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Abstract: Arctic has been undergoing rapid climate change, where radiative processes are key controlling factors. However,
cloud-related uncertainties remain the primary barrier to accurately estimating the radiation budget. Strong coupling between
clouds and other variables complicates the isolation of cloud-related impacts, and the linear assumptions in traditional
models further restrict attribution of radiation changes to cloud-related influences. This study introduces an artificial neural
network model that emulates radiative components typically represented in radiative transfer or climate models. Without
relying on linear assumptions, the model directly quantifies the influence of cloud fraction (CF) on radiation. Using a more
accurate CF dataset, we refined the monthly downwelling shortwave radiation (DSR) estimates from Clouds and the Earth's
Radiant Energy System (CERES) SYN products and further estimated all-wave net radiation (NR) from the corrected DSR.
Validation against ground-based observations confirmed that the CF-corrected DSR effectively mitigated the overestimation
in CERES DSR, reducing biases by up to 23 W m™. At sites where CF underestimation exceeded 25%, the monthly-mean
bias decreased from 25.70 W/m? to 4.88 W/m?, with RMSE reduced from 40.36 W/m? to 32.60 W/m?. The estimated
monthly NR also improved markedly (RMSE reduced from 34.88 W/m? to 28.90 W/m?). Under large CF underestimation
(>30%), the CERES NR nearly failed (R? = 0.0182), whereas NR derived from CF-corrected DSR retained reasonable
agreement (R? = 0.5411). Importantly, this work produces a new NR dataset with enhanced accuracy over the Arctic,

offering direct value for studies of surface energy balance, climate feedbacks, and long-term variability.

1 Introduction

The Arctic is currently warming at rates two to four times higher than those in lower latitudes (Cohen et al., 2020; Coulbury
and Tan, 2024; Rantanen et al., 2022), a phenomenon known as Arctic amplification (Previdi et al., 2021). This rapid
warming profoundly alters the Arctic climate system, affecting sea ice, permafrost, and atmospheric circulation patterns

(Bennartz et al., 2013; Goosse et al., 2018). Among the key physical quantities that govern energy exchange in the climate
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system, surface net radiation (NR) —the net sum of between incoming and outgoing shortwave and longwave radiation at
the surface—plays a central role in determining surface energy budgets, ice—albedo feedback, and surface temperature

variability (Brown and Caldeira, 2017; Goessling et al., 2025; Huang et al., 2021; Loeb et al., 2022).

Despite its importance, current estimates of radiation over polar regions remain highly uncertain. According to the
Intergovernmental Panel On Climate Change (IPCC, 2023), satellite-based assessments indicate that the uncertainties in
global monthly mean fluxes are about 10 W m2, while those over polar regions are even larger than other regions. These
uncertainties can distort the assessment of surface energy balance, compromise the accuracy of global temperature trend
estimates, and reduce the simulation reliability of changes in cryosphere (Cheng et al., 2017; Loeb et al., 2021; Prince and
L’Ecuyer, 2024). Lee et al. (2019) showed that discrepancies in surface radiative fluxes among reanalysis datasets (up to ~60
W m in shortwave) can substantially affect Arctic sea-ice simulations, such flux differences led to sea-ice volume changes
of 30004000 km? and altered interannual variability by up to 40%. This highlights the strong sensitivity of Arctic sea ice to

uncertainties in surface radiation.

Improving the radiation estimates in the Arctic is therefore an urgent task, especially in the context of detecting early signals
of anthropogenic influence and validating climate model projections (Danso et al., 2020; Van Tricht et al., 2016; Zheng et al.,
2025). However, achieving this goal remains challenging due to the complex radiative interactions between surface and
atmosphere. Among them, clouds represent a dominant source of uncertainty (Tao et al., 2025). Clouds regulate the Earth's
radiation balance by reflecting incoming shortwave radiation and absorbing/emitting longwave radiation (Dessler, 2010;
McCoy et al., 2017; Sledd and L’Ecuyer, 2019). However, in the Arctic, accurately detecting cloud remains challenging,
particularly for passive satellite sensors. Clouds are characterized by numerous parameters such as optical depth, phase,
height, and particle size, retrieving them consistently from spaceborne measurements is inherently difficult. Among these
variables, cloud fraction (CF) is arguably a simplified descriptor, yet it has become the most fundamental parameter for
radiation studies owing to its availability across multiple satellite products with long temporal coverage and broad spatial
extent. For instance, Liu (2022) showed that limitations in detecting low-level Arctic clouds with active sensors (25 %
underestimation) can introduce errors in monthly mean cloud radiative forcing of up to ~2.5 W m at the surface and ~3.4
W m2 at the TOA. Zib et al. (2012) evaluated five reanalysis datasets against BSRN observations at Arctic sites and found
that CF biases of up to 20-30% could lead to monthly deviations in downward shortwave radiation (DSR) exceeding 90 W
m2 Wei et al. (2021), analyzing CMIP6 models showed that systematic CF overestimation of about 5-15% in the Arctic
resulted in positive biases in NR greater than 3 W m™= These findings suggest that CF is a substantial contributor of
uncertainty in Arctic radiation estimation. Therefore, quantitatively constraining the radiation biases attributable to CF errors

could enable the direct use of more accurate CF datasets to reduce uncertainties in radiation products.
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Building on this motivation, many perturbation-based methods have been developed to quantify the radiation impacts of CF
(Table 1). For instance, the partial radiative perturbation (PRP) method can isolate the contribution of individual variables
but requires repeated radiative transfer calculations and often yields inconsistent feedback estimates across models (Colman,
2003; Soden et al., 2004; Wetherald and Manabe, 1988). The radiative kernel technique improves efficiency by
precomputing flux sensitivities, yet its assumption of linearity breaks down when cloud-radiation interactions are strongly
nonlinear, leading to significant errors (Shell et al., 2008; Soden et al., 2008; Zhu et al., 2019). Moreover, the structure of the
kernel itself varies across models, introducing model dependence and affecting cloud feedback estimates (Hahn et al., 2021;
Jonko et al., 2012). Even satellite-based variants such as CERES-PRP reduce some model dependence but still demand

multiple computations and remain limited by the accuracy of the underlying CF datasets (Thorsen et al., 2018).

