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Abstract. Microplastics (MPs) are environmental contaminants of global concern, and the atmosphere may play an 10 

important role in their environmental distribution. In this study, we developed a tailored analytical chain – including sample 

collection, processing, and analysis based on optical microscopy and focal plane array μ-Fourier transform infrared 

spectroscopy (FPA-μ-FTIR) – to quantify 20-215 μm MPs in wet and dry atmospheric deposition samples. We present a 

novel sampling setup to collect particulate wet deposition, which consists of an on-site precipitation filtration device. 

Validation of the sampling setup via spike-recovery experiments using surrogate standards resulted in average recoveries of 15 

approximately 90%, suggesting limited MP losses. Additionally, we developed a custom software platform that combines the 

results from optical microscopy and chemical imaging obtained through FPA-μ-FTIR. Furthermore, an assessment of the 

total measurement uncertainty was made by addressing each step of the analytical chain individually. The resulting total 

expanded uncertainty was approximately 90% for determining MP numbers in a single wet or dry deposition sample. The 

conversion of MP numbers and associated size information into MP mass was estimated to generate an additional systematic 20 

error of 50%. Based on analyses of blanks, the critical level and the limit of detection per analyzed subsample were 29 and 

58 MPs, respectively. The analytical chain was applied to quantify the MP content in wet and dry atmospheric deposition 

samples collected at a suburban site in Switzerland. The principles and methodology used in this study to calculate the 

uncertainties, recoveries and limits of detection are transferrable to other analytical methods intended for MP analysis. Such 

an assessment of method-specific uncertainties is an important step towards enhancing the comparability of MP (monitoring) 25 

data. 

1 Introduction 

Microplastic particles (MPs) are defined as solid plastic particles smaller than 5 mm and larger than 1 μm in size 

(Hartmann et al., 2019; Thompson et al., 2024). Composed primarily of synthetic, non-biodegradable polymers, MPs are 

highly persistent in the environment, with estimated half-lives spanning from decades to centuries (Chamas et al., 2020). 30 
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Their occurrence across various environmental compartments and in remote regions has made them an environmental 

contaminant of global concern (Allen et al., 2021; Obbard, 2018; Thompson et al., 2024; Wang et al., 2022b). Recent 

research has highlighted the importance of the atmosphere in facilitating the (long-range) transport of MPs (Allen et al., 

2019). 

Studies on atmospheric MPs have relied on sampling methods well established in classical atmospheric sciences, 35 

including active and passive sampling techniques. Active air sampling techniques have been used to determine airborne MPs 

concentrations, with results reported as MP numbers or total MP mass per unit volume of air . Some of these studies targeted 

MPs in the PM10 or PM2.5 fractions that are relevant for inhalation exposure (Costa-Gómez et al., 2023; Kirchsteiger et al., 

2023; Peñalver et al., 2021; Wu et al., 2025), whereas others collected total suspended particles without well-characterized 

upper particle size limits (Gan et al., 2025; Rindelaub et al., 2025; Wang et al., 2022a). Passive sampling techniques, such as 40 

bulk deposition collectors, capture particles deposited in a given area over a given time period. Although bulk deposition 

collectors are cost-effective, corresponding results do not allow distinguishing between wet and dry deposition. To do so, a 

separate collection of MPs deposited during precipitation events and dry periods is necessary. The results from such 

measurements allow for a more detailed assessment of the impact of precipitation events on MPs deposition. Deposition 

rates are usually reported as MP numbers deposited per unit area and time or as total MP mass deposited per unit area and 45 

time (Allen et al., 2019; Brahney et al., 2020; Dris et al., 2016; Fan et al., 2022; Klein and Fischer, 2019; Sun et al., 2022; 

Szewc et al., 2021). 

In addition to the different sampling methods, there is a large variety of sample processing steps and analytical 

techniques used by different laboratories. Analytical techniques for MP analysis are typically categorized as either particle-

based methods or mass-based methods. Most frequently applied particle-based methods include Fourier transform infrared 50 

(FTIR) spectroscopy and Raman spectroscopy, whereas mass-based methods include pyrolysis-gas chromatography-mass 

spectrometry (Py-GC-MS) and thermal desorption-GC-MS (Caldwell et al., 2022; Ivleva, 2021). Each analytical technique 

requires tailored sample processing steps. As a result, there are diverse and non-standardized analytical chains (i.e. sequences 

of sample collection, processing and analysis steps), which hinders the comparison of  results of MP monitoring studies (Lu 

et al., 2021; Rochman et al., 2017; Thompson et al., 2024). In the absence of a standardized method, a comparison of results 55 

from different methods would be facilitated if the respective measurement precision or uncertainties were reported. 

However, only a few studies have considered such method-specific analytical uncertainties (Ciornii et al., 2025; Isobe et al., 

2019; Morgado et al., 2022; She et al., 2022; Yang et al., 2023), which raises concerns about the reliability, interpretability 

and comparability of reported MP concentrations. 

