
 

1 

 

Reference Number: EGUSPHERE-2025-4791 

 

RESPONSES TO REVIEWER ONE’S COMMENTS 
 

We are grateful to Reviewer #1 for his/her insightful review. The provided comments have 

contributed substantially to improving the paper. According to them, we have made significant 

efforts to revise the manuscript, with the details explained as follows: 

 

 

Point #1 

 

COMMENT: Novelty. (a) Which is the specific research gap that this work addresses? This is 

currently not entirely clear from the title, abstract, and introduction. As the authors also 

acknowledge in the introduction, global-scale drought propagation studies are already available. 

I might see the originality of this work being the use of multiple datasets, but in this case, I 

believe this could be better worked out throughout the manuscript. Not only in the title, abstract, 

and introduction, to set the reader’s expectations clear, but also later in the manuscript. (b) As a 

reader, for instance, I would enjoy having more discussion on the most suitable dataset(s) for 

drought applications. I see that providing a clear recommendation on this may be difficult from 

the current analyses, since you do not have here observations to benchmark the datasets with, 

but maybe you could still say something based on expectations on drought propagation that we 

have from previous observation-based studies? (c) Also, I would find useful to have clear ranges 

of variation for the drought propagation characteristics from the different datasets in the 

abstract and conclusions, as an indication of the uncertainties in such characteristics. 

 

RESPONSE: (a) We sincerely thank the reviewer for the essential comment on how to better 

articulate the novelty and contribution of our work. We agree that our initial presentation did not 

sufficiently highlight the distinctive research gap we are addressing. In the revised manuscript, 

we have thoroughly revised the Title, Abstract, and Introduction to precisely define our specific 

novelty and contribution, and have emphasized this message in the Discussion and Conclusion. 

In detail, the revised parts are provided as follows: 

 
Title: “Understanding meteorological, hydrological, and agricultural drought 

propagation and their influencing factors in an ensemble of multiple datasets” (lines 1-3 

of the revised manuscript) 
 

Abstract: “Understanding the propagation of diverse drought conditions is necessary for 

drought preparedness. This study conducted a comprehensive evaluation of the 

propagation of meteorological, hydrological, and agricultural droughts across global land 

areas from 1958 to 2024, based on an ensemble of reanalysis data (ERA5), land surface 

model simulations (GLDAS), and merged observational datasets (TerraClimate). Two 

distinct methodological frameworks were employed to characterize drought propagation: 

time-lag correlation analysis and multi-threshold run theory. Based on standardized 

drought indices derived from precipitation (meteorological), runoff (hydrological) and 

soil moisture (agricultural), the drought propagation characteristics of response time (RT), 

propagation rate (PR), and lag time (LT) were examined. Moreover, the climatic and 

geographical factors influencing drought propagation were quantified using the SHapley 
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Additive exPlanations (SHAP)-based attribution method. The results demonstrate the 

propagation pathways of meteorological-hydrological-agricultural drought at the 

global-scale, with the average RT, PR, and LT from meteorological to hydrological 

drought at 5.0 months, 55.3%, and 1.23 months; from meteorological to agricultural 

drought at 8.7 months, 30.3%, and 2.60 months; and from hydrological to agricultural 

drought at 5.8 months, 35.0%, and 2.49 months, respectively. Notable temporal and 

spatial heterogeneities are observed in the drought propagation characteristics, which are 

closely influenced by with the regional climatic feature. Globally, temperature and 

potential evapotranspiration are the primary factors influencing the propagation of 

meteorological drought to hydrological drought, whereas precipitation plays a decisive 

role in the propagation from meteorological or hydrological drought to agricultural 

drought. The findings underscore the importance of taking climatic characteristics into 

account in the development and implementation of regional drought risk management.” 

(lines 9-26 of the revised manuscript) 

 

Introduction: “Drought is one of the most frequent natural disasters and is generally 

defined as a prolonged period of moisture deficits within the water cycle (Liu et al., 2020; 

AghaKouchak et al., 2023). Under global warming, the magnitude, frequency, and spatial 

extent of droughts have increased in recent decades, driven by precipitation variability 

and increased atmospheric evaporative demand (Chen et al., 2025; Gebrechorkos et al., 

2025). The intensified droughts pose a significant threat to ecosystems and 

socio-economic sectors, such as agricultural production (Hendrawan et al., 2022), 

ecosystem productivity (Cao et al., 2022; Gu et al., 2025), and water resources (Fowler et 

al., 2022; Liu et al., 2025; Xie et al., 2025). Moreover, multiple climate and hydrological 

projections reveals a consistent drying trend across many regions during the 21st century 

(Cook et al., 2020; Christian et al., 2023; Li et al., 2025). The increasing frequency and 

intensity of droughts are expected to exacerbate water scarcity and ecosystem 

degradation in the foreseeable future, thus posing significant threats to both the natural 

environment and human society. Therefore, characterizing the spatio-temporal dynamics 

of droughts is of crucial importance, as it has significant implications for adapting to and 

mitigating the impacts of drought-related hazards. 

 

Drought is a complex and multifaceted natural phenomenon (Wu et al., 2022). Although 

a drought event typically originates from inadequate precipitation and excessive 

evapotranspiration (referred to as meteorological drought), its impacts on human and 

natural systems are closely related to subsequent development, such as diminished runoff 

(hydrological drought), reduced soil moisture (agricultural drought), and declined 

groundwater (groundwater drought). There exists a strong interrelationship among 

different types of droughts, owing to the close linkage of their driving factors within the 

hydrological cycle. The transition processes from one type of drought (i.e., 

meteorological drought) to another (i.e., hydrological drought) are referred to as drought 

propagation (Apurv et al., 2017; Colombo et al., 2024). Understanding drought 

propagation characteristics, such as propagation time, probability, and threshold, are 

essential for elucidating drought occurrence and evolution mechanisms, which help 

facilitate the effective drought monitoring and early warning systems. Over the past 

decades, numerous studies have assessed the propagation characteristics of different 

drought conditions, using identification methods such as time-lag correlation analysis 

(López-Moreno et al., 2013; Barker et al., 2016; Liu et al., 2023; Geng et al., 2024), run 

theory (Aryal et al., 2024; Xiong et al., 2025), and event-coincidence analysis 

(Baez-Villanueva et al., 2024). For example, Shi et al. (2022a) examined the response 

time from meteorological and hydrological droughts using the maximum correlation 
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coefficient method, and analyzed the variations in response time across different climatic 

regions. Han et al. (2023) investigated the propagation pathways of various types of 

droughts across China and revealed the long-chain propagation mechanisms involving 

meteorological, hydrological, agricultural, and groundwater droughts. Aryal et al. (2024) 

evaluated the propagation time from meteorological drought to hydrological and 

agricultural drought across Australia, emphasizing the significant influence of climatic 

conditions and drought indices in assessing drought propagation dynamics. Among the 

aforementioned studies, correlation analysis and run theory are two of the most 

commonly used methodologies for quantifying drought propagation (Zhang et al., 2022). 

The time-lag correlation analysis based on standardized drought indices (SDIs) with 

varying accumulation periods provides a direct and effective method for assessing the 

response time among different drought types from a statistical perspective. However, the 

correlation analysis can only reflect the average linear relationship between different 

drought types, but cannot capture the variations among individual drought events (Zhou 

et al., 2024; Brunner and Chartier-Rescan, 2024). In comparison, the run theory identifies 

discrete drought events based on the time series of drought indices, thereby providing a 

more physically meaningful interpretation of the time lag relationship among various 

drought conditions. Although extensive research has been conducted to examine the 

characteristics of drought propagation, the results of these studies are heavily dependent 

on the datasets, evaluation methods, drought indices, and thresholds employed. A 

comparison of the differences and consistencies in drought propagation characteristics 

derived from different datasets and methods is desired to improve our understanding of 

drought propagation, particularly at the global scale. 

 

The propagation characteristics of different types of drought vary depending on climatic 

conditions and underlying surface conditions (Apurv et al., 2017; Sattar et al., 2019; 

Apurv and Cai, 2020). Over the past decades, a large number of attribution studies have 

been conducted to quantify the impacts of climatic and geographical factors on drought 

propagation, using methods such as statistical analysis (Gevaert et al., 2018), clustering 

analysis (Liu et al., 2023), causality analysis (Shi et al., 2022b), and machine learning 

models (Muthuvel and Qin, 2025). Data-driven machine learning approaches are 

increasingly being employed in drought modeling due to their inherent advantages in 

capturing nonlinear patterns from complex and high-dimensional data (Sundararajan et 

al., 2021; Prodhan et al., 2022). Although machine learning models achieve satisfactory 

simulation accuracy, their reliability remains questionable due to their black-box nature 

and lack of physical interpretability (Rudin, 2019; Hassija et al., 2024). SHapley 

Additive exPlanations (SHAP) provides a unified attribution framework for explaining 

the machine learning outputs, enabling the interpretation of the causal relationships 

between independent variables and dependent variables (Antwarg et al., 2021; Nohara et 

al., 2022). Recently, SHAP-based attribution models have been utilized to investigate 

drought dynamics across various temporal and spatial scales (Xue et al., 2024; Feng et al., 

2025). To the best of our knowledge, there is currently a lack of studies that analyze the 

factors influencing drought propagation from the perspective of SHAP-based machine 

learning. 

 

Reliable drought monitoring and an in-depth understanding of the underlying 

mechanisms depend on datasets that accurately describe variations in drought-related 

hydro-meteorological variables. For large-scale and global assessments, gauge 

observations and gauge-based gridded datasets are often constrained by limited spatial 

and temporal coverage, the occurrence of missing values, and challenges in data 

accessibility (Wang et al., 2020; Gebrechorkos et al., 2024). Numerous satellites, 
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reanalysis, earth system models, and merged datasets have been developed, providing 

long-term and spatially continuous records of hydro-meteorological variables 

(Abatzoglou et al., 2018; Hersbach et al., 2020). Over the past decades, extensive efforts 

have been conducted to evaluate drought dynamics using different datasets at both 

regional and global scales. For example, Yuan et al. (2023) assessed the global patterns 

of flash drought, which is characterized by the rapid depletion of soil moisture, using 

ERA5 reanalysis and climate model datasets. Gebrechorkos et al. (2025) revealed the 

critical role of atmospheric evaporative demand in accelerating global drought severity, 

based on an ensemble of reanalysis, gridded observation, and hydrological model 

datasets. Wu et al. (2025) conducted an assessment of the dynamic predictability of 

agricultural drought across global land areas, utilizing the gridded observation, reanalysis, 

and hydrological model datasets. However, inconsistent findings across studies can be 

attributed to the inherent uncertainties and errors within different datasets; few 

systematic comparisons have been conducted to quantify the discrepancies among the 

multiple datasets in representing drought propagation characteristics (Chen et al., 2020; 

Huang et al., 2025). 