To address these challenges, we developed a nonlinear perturbation method that captures the relationship between CF
perturbations and shortwave radiation changes under various atmospheric and surface conditions. Another major
advancement of this study lies in the coupling of this method with a more accurate CF dataset that we previously developed
(Liu et al., 2023). Unlike standard passive-sensor cloud products, this dataset employs spatiotemporal fusion techniques to
merge CF information from active and passive satellite observations as well as ground-based measurements. Its fused, multi-
source design substantially reduces biases in CF estimates and ensures improved spatiotemporal completeness. By coupling
the nonlinear perturbation method with this enhanced CF dataset, we effectively corrected CF-induced DSR biases in the
Clouds and the Earth's Radiant Energy System (CERES) SYN. Furthermore, to minimize potential error propagation arising
from independently adjusting shortwave and longwave components, we extended the method to directly estimate the NR
based on the corrected DSR. The objectives of this study are: (i) to construct a nonlinear perturbation relationship between
CF and DSR based on satellite observations, and apply it to correct Arctic DSR with improved CF products; (ii) to develop
an extended model for directly estimating NR based on the corrected DSR.
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Table 1. Summary of perturbation-based methods for quantifying radiative impacts of CF and other climate variables (the

current paper is added for completeness).

Reference Methods Data Assumptions Key Results
(Wetherald Partial Radiative Early GCM Feedback can be isolated  First method to separate
and Manabe, Perturbation (PRP): simulations. by substituting a single individual feedbacks;
1988) replace one variable variable while all others ~ computationally very
(e.g., CF) in a control remain unchanged; linear demanding; can yield
climate and compute superposition of effects.  inconsistent estimates
flux difference while depending on model setup.
holding others
constant.
(Colman, Inter-model Multiple GCM  Feedbacks are Found substantial spread
2003) comparison of experiments. comparable across among models in feedback
feedbacks in GCMs models if methods are strengths, pointing to
using PRP and other applied consistently. methodological and structural
approaches. uncertainties.
(Shell et al.,  Radiative Kernel (RK) NCAR Radiative response is Provided an efficient
2008) technique: pre-compute Community linear for small framework to estimate
kernels from NCAR Atmospheric perturbations; kernels feedbacks; avoided repeated
CAM to quantify Model. can be applied to other full radiative transfer
sensitivity of fluxes to simulations. calculations; limited by
small perturbations. linearity assumption.
(Sodenand  Assessment of RK- Coupled Small perturbations yield ~Demonstrated usefulness of
Held, 2006)  based feedbacks in model linear flux—variable RK for large-scale feedback
coupled ocean— simulations. relationship. analysis, but highlighted
atmosphere GCMs. model dependence of kernels.
(Soden et al., Standardization of RK ~ Multi-model Linearity of flux Enabled cross-model
2008) framework across ensembles. responses across intercomparison of feedbacks;
models. different forcings. showed kernels improve
efficiency, but neglect
nonlinear interactions.
(Zhu et al., Neural network (NN) GCM outputs NN can learn nonlinear Demonstrated that NN reduces
2019) approach to estimate used for relationships without errors from nonlinear
climate feedbacks. training and explicit assumptions. interactions, improving
validation. accuracy over RK/PRP.
(Hahn et al.,  Polar amplification CMIP5 and Choice of kernel Found that cloud feedback
2021) analysis with RK-based CMIP6 model sufficiently represents estimates are highly sensitive
methods. outputs. model physics. to kernel choice; kernel
dependence introduces
additional uncertainty.
(Jonko et al.,, Extended RK approach CCSM3 Linear kernel assumption  Showed that when
under changing CO- climate model  valid across a wide range  perturbations are large, linear
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2012) forcing. simulations.

(Thorsen et CERES-PRP method: CERES

al., 2018) observation-based satellite
extension of PRP, products.
using satellite
radiances to
decompose flux
perturbations.

This study Nonlinear perturbation ~ Multi-source
method; extended to fused CF
estimate all-wave dataset,
surface net radiation satellite and

ground
measurements.

of forcings.

Observed flux
perturbations can
approximate single-
variable contributions;
nonlinear effects handled
by repeated calculations.

Nonlinear CF-radiation
relationships can be
empirically captured
from observations

EGUsphere\

kernels break down, limiting
reliability.

Provided first observation-
based PRP estimates; allowed
flexible variable
combinations; still
computationally intensive and
not free of nonlinearity.

First to apply CF perturbation
correction with ANN in the
Arctic; effectively reduced
DSR overestimation at high
CF biases. Developed
extended model linking
corrected DSR to NR;
highlighted that CF accuracy
critically determines NR
performance.
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2 Data and materials
2.1 CERES SYN1deg

The CERES SYNIdeg product (Level 3) provides monthly, daily, and hourly averages of TOA fluxes based on the Angular
Distribution Model, as well as TOA and surface fluxes derived from a radiative transfer model (Rutan et al., 2015).
Validation against Baseline Surface Radiation Network (BSRN) observations shows that hourly all-sky shortwave fluxes
errors are typically within £1% globally and about —1.9% poleward of 60°, with RMSE around 12.6 W m™ globally and 19.4
W m™ in the Arctic; monthly RMSE values are 5.7 W m™ globally and 20.2 W m™ at high latitudes (NASA POWER
Project, 2024). The SYNldeg Ed4A product integrates fluxes observed by CERES with cloud properties derived from
Moderate Resolution Imaging Spectroradiometer (MODIS) and Geostationary (GEO) image products(Doelling et al., 2013,
2016). Cloud retrievals are based on the CERES Cloud Working Group Ed4A algorithms (Minnis et al., 2011, 2021; Trepte
et al., 2019), and above 60° latitude the SYN cloud products are fully consistent with those from SSF. Given that the SYN
product provides only diurnal monthly averages of cloud properties, and that shortwave radiation is exclusively influenced

by daytime cloud, this study utilizes cloud products sourced from the SSF, which offers daytime cloud data.

