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Abstract: Arctic has been undergoing rapid climate change, where radiative processes are key controlling factors. However, 

cloud-related uncertainties remain the primary barrier to accurately estimating the radiation budget. Strong coupling between 

clouds and other variables complicates the isolation of cloud-related impacts, and the linear assumptions in traditional 

models further restrict attribution of radiation changes to cloud-related influences. This study introduces an artificial neural 

network model that emulates radiative components typically represented in radiative transfer or climate models. Without 15 

relying on linear assumptions, the model directly quantifies the influence of cloud fraction (CF) on radiation. Using a more 

accurate CF dataset, we refined the monthly downwelling shortwave radiation (DSR) estimates from Clouds and the Earth's 

Radiant Energy System (CERES) SYN products and further estimated all-wave net radiation (NR) from the corrected DSR. 

Validation against ground-based observations confirmed that the CF-corrected DSR effectively mitigated the overestimation 

in CERES DSR, reducing biases by up to 23 W m⁻². At sites where CF underestimation exceeded 25%, the monthly-mean 20 

bias decreased from 25.70 W/m² to 4.88 W/m², with RMSE reduced from 40.36 W/m² to 32.60 W/m². The estimated 

monthly NR also improved markedly (RMSE reduced from 34.88 W/m² to 28.90 W/m²). Under large CF underestimation 

(>30%), the CERES NR nearly failed (R² = 0.0182), whereas NR derived from CF-corrected DSR retained reasonable 

agreement (R² = 0.5411). Importantly, this work produces a new NR dataset with enhanced accuracy over the Arctic, 

offering direct value for studies of surface energy balance, climate feedbacks, and long-term variability. 25 

1 Introduction 

The Arctic is currently warming at rates two to four times higher than those in lower latitudes (Cohen et al., 2020; Coulbury 

and Tan, 2024; Rantanen et al., 2022), a phenomenon known as Arctic amplification (Previdi et al., 2021). This rapid 

warming profoundly alters the Arctic climate system, affecting sea ice, permafrost, and atmospheric circulation patterns 

(Bennartz et al., 2013; Goosse et al., 2018). Among the key physical quantities that govern energy exchange in the climate 30 
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system, surface net radiation (NR) —the net sum of between incoming and outgoing shortwave and longwave radiation at 

the surface—plays a central role in determining surface energy budgets, ice–albedo feedback, and surface temperature 

variability (Brown and Caldeira, 2017; Goessling et al., 2025; Huang et al., 2021; Loeb et al., 2022).  

 

Despite its importance, current estimates of radiation over polar regions remain highly uncertain. According to the 35 

Intergovernmental Panel On Climate Change (IPCC, 2023), satellite-based assessments indicate that the uncertainties in 

global monthly mean fluxes are about 10 W m⁻², while those over polar regions are even larger than other regions. These 

uncertainties can distort the assessment of surface energy balance, compromise the accuracy of global temperature trend 

estimates, and reduce the simulation reliability of changes in cryosphere (Cheng et al., 2017; Loeb et al., 2021; Prince and 

L’Ecuyer, 2024). Lee et al. (2019) showed that discrepancies in surface radiative fluxes among reanalysis datasets (up to ~60 40 

W m⁻² in shortwave) can substantially affect Arctic sea-ice simulations, such flux differences led to sea-ice volume changes 

of 3000–4000 km³ and altered interannual variability by up to 40%. This highlights the strong sensitivity of Arctic sea ice to 

uncertainties in surface radiation. 

 

Improving the radiation estimates in the Arctic is therefore an urgent task, especially in the context of detecting early signals 45 

of anthropogenic influence and validating climate model projections (Danso et al., 2020; Van Tricht et al., 2016; Zheng et al., 

2025). However, achieving this goal remains challenging due to the complex radiative interactions between surface and 

atmosphere. Among them, clouds represent a dominant source of uncertainty (Tao et al., 2025). Clouds regulate the Earth's 

radiation balance by reflecting incoming shortwave radiation and absorbing/emitting longwave radiation (Dessler, 2010; 

McCoy et al., 2017; Sledd and L’Ecuyer, 2019). However, in the Arctic, accurately detecting cloud remains challenging, 50 

particularly for passive satellite sensors. Clouds are characterized by numerous parameters such as optical depth, phase, 

height, and particle size, retrieving them consistently from spaceborne measurements is inherently difficult. Among these 

variables, cloud fraction (CF) is arguably a simplified descriptor, yet it has become the most fundamental parameter for 

radiation studies owing to its availability across multiple satellite products with long temporal coverage and broad spatial 

extent. For instance, Liu (2022) showed that limitations in detecting low-level Arctic clouds with active sensors (25 % 55 

underestimation) can introduce errors in monthly mean cloud radiative forcing of up to ~2.5 W m⁻² at the surface and ~3.4 

W m⁻² at the TOA. Zib et al. (2012) evaluated five reanalysis datasets against BSRN observations at Arctic sites and found 

that CF biases of up to 20–30% could lead to monthly deviations in downward shortwave radiation (DSR) exceeding 90 W 

m⁻². Wei et al. (2021), analyzing CMIP6 models showed that systematic CF overestimation of about 5–15% in the Arctic 

resulted in positive biases in NR greater than 3 W m⁻². These findings suggest that CF is a substantial contributor of 60 

uncertainty in Arctic radiation estimation. Therefore, quantitatively constraining the radiation biases attributable to CF errors 

could enable the direct use of more accurate CF datasets to reduce uncertainties in radiation products. 
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Building on this motivation, many perturbation-based methods have been developed to quantify the radiation impacts of CF 

(Table 1). For instance, the partial radiative perturbation (PRP) method can isolate the contribution of individual variables 65 

but requires repeated radiative transfer calculations and often yields inconsistent feedback estimates across models (Colman, 

2003; Soden et al., 2004; Wetherald and Manabe, 1988). The radiative kernel technique improves efficiency by 

precomputing flux sensitivities, yet its assumption of linearity breaks down when cloud–radiation interactions are strongly 

nonlinear, leading to significant errors (Shell et al., 2008; Soden et al., 2008; Zhu et al., 2019). Moreover, the structure of the 

kernel itself varies across models, introducing model dependence and affecting cloud feedback estimates (Hahn et al., 2021; 70 

Jonko et al., 2012). Even satellite-based variants such as CERES-PRP reduce some model dependence but still demand 

multiple computations and remain limited by the accuracy of the underlying CF datasets (Thorsen et al., 2018). 