 

Although previous studies have evaluated drought propagation across various temporal 

and spatial scales, a comprehensive assessment of the propagation characteristics of 

meteorological, hydrological, and agricultural droughts—derived from ensembles of 

multiple datasets—remains lacking, particularly at the global scale. Moreover, 

comparisons among different evaluation methods are also needed to fully understand the 

drought propagation process and its underlying influencing factors. Therefore, the 

objectives of this study are as follows: (1) to assess the spatial and temporal patterns of 

response time, propagation rate, and lag time across meteorological, hydrological, and 

agricultural droughts—derived from an ensemble of multiple datasets; (2) to quantify the 

main climatic and underlying surface factors that influence drought propagation 

characteristics from the perspective of machine learning; (3) to compare the robustness 

and uncertainty associated with different methods and datasets in characterizing drought 

propagation.” (lines 28-110 of the revised manuscript) 

 

(b) We agree that identifying the most appropriate dataset for drought applications is beneficial 

for the community, especially for the practical implementation of drought risk management. 

However, current research is unable to provide a single recommendation due to insufficient 

continuous observation in both time and space. In response the reviewer’s comments, we have 

added a discussion on the relative merits and potential suitability of different datasets in 

characterizing drought propagation. Specifically, the revised paragraphs are provided as follows: 

 
“A wide variety of meteorohydrological datasets are available for drought monitoring 

and evaluation. However, a consensus on the most suitable datasets for assessing drought 

propagation remains elusive across different applications and specific regions. Our 

results, derived from an ensemble of three different datasets (i.e., ERA5, GLDAS, and 

TerraClimate), reveal both robust global patterns and notable uncertainties in quantifying 

drought propagation characteristics. Consistent spatial patterns of drought propagation 

characteristics—such as shorter RT and LT in tropical and subtropical regions, and longer 

RT and LT in high-latitude and arid regions—across multiple datasets demonstrate the 

robustness of drought propagation mechanisms under climatic control. This agreement 

underscores the fundamental dynamics of drought propagation, which are independent of 

the methodology and forcing datasets. However, the magnitudes of drought propagation, 

especially in the meteorological to hydrological pathway, also demonstrate significant 
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inter-datasets variability (Figs. 2, 5, and 6). This divergence highlights the inherent 

uncertainty in drought propagation assessments and points to the distinct strengths and 

limitations of each dataset. 

 

ERA5 is a high-resolution reanalysis dataset derived from the Integrated Forecasting 

System, which is forced by atmospheric observations. It generally exhibits higher values 

of RTMH, RTHA, LTMH, and LTHA, and lower values of PRMH and PRHA in high-latitude 

regions (Figs. S3-S6). This may more accurately represent the drought propagation in 

snow-dominated systems where runoff generation processes are complex and exhibit 

seasonal lags. GLDAS is an ensemble of multiple land surface models and exhibits 

intermediate drought propagation characteristics with relatively high spatial consistency 

in correlation coefficients (Fig. S4). This result indicates that the land surface model 

demonstrates a more robust pattern of drought propagation, and its process-consistent 

parameterizations may better represent the interrelationships among different drought 

types. TerraClimate, a statistically downscaled and bias-corrected dataset, consistently 

yielded the shortest RTMH and LTMH and the highest PRMH, particularly in the mid- to 

low-latitudes. While this result aligns with the expectation of rapid response in 

rainfall-dominated regions, the empirical water balance model in TerraClimate may also 

lead to an overestimation of propagation speed and sensitivity. Our findings rely on the 

ensemble of multiple datasets, thus avoiding the bias of any single dataset and providing 

a more robust and consistent understanding of drought propagation.” (lines 489-512 of 

the revised manuscript) 

 

(c) We thank the reviewer for this crucial suggestion to enhance the transparency and robustness 

of our key findings. In the revised manuscript, we have added two metrics to evaluate drought 

propagation variability across different datasets: the coefficient of variation (CV) and the mean 

absolute deviation (MAD). The corresponding Results and Discussion section has also been 

revised, as provided below: 
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Figure 2. Spatial patterns of CV and MAD across the ERA5, GLDAS, and TerraClimate 

datasets for the response time from meteorological to hydrological droughts (RTMH), 

from meteorological to agricultural droughts (RTMA), and from hydrological to 

agricultural droughts (RTHA). Larger values of the CV and MAD signify a more 

substantial disparity among distinct datasets. 

 

“Moreover, the response time also varied across different datasets (Figs. S3 and S4). For 

example, consistently low RTMH values were observed in the TerraClimate dataset, 

whereas high RTMH values were observed in the ERA5 and GLDAS datasets. On average, 

the fluctuation ranges of RTMH, RTMA and RTHA among different datasets were [1.96, 

7.06] month, [7.87, 10.65] month, and [4.95, 8.00] month, respectively. To quantify the 

differences among various datasets, two metrics (i.e., CV and MAD) were calculated, 

and their spatial patterns are shown in Fig. 2. Larger values of CV and MAD indicate 

more substantial differences among different datasets. The lowest values of CV and 

MAD were observed in the RTMA, followed by the RTHA and RTMH. This result indicates 

that the RTMA showed relatively small variation across different datasets over global land 

areas, except in the high-latitude regions of the Northern Hemisphere. In contrast, 

substantial disparities existed in the RTMH and RTHA evaluations derived from different 

datasets, particularly in North America, the Sahara, central Asia, and central Australia. 

Specifically, consistently low RTMH values were observed in the TerraClimate dataset, 

whereas high RTMH values were predominantly found in the high latitudes of the 

Northern Hemisphere (Fig. S3). Regarding the maximum correlation of RTMH, RTMA, and 

RTHA, the GLDAS dataset generally exhibited higher correlation coefficients, whereas 

the ERA5 and TerraClimate datasets displayed obviously spatial heterogeneity (Fig. S4). 

This indicates that the response time among different droughts is more reliably 

represented in the GLDAS dataset.” (lines 267-280 of the revised manuscript) 
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Figure 5. Spatial patterns of CV and MAD across the ERA5, GLDAS, and TerraClimate 

datasets for the propagation rate from meteorological to hydrological droughts (PRMH), 

from meteorological to agricultural droughts (PRMA), and from hydrological to 

agricultural droughts (PRHA). 

 

 
Figure 6. Spatial patterns of CV and MAD across the ERA5, GLDAS, and TerraClimate 

datasets for the lag time from meteorological to hydrological droughts (LTMH), from 
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meteorological to agricultural droughts (LTMA), and from hydrological to agricultural 

droughts (LTHA). 

 

“Figs. 5 and 6 illustrate the spatial patterns of CV and MAD for propagation rate and lag 

time. The spatial patterns of propagation rate and lag time across the ERA5, GLDAS, 

and TerraClimate datasets are shown in Figs. S3 and S4. For different datasets, the 

average fluctuation ranges of PRMH, PRMA and PRHA are [44.3, 72.8]%, [26.9, 33.6]%, 

and [24.9, 43.5]%, and those of LTMH, LTMA and LTHA are [0.69, 1.49] month, [2.05, 3.03] 

month, and [1.87, 3.46] month, respectively. Consistent with the response time results, 

the PRMA and LTMA exhibited smallest differences across different datasets with low CV 

and MAD. In comparison, the relatively large differences were observed in the PRMH, 

PRHA, LTMH, and LTHA, especially in regions where in-situ observations are scarce. The 

highest PRMH and lowest LTMH values are found in the TerraClimate datasets, with PRMH 

values in the low and middle latitudes approaching 90% and LTMH values approaching 

less than 1 month, respectively.” (lines 331-339 of the revised manuscript) 

 

 

Point #2 

 

COMMENT: Agricultural drought definition and propagation from hydrological to 

agricultural droughts. The adopted agricultural drought definition and the choice of 

investigating hydrological-to-agricultural drought propagation is not entirely clear to me. 

Agricultural droughts are introduced in the paper as ‘reduced soil moisture’ (L40), coherently 

with extensive previous literature (Van Loon, 2015) which refers to agricultural or soil moisture 

droughts as deficits in the root-zone soil moisture mainly impacting the agricultural sector, 

following meteorological droughts and potentially leading to hydrological droughts (i.e., deficits 

in runoff and groundwater, Van Loon, 2015). Previous works therefore mostly investigated the 

propagation from meteorological to agricultural and then to hydrological droughts, by finding 

shorter propagation times from meteorological to agricultural droughts than from 

meteorological to hydrological droughts (e.g., Odongo et al., 2023; Teutschbein et al., 2025). 

Could you clarify why you chose to investigate the propagation from hydrological to agricultural 

droughts instead of the other way round? Also, are you considering soil moisture data from the 

upper or deeper layers? This is not specified in the methods. In the discussion, agricultural 

droughts are said to affect the ‘deeper soil moisture’ (L393), which may point to the use of deep 

soil moisture data only, but I ask you to clarify earlier on this important piece of information for 

the general understanding of the work. The use of deep soil moisture would (partly) explain to 

me both the choice of investigating this drought propagation pathway and the results, showing 

longer propagation times for agricultural than for hydrological droughts with respect to the 

meteorological ones. Yet, if this is the case, I wonder whether the use of the term agricultural 

droughts is the most suitable here, given the interest in the upper soil layer by the agricultural 

sector. 

 

RESPONSE: We sincerely appreciate the reviewer's insightful comments. (a) Agricultural 

drought definition. In this study, we considered the soil moisture in the root zone layers within a 

depth of 1 meter to define the agricultural drought. The soil moisture data were derived from the 

ensemble of ERA5, GLDAS, and TerraClimate datasets, which have different soil layer 

structures. Thus, we aggregated volumetric soil water content to a 1-meter depth using weighted 

data from different soil layers. For example, the soil moisture in ERA5 was aggregated to 1 
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meter volumetric soil water using weighted data from three layers: 0–7 cm, 7–28 cm, and 

28–100 cm. In the updated versions, we have revised the sections “2.1 Datasets” and “2.2 

Drought definition and drought indices” to clarify the details of the soil moisture data utilized 

and the definition of agricultural drought. In addition, the description of the drought propagation 

mechanism in the discussion section has been rephrased as well. The revised paragraphs are 

provided as follows: 

 
“2.1 Datasets 

Monthly precipitation, runoff, and soil moisture were derived from the ERA5, the Global 

Land Data Assimilation System (GLDAS), and TerraClimate datasets to calculate the 

drought indices. ERA5 is the fifth-generation global atmospheric reanalysis product 

developed by the European Centre for Medium-Range Weather Forecasts. It integrates 

extensive records of both in-situ and satellite observations through an ensemble-based 

data assimilation system (Hersbach et al., 2020). Precipitation in ERA5 was generated by 

the atmospheric component of the Integrated Forecasting System, whereas runoff and 

soil moisture were simulated by a land surface model (Boussetta et al., 2021). The soil 

moisture in ERA5 was aggregated to 1 meter volumetric soil water using weighted data 

from three layers: 0–7 cm, 7–28 cm, and 28–100 cm. GLDAS is a multi-model ensemble 

comprising three land surface models—Noah, Catchment, and the Variable Infiltration 

Capacity—which integrate satellite and in-situ observations through advanced land 

surface modeling techniques. The soil moisture in GLDAS models has different soil 

layer structures, all of which were weighted to the root zone depth of 1 meter to be 

consistent with ERA5. TerraClimate integrates multiple datasets, including WorldClim, 

Climate Research Unit, and Japanese 55-year Reanalysis, to generate 

hydro-meteorological variables (Abatzoglou et al., 2018). The soil moisture in the 

TerraClimate refers to the plant extractable soil water based on the root zone storage 

capacity, as modeled by an empirical water balance model. To ensure spatial and 

temporal consistency, the period from 1958 to 2024 was selected as the reference period, 

and all datasets were uniformly interpolated onto a 1°×1° latitude–longitude grid using 

bilinear interpolation.  