2.2 Fused Cloud Fraction of Arctic

Fused _cf Arc is a daytime Arctic CF product developed by Liu et al. (2023) that employs spatiotemporal fusion methods,
utilizing cumulative distribution function matching and Bayesian maximum entropy to integrate CF products from active
satellites, passive satellites, and ground observations. This product spans the period from 2000 to 2020, offering a seamless
monthly daytime average for the Arctic region with a spatial resolution of 1 degree. Compared to other products,
Fused cf Arc provides more comprehensive spatiotemporal coverage and enhanced accuracy. Its coefficient of
determination (R?) improves by approximately 0.20 to 0.48 when compared to products such as MODO08, CERES-SSF,
International Satellite Cloud Climatology Project (ISCCP), Cloud, Albedo, and Radiative Transfer Algorithm (CLARA), and
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). In terrestrial areas, the root mean square
error (RMSE) and bias are reduced by approximately 6.09% and 4.04%, respectively. In marine regions, these metrics
improve by 0.05 to 0.31, 2.85%, and 3.15%. Notably, the performance of Fused cf Arc is most significantly enhanced in the

Greenland.

2.3 Merra-2 Reanalysis Data

MERRA-2 is a suite of global atmospheric reanalysis products developed by the NASA Global Modeling and Assimilation
Office, incorporating recent advancements in modeling and data assimilation (Gelaro et al., 2017). It provides monthly

global air temperature (Ta) and specific humidity data from 1980 onward. For the estimation of NR, the extended model
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required Ta and relative humidity (RH) as input variables. While RH is not directly available in MERRA-2, it can be derived

from its specific humidity data.

2.4 GLASS FVC Product

Surface vegetation affects the relationship between shortwave radiation and NR (Chen et al., 2022). In this study, the
GLASS fractional vegetation cover (FVC) was selected for its comprehensive spatiotemporal coverage and high accuracy.
Jia et al. (2015) developed a robust FVC retrieval algorithm based on MODIS surface reflectance data, achieving an RMSE
of 0.157 when validated against ground-based measurements. After applying gap-filling techniques, the GLASS FVC
became spatially continuous at the global scale, making it highly suitable for various vegetation monitoring and research

applications (Wang et al., 2020). This dataset features a spatial resolution of 500 m and a temporal resolution of 8 days.

2.5 Ground-measured data

Ground measurements provide accurate surface radiation observation data that can be used to validate our results. In this
study, ground measurement data were obtained from four reliable radiation flux observation networks: FLUXNET,
AmeriFlux, Global Energy Balance Archive (GEBA), and The Programme for Monitoring of the Greenland Ice Sheet
(PROMICE) (Fig.1).

FLUXNET is one of the largest global flux observation networks, integrating over 800 active and historical sites that span
most climate zones and representative biomes to monitor carbon, water, and energy fluxes in terrestrial ecosystems. For this
research, 13 sites that include data on radiation were selected for analysis. Within this global network, AmeriFlux serves as
the North American regional component, supported by the U.S. Department of Energy and partner agencies. Established in
1996 with about 15 sites, AmeriFlux has expanded to more than 110 active towers across diverse ecosystems. For this study,
we used data from 18 AmeriFlux sites located north of 60°N that include radiation measurements, primarily in northern and

western Alaska.

The GEBA database is designed to centrally store measurements of surface energy flux from around the world, maintained
by the Swiss Federal Institute of Technology Zurich. This database includes observational data for 15 components of surface
energy flux, strictly comprising only directly measured surface fluxes and excluding empirically derived fluxes. Gilgen et al.
(1998) provide a detailed description of the error estimates and quality checks applied to these data. The Arctic contains a
significant number of GEBA sites, including ocean buoys and ground observation stations. However, most of these sites

have relatively short operational periods. In this study, 22 sites within the 2000-2020 were selected for validation.

The PROMICE is a project aimed at monitoring changes in the Greenland ice sheet, operated by Denmark, Greenland, and

other partners. PROMICE has established a network across the western, central, and eastern regions of Greenland to monitor

7
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variables such as surface elevation changes, snow depth, temperature, humidity, and the impact of global climate change on
the ice sheet. In this study, 14 sites from the PROMICE network, covering the period from 2000 to 2020, were selected as

validation data.

AmeriFlux
¥ FluxNet
X GEBA

PROMICE

Figure 1: Spatial distribution of 66 ground stations from four radiation flux networks. The base map was designed and developed

by Esri. For more information on this map, visit https://goto.arcgisonline.com/maps/Arctic_Ocean_Base.

3 Methodology

The improved estimation of NR was carried out in two steps. First, we developed a nonlinear perturbation model based
entirely on satellite observations, using an artificial neural network (ANN) to quantify DSR biases induced by CF errors.
This model was applied to correct the DSR from CERES SYN using a more accurate CF dataset. In the second step, to avoid
the propagation of errors caused by separately correcting shortwave and longwave components, we incorporated additional
auxiliary variables—including MERRA-2 air temperature (Ta) and relative humidity (RH), as well as GLASS fractional

vegetation cover (FVC)—and constructed an extended model to directly estimate NR based on the corrected DSR.

