

COMMENT: Fig. 9 and corresponding text, I would suggest turning ‘key feature factors’to
‘dominant factors’to enhance the clarity of which factors you are looking at here. Also, for Fig.
9, do you have an explanation for the non-monotonic behaviour of
meteorological-to-hydrological drought propagation characteristics across different quantiles of
the considered features?

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. We agree that
“dominant factors” is a more accurate description, expressing the main factors that influence
drought propagation. For the meteorological-to-hydrological drought propagation characteristics,
the non-monotonic behaviour predominantly observed in the 30th to 70th percentiles of
temperature and PET. This is mainly due to the influence of temperature on the snow-related
processes of the water cycle. Accordingly, we have added an explanation of the non-monotonic
behavior of meteorological-to-hydrological drought propagation characteristics in the Results
Analysis and Discussion section. In the revised manuscript, the updated sentences are as follows:

“The meteorological-to-hydrological drought propagation characteristics are primarily
influenced by regional temperature and PET, with the non-monotonic behaviour
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predominantly observed in the 30th to 70th percentiles of temperature and PET. In this
percentile range, both RTyy and LTy decrease as temperature and PET increase, while
PRwmn increases as temperature and PET increase.” (lines 423-426 of the revised
manuscript)

“Specifically, the non-monotonic behaviour of meteorological-to-hydrological drought
propagation characteristics mainly occurred in the range of 20th to the 70th percentiles
for temperatures and PET. In the subtropical regions, shorter RTyy and LTy with low
PRwy trend to occur in regions characterized by higher average temperature and PET
(Fig. 11). This is primarily attributed to the influence of temperature on the snow-related
processes of the water cycle, resulting in a delayed response of runoff to changes in
precipitation. During cold seasons, precipitation is stored in the form of snow and ice in
glaciers, which subsequently melt and contribute to runoff during the following warm
season.” (lines 478-483 of the revised manuscript)

Point #30

COMMENT: L429-435, this part sounds to me more like a discussion of the implications rather
than of uncertainties. | suggest moving to a new subsection or rename the current one.

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. In the revised
manuscript, we have renamed the subsection “4.4. Uncertainties and Implications for Drought
Propagation Evaluation” to better highlight the implications of drought propagation. In detail, the
revised paragraphs are provided as follows:

“4.4. Uncertainties and implications in drought propagation evaluation

Drought propagation evaluation relies heavily on drought indices for monitoring and
characterizing various drought types. Considering the data availability and the continuity
in both temporal and spatial dimensions at the global scale, we employed the SPI, SR,
and SSI to represent meteorological, hydrological, and agricultural droughts. Our results
demonstrated the propagation pathway of meteorological-hydrological-agricultural
droughts, which is consistent with previous studies that employed similar indices (Han et
al., 2023; Mei et al., 2025). As a multifaceted phenomenon, hydrological drought is a
broad term that is related not only to runoff but also to streamflow and the levels of
groundwater, lakes, and reservoirs (Van Loon, 2015). Using the drought indices derived
from streamflow, the propagation from agricultural to hydrological droughts has also
been identified in many studies, particularly at the watershed scale (Odongo et al., 2023;
Teutschbein et al., 2025). Runoff is the volume of water that originates from precipitation
and flows over the land surface; it is not directly equal to the streamflow in stream
channels. A deficit in runoff can directly affect the availability of soil moisture due to
reduced recharge to the root zone, representing the propagation from hydrological
drought to agricultural drought. In comparison, soil moisture retains precipitation that
falls on the land surface and then delays the propagation time form precipitation to
streamflow (McColl et al., 2017).

Due to the inherent variability of drought-related variables, significant uncertainties exist
within hydrometeorological datasets (Bador et al., 2020). Our findings depend on an
ensemble of three datasets (i.e., ERA5, GLDAS, and TerraClimate), which helps avoid
biased and incomplete evaluations of drought propagation that could result from relying
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on a single dataset. We conducted a comparative analysis of drought propagation
characteristics derived from multiple datasets, systematically evaluating their consistency
and discrepancies (Figs. 11-13). The results underscore the impact of input data
uncertainties on the assessment of drought propagation, with notable discrepancies
predominantly observed in the hyper-arid, high-latitude, and high-evaluation regions.
This is primarily attributed to the scarcity of in-situ stations capable of providing
continuous spatial and temporal observations in these regions. The data assimilation
systems and land surface models employed across different datasets to fill missing
observations inevitably introduce uncertainties in both model parameters and structural
configurations.