 

In addition, the temperature and potential evapotranspiration (PET) were also obtained 

from the ensemble of ERA5, GLDAS, and TerraClimate datasets. Potential 

evapotranspiration in these datasets was calculated using the Penman-Monteith method 

(Abatzoglou et al., 2018). The Normalized Difference Vegetation Index (NDVI) was 

obtained directly from the Advanced Very High Resolution Radiometer instruments 

operated by the National Oceanic and Atmospheric Administration (NOAA) (Pinzon and 

Tucker, 2014). The elevation dataset was obtained from the ETOPO Global Relief Model 

developed by the National Centers for Environmental Information 

(https://www.ncei.noaa.gov/products/etopo-global-relief-model). The aridity index 

dataset was derived from the Global Aridity Index and Potential Evapotranspiration 

Database—Version 3 (Zomer et al., 2022).” (lines 112-136 of the revised manuscript) 

 

“2.2 Drought definition and drought indices 

Drought is a complex phenomenon related to multiple variables in the water cycle, and 

there is no universally accepted definition in the current literature (Van Loon, 2015). 

Drought propagation is a hierarchical top-down process in which meteorological drought, 

caused by insufficient precipitation, can propagate to other hydrological variables 

(Teutschbein et al., 2025). A large number of drought indices and datasets have been 

developed to characterize varying drought conditions at different spatial and temporal 
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scales (AghaKouchak et al., 2023; Gebrechorkos et al., 2025). To provide a consistent 

and comparable assessment of drought propagation, standardized drought indices (SDIs) 

derived from precipitation, runoff, and soil moisture were used to define meteorological, 

hydrological, and agricultural droughts. The SDI time series were obtained by fitting the 

drought variables of interest to a suitable probability distribution and subsequently 

normalizing the probabilities to generate a standardized time series. Three SDIs, 

including Standardized Precipitation Index (SPI) (McKee et al., 1993), Standardized 

Runoff Index (SRI) (Shukla and Wood, 2008), and Standardized Soil Moisture Index 

(SSI) (Hao and AghaKouchak, 2013), were computed by fitting parametric probability 

distributions, specifically the Gamma, log-normal, and normal distributions, respectively. 

The maximum likelihood estimation (MLE) method was utilized to estimate the 

parameters of the probability distributions, with the initial values determined based on 

the L-moments estimation (Stagge et al., 2015). Compared with other drought indices, 

the SDI is not only simple and efficient to calculate, but also applicable to diverse 

climates due to its consistent calculation procedure (Zarch et al., 2015; Adnan et al., 

2018). Meanwhile, SDI can be calculated using drought-related variables across multiple 

time scales, thus enhancing its effectiveness in analyzing drought propagation.” (lines 

137-154 of the revised manuscript) 

 

“4.1. Physical interpretation of drought propagation characteristics 

In this study, two distinct methodological frameworks were employed to quantify 

drought propagation: (1) the response time derived from time-lag correlation analysis, 

and (2) the lag time based on event identification using the run theory. Response time is 

determined by identifying the accumulation period of a drought index (e.g., SPI) that 

maximizes its correlation with a target drought index (e.g., SSI at a 1-month 

accumulation timescale) (López-Moreno et al., 2013; Zhang et al., 2022). This approach 

reflects the overall synchronicity and statistical memory characteristics of various 

drought conditions. Thus, the response time values are strongly influenced by long-term 

variations in regional climatic and hydrological conditions, such as the seasonal cycle, 

multi-year climate oscillations, and water storage capacity. The response time refers to 

the system’s long-term state that retains a memory of past drought conditions. The 

evaluation of response time is beneficial for seasonal drought predictability and 

long-term drought preparedness. The response time also functions as an indicator of the 

feasibility of using one type of drought index as a proxy for another. For example, due to 

the lack of comprehensive observational data, the SPI with varying accumulation periods 

can reflect hydrological, agricultural and groundwater drought conditions (Kumar et al., 

2016). 

 

In comparison, lag time is derived from discrete drought events identified using the 

multi-threshold run theory, which measures the time difference between the onset of one 

drought event and the onset of another drought event. By focusing on event-based 

dynamics, the lag time reflects the instantaneous triggering mechanism by which drought 

signals propagate from the atmosphere to the land surface. Numerous previous studies 

have analyzed the threshold of extreme stress that triggers drought propagation, using 

methods such as copula functions, hydrological models, and machine learning (Geng et 

al., 2024; Yang et al., 2025). The lag time captures the non-linear response mechanism 

between different drought conditions at a short time scale, which is crucial for real-time 

early warning and impact assessment. 

 

Our results provide a globally consistent comparison of the response time and lag time 

for meteorological, hydrological, and agricultural drought propagation. The response 
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time of drought propagation (average RTMH, RTMA, and RTHA of 5.0 [2.7, 6.7] months, 

8.7 [5.0, 11.3] months, and 5.8 [2.3, 7.3] months) is generally longer than the lag time 

(average LTMH, LTMA, and LTHA of 1.23 [0.68, 1.68] months, 2.60 [1.71, 2.92] months, 

and 2.49 [1.68, 2.51] months). This numerical gap arises from differences in the 

methodology, but both approaches indicate a consistent propagation pathway for 

meteorological, hydrological, and agricultural droughts, with similar spatial patterns. In 

addition, the machine learning-based attribution method also identifies similar impact 

factors, which indicates the consistency of drought propagation mechanisms revealed by 

response time and lag time. This aligns with the conceptual framework of drought 

propagation, where precipitation deficits (meteorological drought) first influence runoff 

generation over the land surface (hydrological drought), and subsequently affect soil 

moisture in the root zone (agricultural drought).” (lines 435-466 of the revised 

manuscript) 
 

(b) Propagation from hydrological to agricultural droughts. As described in the references of 

Van Loon (2015) and Teutschbein et al. (2025), drought propagation is generally regarded as a 

hierarchical top-down process. Meteorological drought, primarily caused by precipitation deficits, 

can cascade to other hydrological variables in the water cycle. From this perspective, numerous 

studies have evaluated the propagation of meteorological drought to other types of drought. 

Hydrological drought is a broad term referring to negative anomalies in surface and subsurface 

water, including groundwater levels, lake water levels, and river discharge. When hydrological 

drought is defined by streamflow, the pathway of drought propagation is from meteorological to 

agricultural and then to hydrological droughts (Teutschbein et al., 2025). In comparison, when 

hydrological drought is defined by runoff, it shows that hydrological drought propagates to 

agricultural drought (Han et al., 2023), as shown in Figure 3 in the reference of Van Loon (2015). 

In our analysis, we characterized meteorological, hydrological, and agricultural droughts based 

on standardized drought indices (SDIs) derived from precipitation, runoff, and soil moisture. 

These hydrological variables were directly obtained from three different datasets (i.e., ERA5, 

GLDAS, and TerraClimate), where runoff is the volume of water that originates from 

precipitation and flows over the land surface. It is not directly equal to the streamflow in the 

stream channels. The utilization of runoff to represent hydrological drought mainly stems from 

the fact that our study focuses on the propagation of droughts at the global scale. The runoff 

exhibits a substantial advantage regarding data availability, featuring continuity in both temporal 

and spatial dimensions. In the revised manuscript, we have revised the "2.2 Drought definition 

and drought indices" section of the methodology to elucidate the drought indices employed in 

this study. In addition, we have incorporated comparisons with other studies in the discussion 

section to clarify the reasons for the study’s focus on the propagation from hydrological to 

agricultural droughts and to emphasize the significance of drought indices in understanding 

drought propagation. In detail, the revised paragraphs are provided as follows: 

 
“Drought propagation evaluation relies heavily on drought indices for monitoring and 

characterizing various drought types. Considering the data availability and the continuity 

in both temporal and spatial dimensions at the global scale, we employed the SPI, SRI, 

and SSI to represent meteorological, hydrological, and agricultural droughts. Our results 

demonstrated the propagation pathway of meteorological-hydrological-agricultural 

droughts, which is consistent with previous studies that employed similar indices (Han et 

al., 2023; Mei et al., 2025). As a multifaceted phenomenon, hydrological drought is a 

broad term that is related not only to runoff but also to streamflow and the levels of 
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groundwater, lakes, and reservoirs (Van Loon, 2015). Using the drought indices derived 

from streamflow, the propagation from agricultural to hydrological droughts has also 

been identified in many studies, particularly at the watershed scale (Odongo et al., 2023; 

Teutschbein et al., 2025). Runoff is the volume of water that originates from precipitation 

and flows over the land surface; it is not directly equal to the streamflow in stream 

channels. A deficit in runoff can directly affect the availability of soil moisture due to 

reduced recharge to the root zone, representing the propagation from hydrological 

drought to agricultural drought. In comparison, soil moisture retains precipitation that 

falls on the land surface and then delays the propagation time form precipitation to 

streamflow (McColl et al., 2017).” (lines 512-524 of the revised manuscript) 
 

 

Point #3 

 

COMMENT: Trend analysis. (a) Important methodological details on this are missing. The 

analysis is briefly described in the Results section (L251–252), but how this moving-window 

trend analysis exactly works is not totally clear. From my understanding, you calculate the 

various metrics (e.g., propagation time) for each year based on a moving window consisting of 

(the next?) 30 years and then apply a trend analysis on the annual values that you obtained. If 

this is the case, how do you deal with potential autocorrelation from partially overlapping raw 

data? I would suggest expanding on this point and moving the current description of this 

analysis to the Methods section (e.g., to a new subsection between the current 2.4 and 2.5). 

Please also provide full name and appropriate references for the statistical tests used here (i.e., 

the ‘M-K test’ currently mentioned in the text). (b) Finally, what do you mean by ‘monotonic 

trend’ in the pie charts in e.g. Fig. 3? From my understanding, it refers to the greyish areas in the 

maps, with trend slopes close to zero. Did you set any lower and upper limits on the trend slopes 

to discriminate these ‘monotonic trends’? If so, please specify. (c) And why are these monotonic 

trends not appearing in the pie charts in Fig. 5 and 6, even though greyish areas are reported in 

the corresponding maps? 