 

To address these challenges, we developed a nonlinear perturbation method that captures the relationship between CF 

perturbations and shortwave radiation changes under various atmospheric and surface conditions. Another major 75 

advancement of this study lies in the coupling of this method with a more accurate CF dataset that we previously developed 

(Liu et al., 2023). Unlike standard passive-sensor cloud products, this dataset employs spatiotemporal fusion techniques to 

merge CF information from active and passive satellite observations as well as ground-based measurements. Its fused, multi-

source design substantially reduces biases in CF estimates and ensures improved spatiotemporal completeness. By coupling 

the nonlinear perturbation method with this enhanced CF dataset, we effectively corrected CF-induced DSR biases in the 80 

Clouds and the Earth's Radiant Energy System (CERES) SYN. Furthermore, to minimize potential error propagation arising 

from independently adjusting shortwave and longwave components, we extended the method to directly estimate the NR 

based on the corrected DSR. The objectives of this study are: (i) to construct a nonlinear perturbation relationship between 

CF and DSR based on satellite observations, and apply it to correct Arctic DSR with improved CF products; (ii) to develop 

an extended model for directly estimating NR based on the corrected DSR. 85 
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Table 1. Summary of perturbation-based methods for quantifying radiative impacts of CF and other climate variables (the 

current paper is added for completeness). 

Reference Methods Data Assumptions Key Results 

(Wetherald 
and Manabe, 
1988) 

Partial Radiative 
Perturbation (PRP): 
replace one variable 
(e.g., CF) in a control 
climate and compute 
flux difference while 
holding others 
constant. 

Early GCM 
simulations. 

Feedback can be isolated 
by substituting a single 
variable while all others 
remain unchanged; linear 
superposition of effects. 

First method to separate 
individual feedbacks; 
computationally very 
demanding; can yield 
inconsistent estimates 
depending on model setup. 

(Colman, 
2003) 

Inter-model 
comparison of 
feedbacks in GCMs 
using PRP and other 
approaches. 

Multiple GCM 
experiments. 

Feedbacks are 
comparable across 
models if methods are 
applied consistently. 

Found substantial spread 
among models in feedback 
strengths, pointing to 
methodological and structural 
uncertainties. 

(Shell et al., 
2008) 

Radiative Kernel (RK) 
technique: pre-compute 
kernels from NCAR 
CAM to quantify 
sensitivity of fluxes to 
small perturbations. 

NCAR 
Community 
Atmospheric 
Model. 

Radiative response is 
linear for small 
perturbations; kernels 
can be applied to other 
simulations. 

Provided an efficient 
framework to estimate 
feedbacks; avoided repeated 
full radiative transfer 
calculations; limited by 
linearity assumption. 

(Soden and 
Held, 2006) 

Assessment of RK-
based feedbacks in 
coupled ocean–
atmosphere GCMs. 

Coupled 
model 
simulations. 

Small perturbations yield 
linear flux–variable 
relationship. 

Demonstrated usefulness of 
RK for large-scale feedback 
analysis, but highlighted 
model dependence of kernels. 

(Soden et al., 
2008) 

Standardization of RK 
framework across 
models. 

Multi-model 
ensembles. 

Linearity of flux 
responses across 
different forcings. 

Enabled cross-model 
intercomparison of feedbacks; 
showed kernels improve 
efficiency, but neglect 
nonlinear interactions. 

(Zhu et al., 
2019) 

Neural network (NN) 
approach to estimate 
climate feedbacks. 

GCM outputs 
used for 
training and 
validation. 

NN can learn nonlinear 
relationships without 
explicit assumptions. 

Demonstrated that NN reduces 
errors from nonlinear 
interactions, improving 
accuracy over RK/PRP. 

(Hahn et al., 
2021) 

Polar amplification 
analysis with RK-based 
methods. 

CMIP5 and 
CMIP6 model 
outputs. 

Choice of kernel 
sufficiently represents 
model physics. 

Found that cloud feedback 
estimates are highly sensitive 
to kernel choice; kernel 
dependence introduces 
additional uncertainty. 

(Jonko et al., Extended RK approach 
under changing CO₂ 

CCSM3 
climate model 

Linear kernel assumption 
valid across a wide range 

Showed that when 
perturbations are large, linear 
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2012) forcing. simulations. of forcings. kernels break down, limiting 
reliability. 

(Thorsen et 
al., 2018) 

CERES-PRP method: 
observation-based 
extension of PRP, 
using satellite 
radiances to 
decompose flux 
perturbations. 

CERES 
satellite 
products. 

Observed flux 
perturbations can 
approximate single-
variable contributions; 
nonlinear effects handled 
by repeated calculations. 

Provided first observation-
based PRP estimates; allowed 
flexible variable 
combinations; still 
computationally intensive and 
not free of nonlinearity. 

This study Nonlinear perturbation 
method; extended to 
estimate all-wave 
surface net radiation 

Multi-source 
fused CF 
dataset, 
satellite and 
ground 
measurements. 

Nonlinear CF–radiation 
relationships can be 
empirically captured 
from observations 

First to apply CF perturbation 
correction with ANN in the 
Arctic; effectively reduced 
DSR overestimation at high 
CF biases. Developed 
extended model linking 
corrected DSR to NR; 
highlighted that CF accuracy 
critically determines NR 
performance. 
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2 Data and materials 

2.1 CERES SYN1deg 90 

The CERES SYN1deg product (Level 3) provides monthly, daily, and hourly averages of TOA fluxes based on the Angular 

Distribution Model, as well as TOA and surface fluxes derived from a radiative transfer model (Rutan et al., 2015). 

Validation against Baseline Surface Radiation Network (BSRN) observations shows that hourly all-sky shortwave fluxes 

errors are typically within ±1% globally and about −1.9% poleward of 60°, with RMSE around 12.6 W m⁻² globally and 19.4 

W m⁻² in the Arctic; monthly RMSE values are 5.7 W m⁻² globally and 20.2 W m⁻² at high latitudes (NASA POWER 95 

Project, 2024). The SYN1deg Ed4A product integrates fluxes observed by CERES with cloud properties derived from 

Moderate Resolution Imaging Spectroradiometer (MODIS) and Geostationary (GEO) image products(Doelling et al., 2013, 

2016). Cloud retrievals are based on the CERES Cloud Working Group Ed4A algorithms (Minnis et al., 2011, 2021; Trepte 

et al., 2019), and above 60° latitude the SYN cloud products are fully consistent with those from SSF. Given that the SYN 

product provides only diurnal monthly averages of cloud properties, and that shortwave radiation is exclusively influenced 100 

by daytime cloud, this study utilizes cloud products sourced from the SSF, which offers daytime cloud data.  