3.1 Bias Correction of Shortwave Radiation Using a Nonlinear CF Perturbation Model

3.1.1 Theoretical framework

The theoretical foundation of the methods used in this study is based on the observation-based radiation kernel approach
(CERES-PRP) proposed by Thorsen et al. (2018), which has been further improved. CERES-PRP employs the NASA
Langley Fu-Liou radiation transfer model, with model inputs primarily derived from various observational datasets (monthly
means) used in the processing of CERES version 4 data products. CERES-PRP calculates the radiation perturbation §Fa, ¢y

caused by some perturbation Ax of variable x using the central difference method:
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3 SFl . +OF,

5FAV,CM - f"' OCM (sz) ’ (1)
SFL o = F(x+Ax,Y,50s3,) = F(X, 11500, 0,) + OL (AX) 2)
5FAbx,M =F(X,¥,,...,y,)— F(x = Ax, y,,...,y,) + O, (Ax), 3)

where the fluxes F are at some level of atmospheric level (TOA or surface), calculated using NASA Langley Fu-Liou
radiation transfer model. & FA’;and SFP, represent the effect of perturbation Ax calculated using forward and backward finite
differences, respectively. The subscript C and M denote that the flux perturbation is relative to the climatological monthly
mean base state and the monthly mean base state, respectively. x denotes the monthly mean, and Ax is the deseasonalized
anomaly in the monthly mean value x relative to the climatological monthly mean X, defined as Ax = x — x. (¥4, ..., V)
refers to the monthly means of all other variables related to radiation transfer. (¥, ... J,,) denote the climatological monthly

means. Oy (Ax?) represents the minimized truncation error.

Since the fluxes computed relative to the monthly(yy, ..., y,,) and climatological (¥, ...3,) have different time average-

related biases, this reduces the accuracy of Eq.1. The §F,, ¢y can also be calculated using the following formula:
SFL o =F(X, 950 ¥,) = F(x = AX, p,,...,v,) + OL(AX) (4)
5FA‘/¥‘M =F(x+Ax,y,,...,9,)— F(x,y,....v,) + O, (Ax), 5)

First, the radiation perturbation 6F)y, is calculated using the monthly mean-based equations (Eq.3 and Eq.5). If, during the
calculation, the variable x + Ax results in non-physical values (e.g., for CF perturbations, x + Ax may become less than 0 or
greater than 100), the rules outlined by Thorsen et al. (2018) are followed. In this case, either Eq.2 or Eq.4 is selected for the
calculation, or the cloud boundary perturbation is adjusted to be as close as possible to the true perturbation without being
unphysical. Finally, all valid calculation results are averaged to obtain the final central differencing 8Fy,. Since the
calculation of 6F,, requires intensive radiative transfer computations, to enhance computational efficiency, the RK is pre-
calculated. Multiple calculations are performed as needed to avoid nonlinearity in the RK. In subsequent applications, the
6F,, can be obtained directly by multiplying the known perturbation Ax by the corresponding kernel coefficient Ky, :

OF
Ky =20 ©)
3.1.2 Nonlinear CF Perturbation Model
To replace the extensive radiation transfer calculations (Eq.1 to 5) and further avoid additional pre-computation of the RK
(Eq.6), we employ an ANN model to construct the relationship between the perturbation variable (CF) and shortwave fluxes.

Subsequently, the radiative perturbation §F,.r induced by a change Acf in the perturbation variable CF can be directly
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derived from Eq.7. The corrected radiation estimate, obtained using more accurate CF products, can be derived by adding the

perturbation radiation caused by the CF difference to the original radiation values.

One significant advantage of the ANN is its ability to learn from data without explicit rules, automatically extracting features
and patterns (Zheng et al., 2024). We used the Backpropagation (BP) algorithm to train the model, with 40 neurons in the
hidden layer, a maximum of 400 iterations, a learning rate of 0.03, and a target error of 0.00004, while other parameters were
set to their default values. The model inputs were derived entirely from the monthly means of the CERES version 4 dataset,
including cloud properties and other meteorological variables related to radiation transfer theory (Table 2), with the
dependent variables being shortwave radiation, covering data from April to September 2003 to April to September 2020. 70%

of the data was randomly selected for training, while 30% was used for validation.

§FAL~/' _ fANN(cf+Acfsyl"-yn);fANN(Cf_ACf»J/r--yn) +O(Acf2) (7)

where f;yn represents the nonlinear function linking input variables and shortwave radiation, Fsyy is the radiation from the
CERES SYN, cf is from the CERES SSF CF, Acf represents the difference between the CF in the CERES SSF and the
Fused cf Arc, non-physical perturbation values are addressed following the rules proposed by (Thorsen et al., 2018), and
O(Acf?) is the truncation error in the ANN model calculation process. Given the ANN model’s strong capability in handling
nonlinear relationships, the experimental results for this term are nearly zero, and therefore, it is neglected. Finally, the
shortwave radiation corrected by the higher-accuracy CF can be expressed as follows:

F = Fgyy +AF,, ®)

corrected

Table 2: Input variables used in ANN model.

Input Varibales Source

Ax Base-states conditions

Cloud fraction Cloud top pressure, Cloud base pressure, phase, Cloud visible optical CERES SSF, Monthly means
depth, Cloud ice/water particle radius, Cloud liquid/ice water path,
Cloud emissivity.
Aerosol optical depth, Column Ozone, Skin temperature, Relative CERES SYN, Monthly means

Humidity, Surface albedo, Solar insolation.

3.2 Extended Model for all-wave net radiation Estimation

Shortwave radiation budget plays a crucial role in the formation of NR. Building upon our previous research (Chen et al.,

2022), we further leveraged the strong correlation between shortwave radiation and NR to develop an extended estimation

10
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model based on shortwave radiation. Previous studies have demonstrated that vegetation and temperature are key factors in
regulating the relationship between shortwave radiation and NR (Huang et al., 2016; Jiang et al., 2015). Additionally, the
length of daylight (LRD) has been found to influence their daily mean relationship (Chen et al., 2020). Therefore, in
constructing the extended model, we incorporated shortwave radiation, surface albedo, LRD, fractional vegetation cover
(FVC), Ta, and RH as key variables, all aggregated to monthly means as model inputs. Ultimately, the NR was estimated as
follows:

NR = f(DSR,albedo, LRD,FVC,T,,RH) Q)
where f is constructed using an ANN model, NR, DSR, and albedo are derived from CERES observations. The LRD is
calculated pixel by pixel based on solar angles and pixel latitude and longitude. FVC is obtained from the GLASS product,
Ta and RH are sourced from MERRA-2 or derived from its data.