 

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. (a) We acknowledge 

that the description of the moving-window trend analysis in the original manuscript was 

insufficient. In this study, we employed a moving window approach to evaluate the temporal 

pattern of drought propagation characteristics. For each grid, the response time, propagation rate, 

and lag time between different types of droughts were calculated using a 30-year moving 

window that advanced one year at a time, thereby generating an annual time series for the period 

from 1987 to 2024. To avoid the potential autocorrelation from overlapping data, we conducted 

the Trend-Free Pre-Whitening (TFPW) procedure prior to the MK test to address potential 

autocorrelation (Yue et al., 2002). The TFPW-MK test effectively removes the influence of serial 

correlation on trend significance, providing a more robust assessment. In the revised manuscript, 

we have added a new subsection, “2.6 Trend analysis of drought propagation,” to make these 

critical methodological details clear. In detail, the revised paragraphs are provided as follows: 

 
“2.6 Trend analysis of drought propagation 

Temporal evolution of drought propagation characteristics was assessed through a 

moving window approach. For each grid, the drought propagation characteristics (i.e., 

response time, propagation rate, and lag time) between different types of droughts were 

calculated using a 30-year moving window that advanced one year at a time, thereby 
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generating an annual time series for the period from 1987 to 2024. The significance of 

the time series trend was assessed using the Mann-Kendall (MK) test, where a trend was 

considered statistically significant at the p-value < 0.05 (Mann, 1945; Kendall, 1975). 

Given that the series is derived from a moving window with overlapping data, we 

conducted the Trend-Free Pre-Whitening (TFPW) procedure prior to the MK test to 

address potential autocorrelation (Yue et al., 2002). The TFPW-MK test effectively 

removes the influence of serial correlation on trend significance, providing a more robust 

assessment. In addition, the magnitude of the trend was estimated using Sen's slope 

estimator (Sen, 1968).” (lines 201-210 of the revised manuscript) 

 

(b) In this study, a monotonic trend is defined as the situation where Sen's slope is equal to 0. 

Accordingly, we have incorporated an explanation of the monotonic trend in Figure 3 to enhance 

its clarity. In detail, the revised parts are provided as follows: 

 

 
Figure 3. Spatial patterns of time series trends in RTMH, RTMA and RTHA across global 

land areas. The blank grids signify that, within at least one time-window in the time 

series of response time obtained from the moving window, the correlation coefficient is 

not statistically significant. The black dots indicate the statistical significance of the time 

series trend, where the p-value of the TFPW-MK test is less than 0.05. A significant 

increase (decrease) indicates that the Sen's slope is greater (less) than 0 and that the 

p-value of the TFPW-MK test is less than 0.05. A nonsignificant increase (decrease) 

indicates that the Sen's slope is greater (less) than 0 and that the p-value of the 

TFPW-MK test is greater than 0.05. A monotonic trend indicates that Sen's slope is equal 

to 0. 

 

(c) Figs. 5 and 6 represent the spatial patterns of time series trends for the propagation rate and 

lag time, which exhibit a temporal pattern that is entirely inconsistent with that of the lag time (as 
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shown in Fig. 3). Although there are gray areas on the heat map, its Sen's slope is not exactly 

equal to 0, so it was not displayed on the pie chart. 

 

 

Point #4 

 

COMMENT: Language and readability. I find the paper generally well structured, but rather 

lengthy and sometimes convoluted. I think the reading flow could be improved by reducing 

redundant expressions (e.g., couldn’t ‘feature factors’ be simply ‘features’ or ‘factors’?), 

repetitions between sections (e.g., L105–107 already said in the previous section), and rather 

obvious statements (e.g., ‘with positive correlation with rP > 0, and negative correlation with rP 

< 0’, L156–157). I also noticed many abbreviations, especially in Sect. 2.1 Datasets (e.g., 

ECMWF, CLSM, etc), which seem to me not used anymore in the paper. I would suggest 

removing them and making sure that abbreviations are always introduced the first time they are 

used (currently not the case, see e.g., ML at L73). Consistent notation throughout the text and 

across the text and the figures (currently not the case, see e.g., Eq.1 and Fig. 1b, d, and f) would 

also ease the readability of the paper. In summary, I see room for improvement, with another 

careful round of proofreading focused on language. 

 

RESPONSE: We sincerely thank the reviewer for the thorough and constructive feedback on the 

language, clarity, and presentation of our manuscript. We agree that the manuscript could be 

more concise and polished to improve readability. Accordingly, we have performed a line-by-line 

edit to eliminate redundant expressions in the revised manuscript. Examples corrected include: 

 Changed the“feature factors” to “factors” 

 Removed the “with positive correlation with rP > 0, and negative correlation with rP < 0” 

 Delete the repetition sentences in the Dataset section 

 Removed the unnecessary abbreviations in Section 2.1 Datasets 

 Checked all the abbreviations in the manuscript (e.g., ML) 

 Checked consistent notation throughout the text and figures 

 

 

Point #5 

 

COMMENT: References. I appreciate the referencing to very recent literature on the topic, yet I 

believe that also additional references to (older) seminal papers on droughts and drought 

propagation characteristics would be appropriate (e.g., López-Moreno et al., 2013 and Barker et 

al., 2016 for the correlation analysis, other papers that I referred to above). 

 

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. We agree that citing 

seminal works is crucial for properly contextualizing our study within the historical development 

of the field and for acknowledging foundational concepts. According to the reviewer’s comments, 

we have incorporated these references into the revised manuscript. Specifically, the revised 

sentences and the corresponding references are provided below: 

 
“Over the past decades, numerous studies have assessed the propagation characteristics 

of different drought conditions, using identification methods such as time-lag correlation 
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analysis (López-Moreno et al., 2013; Barker et al., 2016; Liu et al., 2023; Geng et al., 

2024), run theory (Aryal et al., 2024; Xiong et al., 2025), and event-coincidence analysis 

(Baez-Villanueva et al., 2024).” (lines 49-52 of the revised manuscript) 

 

The added references: 

 

López-Moreno, J. I., Vicente-Serrano, S. M., Zabalza, J., Beguería, S., Lorenzo-Lacruz, 

J., Azorin-Molina, C., and Morán-Tejeda, E.: Hydrological response to climate variability 

at different time scales: A study in the Ebro basin, J. Hydrol., 477, 175–188, 

doi:10.1016/j.jhydrol.2012.11.028, 2013. 

Barker, L. J., Hannaford, J., Chiverton, A., and Svensson, C.: From meteorological to 

hydrological drought using standardised indicators, Hydrol. Earth Syst. Sc., 20, 

2483–2505, doi:10.5194/hess-20-2483-2016, 2016. 

 

 

Point #6 

 

COMMENT: Abstract, I would appreciate introducing the datasets and methods you used in 

general terms (e.g., reanalyses for ERA5 and so on), to facilitate readers potentially not familiar 

with these specific datasets and methods. 

 

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. We agree that 

describing the datasets and methods in more general terms will significantly improve the 

accessibility of our manuscript. In response, we have revised the description of the datasets and 

methods in the abstract to make it clearer. In detail, the revised sentences are provided as 

follows: 
 

Abstract: “Understanding the propagation of diverse drought conditions is necessary for 

drought preparedness. This study conducted a comprehensive evaluation of the 

propagation of meteorological, hydrological, and agricultural droughts across global land 

areas from 1958 to 2024, based on an ensemble of reanalysis data (ERA5), land surface 

model simulations (GLDAS), and merged observational datasets (TerraClimate). Two 

distinct methodological frameworks were employed to characterize drought propagation: 

time-lag correlation analysis and multi-threshold run theory. Based on standardized 

drought indices derived from precipitation (meteorological), runoff (hydrological) and 

soil moisture (agricultural), the drought propagation characteristics of response time (RT), 

propagation rate (PR), and lag time (LT) were examined. Moreover, the climatic and 

geographical factors influencing drought propagation were quantified using the SHapley 

Additive exPlanations (SHAP)-based attribution method. The results demonstrate the 

propagation pathways of meteorological-hydrological-agricultural drought at the 

global-scale, with the average RT, PR, and LT from meteorological to hydrological 

drought at 5.0 months, 55.3%, and 1.23 months; from meteorological to agricultural 

drought at 8.7 months, 30.3%, and 2.60 months; and from hydrological to agricultural 

drought at 5.8 months, 35.0%, and 2.49 months, respectively. Notable temporal and 

spatial heterogeneities are observed in the drought propagation characteristics, which are 

closely influenced by with the regional climatic feature. Globally, temperature and 

potential evapotranspiration are the primary factors influencing the propagation of 

meteorological drought to hydrological drought, whereas precipitation plays a decisive 

role in the propagation from meteorological or hydrological drought to agricultural 

drought. The findings underscore the importance of taking climatic characteristics into 
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account in the development and implementation of regional drought risk management.” 

(lines 9-26 of the revised manuscript) 

 

 

Point #7 

 

COMMENT: L26–28, I suggest rephrasing since, from my understanding, Gebrechorkos et al. 

(2025) showed that increases in atmospheric evaporative demand significantly contributed to 

recent increases in drought severity, but not as primary factor. 

 

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. Upon re-examining the 

cited study, we agree that Gebrechorkos et al. (2025) emphasized the significant role of increased 

atmospheric evaporative demand in recent drought severity, while not identifying it as the 

primary factor. Accordingly, we have revised the sentence to accurately reflect the role of 

increased atmospheric evaporative demand in the recent increase in drought severity. In the 

updated manuscript, the revised sentence is provided as follows: 

 
“Under global warming, the magnitude, frequency, and spatial extent of droughts have 

increased in recent decades, driven by precipitation variability and increased atmospheric 

evaporative demand (Chen et al., 2025; Gebrechorkos et al., 2025).” (lines 29-31 of the 

revised manuscript) 

 

 

Point #8 

 

COMMENT: L42–43, I believe defining here drought propagation characteristics would be 

beneficial for readers who may not be familiar with them and to ease the readability of the rest of 

the manuscript. 

 

RESPONSE: We sincerely appreciate the reviewer’s helpful suggestion. As recommended, we 

have revised this sentence to offer supplementary clarifications regarding the definition of the 

drought propagation characteristics. In detail, the revised sentence is provided as follows: 

 
“Understanding drought propagation characteristics, such as propagation time, 

probability, and threshold, are essential for elucidating drought occurrence and evolution 

mechanisms, which help facilitate the effective drought monitoring and early warning 

systems.” (lines 46-49 of the revised manuscript) 

 

 

Point #9 

 

COMMENT: L44–48, many different methods are currently mixed together in this sentence and 

specifically: methods used to generate the datasets needed for drought propagation studies (e.g., 

hydrological models), methods used to quantify drought propagation characteristics (e.g., 

correlation analysis and run theory), and methods used to attribute these characteristics to their 

controls (e.g., ML). I suggest clarifying this point, for instance by splitting this long sentence into 

several ones. In addition, maybe add event-coincidence analysis as another method to quantify 
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drought propagation characteristics as proposed by Baez-Villanueva et al. (2024)? Finally, I 

would suggest removing the mention to the complex network theory since this is used for spatial 

drought propagation, which is not the topic of this paper, or alternatively, specifying this point 

and what spatial drought propagation is. 