Generally, our study provides a comprehensive assessment of multiple drought
propagation characteristics across global land areas, which has significant implications
for the development and improvement of drought monitoring and early warning systems.
In tropical and sub-tropical regions, real-time monitoring of meteorological drought can
improve the forecasting of hydrological drought; whereas in humid regions, drought
indices based on precipitation and runoff could provide more accurate predictions of
agricultural drought risks. Future research could focus on improving the accuracy of
predicting future drought changes by incorporating the mechanisms of drought
propagation into predictive models. In addition, human activities—such as water
abstraction, reservoir regulation, and land-use change—can profoundly modify natural
drought propagation processes by altering catchment storage and flow pathways, thereby
influencing drought propagation. Future research could also focus on quantitatively
disentangling the effects of human activities on drought propagation.” (lines 513-549 of
the revised manuscript)

Point #31
COMMENT: L438-440, | suggest some rephrasing here to improve the clarity of this sentence.

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. Accordingly, we have
revised the Conclusion section in the revised manuscript to clarify the main contribution of our
study. Specifically, the revised sentences are provided as follows:

“In this study, we systematically assessed the propagation characteristics of multiple
drought types from 1958 to 2024 across global land areas. Based on an ensemble of
multiple datasets (i.e., ERA5, GLDAS, and TerraClimate), three standardized drought
indices (SDIs) derived from precipitation, runoff, and soil moisture were employed to
represent meteorological, hydrological, and agricultural drought conditions, respectively.
The lag time derived from correlation analysis, as well as the response time and
propagation rate based on run theory, were examined to characterize the propagation of
meteorological, hydrological, and agricultural droughts.” (lines 551-556 of the revised
manuscript)

Point #32

COMMENT: L45, I cannot find the reference (Zhu et al., 2021) in the reference list, please add
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it. In addition, include also Xiong et al. (2025), already cited in the text, among the global-scale
studies?

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. In the revised manuscript,
the previous sentence has been rewritten, and the reference to Zhu et al. (2021) has been
removed. In addition, the study by Xiong et al. (2025) is also a global-scale study; however, the
relevant sentence in the updated manuscript has been rewritten, and Xiong et al. (2025) is not
cited here.

Point #33

COMMENT: L47, there are two entries for both (Yang et al., 2024) and (Shi et al., 2022) in the
reference list. Which one are you referring to here? Please specify here and elsewhere in the
manuscript.

RESPONSE: We sincerely appreciate the reviewer’s carefulness. In the revised manuscript, we
have distinguished references with identical entries. The references of Yang et al. (2024) have
been removed in the revised manuscript. Specifically, the revised sentences and corresponding
references are provided below:

“For example, Shi et al. (2022a) examined the response time from meteorological and
hydrological droughts using the maximum correlation coefficient method, and analyzed
the variations in response time across different climatic regions.” (lines 52-54 of the
revised manuscript)

“Over the past decades, a large number of attribution studies have been conducted to
quantify the impacts of climatic and geographical factors on drought propagation, using
methods such as statistical analysis (Gevaert et al., 2018), clustering analysis (Liu et al.,
2023), causality analysis (Shi et al., 2022b), and machine learning models (Muthuvel and
Qin, 2025).” (lines 72-75 of the revised manuscript)

The revised references:

Shi, H., Zhou, Z., Liu, L., and Liu, S.: A global perspective on propagation from
meteorological drought to hydrological drought during 1902—-2014, Atmos. Res., 280,
106441, doi:10.1016/j.atmosres.2022.106441, 2022a.

Shi, H., Zhao, Y., Liu, S., Cai, H., and Zhou, Z.: A new perspective on drought
propagation: causality. Geophys. Res. Lett., 49(2), e2021GL096758,
doi:10.1029/2021GL096758, 2022b.