3.3 Evaluation statistics

We conducted a comparative evaluation of the radiation before and after correction using ground station data, employing the

following three statistical metrics:

R? = (Z (yi__zy)(Yground,i - Yground )) —. (10)
Qi = Ygronas = Yarouna))
RMSE — \/Z(y,- ~Yomna)” a1
N

=Y .
Bias — z(yz Nground,z) , (12)

where y; is the radiation before/after correction, y is the mean of the radiation before/after correction. Yg oynq,; is the

ground-based measured radiation, and Yj,ynq is the mean of the ground-based measured radiation.

4 Results
4.1 CF Perturbation Model training and validation

As there are obvious seasonal variations in radiation, we developed separate ANN models for each month. Table 3 presents
the accuracy of all models on the training and validation datasets. All models exhibit an R? value greater than 0.98 on both
the training and validation datasets, with most reaching 0.99. The root-mean square errors (RMSEs) are below 7.7 W/m?,
showing slight variation across months, peaking in June and reaching its lowest in September. For all models, the RMSEs
during the validation process is slightly lower than that during the training process, indicating that the models did not overfit.

Overall, the results demonstrate that our models possess high reliability.

11



250

255

260

265

https://doi.org/10.5194/egusphere-2025-4787
Preprint. Discussion started: 22 October 2025
(© Author(s) 2025. CC BY 4.0 License.

EGUsphere\

Table 3: Training and validation accuracy of CF-Radiation Perturbation Model. Note ‘Month_Apr_CF-DSR’ refers to the CF-
DSR perturbation model for April.
Model Training Validation
R? RMSE(W/m?) R? RMSE(W/m?)

Month_Apr CF-DSR 0.98 6.38 0.98 6.34

Month May CF-DSR 0.98 7.73 0.98 7.70

Month_Jun CF-DSR 0.99 7.17 0.99 7.08

Month_Jul CF-DSR 0.99 6.04 0.99 5.99

Month Aug CF-DSR 0.99 3.88 0.99 3.72

Month Sep CF-DSR 0.99 2.19 0.99 2.15

4.2 Validation of corrected DSR against ground measurements

Figure 2 presents the validation of our corrected DSR estimates using all ground station data, alongside the CERES SYN
DSR for comparison. The results show improvements across all metrics following adjustment. Specifically, R? increased
from 0.8453 to 0.8527, RMSE decreased from 28.14 to 27.04 W/m?, and bias reduced from 1.18 to -0.06 W/m?. The
corrected DSR align more closely with the 1:1 line, particularly showing notable improvements in addressing the
overestimation of DSR. These results are expected, as our cloud product provides more comprehensive coverage, capturing

higher daytime CFs compared to CERES (Liu et al., 2023), which leads to reduced DSR values.

We further present the validation results for sites where CERES significantly underestimates CF relative to Fused cf Arc
(Fig. 3), which more clearly highlight the performance of the corrected DSR. For sites with CF underestimation exceeding
10%, RMSE decreased from 33.09 to 30.37 W/m?, and bias reduced from 10.98 to 1.01 W/m? For sites with CF
underestimation greater than 20%, RMSE decreased from 38.36 to 32.37 W/m?, with a remarkable bias improvement,
dropping by nearly 20 W/m? (from 22.41 to 3.68 W/m?). These results demonstrate that the DSR corrected using the more

accurate cloud product shows substantial improvements under conditions where CERES CF is severely underestimated.
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Figure 2: Validation of DSR against all ground stations before and after correction.
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values after correction.

We further examined the DSR at stations where CERES CF was increasingly underestimated relative to Fused cf Arc, in
order to evaluate the performance of the correction under different levels of CF underestimation. The results reveal that both
RMSE and bias are closely related to the magnitude of this underestimation. For RMSE (Fig. 4), the corrected DSR shows
relatively stable performance when CERES CF underestimation ranges from more than 5% up to more than 30%, with
RMSE values increasing only moderately from 28 W/m? to 33.4 W/m?. When the CF underestimation further exceeds 30%
and reaches 35%, the RMSE rises more sharply, reaching 41.06 W/m?. By contrast, the uncorrected DSR (CERES DSR)
exhibits a much stronger sensitivity to CF underestimation, with RMSE steadily increasing from 30.57 W/m? at stations with
CF underestimation greater than 5% to as high as 46.42 W/m? at greater than 35%. Similarly, the bias (Fig. 4) indicates that
the correction substantially reduces systematic deviations. After correction, the bias changes gradually from —0.40 W/m? to
10.13 W/m? across the range of stations with CF underestimation greater than 5% to greater than 35%. In comparison, the
uncorrected DSR shows a considerably larger positive bias, increasing from 2.83 W/m? to 33.05 W/m?. These results
demonstrate that the CF-based correction effectively mitigates both random and systematic errors, particularly under

conditions with moderate to large CF underestimation.
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Figure 4: Validation of DSR against ground-based observations before and after correction for stations with CF differences
exceeding various thresholds (Fused_cf Arc — CERES SYN). The x-axis denotes CF difference thresholds (%,
e.g., >5%,>10%, ... >35%), while the y-axis represents the RMSE or bias (b). Blue and orange curves correspond to results before

and after correction, respectively.