2.2 Fused Cloud Fraction of Arctic 

Fused_cf_Arc is a daytime Arctic CF product developed by Liu et al. (2023) that employs spatiotemporal fusion methods, 

utilizing cumulative distribution function matching and Bayesian maximum entropy to integrate CF products from active 

satellites, passive satellites, and ground observations. This product spans the period from 2000 to 2020, offering a seamless 105 

monthly daytime average for the Arctic region with a spatial resolution of 1 degree. Compared to other products, 

Fused_cf_Arc provides more comprehensive spatiotemporal coverage and enhanced accuracy. Its coefficient of 

determination (R²) improves by approximately 0.20 to 0.48 when compared to products such as MOD08, CERES-SSF, 

International Satellite Cloud Climatology Project (ISCCP), Cloud, Albedo, and Radiative Transfer Algorithm (CLARA), and 

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). In terrestrial areas, the root mean square 110 

error (RMSE) and bias are reduced by approximately 6.09% and 4.04%, respectively. In marine regions, these metrics 

improve by 0.05 to 0.31, 2.85%, and 3.15%. Notably, the performance of Fused_cf_Arc is most significantly enhanced in the 

Greenland. 

2.3 Merra-2 Reanalysis Data 

MERRA-2 is a suite of global atmospheric reanalysis products developed by the NASA Global Modeling and Assimilation 115 

Office, incorporating recent advancements in modeling and data assimilation (Gelaro et al., 2017). It provides monthly 

global air temperature (Ta) and specific humidity data from 1980 onward. For the estimation of NR, the extended model 
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required Ta and relative humidity (RH) as input variables. While RH is not directly available in MERRA-2, it can be derived 

from its specific humidity data. 

2.4 GLASS FVC Product 120 

Surface vegetation affects the relationship between shortwave radiation and NR (Chen et al., 2022). In this study, the 

GLASS fractional vegetation cover (FVC) was selected for its comprehensive spatiotemporal coverage and high accuracy. 

Jia et al. (2015) developed a robust FVC retrieval algorithm based on MODIS surface reflectance data, achieving an RMSE 

of 0.157 when validated against ground-based measurements. After applying gap-filling techniques, the GLASS FVC 

became spatially continuous at the global scale, making it highly suitable for various vegetation monitoring and research 125 

applications (Wang et al., 2020). This dataset features a spatial resolution of 500 m and a temporal resolution of 8 days. 

2.5 Ground-measured data 

Ground measurements provide accurate surface radiation observation data that can be used to validate our results. In this 

study, ground measurement data were obtained from four reliable radiation flux observation networks: FLUXNET, 

AmeriFlux, Global Energy Balance Archive (GEBA), and The Programme for Monitoring of the Greenland Ice Sheet 130 

(PROMICE) (Fig.1). 

 

FLUXNET is one of the largest global flux observation networks, integrating over 800 active and historical sites that span 

most climate zones and representative biomes to monitor carbon, water, and energy fluxes in terrestrial ecosystems. For this 

research, 13 sites that include data on radiation were selected for analysis. Within this global network, AmeriFlux serves as 135 

the North American regional component, supported by the U.S. Department of Energy and partner agencies. Established in 

1996 with about 15 sites, AmeriFlux has expanded to more than 110 active towers across diverse ecosystems. For this study, 

we used data from 18 AmeriFlux sites located north of 60°N that include radiation measurements, primarily in northern and 

western Alaska. 

 140 

The GEBA database is designed to centrally store measurements of surface energy flux from around the world, maintained 

by the Swiss Federal Institute of Technology Zurich. This database includes observational data for 15 components of surface 

energy flux, strictly comprising only directly measured surface fluxes and excluding empirically derived fluxes. Gilgen et al. 

(1998) provide a detailed description of the error estimates and quality checks applied to these data. The Arctic contains a 

significant number of GEBA sites, including ocean buoys and ground observation stations. However, most of these sites 145 

have relatively short operational periods. In this study, 22 sites within the 2000-2020 were selected for validation. 

 

The PROMICE is a project aimed at monitoring changes in the Greenland ice sheet, operated by Denmark, Greenland, and 

other partners. PROMICE has established a network across the western, central, and eastern regions of Greenland to monitor 
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variables such as surface elevation changes, snow depth, temperature, humidity, and the impact of global climate change on 150 

the ice sheet. In this study, 14 sites from the PROMICE network, covering the period from 2000 to 2020, were selected as 

validation data. 

 

 
Figure 1: Spatial distribution of 66 ground stations from four radiation flux networks. The base map was designed and developed 155 
by Esri. For more information on this map, visit https://goto.arcgisonline.com/maps/Arctic_Ocean_Base. 

3 Methodology 

The improved estimation of NR was carried out in two steps. First, we developed a nonlinear perturbation model based 

entirely on satellite observations, using an artificial neural network (ANN) to quantify DSR biases induced by CF errors. 

This model was applied to correct the DSR from CERES SYN using a more accurate CF dataset. In the second step, to avoid 160 

the propagation of errors caused by separately correcting shortwave and longwave components, we incorporated additional 

auxiliary variables—including MERRA-2 air temperature (Ta) and relative humidity (RH), as well as GLASS fractional 

vegetation cover (FVC)—and constructed an extended model to directly estimate NR based on the corrected DSR. 