 

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. Accordingly, in the 

revised manuscript, we have rewritten this sentence to emphasize the methods for identifying 

drought propagation characteristics. The sentences and references related to datasets and 

attribution methods have been integrated into other paragraphs. In addition, we have added the 

method of event-coincidence analysis and removed the complex network theory. The revised 

sentence is provided as follows: 

 
“Over the past decades, numerous studies have assessed the propagation characteristics 

of different drought conditions, using identification methods such as time-lag correlation 

analysis (López-Moreno et al., 2013; Barker et al., 2016; Liu et al., 2023; Geng et al., 

2024), run theory (Aryal et al., 2024; Xiong et al., 2025), and event-coincidence analysis 

(Baez-Villanueva et al., 2024).” (lines 49-52 of the revised manuscript) 

 

 

Point #10 

 

COMMENT: L52, I suggest introducing the concept of groundwater droughts earlier. 

 

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. Accordingly, we have 

incorporated a concise description of the concept of groundwater droughts in the earlier sentence. 

The revised sentence is provided as follows: 

 
“Although a drought event typically originates from inadequate precipitation and 

excessive evapotranspiration (referred to as meteorological drought), its impacts on 

human and natural systems are closely related to subsequent development, such as 

diminished runoff (hydrological drought), reduced soil moisture (agricultural drought), 

and declined groundwater (groundwater drought).” (lines 40-43 of the revised 

manuscript) 
 

 

Point #11 

 

COMMENT: L64–65, I would say that all the global-scale analyses cited before are ‘consistent’ 

and ‘comparable’ within themselves since they use common methods and datasets for the whole 

globe. I would suggest rephrasing this sentence to the exact research gap you are aiming at 

addressing with your work (see also comment #1). 

 

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. The original sentence 

was imprecise and did not effectively emphasize the research gap. Following the reviewer's 

comment #1, we have summarized the research gap regarding the differences and consistencies 

in drought propagation characteristics derived from different datasets and methods. Accordingly, 

the revised sentence is provided as follows: 
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“A comparison of the differences and consistencies in drought propagation characteristics 

derived from different datasets and methods is desired to improve our understanding of 

drought propagation, particularly at the global scale.” (lines 67-69 of the revised 

manuscript) 

 

 

Point #12 

 

COMMENT: L69–70, I do not fully agree with this sentence, which seems to me also 

contradicting the previous one. Literature on the factors controlling drought propagation across 

different climatic and geographical regions is rather vast now (see e.g., Xiong et al. 2025 and 

other reviews on the topic, also cited in the text). 

 

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. We agree with your 

observation that the literature on the factors controlling drought propagation is extensive and has 

grown significantly. Our study focused on identifying the factors influencing drought 

propagation from the perspective of a SHAP-based attribution approach. We acknowledge that 

the original phrasing was ambiguous and could be perceived as contradictory. Accordingly, we 

have revised the corresponding sentences to eliminate the contradictory description. The revised 

sentences are as follows: 

 
“Over the past decades, a large number of attribution studies have been conducted to 

quantify the impacts of climatic and geographical factors on drought propagation, using 

methods such as statistical analysis (Gevaert et al., 2018), clustering analysis (Liu et al., 

2023), causality analysis (Shi et al., 2022b), and machine learning models (Muthuvel and 

Qin, 2025).” (lines 72-75 of the revised manuscript) 

 

 

Point #13 

 

COMMENT: L93, could you provide some references of these comparisons? 

 

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. Accordingly, we have 

added references comparing different datasets in characterizing the processes of drought 

propagation. In the updating manuscript, the revised sentence is provided as follows: 

 
“However, inconsistent findings across studies can be attributed to the inherent 

uncertainties and errors within different datasets; few systematic comparisons have been 

conducted to quantify the discrepancies among the multiple datasets in representing 

drought propagation characteristics (Chen et al., 2020; Huang et al., 2025).” (lines 

98-100 of the revised manuscript) 
 

The added references: 

 

Chen, N., Li, R., Zhang, X., Yang, C., Wang, X., Zeng, L., and Niyogi, D.: Drought 

propagation in Northern China Plain: A comparative analysis of GLDAS and MERRA-2 

datasets, J. Hydrol., 588, 125026, doi:10.1016/j.jhydrol.2020.125026, 2020. 

Huang, K., Zhang, H., Cui, G., Wang, Y., Yin, M., and Du, J.: Drought propagation in 
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china: Uncertainties originate more from dataset choice than drought index selection, 

Atmos. Res., 308, 108555, doi:10.1016/j.atmosres.2024.108555, 2025. 

 

 

Point #14 

 

COMMENT: L105, I would argue that data quality is crucial for any study, not only drought 

studies. It may also be a matter of personal taste, but I do not see as really needed these very 

general sentences, which also contribute to making the paper quite lengthy in my view (see also 

comment #4). 

 

RESPONSE: We sincerely appreciate the reviewer’s useful comment. We agree that data quality 

is a universal concern across all scientific studies; however, the previous sentence is a general 

statement and is therefore unnecessary in the “Data and Methodology” section. In response, we 

have revised the paragraphs regarding the datasets, and the revised paragraphs are provided 

below: 

 
“2.1 Datasets 

Monthly precipitation, runoff, and soil moisture were derived from the ERA5, the Global 

Land Data Assimilation System (GLDAS), and TerraClimate datasets to calculate the 

drought indices. ERA5 is the fifth-generation global atmospheric reanalysis product 

developed by the European Centre for Medium-Range Weather Forecasts. It integrates 

extensive records of both in-situ and satellite observations through an ensemble-based 

data assimilation system (Hersbach et al., 2020). Precipitation in ERA5 was generated by 

the atmospheric component of the Integrated Forecasting System, whereas runoff and 

soil moisture were simulated by a land surface model (Boussetta et al., 2021). The soil 

moisture in ERA5 was aggregated to 1 meter volumetric soil water using weighted data 

from three layers: 0–7 cm, 7–28 cm, and 28–100 cm. GLDAS is a multi-model ensemble 

comprising three land surface models—Noah, Catchment, and the Variable Infiltration 

Capacity—which integrate satellite and in-situ observations through advanced land 

surface modeling techniques. The soil moisture in GLDAS models has different soil 

layer structures, all of which were weighted to the root zone depth of 1 meter to be 

consistent with ERA5. TerraClimate integrates multiple datasets, including WorldClim, 

Climate Research Unit, and Japanese 55-year Reanalysis, to generate 

hydro-meteorological variables (Abatzoglou et al., 2018). The soil moisture in the 

TerraClimate refers to the plant extractable soil water based on the root zone storage 

capacity, as modeled by an empirical water balance model. To ensure spatial and 

temporal consistency, the period from 1958 to 2024 was selected as the reference period, 

and all datasets were uniformly interpolated onto a 1°×1° latitude–longitude grid using 

bilinear interpolation.  

 

In addition, the temperature and potential evapotranspiration (PET) were also obtained 

from the ensemble of ERA5, GLDAS, and TerraClimate datasets. Potential 

evapotranspiration in these datasets was calculated using the Penman-Monteith method 

(Abatzoglou et al., 2018). The Normalized Difference Vegetation Index (NDVI) was 

obtained directly from the Advanced Very High Resolution Radiometer instruments 

operated by the National Oceanic and Atmospheric Administration (NOAA) (Pinzon and 

Tucker, 2014). The elevation dataset was obtained from the ETOPO Global Relief Model 

developed by the National Centers for Environmental Information 
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(https://www.ncei.noaa.gov/products/etopo-global-relief-model). The aridity index 

dataset was derived from the Global Aridity Index and Potential Evapotranspiration 

Database—Version 3 (Zomer et al., 2022).” (lines 112-136 of the revised manuscript) 

 

 

Point #15 

 

COMMENT: L118 ‘high-spatial-resolution’, explicitly mentioning the resolution of this and all 

other datasets would help the readers in my opinion. 

 

RESPONSE: We sincerely appreciate the reviewer’s useful comment. In fact, the ERA5, 

GLDAS, and TerraClimate datasets have different temporal and spatial resolutions. To ensure 

spatial and temporal consistency, the period from 1958 to 2024 was selected as the reference 

period, and all datasets were uniformly interpolated onto a 1°×1° latitude–longitude grid using 

bilinear interpolation. In the updating manuscript, we have revised the sentences to make it 

clearer. The revised sentences are provided as follows: 

 
“To ensure spatial and temporal consistency, the period from 1958 to 2024 was selected 

as the reference period, and all datasets were uniformly interpolated onto a 1°×1° 

latitude–longitude grid using bilinear interpolation.” (lines 126-127 of the revised 

manuscript) 

 

 

Point #16 

 

COMMENT: L121–123, I appreciate the details provided here on how potential 

evapotranspiration, runoff and soil moisture are computed in this dataset. Could you provide 

such details also for the other datasets? I think they would give to the reader more context, also 

on the differences you detect among them. 

 

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. Potential 

evapotranspiration in these datasets was calculated using the Penman–Monteith method; runoff 

and soil moisture were simulated by the land surface models in ERA5 and GLDAS, while in 

TerraClimate they were simulated by an empirical water balance model. Accordingly, we have 

revised the sentences to provide more detailed information about the datasets. The revised 

paragraphs are provided below: 
 

“2.1 Datasets 

Monthly precipitation, runoff, and soil moisture were derived from the ERA5, the Global 

Land Data Assimilation System (GLDAS), and TerraClimate datasets to calculate the 

drought indices. ERA5 is the fifth-generation global atmospheric reanalysis product 

developed by the European Centre for Medium-Range Weather Forecasts. It integrates 

extensive records of both in-situ and satellite observations through an ensemble-based 

data assimilation system (Hersbach et al., 2020). Precipitation in ERA5 was generated by 

the atmospheric component of the Integrated Forecasting System, whereas runoff and 

soil moisture were simulated by a land surface model (Boussetta et al., 2021). The soil 

moisture in ERA5 was aggregated to 1 meter volumetric soil water using weighted data 

from three layers: 0–7 cm, 7–28 cm, and 28–100 cm. GLDAS is a multi-model ensemble 
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comprising three land surface models—Noah, Catchment, and the Variable Infiltration 

Capacity—which integrate satellite and in-situ observations through advanced land 

surface modeling techniques. The soil moisture in GLDAS models has different soil 

layer structures, all of which were weighted to the root zone depth of 1 meter to be 

consistent with ERA5. TerraClimate integrates multiple datasets, including WorldClim, 

Climate Research Unit, and Japanese 55-year Reanalysis, to generate 

hydro-meteorological variables (Abatzoglou et al., 2018). The soil moisture in the 

TerraClimate refers to the plant extractable soil water based on the root zone storage 

capacity, as modeled by an empirical water balance model. To ensure spatial and 

temporal consistency, the period from 1958 to 2024 was selected as the reference period, 

and all datasets were uniformly interpolated onto a 1°×1° latitude–longitude grid using 

bilinear interpolation.  