4.3 Comparison of DSR before and after correction

Figure 5 presents the spatial distribution of the monthly mean DSR from April to September during the period 2003—2020.
The most pronounced differences between the corrected and uncorrected DSR occur over Greenland, particularly in June,
where discrepancies reach up to 30 W/m?. Figure 6 further highlights these differences through histograms over Greenland,
demonstrating that the correction primarily reduces high DSR values during May, June, July, and August. The correction
effects exhibit a distinct seasonal pattern, with more substantial correction during summer. The most notable case is
observed in June, where the root-mean-square difference (RMSD) reaches 15.98 W/m?, bias is 14.37 W/m?, and the
maximum per-pixel difference exceeds 35 W/m? In contrast, the correction in September is much less significant, with an

RMSD of only 3.83 W/m?.

The correction of DSR is influenced not only by the magnitude of CF biases but also by modulation from the solar zenith
angle (He et al., 2013, 2015; Kim and Liang, 2010). In May and June, although CF biases are generally larger in May than in
June, the correction effect on DSR is more pronounced in June. For example, in northeastern Greenland, pixels with a 39%
CF bias in May correspond to a DSR difference of 25 W/m? between the original and corrected values. Whereas in June,
pixels with a 32% CF bias exhibit a DSR difference of up to 35 W/m?2. This discrepancy is primarily attributed to the lower
solar zenith angle in June, which enables more solar radiation to reach the surface, thereby amplifying the influence of CF

biases on DSR. Consequently, even relatively smaller CF biases can result in more substantial correction effects.
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Figure 5: The spatial distribution of the monthly mean DSR for April and September from 2003 to 2020, both before and after
correction, as well as the spatial distribution of the differences between the two, and the CF differences (Fused_cf Arc — CERES

SYN). All metrics have units of W/m?.
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Figure 6: Histogram of multi-year average monthly DSR before (red bin) and after (blue bin) correction over Greenland. All
RMSD and Bias statistics have units of W/m?. The vertical coordinate represents the frequency and the horizontal coordinate

represents the DSR value (W/m?).

4.4 Validation of estimated all-wave net radiation

320 The extended model was developed to estimate the monthly mean NR based on the corrected DSR. The LRD was employed
to account for the influence of diurnal variations in shortwave radiation on NR across different seasons. As a result, the
model does not need to be developed separately for each month; instead, the seasonal effects are implicitly incorporated
through the LRD. During validation, the model achieved an R? of 0.99, an RMSE of 5.87 W/m?, and a bias of 0 W/m? on the
validation dataset (Fig. 7), demonstrating excellent performance. In addition, the estimated NR was further validated against

325 in situ observations from ground-based stations.
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Figure 7: Scatter plot comparing the NR estimated using the extend model with the CERES-SYN NR dataset

Figure 8 presents a comparison of scatterplots between the estimated NR from this study, CERES SYN dataset and ground-

330 based observations. The estimated NR shows clear advantages over CERES NR in terms of overall agreement with ground-

based observations. Specifically, the estimated NR achieves an R? of 0.77 and an RMSE of 28.9 W/m?, compared with 0.61
and 34.88 W/m? for CERES NR. Although the bias of the estimated NR is somewhat larger (14.88 vs. 10.08 W/m?), the

scatter plots indicate that the correction substantially improves the distribution of points along the 1:1 line. In particular, the

underestimation present in CERES NR around 50~100 W/m?

335 representation of the observed variability.
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Figure 8: Scatterplot comparison between the estimated NR from this study, CERES SYN dataset, and ground-based observations.

340 We further examined the validation performance under different levels of CF underestimation (CERES SYN relative to

Fused cf Arc). This analysis allows us to assess how the CF-based correction behaves under varying degrees of
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underestimation. As shown in Fig. 9, validation of the estimated NR against ground-based measurements under different CF
difference thresholds further highlights the advantage of using the CF-corrected DSR as the basis for NR calculation. the
estimated NR maintains a relatively robust correlation with observations across all CF difference ranges, with R? values
decreasing gradually from 0.74 (>5%) to 0.54 (>30%). Although the RMSE (30.21-35.12 W/m?) and bias (16.25-27.41
W/m?) indicate an overall tendency toward overestimation, the scatter plots remain distributed along the 1:1 line, suggesting

that the systematic bias is more uniform.

By contrast, the CERES NR shows considerably weaker performance under large CF underestimation. Its R* drops rapidly
from 0.54 (>5%) to nearly zero (>30%), with scatter plots at CF underestimation greater than 20% exhibiting an almost
horizontal distribution, indicating a loss of physical consistency with ground observations. While the RMSE values of
CERES NR are comparable to those of the estimated NR, the near-absence of correlation at high CF underestimation

suggests that CERES NR fails to capture the variability of surface conditions under such circumstances.
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Figure 9: Validation of DSR against ground-based observations before ((g) ~ (1)) and after ((a) ~ (f)) correction for stations with
CF differences exceeding various thresholds (Fused cf Arc — CERES SYN).
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These results imply that the NR estimated from the CF-corrected DSR provides a more reliable representation of the
radiation variability, particularly in terms of correlation structure, even though the magnitude bias remains to be further
improved. In other words, the correction ensures that the retrieved NR retains meaningful sensitivity to surface and
atmospheric variations, whereas CERES NR tends to collapse under conditions of high CF underestimation. Nevertheless, it
should be noted that the performance of the estimated NR is still limited when CF differences are large. Under heavy cloud
cover, retrieving NR from satellite observations has long been recognized as an intrinsic challenge. Future efforts may focus
on incorporating additional constraints from longwave radiation, atmospheric water vapor, or surface properties to further

reduce systematic biases.

Given the pronounced difference of CF over Greenland, we highlight the validation results of NR at selected ground stations
in Greenland (Table 4). The results demonstrate that the estimated NR aligns much more closely with ground-based
measurements than the original CERES SYN data. Overall, these findings confirm that the proposed extended model is
robust. It significantly improves the accuracy of radiation estimates and enhances the reliability and utility of the resulting

radiation products.