3.1 Bias Correction of Shortwave Radiation Using a Nonlinear CF Perturbation Model 

3.1.1 Theoretical framework 165 

The theoretical foundation of the methods used in this study is based on the observation-based radiation kernel approach 

(CERES-PRP) proposed by Thorsen et al. (2018), which has been further improved. CERES-PRP employs the NASA 

Langley Fu-Liou radiation transfer model, with model inputs primarily derived from various observational datasets (monthly 

means) used in the processing of CERES version 4 data products. CERES-PRP calculates the radiation perturbation 𝛿𝛿𝛿𝛿∆𝑥𝑥,𝐶𝐶𝐶𝐶 

caused by some perturbation ∆𝑥𝑥 of variable 𝑥𝑥 using the central difference method: 170 
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where the fluxes 𝐹𝐹 are at some level of atmospheric level (TOA or surface), calculated using NASA Langley Fu-Liou 

radiation transfer model. 𝛿𝛿𝐹𝐹∆𝑥𝑥
𝑓𝑓 and 𝛿𝛿𝐹𝐹∆𝑥𝑥𝑏𝑏  represent the effect of perturbation ∆𝑥𝑥 calculated using forward and backward finite 175 

differences, respectively. The subscript 𝐶𝐶 and 𝑀𝑀 denote that the flux perturbation is relative to the climatological monthly 

mean base state and the monthly mean base state, respectively. 𝑥𝑥 denotes the monthly mean, and ∆𝑥𝑥 is the deseasonalized 

anomaly in the monthly mean value 𝑥𝑥 relative to the climatological monthly mean 𝑥̅𝑥, defined as ∆𝑥𝑥 = 𝑥𝑥 − 𝑥̅𝑥. (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) 

refers to the monthly means of all other variables related to radiation transfer. (𝑦𝑦�1, … 𝑦𝑦�𝑛𝑛) denote the climatological monthly 

means. 𝑂𝑂𝐶𝐶𝐶𝐶(∆𝑥𝑥2) represents the minimized truncation error.  180 

 

Since the fluxes computed relative to the monthly(𝑦𝑦1, … ,𝑦𝑦𝑛𝑛) and climatological (𝑦𝑦�1, …𝑦𝑦�𝑛𝑛) have different time average-

related biases, this reduces the accuracy of Eq.1. The 𝛿𝛿𝛿𝛿∆𝑥𝑥,𝐶𝐶𝐶𝐶 can also be calculated using the following formula: 

, 1 1( , ,..., ) ( , ,..., ) ( )b b
x C Cn nF F x y y F x x y y O xδ ∆ = − − ∆ + ∆ ,            (4) 

, 1 1( , ,..., ) ( , ,..., ) ( )f f
x M n n MF F x x y y F x y y O xδ ∆ = + ∆ − + ∆ ,        (5) 185 

First, the radiation perturbation 𝛿𝛿𝛿𝛿∆𝑥𝑥 is calculated using the monthly mean-based equations (Eq.3 and Eq.5). If, during the 

calculation, the variable 𝑥𝑥 + ∆𝑥𝑥 results in non-physical values (e.g., for CF perturbations, 𝑥𝑥 + ∆𝑥𝑥 may become less than 0 or 

greater than 100), the rules outlined by Thorsen et al. (2018) are followed. In this case, either Eq.2 or Eq.4 is selected for the 

calculation, or the cloud boundary perturbation is adjusted to be as close as possible to the true perturbation without being 

unphysical. Finally, all valid calculation results are averaged to obtain the final central differencing 𝛿𝛿𝛿𝛿∆𝑥𝑥 . Since the 190 

calculation of 𝛿𝛿𝛿𝛿∆𝑥𝑥 requires intensive radiative transfer computations, to enhance computational efficiency, the RK is pre-

calculated. Multiple calculations are performed as needed to avoid nonlinearity in the RK. In subsequent applications, the 

𝛿𝛿𝛿𝛿∆𝑥𝑥 can be obtained directly by multiplying the known perturbation ∆𝑥𝑥 by the corresponding kernel coefficient 𝐾𝐾∆𝑥𝑥: 

x
x

FK
x

δ ∆
∆ =

∆
             (6) 

3.1.2 Nonlinear CF Perturbation Model 195 

To replace the extensive radiation transfer calculations (Eq.1 to 5) and further avoid additional pre-computation of the RK 

(Eq.6), we employ an ANN model to construct the relationship between the perturbation variable (CF) and shortwave fluxes. 

Subsequently, the radiative perturbation 𝛿𝛿𝛿𝛿∆𝑐𝑐𝑐𝑐  induced by a change ∆𝑐𝑐𝑐𝑐 in the perturbation variable CF can be directly 
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derived from Eq.7. The corrected radiation estimate, obtained using more accurate CF products, can be derived by adding the 

perturbation radiation caused by the CF difference to the original radiation values. 200 

 

One significant advantage of the ANN is its ability to learn from data without explicit rules, automatically extracting features 

and patterns (Zheng et al., 2024). We used the Backpropagation (BP) algorithm to train the model, with 40 neurons in the 

hidden layer, a maximum of 400 iterations, a learning rate of 0.03, and a target error of 0.00004, while other parameters were 

set to their default values. The model inputs were derived entirely from the monthly means of the CERES version 4 dataset, 205 

including cloud properties and other meteorological variables related to radiation transfer theory (Table 2), with the 

dependent variables being shortwave radiation, covering data from April to September 2003 to April to September 2020. 70% 

of the data was randomly selected for training, while 30% was used for validation.  

21 1( , ... ) ( , ... ) ( )
2

ANN n ANN n
cf

f cf cf y y f cf cf y yF O cfδ ∆

+ ∆ − − ∆
= + ∆       (7) 

where 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴 represents the nonlinear function linking input variables and shortwave radiation, 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆 is the radiation from the 210 

CERES SYN, 𝑐𝑐𝑐𝑐 is from the CERES SSF CF, ∆𝑐𝑐𝑐𝑐 represents the difference between the CF in the CERES SSF and the 

Fused_cf_Arc, non-physical perturbation values are addressed following the rules proposed by (Thorsen et al., 2018), and 

𝑂𝑂(∆𝑐𝑐𝑐𝑐2) is the truncation error in the ANN model calculation process. Given the ANN model’s strong capability in handling 

nonlinear relationships, the experimental results for this term are nearly zero, and therefore, it is neglected. Finally, the 

shortwave radiation corrected by the higher-accuracy CF can be expressed as follows: 215 

corrected SYN cfF F F∆= + ∆             (8) 

 
Table 2: Input variables used in ANN model. 

Input Varibales Source 

∆𝑥𝑥 Base-states conditions 

Cloud fraction Cloud top pressure, Cloud base pressure, phase, Cloud visible optical 

depth, Cloud ice/water particle radius, Cloud liquid/ice water path, 

Cloud emissivity. 