 

In addition, the temperature and potential evapotranspiration (PET) were also obtained 

from the ensemble of ERA5, GLDAS, and TerraClimate datasets. Potential 

evapotranspiration in these datasets was calculated using the Penman-Monteith method 

(Abatzoglou et al., 2018). The Normalized Difference Vegetation Index (NDVI) was 

obtained directly from the Advanced Very High Resolution Radiometer instruments 

operated by the National Oceanic and Atmospheric Administration (NOAA) (Pinzon and 

Tucker, 2014). The elevation dataset was obtained from the ETOPO Global Relief Model 

developed by the National Centers for Environmental Information 

(https://www.ncei.noaa.gov/products/etopo-global-relief-model). The aridity index 

dataset was derived from the Global Aridity Index and Potential Evapotranspiration 

Database—Version 3 (Zomer et al., 2022).” (lines 112-136 of the revised manuscript) 

 

 

Point #17 

 

COMMENT: L140–143, some references to support these statements would be appreciated since 

the differences between a standardized approach and other methods for drought identification 

are well discussed in many papers now. 

 

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. Accordingly, in the 

revised manuscript, we have added references to support the statement regarding the advantages 

of SDI. In detail, the revised sentence is provided as follows: 

 
“Compared with other drought indices, the SDI is not only simple and efficient to 

calculate, but also applicable to diverse climates due to its consistent calculation 

procedure (Zarch et al., 2015; Adnan et al., 2018).” (lines 151-152 of the revised 

manuscript) 
 

The added references: 

 

Adnan, S., Ullah, K., Shuanglin, L., Gao, S., Khan, A. H., and Mahmood, R.: 

Comparison of various drought indices to monitor drought status in Pakistan, Clim. 

Dynam., 51, 1885–1899, doi:10.1007/s00382-017-3987-0, 2018. 

Zarch, M. A. A., Sivakumar, B., and Sharma, A.: Droughts in a warming climate: A 

global assessment of Standardized precipitation index (SPI) and Reconnaissance drought 

index (RDI), J. Hydrol., 526, 183–195, doi:10.1016/j.jhydrol.2014.12.065, 2015. 
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Point #18 

 

COMMENT: L154, which is the maximum accumulation period n that you tested? I assume 24 

months from Fig. 1, but please specify. 

 

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. The 24 months is the 

maximum accumulation period for calculating the response time of drought propagation. In the 

updating manuscript, we have revised the sentence to make it clearer. The revised sentence is: 

 
“The correlation coefficient is calculated using Pearson’s correlation coefficient 

formulated as follows (Pearson, 1896): 
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where rP represents the Pearson’s correlation coefficient between SPI-n (n is the 

accumulation period, n = 1, 2, …, 24) and SSI-1; x  and y  represent the average 

value of SPI and SSI, respectively; xi and yi represents the SPI and SSI values in the time 

i, respectively.” (lines 162-167 of the revised manuscript) 

 

 

Point #19 

 

COMMENT: L163–166, clarification on why you applied these rules for drought selection 

would be appreciated. 

 

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. In this study, a 

multi-threshold run theory was employed to identify the drought events. This approach has 

advantages in avoiding the unreasonable splitting of persistent droughts and filtering out minor 

drought episodes, thus providing more accurate identification of drought events. Accordingly, we 

have revised the sentences to clarify why we use this method to identify drought events. The 

revised sentence is provided as follows: 

 
“Run theory is a commonly used method for analyzing drought characteristics, which 

defines the initiation and termination of a drought event based on the drought index. In 

this study, the drought events were identified using a multi-threshold run theory, which 

has advantages in avoiding the unreasonable splitting of persistent droughts and filtering 

out minor drought episodes, thus providing more accurate identification of drought 

events (Fleig et al., 2006; Ma et al., 2021). Potential drought events were initially 

identified using an intermediate threshold (X0 = 0). Subsequently, the adjacent drought 

events with an interval of one month and whose drought index values were below a high 

threshold (X1 = 1) within that month were combined. Finally, the potential drought 

events with one month length and whose drought index value is greater than a low 

threshold (X2 = -1) were ruled out.” (lines 172-179 of the revised manuscript) 

 

 

Point #20 
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COMMENT: (a) L195–196, I assume the factors that you use as model predictors regarding 

precipitation, temperature, potential evapotranspiration, runoff, soil moisture, and vegetation 

conditions are long-term averages, but I encourage you to specify this point in the text. If so, 

which period did you consider for averaging? (b) Also, why did you choose these specific factors? 

Other factors regarding e.g. soil or geology would also be important in my view. (c) In general, 

additional details on the models would be beneficial (e.g., training and validation periods, 

achieved model performances, etc). 

 

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. (a) In this study, the 

model predictors, including precipitation, temperature, potential evapotranspiration, runoff, soil 

moisture, and vegetation conditions, are long-term averages over the period 1958–2024. In the 

revised manuscript, we have rewritten the descriptions of the model predictors and target 

variables to improve clarity. (b) We agree with the reviewer’s comment that there are a large 

number of factors that influence drought propagation, such as soil properties and geology factors. 

In our analysis, the selection of these factors as model predictors is due to the reason that (1) a 

large number of previous studies have demonstrated the importance of climatic factors in drought 

propagation (Apurv et al., 2017; Sattar et al., 2019; Apurv and Cai, 2020); (2) our research 

focused on the process of drought propagation at a 1° × 1° grid scale; however, soil properties 

and other geological factors are not easily aggregated at such a relatively coarse spatial 

resolution. (c) We thank the reviewer for this suggestion, which helps improve the 

reproducibility and transparency of our work. Accordingly, we have substantially expanded the 

Methods and Results section to emphasize the details of model development and evaluation. The 

revised sentences are provided as follows: 

 
“According to previous studies, climatic conditions are among the most important factors 

influencing drought propagation characteristics (Aryal et al., 2024). To explore the 

relative importance of long-term climatic conditions for drought propagation, the average 

values (1958–2024) of eight climatic and physiographic variables, including precipitation, 

temperature, potential evapotranspiration, runoff, soil moisture, aridity index, elevation, 

and vegetation condition, were selected as model predictors. The corresponding drought 

propagation characteristics (i.e., response time, propagation rate, and lag time) were 

selected as target variables. The Extreme Gradient Boosting (XGBoost) model was 

employed to model the relationships between climatic predictors and drought 

propagation target variables. The XGBoost model is an efficient and robust 

gradient-boosted decision tree algorithm that is widely applied in classification and 

regression tasks within the field of water resources engineering (Chen and Guestrin, 2016; 

Niazkar et al., 2024). To account for spatial autocorrelation, spatial block 

cross-validation was employed on the training set to prevent overfitting. The global grid 

was partitioned into 43 spatially contiguous blocks according to the IPCC AR6 reference 

land regions (Iturbide et al., 2020). In each fold, ten blocks were held out for validation, 

and the XGBoost model was trained on the remaining blocks. Model performance was 

evaluated using the coefficient of determination (R
2
) and root mean square error (RMSE), 

averaged across all held-out blocks.” (lines 225-238 of the revised manuscript) 

 

 

Point #21 

 

COMMENT: Fig.1, caption, please expand the abbreviations (in other captions as well, in the 
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supplementary figures too). Also, some details are missing in this specific caption (e.g., inner 

plots - where axes are not labelled – and p value for statistical significance). I recommend you 

having another check that all information needed to fully understand the figures are reported in 

the captions, including those in the supplementary. 

 

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. Accordingly, we have 

supplemented all the information required in the figures throughout the manuscript, including in 

the supplementary materials. The revised Figure 1 is provided as follows: 

 

 
Figure 1. Spatial patterns of average response time from meteorological to hydrological 

droughts (RTMH), from meteorological to agricultural droughts (RTMA), and from 

hydrological to agricultural droughts (RTHA), and the corresponding Pearson correlation 

coefficients derived from the ensemble of ERA5, GLDAS, and TerraClimate datasets. 

The blank grids indicate that the correlation between different drought indices is not 

statistically significant (p-value < 0.05). The inner plots show the histograms of response 

time and maximum correlation across global land areas. 

 

 

Point #22 

 

COMMENT: L212–213, it is not entirely clear to me what you mean by ‘maximum correlation 

coefficients’. I suggest rephrasing. I would say that the robustness of your assessments comes 

from the relatively high correlation coefficients in Fig. 1 and their statistical significance. 

 

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. In this study, the 

maximum correlation coefficients represent the highest value in the correlation analysis when the 

response time is identified. To avoid ambiguous expressions, we have rephrased the relevant 
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sentences to make it clearer. In detail, the revised sentences are provided as follows: 

 
“The robustness of the response time evaluation can be attributed to the relatively high 

correlation coefficients presented in Fig. 1. The IQRs of corresponding correlation 

coefficients of SPI–SRI, SPI–SSI, and SRI–SSI are [0.43, 0.80], [0.51, 0.68], and [0.52, 

0.70], respectively (Figs. 1B, 1D, and 1F). The correlation coefficients of response times 

are relatively high in the mid- to low-latitude regions (30°S–30°N), suggesting strong 

robustness of the response time measurements in these regions. The response times 

among meteorological, hydrological, and agricultural droughts also exhibit obvious 

seasonal variations (Figs. S1 and S2). Shorter response times and higher correlation 

coefficients were observed during the summer season (June–August in the Northern 

Hemisphere, and December–February in the Southern Hemisphere).” (lines 252-260 of 

the revised manuscript) 

 

 

Point #23 

 

COMMENT: Fig. 2, wouldn’t considering relative months from the start of the local water year 

rather than calendar months easier here? This would allow not to mix different processes 

occurring in the same months in the northern and southern hemispheres. Also, units for 

correlation coefficients are missing in the axes labels. 

 

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. We agree that the 

previous Fig. 2 is confusing because it conflates different processes occurring in the same month 

due to seasonal differences between the Northern and Southern Hemispheres. In the revised 

manuscript, the previous Fig. 2 has been moved to the supplementary material, and we have 

separated the results for the Northern and Southern Hemispheres into two different figures. In 

detail, the revised parts are provided as follows: 
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Figure S1. Box plots of RTMH, RTMA and RTHA for each calendar month in the Southern 

Hemisphere, along with the corresponding Pearson correlation coefficients. 

 

 
Figure S2. Box plots of RTMH, RTMA and RTHA for each calendar month in the Northern 

Hemisphere, along with the corresponding Pearson correlation coefficients. 

 
“The response times among meteorological, hydrological, and agricultural droughts also 

exhibit obvious seasonal variations (Figs. S1 and S2). Shorter response times and higher 
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correlation coefficients were observed during the summer season (June–August in the 

Northern Hemisphere, and December–February in the Southern Hemisphere).” (lines 

257-260 of the revised manuscript) 

 

 

Point #24 

 

COMMENT: Fig. 3, caption, which correlation is not statistically significant in blank grid cells? 

If I understand this analysis correctly (see comment #3), you computed multiple correlations here. 

Please specify. 

 

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. In the Fig. 3, the blank 

grid cell indicate that, within at least one time-window in the time series of response time 

obtained from the moving window, the correlation coefficient is not statistically significant. 

Accordingly, in the revised manuscript, we have added the relevant description to make it clearer. 