Table 4: Validation results of the estimated NR and CERES SYN NR against at observation at PROMICE sites in Greenland.

) R? RMSE Bias R? RMSE Bias
Site Estimated NR CERES SYN NR
KAN L 0.85 36.10 27.35 0.87 28.70 -18.22
KAN M 0.84 18.76 9.44 0.73 23.99 -3.27
KAN U 0.63 27.53 21.18 0.67 25.41 22.03
KPC L 0.86 28.39 22.35 0.84 38.88 34.34
KPC U 0.64 45.90 35.61 0.79 50.70 44.55
MIT 0.59 36.35 20.66 0.14 67.45 4491
NUK N 0.63 34.83 0.09 0.65 51.72 -28.15
NUK U 0.79 21.13 3.62 0.76 25.66 1.33
QAS L 0.54 52.19 -28.95 0.69 46.58 25.51
SCO L 0.92 21.33 5.93 0.90 27.19 18.76
TAS U 0.79 19.16 -2.98 0.54 58.05 48.39
UPE L 0.91 11.36 -0.05 0.84 32.49 -21.88
UPE E 0.85 18.39 6.65 0.74 33.84 -12.97
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4.5 Comparison between the estimated all-wave net radiation and the CERES SYN

As shown in Fig.10, the spatial distribution of the multi-year monthly mean NR over the Arctic from April 2003 to
September 2018 is presented for the estimated NR in this study and the CERES SYN. In contrast to the DSR correction
results, the differences between the estimated NR and CERES SYN are relatively minor, particularly over Greenland, where
the DSR correction had previously shown substantial discrepancies. Moreover, while increased CF typically results in
reduced DSR due to enhanced reflection, an opposite pattern is observed in northeastern Greenland during May and July:

higher CF is associated with increased NR.

This phenomenon could be attributed to the dual-component nature of NR, which comprises both shortwave and longwave
radiation. Clouds reduce the surface energy input by attenuating incoming shortwave solar radiation, while simultaneously
enhancing the absorption and re-emission of longwave radiation by the atmosphere, thereby suppressing the loss of
longwave radiation from the surface. Notably, in regions such as Greenland, which are characterized by high surface albedo,
the contribution of surface-reflected shortwave radiation is relatively large, weakening the net cooling effect of clouds
(Miller et al., 2015). As noted by (Kay and L’Ecuyer, 2013), low-level Arctic clouds can exert a net warming effect, as the
enhancement of downward longwave radiation often outweighs the reduction in shortwave radiation reaching the surface.
The results in this study are consistent with this perspective: in specific regions and months—such as in northeastern
Greenland during summer—the enhancement of longwave radiation associated with increased CF is sufficient to offset or

even exceed the reduction in shortwave radiation, resulting in a net increase in NR.
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Figure 10: The spatial distribution of the monthly mean NR for April and September from 2003 to 2020, estimated NR in this
study and the CERES SYN, as well as the spatial distribution of the differences between the two (estimated NR — CERES NR), and
the CF differences (Fused_cf Arc — CERES SYN).

5 Discussion
5.1 Sensitivity of DSR to variations in model input parameters

To assess the relative importance of CF among various input variables, we conducted a sensitivity analysis. Specifically,
single input variable was varied individually while all other variables were held constant, and the corresponding DSR
responses were evaluated. As shown in Fig. 11, DSR is most sensitive to CF: as CF increases from 5% to 100%, DSR
decreases markedly from approximately 315 W/m? to 180 W/m?, indicating a strong negative correlation. Cloud top pressure
also exerts a non-negligible influence, whereas cloud radius, aerosol optical depth, and relative humidity have relatively

weak impacts, suggesting that even large uncertainties in these variables are unlikely to introduce substantial DSR bias.

To investigate the impact of variable covariations on the response structure of DSR, we performed a series of multivariate
variation experiments. As illustrated in Fig.12: (a) when only CF and cloud phase are varied, the influence of cloud phase is
relatively minor, and the negative DSR response to increasing CF persists clearly; (b) adding cloud base pressure reduces the
visibility of its individual impact—previously seen as increasing DSR when exceeding 760 hPa—because the dominant CF
effect overrides it; (c) when cloud top pressure is further included, the DSR response exhibits a "rise-then-fall" pattern,
indicating that under low CF conditions, other cloud variables can still exert noticeable influence on DSR, but as CF

increases, its controlling effect gradually becomes predominant.

We also examined the monthly mean CF over the Arctic (not shown), and found that CF exceeds 40% in most regions.
Combined with the analysis in Fig. 12, this suggests that once CF exceeds 40%, DSR consistently decreases with increasing
CF. This further confirms that CF is the dominant factor influencing DSR in cloud-rich regions such as the Arctic. Given that
CF retrievals from passive remote sensing remain highly uncertain, CF likely represents a major source of current radiative
biases. Therefore, even though CF is the only variable available for correction, its dominant influence on DSR makes it
sufficient for effectively reducing the bias. The success of our correction further supports the validity of this approach

(Figures 2 and 3).
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Figure 11: Sensitivity of DSR to individual input variables. Each panel shows the DSR response to a single variable, varied across

its range while keeping all others fixed. Red lines indicate the mean response.
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Figure 12: Sensitivity of DSR to the combined variation of multiple cloud variables. (a) Varying variables include CF and cloud
phase. (b) Varying variables include CF, cloud phase, and cloud base pressure. (¢) Varying variables include CF, cloud phase,
cloud base pressure, and cloud top pressure. (d) Varying variables include CF, cloud phase, cloud base pressure, cloud top

pressure, and cloud tau.