The goals of this study were, therefore, i) to develop an analytical chain tailored for the quantification of MPs in wet 60 

and dry atmospheric deposition samples, ii) to estimate the total measurement uncertainty associated with the analytical 

chain by separately addressing the uncertainties of each step, iii) to calculate MP number-based detection limits of our 

method and iv) to illustrate the strength of our approach by quantifying the MP content in selected wet and dry atmospheric 

deposition samples. It is noted that although the analytical chain presented here relates to atmospheric deposition samples, all 
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steps other than sample collection, such as sample processing, analysis, quality assurance/quality control (QA/QC) and 65 

uncertainty assessments, are transferrable to other MP analysis approaches and data reporting. 

2 Chemical reagents and standards 

The following chemicals were used in this study: ultrapure water (Arium Pro, Sartorius, Germany), ethanol (70%, 

Reuss-Chemie, Switzerland), glycerol (>99%, Merck, Germany), hydrogen peroxide (H2O2, 35%, Carl Roth, Germany), 

protocatechuic acid (>97%, Merck, Germany), iron sulphate (FeSO4·7 H2O, >99%, Carl Roth, Germany), sodium 70 

polytungstate (SPT, >99.9%, Carl Roth, Germany). Furthermore, we used differently colored polyethylene (PE) spheres 

(diameter: 53-63 µm, color: red, blue, Cospheric, USA), and polystyrene (PS) spheres (diameter:104 µm, color: blue, 

Spherotech, USA). These spherical MPs served as surrogate standards for the purpose of QA/QC. 

3 Description of an analytical chain for the quantification of microplastics in wet and dry atmospheric deposition 

A schematic of the analytical chain developed in this study for the quantification of MPs in wet and dry atmospheric 75 

deposition is shown in Fig. 1. It includes sample collection, processing, and analysis, as well as QA/QC steps, which are 

discussed in detail below. 
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Figure 1: A tailored analytical chain for the quantification of microplastics (MPs) in wet and dry atmospheric deposition samples. 

The analytical chain includes sample collection (2), processing (4) and analysis by optical microscopy and focal plane array µ-80 
Fourier transform infrared spectroscopy (FPA-µ-FTIR) (5,6), as well as quality assurance/quality control (QA/QC) (1,3) using 

surrogate microplastic standards (red and blue polyethylene spheres, ø53–63 µm). 

3.1 Sampling of wet and dry atmospheric deposition 

Wet and dry atmospheric deposition were collected with a dedicated passive sampler (Nesa Srl, Italy) (Figure 2a). 

Prior to deploying the sampler in the field, the plastic tubing of the sampler was replaced with copper tubing, and the 85 

capacitive precipitation sensor was replaced by an optical precipitation sensor (Meteorologische Messtechnik GmbH, 

Germany) to enable faster switching between wet and dry deposition sampling. A 2 L glass dish (Duran Crystallizing Dish, 

DWK Life Sciences, Germany) was placed at the (closed) bottom of the cylinder labelled "dry", to collect gravitationally 

depositing particles. The bottom end of the cylinder labelled "wet" has a funnel and a copper tube, which guides the 

precipitation to a custom-made filtration unit made of anodized aluminium (Fig. 2b) installed at the end of the tube. The 90 

filtration device was fitted with a stainless-steel mesh (Haver & Boecker, Germany) of diameter 47 mm and mesh size 15 

µm to collect particles >15 µm present in rainwater or snow (that melted over time). The mesh size was chosen as this is 
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close to the lower particle size detection limit of 20 µm for (automated) FPA-μ-FTIR spectroscopy (Philipp et al., 2022), the 

analytical technique of choice in this study. The mesh size may be adapted according to the desired measurement technique 

and the corresponding particle-size detection limit. The outlet of the filtration device was connected to a membrane pump 95 

(FP 70, KNF, Germany) that turned on when the optical rain sensor detected precipitation. This setup enabled the on -site 

filtration of wet deposition samples directly on stainless-steel meshes, which simplifies subsequent sample processing by 

eliminating the need of (glass) bottles typically used to collect wet deposition samples. The filtration device was warmed 

using a heating strip to prevent freezing and facilitate the melting of snow. 

 100 

Figure 2: Dry (left cylinder, ⌀23 cm) and wet (right cylinder, ⌀23 cm) deposition passive sampler (a). Dry deposition samples were 

collected in a glass dish (⌀19 cm) containing a layer of glycerol placed in the cylinder. Wet deposition samples were collected using 

a custom-made on-site aluminium filtration device (b). The filtration device was fitted with a stainless-steel mesh (⌀47 mm, 15 µm 

mesh size).  

For collecting dry deposition samples, we added 70-100 mL of glycerol to cover the bottom of the glass dish and 105 

placed it in the cylinder labelled "dry". The added glycerol served as a particle trap to prevent the remobilization of deposited 

material under windy conditions, as glycerol is viscous and does not evaporate easily under typical field conditions. 
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Furthermore, after transporting the glass dish back to the lab, deposited particles were easily resuspended by diluting the 

glycerol in ultrapure water. 