The revised figure is provided as follows: 

 

 
Figure 3. Spatial patterns of time series trends in RTMH, RTMA and RTHA across global 

land areas. The blank grids signify that, within at least one time-window in the time 

series of response time obtained from the moving window, the correlation coefficient is 

not statistically significant. The black dots indicate the statistical significance of the time 

series trend, where the p-value of the TFPW-MK test is less than 0.05. A significant 

increase (decrease) indicates that the Sen's slope is greater (less) than 0 and that the 

p-value of the TFPW-MK test is less than 0.05. A nonsignificant increase (decrease) 

indicates that the Sen's slope is greater (less) than 0 and that the p-value of the 

TFPW-MK test is greater than 0.05. A monotonic trend indicates that Sen's slope is equal 
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to 0. 

 

 

Point #25 

 

COMMENT: (a) Fig. 4, which dataset does this figure refer to? The same comment applies also 

to other figures. I assume all the figures in the main text refer to the ensemble mean, but I would 

recommend specifying this somewhere. (b) With respect to this specific figure, I would also 

suggest correcting the label in the colour bars in panels a, c, and e to ‘Propagation rate’ rather 

than ‘Response rate’ for consistency with the rest of the manuscript and specifying in the caption 

the different y-axis in panel b as compared to panels d and f. (c) An additional comment on the 

analysis behind this figure: could the very low propagation rates in panels c and e be due to the 

time scale that you use? From my understanding, you are not considering any time lag between 

drought types, even though you show that some drought types can occur well after others in e.g., 

Fig. 1. 

 

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. (a) Fig. 4 presents the 

propagation rate and lag time derived from the ensemble mean of the ERA5, GLDAS, and 

TerraClimate datasets. In the revised manuscript, we have added an explanation of the datasets 

used in Figure 4. (b) We have corrected the label in the color bars in panels a, c, and e from 

“response rate” to “propagation rate”. In addition, we have added an explanation of different 

y-axis in panel b as compared to panels d and f. In detail, the specific modifications are as 

follows: 

 

 
Figure 4. Spatial patterns of propagation rate (PRMH, PRMA and PRHA) and lag time (LTMH, 

LTMA and LTHA) derived from the ensemble of ERA5, GLDAS, and TerraClimate 

datasets across global land areas. The inner plots show the histograms of propagation rate 
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and lag time across global land areas. The value of LTMH is lower those that of LTMA and 

LTHA, so it is assigned a different color bar. 

 

(c) In this study, the propagation rate and lag time are derived from discrete events identified 

through run theory analysis. In this process, meteorological, hydrological, and agricultural 

droughts were determined using the SPI, SRI, and SSI at a 1-month accumulation period. We 

agree with the reviewer’s comment that, when considering the time lag between different 

drought types, the propagation rate among droughts may increase. However, this approach may 

obscure the actual correlations between different types of droughts. In the revised manuscript, we 

have rewritten the sentence in the section “2.4 Lag time analysis based on run theory” to clarify 

the accumulation period of drought indices in our study. In detail, the revised sentence is 

provided as follows: 

 
“To elucidate the propagation of drought across different types, the SPI, SRI, and SSI at a 

1-month accumulation period were used to represent meteorological, hydrological, and 

agricultural drought, respectively. Consistent with the analysis of drought response time, 

we analyzed the propagation rate and lag time between meteorological and hydrological 

droughts (PRMH and LTMH), between meteorological and agricultural droughts (PRMA and 

LTMA), and between hydrologcial and agricultural droughts (PRHA and LTHA).” (lines 

190-194 of the revised manuscript) 

 

 

Point #26 

 

COMMENT: Fig. 5, why are the blank areas here the same across the three maps? This is not 

the case in Fig. 3, which makes sense to me. Also, please add more information to this caption, in 

a similar way to what done for Fig. 3. 

 

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. Fig. 5 (Fig.7 in the 

updating manuscript) presents the time series trend of PRMH, PRMA and PRHA, which is 

calculated using the run theory. Unlike the lag time derived from correlation analysis that 

considered the statistical significance in Fig. 3, the propagation rate can be calculated from the 

grid with continuous meteorological and hydrological data. Therefore, the blank grids indicate 

that the data is missing in one of the ERA5, GLDAS, and TerraClimate datasets, which is same 

across the three maps. In the revised manuscript, we have added relevant explanations to clarify 

this content. In detail, the revised sentences are provided as follows: 

 
“The propagation rate and lag time derived from the runoff theory can be calculated from 

the grid using continuous meteorological and hydrological data; therefore, blank grids 

indicate missing data in at least one of the ERA5, GLDAS, or TerraClimate datasets.” 

(lines 367-369 of the revised manuscript) 

 

 

Point #27 

 

COMMENT: Fig. 6 shows decreasing trends in the lag time between meteorological and 

hydrological droughts in large portions of Europe and northern Asia that are not reflected in the 

propagation time though (Fig. 3). Do you have an explanation for such discrepancies? Also, I 
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see that attributing these trends to their causes might be outside of the scope of this current paper, 

but I think that some discussion on potential causes of these trends would still be valuable. 

 

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. The apparent 

discrepancy between the trends in response time (Fig. 3) and those in lag time (Fig. 7 in the 

revised manuscript) is indeed a critical observation, and we agree that discussing its potential 

causes significantly enhances the scientific value of the manuscript. Accordingly, we have added 

a Discussion section (Section 4.1: Physical Interpretation of Drought Propagation Characteristics) 

to analyze the reasons for the differences in lag time and response time. The revised paragraphs 

are provided as follows: 

 
“4.1. Physical interpretation of drought propagation characteristics 

In this study, two distinct methodological frameworks were employed to quantify 

drought propagation: (1) the response time derived from time-lag correlation analysis, 

and (2) the lag time based on event identification using the run theory. Response time is 

determined by identifying the accumulation period of a drought index (e.g., SPI) that 

maximizes its correlation with a target drought index (e.g., SSI at a 1-month 

accumulation timescale) (López-Moreno et al., 2013; Zhang et al., 2022). This approach 

reflects the overall synchronicity and statistical memory characteristics of various 

drought conditions. Thus, the response time values are strongly influenced by long-term 

variations in regional climatic and hydrological conditions, such as the seasonal cycle, 

multi-year climate oscillations, and water storage capacity. The response time refers to 

the system’s long-term state that retains a memory of past drought conditions. The 

evaluation of response time is beneficial for seasonal drought predictability and 

long-term drought preparedness. The response time also functions as an indicator of the 

feasibility of using one type of drought index as a proxy for another. For example, due to 

the lack of comprehensive observational data, the SPI with varying accumulation periods 

can reflect hydrological, agricultural and groundwater drought conditions (Kumar et al., 

2016). 

 

In comparison, lag time is derived from discrete drought events identified using the 

multi-threshold run theory, which measures the time difference between the onset of one 

drought event and the onset of another drought event. By focusing on event-based 

dynamics, the lag time reflects the instantaneous triggering mechanism by which drought 

signals propagate from the atmosphere to the land surface. Numerous previous studies 

have analyzed the threshold of extreme stress that triggers drought propagation, using 

methods such as copula functions, hydrological models, and machine learning (Geng et 

al., 2024; Yang et al., 2025). The lag time captures the non-linear response mechanism 

between different drought conditions at a short time scale, which is crucial for real-time 

early warning and impact assessment. 

 

Our results provide a globally consistent comparison of the response time and lag time 

for meteorological, hydrological, and agricultural drought propagation. The response 

time of drought propagation (average RTMH, RTMA, and RTHA of 5.0 [2.7, 6.7] months, 

8.7 [5.0, 11.3] months, and 5.8 [2.3, 7.3] months) is generally longer than the lag time 

(average LTMH, LTMA, and LTHA of 1.23 [0.68, 1.68] months, 2.60 [1.71, 2.92] months, 

and 2.49 [1.68, 2.51] months). This numerical gap arises from differences in the 

methodology, but both approaches indicate a consistent propagation pathway for 

meteorological, hydrological, and agricultural droughts, with similar spatial patterns. In 

addition, the machine learning-based attribution method also identifies similar impact 
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factors, which indicates the consistency of drought propagation mechanisms revealed by 

response time and lag time. This aligns with the conceptual framework of drought 

propagation, where precipitation deficits (meteorological drought) first influence runoff 

generation over the land surface (hydrological drought), and subsequently affect soil 

moisture in the root zone (agricultural drought).” (lines 437-468 of the revised 

manuscript) 

 

 

Point #28 

 

COMMENT: L327–328, ‘the SHAP value indicates that high temperatures have shortened the 

response time of meteorological drought to hydrological drought’, I stumbled a bit here. I 

suggest rephrasing, for instance by using present tenses, not to evoke changes over time, which is 

not what you are looking at with your SHAP-analysis. This comment applies also to L409–411. 

 

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. We agree with the 

reviewer’s comment that the impacts of climatic and geographical factors are not reflected in the 

temporal changes observed in our analysis. In the revised manuscript, we have rephrased the 

sentences to avoid ambiguous descriptions. Specifically, the revised sentences are provided as 

follows: 

 
“The meteorological-to-hydrological drought propagation characteristics are primarily 

influenced by regional temperature and PET, with the non-monotonic behaviour 

predominantly observed in the 30th to 70th percentiles of temperature and PET. In this 

percentile range, both PTMH and LTMH decrease as temperature and PET increase, while 

PRMH increases as temperature and PET increase.” (lines 423-426 of the revised 

manuscript) 

 

 

Point #29 

 

COMMENT: Fig. 9 and corresponding text, I would suggest turning ‘key feature factors’ to 

‘dominant factors’ to enhance the clarity of which factors you are looking at here. Also, for Fig. 

9, do you have an explanation for the non-monotonic behaviour of 

meteorological-to-hydrological drought propagation characteristics across different quantiles of 

the considered features? 

 

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. We agree that 

“dominant factors” is a more accurate description, expressing the main factors that influence 

drought propagation. For the meteorological-to-hydrological drought propagation characteristics, 

the non-monotonic behaviour predominantly observed in the 30th to 70th percentiles of 

temperature and PET. This is mainly due to the influence of temperature on the snow-related 

processes of the water cycle. Accordingly, we have added an explanation of the non-monotonic 

behavior of meteorological-to-hydrological drought propagation characteristics in the Results 

Analysis and Discussion section. In the revised manuscript, the updated sentences are as follows: 

 
“The meteorological-to-hydrological drought propagation characteristics are primarily 

influenced by regional temperature and PET, with the non-monotonic behaviour 
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predominantly observed in the 30th to 70th percentiles of temperature and PET. In this 

percentile range, both RTMH and LTMH decrease as temperature and PET increase, while 

PRMH increases as temperature and PET increase.” (lines 423-426 of the revised 

manuscript) 
 

“Specifically, the non-monotonic behaviour of meteorological-to-hydrological drought 

propagation characteristics mainly occurred in the range of 20th to the 70th percentiles 

for temperatures and PET. In the subtropical regions, shorter RTMH and LTMH with low 

PRMH trend to occur in regions characterized by higher average temperature and PET 

(Fig. 11). This is primarily attributed to the influence of temperature on the snow-related 

processes of the water cycle, resulting in a delayed response of runoff to changes in 

precipitation. During cold seasons, precipitation is stored in the form of snow and ice in 

glaciers, which subsequently melt and contribute to runoff during the following warm 

season.” (lines 478-483 of the revised manuscript) 

 

 

Point #30 

 

COMMENT: L429–435, this part sounds to me more like a discussion of the implications rather 

than of uncertainties. I suggest moving to a new subsection or rename the current one. 