CERES SSF, Monthly means 

Aerosol optical depth, Column Ozone, Skin temperature, Relative 

Humidity, Surface albedo, Solar insolation. 

CERES SYN, Monthly means 

 

3.2 Extended Model for all-wave net radiation Estimation 220 

Shortwave radiation budget plays a crucial role in the formation of NR. Building upon our previous research (Chen et al., 

2022), we further leveraged the strong correlation between shortwave radiation and NR to develop an extended estimation 
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model based on shortwave radiation. Previous studies have demonstrated that vegetation and temperature are key factors in 

regulating the relationship between shortwave radiation and NR (Huang et al., 2016; Jiang et al., 2015). Additionally, the 

length of daylight (LRD) has been found to influence their daily mean relationship (Chen et al., 2020). Therefore, in 225 

constructing the extended model, we incorporated shortwave radiation, surface albedo, LRD, fractional vegetation cover 

(FVC), Ta, and RH as key variables, all aggregated to monthly means as model inputs. Ultimately, the NR was estimated as 

follows: 

( , , , , , )aNR f DSR albedo LRD FVC T RH=         (9) 

where 𝑓𝑓 is constructed using an ANN model, NR, DSR, and albedo are derived from CERES observations. The LRD is 230 

calculated pixel by pixel based on solar angles and pixel latitude and longitude. FVC is obtained from the GLASS product, 

𝑇𝑇𝑇𝑇 and 𝑅𝑅𝑅𝑅 are sourced from MERRA-2 or derived from its data. 

3.3 Evaluation statistics 

We conducted a comparative evaluation of the radiation before and after correction using ground station data, employing the 

following three statistical metrics: 235 
2
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where 𝑦𝑦𝑖𝑖  is the radiation before/after correction, 𝑦𝑦�  is the mean of the radiation before/after correction. 𝑌𝑌𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑖𝑖  is the 

ground-based measured radiation, and 𝑌𝑌𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔��������� is the mean of the ground-based measured radiation. 240 

4 Results 

4.1 CF Perturbation Model training and validation 

As there are obvious seasonal variations in radiation, we developed separate ANN models for each month. Table 3 presents 

the accuracy of all models on the training and validation datasets. All models exhibit an R2 value greater than 0.98 on both 

the training and validation datasets, with most reaching 0.99. The root-mean square errors (RMSEs) are below 7.7 W/m², 245 

showing slight variation across months, peaking in June and reaching its lowest in September. For all models, the RMSEs 

during the validation process is slightly lower than that during the training process, indicating that the models did not overfit. 

Overall, the results demonstrate that our models possess high reliability. 
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Table 3: Training and validation accuracy of CF-Radiation Perturbation Model. Note ‘Month_Apr_CF-DSR’ refers to the CF-250 
DSR perturbation model for April.  

Model Training Validation 
R2 RMSE(W/m2) R2 RMSE(W/m2) 

Month_Apr_CF-DSR 0.98 6.38 0.98 6.34 
Month_May_CF-DSR 0.98 7.73 0.98 7.70 
Month_Jun_CF-DSR 0.99 7.17 0.99 7.08 
Month_Jul_CF-DSR 0.99 6.04 0.99 5.99 

Month_Aug_CF-DSR 0.99 3.88 0.99 3.72 
Month_Sep_CF-DSR 0.99 2.19 0.99 2.15 

4.2 Validation of corrected DSR against ground measurements 

Figure 2 presents the validation of our corrected DSR estimates using all ground station data, alongside the CERES SYN 

DSR for comparison. The results show improvements across all metrics following adjustment. Specifically, R2 increased 

from 0.8453 to 0.8527, RMSE decreased from 28.14 to 27.04 W/m², and bias reduced from 1.18 to -0.06 W/m². The 255 

corrected DSR align more closely with the 1:1 line, particularly showing notable improvements in addressing the 

overestimation of DSR. These results are expected, as our cloud product provides more comprehensive coverage, capturing 

higher daytime CFs compared to CERES (Liu et al., 2023), which leads to reduced DSR values. 

 

We further present the validation results for sites where CERES significantly underestimates CF relative to Fused_cf_Arc 260 

(Fig. 3), which more clearly highlight the performance of the corrected DSR. For sites with CF underestimation exceeding 

10%, RMSE decreased from 33.09 to 30.37 W/m², and bias reduced from 10.98 to 1.01 W/m². For sites with CF 

underestimation greater than 20%, RMSE decreased from 38.36 to 32.37 W/m², with a remarkable bias improvement, 

dropping by nearly 20 W/m² (from 22.41 to 3.68 W/m²). These results demonstrate that the DSR corrected using the more 

accurate cloud product shows substantial improvements under conditions where CERES CF is severely underestimated. 265 

 

 
Figure 2: Validation of DSR against all ground stations before and after correction. 
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Figure 3: Validation of DSR against ground stations before and after correction at sites where CERES CF is underestimated 270 
relative to Fused_cf_Arc by more than 10% (a) and 20% (b). Blue represents the values before correction, while red represents the 

values after correction. 

 

We further examined the DSR at stations where CERES CF was increasingly underestimated relative to Fused_cf_Arc, in 

order to evaluate the performance of the correction under different levels of CF underestimation. The results reveal that both 275 

RMSE and bias are closely related to the magnitude of this underestimation. For RMSE (Fig. 4), the corrected DSR shows 

relatively stable performance when CERES CF underestimation ranges from more than 5% up to more than 30%, with 

RMSE values increasing only moderately from 28 W/m² to 33.4 W/m². When the CF underestimation further exceeds 30% 

and reaches 35%, the RMSE rises more sharply, reaching 41.06 W/m². By contrast, the uncorrected DSR (CERES DSR) 

exhibits a much stronger sensitivity to CF underestimation, with RMSE steadily increasing from 30.57 W/m² at stations with 280 

CF underestimation greater than 5% to as high as 46.42 W/m² at greater than 35%. Similarly, the bias (Fig. 4) indicates that 

the correction substantially reduces systematic deviations. After correction, the bias changes gradually from –0.40 W/m² to 

10.13 W/m² across the range of stations with CF underestimation greater than 5% to greater than 35%. In comparison, the 

uncorrected DSR shows a considerably larger positive bias, increasing from 2.83 W/m² to 33.05 W/m². These results 

demonstrate that the CF-based correction effectively mitigates both random and systematic errors, particularly under 285 

conditions with moderate to large CF underestimation. 
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Figure 4: Validation of DSR against ground-based observations before and after correction for stations with CF differences 

exceeding various thresholds (Fused_cf_Arc – CERES SYN). The x-axis denotes CF difference thresholds (%, 290 
e.g., >5%, >10%, … >35%), while the y-axis represents the RMSE or bias (b). Blue and orange curves correspond to results before 

and after correction, respectively. 