5.2 Advantages of the developed CF perturbation model

In most previous studies, cloud radiative perturbations were typically estimated by constructing kernel functions that relate
cloud properties—such as cloud top pressure, cloud optical thickness, geographic location, and month—to radiative
responses, or by assuming a linear relationship between cloud changes and radiative perturbations under the assumption of
small perturbations (Shell et al., 2008; Soden et al., 2004, 2008). Many studies employed the histogram method, in which the
influence of clouds is discretized into multiple cloud regimes. The total radiative response is then obtained by multiplying

the occurrence frequency of each cloud regime by the corresponding radiative kernel.
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Figure 13 presents example plots of several publicly available cloud radiative kernels, derived from Zelinka et al. (2012)
(Fig.13a), Zhang et al. (2021) (Fig.13b), and Zhou et al. (2022) (Fig.13c). All three kernels quantify cloud impacts using a
histogram-based approach. We show the cloud radiative kernels for the month of June, corresponding to a cloud top pressure
of 500 hPa and a cloud optical thickness of 6. In Fig.13a, the kernel is a function of cloud top pressure, cloud optical
thickness, month, latitude, and surface albedo. The kernel shown was selected based on the surface albedo conditions for
June. As shown in the figure, even when using the same ISCCP-H simulator dataset, substantial differences can be observed
between the cloud radiative kernels of Fig.13a and 13b due to the use of different variable combinations for histogram
binning to quantify cloud impacts. This highlights the critical importance of variable selection in kernel construction. In
addition, the kernel in Fig.13c, generated using a GCM by Zhou et al. (2022), also exhibits clear differences from the other

two, further indicating that the choice of model plays a key role in shaping the structure of cloud radiative kernels.

Figure 13: The spatial distribution of shortwave cloud radiative kernels for June, corresponding to a cloud top pressure of 500 hPa
and a cloud optical thickness of 6. Panel (a) is derived from Zelinka et al. (2012), panel (b) from Zhang et al. (2021), and panel (c)
from Zhou et al. (2022) The units are W/m?*/ %.

This study fully acknowledges the high complexity of the atmospheric system, particularly the numerous parameters and
nonlinear mechanisms involved in cloud-radiation interactions. To comprehensively characterize the impact of clouds on
radiation, we incorporate multiple key factors into the modeling process, including cloud fraction, cloud effective radius,
cloud top pressure, cloud optical thickness, and aerosols. We propose a CF perturbation model based on the strong nonlinear
fitting capabilities of ANNs. This model effectively captures the response of radiative perturbations to cloud changes under
various atmospheric background states and at any location, thereby overcoming the limitations of traditional cloud radiative

kernel methods that rely on linear response assumptions.

Our approach avoids the computational burden associated with high-dimensional interpolation in histogram-based kernel
methods and exhibits good scalability, enabling direct application to assess the radiative perturbation effects of other

variables such as water vapor and aerosols. In addition, the model is entirely trained and constructed using satellite
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observational data, without incorporating any information from GCMs or reanalysis products. This helps to eliminate
systematic errors often introduced by parameterizations or idealized assumptions in traditional models. In contrast, satellite
data offer greater objectivity and more accurately reflect the actual state of the surface—atmosphere system, providing a

robust foundation for reliably evaluating the impacts of clouds and other factors on the Earth's radiation balance.

6 Conclusion

In this study, we developed a CF perturbation model based on an ANN and utilized a more accuracy CF product,
Fused cf Arc, to correct CERES SYN DSR over the Arctic. Building upon this correction, we further established an

extended model that enables direct estimation of NR based on the corrected DSR.

By integrating an ANN-based CF perturbation model with the more accurate Fused cf Arc product, we effectively corrected
CERES SYN DSR over the Arctic. The correction substantially improved the agreement with 66 ground-based sites,
reducing RMSE from 30.57 to 28.87 W/m? and bias from 2.83 to 0.40 W/m?. Importantly, while the accuracy of CERES
DSR degraded rapidly with increasing CF underestimation (RMSE rising to 42.44 W/m? and bias to 29.77 W/m? at sites
with >30% CF underestimation), the corrected DSR maintained a much lower error level (RMSE 33.48 W/m?, bias 10.13
W/m?). The improvements were most pronounced over Greenland, where local corrections reached up to 30 W/m?, and
seasonal analyses confirmed the enhanced robustness of our method under diverse solar—cloud conditions. These results
highlight the critical role of CF accuracy in DSR estimation and demonstrate the effectiveness of our correction in mitigating

CF-related biases.

Building upon the corrected DSR, we developed an extended model for directly estimating NR, thereby avoiding the
longwave uncertainties inherent in conventional radiative transfer methods. Compared with CERES NR, our NR estimates
showed markedly higher consistency with ground measurements, with R? increasing from 0.612 (CERES NR) to 0.772 and
RMSE decreasing from 34.88 W/m? (CERES NR) to 28.90 W/m?. Although the bias rose slightly (from 10.08 W/m?
(CERES NR) to 14.88 W/m?), the corrected NR significantly alleviated the underestimation in the 50-100 W/m? range.
Importantly, in cases of pronounced CERES CF underestimation (>30%), the CERES NR essentially loses its ability to
capture radiation variability (R? = 0.0182), whereas the estimated NR retains substantial representational skill (R? = 0.5411).
This confirms that NR retrieved from CF-corrected DSR provides a more reliable representation of radiation variability,

preserving physical sensitivity to surface and atmospheric processes.

Overall, this study demonstrates a practical and physically consistent framework for improving surface radiation retrievals in
the Arctic, where satellite products often suffer from cloud-related uncertainties. By leveraging improved CF information

and employing a data-driven approach that bypasses radiative transfer assumptions, the proposed methodology enhances
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both the accuracy and interpretability of DSR and NR estimates. These advances are particularly valuable for high-latitude
energy budget assessments, climate model evaluation, and monitoring Arctic amplification, and they provide a foundation

for extending the method to other regions and for integrating additional radiation corrections in future research.
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