 

RESPONSE: We sincerely appreciate the reviewer’s insightful comment. In the revised 

manuscript, we have renamed the subsection “4.4. Uncertainties and Implications for Drought 

Propagation Evaluation” to better highlight the implications of drought propagation. In detail, the 

revised paragraphs are provided as follows: 

 
“4.4. Uncertainties and implications in drought propagation evaluation 

Drought propagation evaluation relies heavily on drought indices for monitoring and 

characterizing various drought types. Considering the data availability and the continuity 

in both temporal and spatial dimensions at the global scale, we employed the SPI, SRI, 

and SSI to represent meteorological, hydrological, and agricultural droughts. Our results 

demonstrated the propagation pathway of meteorological-hydrological-agricultural 

droughts, which is consistent with previous studies that employed similar indices (Han et 

al., 2023; Mei et al., 2025). As a multifaceted phenomenon, hydrological drought is a 

broad term that is related not only to runoff but also to streamflow and the levels of 

groundwater, lakes, and reservoirs (Van Loon, 2015). Using the drought indices derived 

from streamflow, the propagation from agricultural to hydrological droughts has also 

been identified in many studies, particularly at the watershed scale (Odongo et al., 2023; 

Teutschbein et al., 2025). Runoff is the volume of water that originates from precipitation 

and flows over the land surface; it is not directly equal to the streamflow in stream 

channels. A deficit in runoff can directly affect the availability of soil moisture due to 

reduced recharge to the root zone, representing the propagation from hydrological 

drought to agricultural drought. In comparison, soil moisture retains precipitation that 

falls on the land surface and then delays the propagation time form precipitation to 

streamflow (McColl et al., 2017). 

 

Due to the inherent variability of drought-related variables, significant uncertainties exist 

within hydrometeorological datasets (Bador et al., 2020). Our findings depend on an 

ensemble of three datasets (i.e., ERA5, GLDAS, and TerraClimate), which helps avoid 

biased and incomplete evaluations of drought propagation that could result from relying 
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on a single dataset. We conducted a comparative analysis of drought propagation 

characteristics derived from multiple datasets, systematically evaluating their consistency 

and discrepancies (Figs. 11-13). The results underscore the impact of input data 

uncertainties on the assessment of drought propagation, with notable discrepancies 

predominantly observed in the hyper-arid, high-latitude, and high-evaluation regions. 

This is primarily attributed to the scarcity of in-situ stations capable of providing 

continuous spatial and temporal observations in these regions. The data assimilation 

systems and land surface models employed across different datasets to fill missing 

observations inevitably introduce uncertainties in both model parameters and structural 

configurations.  

 

Generally, our study provides a comprehensive assessment of multiple drought 

propagation characteristics across global land areas, which has significant implications 

for the development and improvement of drought monitoring and early warning systems. 

In tropical and sub-tropical regions, real-time monitoring of meteorological drought can 

improve the forecasting of hydrological drought; whereas in humid regions, drought 

indices based on precipitation and runoff could provide more accurate predictions of 

agricultural drought risks. Future research could focus on improving the accuracy of 

predicting future drought changes by incorporating the mechanisms of drought 

propagation into predictive models. In addition, human activities—such as water 

abstraction, reservoir regulation, and land-use change—can profoundly modify natural 

drought propagation processes by altering catchment storage and flow pathways, thereby 

influencing drought propagation. Future research could also focus on quantitatively 

disentangling the effects of human activities on drought propagation.” (lines 513-549 of 

the revised manuscript) 

 

 

Point #31 

 

COMMENT: L438–440, I suggest some rephrasing here to improve the clarity of this sentence. 

 

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. Accordingly, we have 

revised the Conclusion section in the revised manuscript to clarify the main contribution of our 

study. Specifically, the revised sentences are provided as follows: 

 
“In this study, we systematically assessed the propagation characteristics of multiple 

drought types from 1958 to 2024 across global land areas. Based on an ensemble of 

multiple datasets (i.e., ERA5, GLDAS, and TerraClimate), three standardized drought 

indices (SDIs) derived from precipitation, runoff, and soil moisture were employed to 

represent meteorological, hydrological, and agricultural drought conditions, respectively. 

The lag time derived from correlation analysis, as well as the response time and 

propagation rate based on run theory, were examined to characterize the propagation of 

meteorological, hydrological, and agricultural droughts.” (lines 551-556 of the revised 

manuscript) 

 

 

Point #32 

 

COMMENT: L45, I cannot find the reference (Zhu et al., 2021) in the reference list, please add 
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it. In addition, include also Xiong et al. (2025), already cited in the text, among the global-scale 

studies? 

 

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. In the revised manuscript, 

the previous sentence has been rewritten, and the reference to Zhu et al. (2021) has been 

removed. In addition, the study by Xiong et al. (2025) is also a global-scale study; however, the 

relevant sentence in the updated manuscript has been rewritten, and Xiong et al. (2025) is not 

cited here. 

 

 

Point #33 

 

COMMENT: L47, there are two entries for both (Yang et al., 2024) and (Shi et al., 2022) in the 

reference list. Which one are you referring to here? Please specify here and elsewhere in the 

manuscript. 

 

RESPONSE: We sincerely appreciate the reviewer’s carefulness. In the revised manuscript, we 

have distinguished references with identical entries. The references of Yang et al. (2024) have 

been removed in the revised manuscript. Specifically, the revised sentences and corresponding 

references are provided below: 

 
“For example, Shi et al. (2022a) examined the response time from meteorological and 

hydrological droughts using the maximum correlation coefficient method, and analyzed 

the variations in response time across different climatic regions.” (lines 52-54 of the 

revised manuscript) 
 

“Over the past decades, a large number of attribution studies have been conducted to 

quantify the impacts of climatic and geographical factors on drought propagation, using 

methods such as statistical analysis (Gevaert et al., 2018), clustering analysis (Liu et al., 

2023), causality analysis (Shi et al., 2022b), and machine learning models (Muthuvel and 

Qin, 2025).” (lines 72-75 of the revised manuscript) 

 

The revised references: 

 

Shi, H., Zhou, Z., Liu, L., and Liu, S.: A global perspective on propagation from 

meteorological drought to hydrological drought during 1902–2014, Atmos. Res., 280, 

106441, doi:10.1016/j.atmosres.2022.106441, 2022a.  

Shi, H., Zhao, Y., Liu, S., Cai, H., and Zhou, Z.: A new perspective on drought 

propagation: causality. Geophys. Res. Lett., 49(2), e2021GL096758, 

doi:10.1029/2021GL096758, 2022b. 

 

 

Point #34 

 

COMMENT: L127, I assume you mean here ‘elevation’ rather than ‘evaluation’. Please correct 

it, here and throughout the manuscript. 

 

RESPONSE: We sincerely appreciate the reviewer’s carefulness. This was a typographical error. 
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Accordingly, we have systematically corrected all instances where “elevation” was incorrectly 

used in place of “evaluation” throughout the entire manuscript. 

 

 

Point #35 

 

COMMENT: L165, ‘with on month’ -> ‘with one month’? Else, the sentence sounds strange to 

me. Please check. 

 

RESPONSE: We sincerely appreciate the reviewer’s carefulness. This was a typographical error, 

and “with on month” should be corrected to “with one month”. We apologize for this mistake 

and have revised the sentence in the updating manuscript. 

 

 

Point #36 

 

COMMENT: L190, ‘formula’ -> ‘formulated’? 

 

RESPONSE: We sincerely appreciate the reviewer’s carefulness. We sincerely appreciate the 

reviewer’s careful comment. This was a grammatical mistake, and “formula” should be corrected 

to “formulated”. We apologize for this mistake and have revised the sentence in the updating 

manuscript. 

 

 

Point #37 

 

COMMENT: L193, ‘influencing on the model predictions’ -> ‘influencing the model predictions’ 

 

RESPONSE: We sincerely appreciate the reviewer’s carefulness. We sincerely appreciate the 

reviewer’s careful comment. This was a grammatical mistake, and “influencing on the model 

predictions” should be corrected to “influencing the model predictions”. We apologize for this 

mistake and have revised the sentence in the updating manuscript. 

 

 

Point #38 

 

COMMENT: L282, ‘the highest PRMH and LTMH values’ -> the highest PRMH and lowest 

LTMH values? 

 

RESPONSE: We sincerely appreciate the reviewer’s carefulness. This was a typographical error, 

and “the highest PRMH and LTMH values” should be corrected to “the highest PRMH and lowest 

LTMH values”. We apologize for this mistake and have revised the sentence in the updating 

manuscript. 

 

 

Point #39 
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COMMENT: Fig. 8 and 9, please correct the labels in panels c, f, and i with the subscript ‘HA’ 

instead of ‘MA’. 

 

RESPONSE: We sincerely appreciate the reviewer’s carefulness. This was a typographical error 

in the figures, and we have corrected this mistake in the revised manuscript. Specifically, the 

revised figures are provided as follows: 

 

 
Figure 10. Ranking of factors influencing drought propagation characteristics based on 

the absolute SHAP value. 
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Figure 11. Box plots of drought propagation characteristics across global land areas 

classified by the percentiles of dominant factors. The dominant factor is temperature for 

RTMH, PRMH, PET for LTMH, and precipitation for the other characteristics. 

 

 

Point #40 

 

COMMENT: L303–304, I suggest rephrasing or removing, since this wording does not sound 

fitting to this subsection to me. 

 

RESPONSE: We sincerely appreciate the reviewer’s helpful comment. In the revised manuscript, 

we have removed this sentence. 

 

 

Point #41 

 

COMMENT: L344–345, the first ‘hydrological’ should probably be ‘agricultural’. 

 

RESPONSE: We sincerely appreciate the reviewer’s carefulness. This was a typographical error, 

and we have revised the sentence as follows: 

 
“In comparison, precipitation serves as the main influencing factor in the propagation 

from both meteorological and hydrological droughts to agricultural drought.” (lines 

411-413 of the revised manuscript) 
 

 

 

Point #42 
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COMMENT: L413, ‘reasons’ -> ‘seasons’? 

 

RESPONSE: We sincerely appreciate the reviewer’s carefulness. This was a typographical error, 

and we have corrected this mistake in the revised manuscript. 

 

 

Point #43 

 

COMMENT: L424, Figures 11-13, these figures are reported in the supplement. Please correct. 

 

RESPONSE: We sincerely appreciate the reviewer’s carefulness. This was a typographical error, 

and we have corrected this mistake in the revised manuscript. 

 

 

Point #44 

 

COMMENT: L442, ‘finding’ -> ‘findings’? 

 

RESPONSE: We sincerely appreciate the reviewer’s carefulness. This was a grammatical errors, 

and we have corrected this mistake in the revised manuscript. 

 

 

 

Generally, we are deeply grateful to the reviewer’s insight and careful review. His/her comments 

have greatly helped improve the paper. We also expressed our gratitude in the 

“Acknowledgments” of the revised manuscript. 