4.3 Comparison of DSR before and after correction 

Figure 5 presents the spatial distribution of the monthly mean DSR from April to September during the period 2003–2020. 

The most pronounced differences between the corrected and uncorrected DSR occur over Greenland, particularly in June, 295 

where discrepancies reach up to 30 W/m². Figure 6 further highlights these differences through histograms over Greenland, 

demonstrating that the correction primarily reduces high DSR values during May, June, July, and August. The correction 

effects exhibit a distinct seasonal pattern, with more substantial correction during summer. The most notable case is 

observed in June, where the root-mean-square difference (RMSD) reaches 15.98 W/m², bias is 14.37 W/m², and the 

maximum per-pixel difference exceeds 35 W/m². In contrast, the correction in September is much less significant, with an 300 

RMSD of only 3.83 W/m². 

 

The correction of DSR is influenced not only by the magnitude of CF biases but also by modulation from the solar zenith 

angle (He et al., 2013, 2015; Kim and Liang, 2010). In May and June, although CF biases are generally larger in May than in 

June, the correction effect on DSR is more pronounced in June. For example, in northeastern Greenland, pixels with a 39% 305 

CF bias in May correspond to a DSR difference of 25 W/m² between the original and corrected values. Whereas in June, 

pixels with a 32% CF bias exhibit a DSR difference of up to 35 W/m². This discrepancy is primarily attributed to the lower 

solar zenith angle in June, which enables more solar radiation to reach the surface, thereby amplifying the influence of CF 

biases on DSR. Consequently, even relatively smaller CF biases can result in more substantial correction effects. 
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 310 
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Figure 5: The spatial distribution of the monthly mean DSR for April and September from 2003 to 2020, both before and after 

correction, as well as the spatial distribution of the differences between the two, and the CF differences (Fused_cf_Arc – CERES 

SYN). All metrics have units of W/m2. 

 

 315 
Figure 6: Histogram of multi-year average monthly DSR before (red bin) and after (blue bin) correction over Greenland. All 

RMSD and Bias statistics have units of W/m2. The vertical coordinate represents the frequency and the horizontal coordinate 

represents the DSR value (W/m2). 

4.4 Validation of estimated all-wave net radiation 

The extended model was developed to estimate the monthly mean NR based on the corrected DSR. The LRD was employed 320 

to account for the influence of diurnal variations in shortwave radiation on NR across different seasons. As a result, the 

model does not need to be developed separately for each month; instead, the seasonal effects are implicitly incorporated 

through the LRD. During validation, the model achieved an R² of 0.99, an RMSE of 5.87 W/m², and a bias of 0 W/m² on the 

validation dataset (Fig. 7), demonstrating excellent performance. In addition, the estimated NR was further validated against 

in situ observations from ground-based stations. 325 
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Figure 7: Scatter plot comparing the NR estimated using the extend model with the CERES-SYN NR dataset 
 

Figure 8 presents a comparison of scatterplots between the estimated NR from this study, CERES SYN dataset and ground-

based observations. The estimated NR shows clear advantages over CERES NR in terms of overall agreement with ground-330 

based observations. Specifically, the estimated NR achieves an R² of 0.77 and an RMSE of 28.9 W/m², compared with 0.61 

and 34.88 W/m² for CERES NR. Although the bias of the estimated NR is somewhat larger (14.88 vs. 10.08 W/m²), the 

scatter plots indicate that the correction substantially improves the distribution of points along the 1:1 line. In particular, the 

underestimation present in CERES NR around 50~100 W/m ²  is largely alleviated, leading to a more consistent 

representation of the observed variability.  335 

 

 
Figure 8: Scatterplot comparison between the estimated NR from this study, CERES SYN dataset, and ground-based observations. 

 

We further examined the validation performance under different levels of CF underestimation (CERES SYN relative to 340 

Fused_cf_Arc). This analysis allows us to assess how the CF-based correction behaves under varying degrees of 
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underestimation. As shown in Fig. 9, validation of the estimated NR against ground-based measurements under different CF 

difference thresholds further highlights the advantage of using the CF-corrected DSR as the basis for NR calculation. the 

estimated NR maintains a relatively robust correlation with observations across all CF difference ranges, with R² values 

decreasing gradually from 0.74 (>5%) to 0.54 (>30%). Although the RMSE (30.21–35.12 W/m²) and bias (16.25–27.41 345 

W/m²) indicate an overall tendency toward overestimation, the scatter plots remain distributed along the 1:1 line, suggesting 

that the systematic bias is more uniform. 

 

By contrast, the CERES NR shows considerably weaker performance under large CF underestimation. Its R² drops rapidly 

from 0.54 (>5%) to nearly zero (>30%), with scatter plots at CF underestimation greater than 20% exhibiting an almost 350 

horizontal distribution, indicating a loss of physical consistency with ground observations. While the RMSE values of 

CERES NR are comparable to those of the estimated NR, the near-absence of correlation at high CF underestimation 

suggests that CERES NR fails to capture the variability of surface conditions under such circumstances. 

 

 355 
Figure 9: Validation of DSR against ground-based observations before ((g) ~ (l)) and after ((a) ~ (f)) correction for stations with 

CF differences exceeding various thresholds (Fused_cf_Arc – CERES SYN).  
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These results imply that the NR estimated from the CF-corrected DSR provides a more reliable representation of the 

radiation variability, particularly in terms of correlation structure, even though the magnitude bias remains to be further 360 

improved. In other words, the correction ensures that the retrieved NR retains meaningful sensitivity to surface and 

atmospheric variations, whereas CERES NR tends to collapse under conditions of high CF underestimation. Nevertheless, it 

should be noted that the performance of the estimated NR is still limited when CF differences are large. Under heavy cloud 

cover, retrieving NR from satellite observations has long been recognized as an intrinsic challenge. Future efforts may focus 

on incorporating additional constraints from longwave radiation, atmospheric water vapor, or surface properties to further 365 

reduce systematic biases.  