Point #34

COMMENT: L127, I assume you mean here ‘elevation’rather than ‘evaluation’. Please correct
it, here and throughout the manuscript.

RESPONSE: We sincerely appreciate the reviewer’s carefulness. This was a typographical error.
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Accordingly, we have systematically corrected all instances where “elevation” was incorrectly
used in place of “evaluation” throughout the entire manuscript.

Point #35

COMMENT: L165, ‘with on month’-> ‘with one month’? Else, the sentence sounds strange to
me. Please check.

RESPONSE: We sincerely appreciate the reviewer’s carefulness. This was a typographical error,

and “with on month” should be corrected to “with one month”. We apologize for this mistake
and have revised the sentence in the updating manuscript.

Point #36

COMMENT: L190, ‘formula’-> ‘formulated’?

RESPONSE: We sincerely appreciate the reviewer’s carefulness. We sincerely appreciate the
reviewer’s careful comment. This was a grammatical mistake, and “formula” should be corrected
to “formulated”. We apologize for this mistake and have revised the sentence in the updating
manuscript.

Point #37

COMMENT: L193, ‘influencing on the model predictions’-> ‘influencing the model predictions’
RESPONSE: We sincerely appreciate the reviewer’s carefulness. We sincerely appreciate the
reviewer’s careful comment. This was a grammatical mistake, and “influencing on the model
predictions” should be corrected to “influencing the model predictions”. We apologize for this
mistake and have revised the sentence in the updating manuscript.

Point #38

COMMENT: L282, ‘the highest PRMH and LTMH values’-> the highest PRMH and lowest
LTMH values?

RESPONSE: We sincerely appreciate the reviewer’s carefulness. This was a typographical error,
and “the highest PRy and LTy values” should be corrected to “the highest PRy and lowest
LTwmn values”. We apologize for this mistake and have revised the sentence in the updating
manuscript.

Point #39
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COMMENT: Fig. 8 and 9, please correct the labels in panels c, f, and i with the subscript ‘HA’
instead of ‘MA’.

RESPONSE: We sincerely appreciate the reviewer’s carefulness. This was a typographical error
in the figures, and we have corrected this mistake in the revised manuscript. Specifically, the
revised figures are provided as follows:
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Figure 10. Ranking of factors influencing drought propagation characteristics based on
the absolute SHAP value.
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Figure 11. Box plots of drought propagation characteristics across global land areas
classified by the percentiles of dominant factors. The dominant factor is temperature for
RTwmu, PRwn, PET for LTy, and precipitation for the other characteristics.

Point #40

COMMENT: L303-304, | suggest rephrasing or removing, since this wording does not sound
fitting to this subsection to me.

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. In the revised manuscript,
we have removed this sentence.

Point #41

COMMENT: L344-345, the first ‘hydrological’ should probably be ‘agricultural’.

RESPONSE: We sincerely appreciate the reviewer’s carefulness. This was a typographical error,
and we have revised the sentence as follows:

“In comparison, precipitation serves as the main influencing factor in the propagation
from both meteorological and hydrological droughts to agricultural drought.” (lines
411-413 of the revised manuscript)

Point #42
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COMMENT: L413, ‘reasons’-> ‘seasons’?

RESPONSE: We sincerely appreciate the reviewer’s carefulness. This was a typographical error,
and we have corrected this mistake in the revised manuscript.

Point #43

COMMENT: L424, Figures 11-13, these figures are reported in the supplement. Please correct.
RESPONSE: We sincerely appreciate the reviewer’s carefulness. This was a typographical error,
and we have corrected this mistake in the revised manuscript.

Point #44

COMMENT: L442, ‘finding’-> ‘findings’?

RESPONSE: We sincerely appreciate the reviewer’s carefulness. This was a grammatical errors,
and we have corrected this mistake in the revised manuscript.

Generally, we are deeply grateful to the reviewer’s insight and careful review. His/her comments
have greatly helped improve the paper. We also expressed our gratitude in the
“Acknowledgments” of the revised manuscript.
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