 

Given the pronounced difference of CF over Greenland, we highlight the validation results of NR at selected ground stations 

in Greenland (Table 4). The results demonstrate that the estimated NR aligns much more closely with ground-based 

measurements than the original CERES SYN data. Overall, these findings confirm that the proposed extended model is 370 

robust. It significantly improves the accuracy of radiation estimates and enhances the reliability and utility of the resulting 

radiation products. 

 

Table 4: Validation results of the estimated NR and CERES SYN NR against at observation at PROMICE sites in Greenland. 

Site 
R2 RMSE Bias R2 RMSE Bias 

Estimated NR CERES SYN NR 

KAN_L 0.85 36.10 27.35 0.87 28.70 -18.22 

KAN_M 0.84 18.76 9.44 0.73 23.99 -3.27 

KAN_U 0.63 27.53 21.18 0.67 25.41 22.03 

KPC_L 0.86 28.39 22.35 0.84 38.88 34.34 

KPC_U 0.64 45.90 35.61 0.79 50.70 44.55 

MIT 0.59 36.35 20.66 0.14 67.45 44.91 

NUK_N 0.63 34.83 0.09 0.65 51.72 -28.15 

NUK_U 0.79 21.13 3.62 0.76 25.66 1.33 

QAS_L 0.54 52.19 -28.95 0.69 46.58 25.51 

SCO_L 0.92 21.33 5.93 0.90 27.19 18.76 

TAS_U 0.79 19.16 -2.98 0.54 58.05 48.39 

UPE_L 0.91 11.36 -0.05 0.84 32.49 -21.88 

UPE_E 0.85 18.39 6.65 0.74 33.84 -12.97 

 375 
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4.5 Comparison between the estimated all-wave net radiation and the CERES SYN 

As shown in Fig.10, the spatial distribution of the multi-year monthly mean NR over the Arctic from April 2003 to 

September 2018 is presented for the estimated NR in this study and the CERES SYN. In contrast to the DSR correction 

results, the differences between the estimated NR and CERES SYN are relatively minor, particularly over Greenland, where 

the DSR correction had previously shown substantial discrepancies. Moreover, while increased CF typically results in 380 

reduced DSR due to enhanced reflection, an opposite pattern is observed in northeastern Greenland during May and July: 

higher CF is associated with increased NR. 

 

This phenomenon could be attributed to the dual-component nature of NR, which comprises both shortwave and longwave 

radiation. Clouds reduce the surface energy input by attenuating incoming shortwave solar radiation, while simultaneously 385 

enhancing the absorption and re-emission of longwave radiation by the atmosphere, thereby suppressing the loss of 

longwave radiation from the surface. Notably, in regions such as Greenland, which are characterized by high surface albedo, 

the contribution of surface-reflected shortwave radiation is relatively large, weakening the net cooling effect of clouds 

(Miller et al., 2015). As noted by (Kay and L’Ecuyer, 2013), low-level Arctic clouds can exert a net warming effect, as the 

enhancement of downward longwave radiation often outweighs the reduction in shortwave radiation reaching the surface. 390 

The results in this study are consistent with this perspective: in specific regions and months—such as in northeastern 

Greenland during summer—the enhancement of longwave radiation associated with increased CF is sufficient to offset or 

even exceed the reduction in shortwave radiation, resulting in a net increase in NR. 
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Figure 10: The spatial distribution of the monthly mean NR for April and September from 2003 to 2020, estimated NR in this 395 
study and the CERES SYN, as well as the spatial distribution of the differences between the two (estimated NR – CERES NR), and 

the CF differences (Fused_cf_Arc – CERES SYN). 

5 Discussion 

5.1 Sensitivity of DSR to variations in model input parameters 

To assess the relative importance of CF among various input variables, we conducted a sensitivity analysis. Specifically, 400 

single input variable was varied individually while all other variables were held constant, and the corresponding DSR 

responses were evaluated. As shown in Fig. 11, DSR is most sensitive to CF: as CF increases from 5% to 100%, DSR 

decreases markedly from approximately 315 W/m² to 180 W/m², indicating a strong negative correlation. Cloud top pressure 

also exerts a non-negligible influence, whereas cloud radius, aerosol optical depth, and relative humidity have relatively 

weak impacts, suggesting that even large uncertainties in these variables are unlikely to introduce substantial DSR bias. 405 

 

To investigate the impact of variable covariations on the response structure of DSR, we performed a series of multivariate 

variation experiments. As illustrated in Fig.12: (a) when only CF and cloud phase are varied, the influence of cloud phase is 

relatively minor, and the negative DSR response to increasing CF persists clearly; (b) adding cloud base pressure reduces the 

visibility of its individual impact—previously seen as increasing DSR when exceeding 760 hPa—because the dominant CF 410 

effect overrides it; (c) when cloud top pressure is further included, the DSR response exhibits a "rise-then-fall" pattern, 

indicating that under low CF conditions, other cloud variables can still exert noticeable influence on DSR, but as CF 

increases, its controlling effect gradually becomes predominant. 

 

We also examined the monthly mean CF over the Arctic (not shown), and found that CF exceeds 40% in most regions. 415 

Combined with the analysis in Fig. 12, this suggests that once CF exceeds 40%, DSR consistently decreases with increasing 

CF. This further confirms that CF is the dominant factor influencing DSR in cloud-rich regions such as the Arctic. Given that 

CF retrievals from passive remote sensing remain highly uncertain, CF likely represents a major source of current radiative 

biases. Therefore, even though CF is the only variable available for correction, its dominant influence on DSR makes it 

sufficient for effectively reducing the bias. The success of our correction further supports the validity of this approach 420 

(Figures 2 and 3). 
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Figure 11: Sensitivity of DSR to individual input variables. Each panel shows the DSR response to a single variable, varied across 

its range while keeping all others fixed. Red lines indicate the mean response. 425 
 

 
Figure 12: Sensitivity of DSR to the combined variation of multiple cloud variables. (a) Varying variables include CF and cloud 

phase. (b) Varying variables include CF, cloud phase, and cloud base pressure. (c) Varying variables include CF, cloud phase, 

cloud base pressure, and cloud top pressure. (d) Varying variables include CF, cloud phase, cloud base pressure, cloud top 430 
pressure, and cloud tau. 

5.2 Advantages of the developed CF perturbation model 

In most previous studies, cloud radiative perturbations were typically estimated by constructing kernel functions that relate 

cloud properties—such as cloud top pressure, cloud optical thickness, geographic location, and month—to radiative 

responses, or by assuming a linear relationship between cloud changes and radiative perturbations under the assumption of 435 

small perturbations (Shell et al., 2008; Soden et al., 2004, 2008). Many studies employed the histogram method, in which the 

influence of clouds is discretized into multiple cloud regimes. The total radiative response is then obtained by multiplying 

the occurrence frequency of each cloud regime by the corresponding radiative kernel.  
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Figure 13 presents example plots of several publicly available cloud radiative kernels, derived from Zelinka et al. (2012) 440 

(Fig.13a), Zhang et al. (2021) (Fig.13b), and Zhou et al. (2022) (Fig.13c). All three kernels quantify cloud impacts using a 

histogram-based approach. We show the cloud radiative kernels for the month of June, corresponding to a cloud top pressure 

of 500 hPa and a cloud optical thickness of 6. In Fig.13a, the kernel is a function of cloud top pressure, cloud optical 

thickness, month, latitude, and surface albedo. The kernel shown was selected based on the surface albedo conditions for 

June. As shown in the figure, even when using the same ISCCP-H simulator dataset, substantial differences can be observed 445 

between the cloud radiative kernels of Fig.13a and 13b due to the use of different variable combinations for histogram 

binning to quantify cloud impacts. This highlights the critical importance of variable selection in kernel construction. In 

addition, the kernel in Fig.13c, generated using a GCM by Zhou et al. (2022), also exhibits clear differences from the other 

two, further indicating that the choice of model plays a key role in shaping the structure of cloud radiative kernels. 

 450 

 
Figure 13: The spatial distribution of shortwave cloud radiative kernels for June, corresponding to a cloud top pressure of 500 hPa 

and a cloud optical thickness of 6. Panel (a) is derived from Zelinka et al. (2012), panel (b) from Zhang et al. (2021), and panel (c) 

from Zhou et al. (2022) The units are W/m²/%. 

 455 

This study fully acknowledges the high complexity of the atmospheric system, particularly the numerous parameters and 

nonlinear mechanisms involved in cloud–radiation interactions. To comprehensively characterize the impact of clouds on 

radiation, we incorporate multiple key factors into the modeling process, including cloud fraction, cloud effective radius, 

cloud top pressure, cloud optical thickness, and aerosols. We propose a CF perturbation model based on the strong nonlinear 

fitting capabilities of ANNs. This model effectively captures the response of radiative perturbations to cloud changes under 460 

various atmospheric background states and at any location, thereby overcoming the limitations of traditional cloud radiative 

kernel methods that rely on linear response assumptions. 

 

Our approach avoids the computational burden associated with high-dimensional interpolation in histogram-based kernel 

methods and exhibits good scalability, enabling direct application to assess the radiative perturbation effects of other 465 

variables such as water vapor and aerosols. In addition, the model is entirely trained and constructed using satellite 
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observational data, without incorporating any information from GCMs or reanalysis products. This helps to eliminate 

systematic errors often introduced by parameterizations or idealized assumptions in traditional models. In contrast, satellite 

data offer greater objectivity and more accurately reflect the actual state of the surface–atmosphere system, providing a 

robust foundation for reliably evaluating the impacts of clouds and other factors on the Earth's radiation balance. 470 

6 Conclusion 

In this study, we developed a CF perturbation model based on an ANN and utilized a more accuracy CF product, 

Fused_cf_Arc, to correct CERES SYN DSR over the Arctic. Building upon this correction, we further established an 

extended model that enables direct estimation of NR based on the corrected DSR. 

 475 

By integrating an ANN-based CF perturbation model with the more accurate Fused_cf_Arc product, we effectively corrected 

CERES SYN DSR over the Arctic. The correction substantially improved the agreement with 66 ground-based sites, 

reducing RMSE from 30.57 to 28.87 W/m² and bias from 2.83 to 0.40 W/m². Importantly, while the accuracy of CERES 

DSR degraded rapidly with increasing CF underestimation (RMSE rising to 42.44 W/m² and bias to 29.77 W/m² at sites 

with >30% CF underestimation), the corrected DSR maintained a much lower error level (RMSE 33.48 W/m², bias 10.13 480 

W/m²). The improvements were most pronounced over Greenland, where local corrections reached up to 30 W/m², and 

seasonal analyses confirmed the enhanced robustness of our method under diverse solar–cloud conditions. These results 

highlight the critical role of CF accuracy in DSR estimation and demonstrate the effectiveness of our correction in mitigating 

CF-related biases. 

 485 

Building upon the corrected DSR, we developed an extended model for directly estimating NR, thereby avoiding the 

longwave uncertainties inherent in conventional radiative transfer methods. Compared with CERES NR, our NR estimates 

showed markedly higher consistency with ground measurements, with R² increasing from 0.612 (CERES NR) to 0.772 and 

RMSE decreasing from 34.88 W/m² (CERES NR) to 28.90 W/m². Although the bias rose slightly (from 10.08 W/m² 

(CERES NR) to 14.88 W/m²), the corrected NR significantly alleviated the underestimation in the 50–100 W/m² range. 490 

Importantly, in cases of pronounced CERES CF underestimation (>30%), the CERES NR essentially loses its ability to 

capture radiation variability (R² = 0.0182), whereas the estimated NR retains substantial representational skill (R² = 0.5411). 

This confirms that NR retrieved from CF-corrected DSR provides a more reliable representation of radiation variability, 

preserving physical sensitivity to surface and atmospheric processes. 

 495 

Overall, this study demonstrates a practical and physically consistent framework for improving surface radiation retrievals in 

the Arctic, where satellite products often suffer from cloud-related uncertainties. By leveraging improved CF information 

and employing a data-driven approach that bypasses radiative transfer assumptions, the proposed methodology enhances 
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both the accuracy and interpretability of DSR and NR estimates. These advances are particularly valuable for high-latitude 

energy budget assessments, climate model evaluation, and monitoring Arctic amplification, and they provide a foundation 500 

for extending the method to other regions and for integrating additional radiation corrections in future research. 
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