The suitability of the setups for collecting wet and dry deposition was assessed through spike-recovery tests using 110 

red and/or blue PE spheres (see Supplement, Sect. S1 for full details). The average recovery of red PE particles from the wet 

deposition sampling setup (filtration device with 15 µm stainless steel mesh) was 98% ± 2 under laboratory conditions (n = 

6) and 92% ± 4 under field conditions (n = 3). Recoveries of red and blue spheres from the dry deposition sampling setup 

(glass dish with glycerol) under field conditions were 87% ± 7 and 85% ± 6 (n = 3), respectively. These recoveries were 

considered acceptable for the application of the sampling setup for field monitoring.  115 

To assess its appropriateness for field sampling and for method development purposes, the sampler was installed at 

a suburban location in Duebendorf, Switzerland [lat: 47° 24' 17.5''; long: 8° 36' 30.5'], which is one of Switzerland’s 

National Air Pollution Monitoring Network (NABEL) stations. Wet and dry atmospheric deposition samples were collected 

at four week intervals.  During the transport of samples between the laboratory and the sampling site, the filtration device 

(containing the filtered wet deposition samples) was sealed with a brass cap (Swagelok, USA), and the glass dish (containing 120 

the dry deposition samples and the glycerol) was tightly covered with a wooden lid equipped with a silicone O-ring. The 

filtration device and glass dish were transported between the field and laboratory in cardboard boxes.  

3.2 Sample processing steps 

3.2.1 Size fractionation by filtration 

After transporting the collected field samples back to the laboratory, the glass dish used for dry deposition samples was 125 

rinsed sequentially with pre-filtered ultrapure water and ethanol (see Sect. 3.5.3), and the contents were vacuum filtered 

through a cascade of stainless steel meshes of two mesh sizes, 215 µm and 15 µm. An upper mesh size of 215 µm was 

chosen 1) as it is expected to be large enough to include MPs that can undergo long-range atmospheric transport, but small 

enough to prevent larger objects, e.g. insects, leaves etc. from overloading samples, and 2) due to challenges in measuring 

larger particles in transmission mode using FPA-μ-FTIR. 130 

In the case of wet deposition samples, the 15 µm mesh on which particulate wet deposition was collected was first 

removed from the aluminium filtration device using metal tweezers and placed in a clean 250 mL glass beaker (Duran 

Beaker, DWK Life Sciences, Germany). The inner surface of the aluminium filtration device was rinsed sequentially with 

pre-filtered ultrapure water and ethanol over the same beaker. Placing the beaker in an ultrasonic bath for 10 seconds and 

subsequently rinsing the steel mesh with water and ethanol, the particulate wet deposition was detached from the steel mesh 135 

and resuspended within the beaker. The contents of the beaker were vacuum filtered through a cascade of stainless steel 

meshes of two mesh sizes, 215 µm and 15 µm, as done for the dry deposition sample. 
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3.2.2 Oxidative digestion 

After filtration, the 15 µm mesh was placed in a 250 mL glass beaker and underwent oxidative digestion using a 

protocol similar to the one described by Philipp et al. (2022). Briefly, 10 mL of hydrogen peroxide, 5 mL ultrapure water, 1 140 

mL 2 mM protocatechuic acid and 1 mL 2 mM iron sulphate were added to the beaker. The beaker was placed in an 

incubator (Incubator 1000, Unimax 1010, Heidolph, Germany) and allowed to shake at 100 rpm at 40°C for up to three days. 

The resulting suspension was finally filtered on the same 15 µm mesh. 

3.2.3 Density separation 

In samples in which dust was visible to the naked eye after the oxidative digestion step, an additional density separation 145 

step was carried out using an SPT solution of density 1.6–1.8 g mL-1 (Philipp et al. 2022). For that purpose, particles 

remaining on the 15 µm mesh were suspended in ~40 mL SPT solution via ultrasonication, transferred into 50mL 

polypropylene (PP) centrifugation tubes (TPP, Switzerland), and centrifuged for 40 min at 2900 g-units. After centrifugation, 

the particles of interest were separated from denser particles, which formed a pellet at the bottom of the centrifugation tub e, 

by carefully pouring the supernatant and filtering it through the same 15 µm stainless steel mesh. The walls of the 150 

centrifugation tube as well as filtration funnel were rinsed using ultrapure water, ensuring that the pellet would not be 

disturbed and resuspended. The mesh was then placed in the same 250 mL beaker, and the particles on the mesh were 

resuspended in ultrapure water via ultrasonication. The contents of the beaker were filtered onto an aluminium oxide 

membrane (⌀25 mm, 0.2 µm pore size, Whatman Anodisc, Cytiva, Germany), hereafter referred to as an Anodisc filter, for 

subsequent analysis of MPs. 155 

3.3 Analytical techniques for MP identification and quantification 

3.3.1 Optical microscopy 

Optical images of the entire Anodisc filters, on which extracted particles were deposited, were recorded at a 

magnification of either 50× (resolution of ~2.1 µm/pixel) or 80× (resolution of ~1.3 µm/pixel) using an automated optical 

microscope (VHX-7000, Keyence, Japan). The optical images of the filters were used to obtain information on the spatial 160 

distribution of the particles across the entire filter as well as on the size and on the color of each individual particle.  

3.3.2 Focal plane array μ-Fourier transform infrared spectroscopy (FPA-μ-FTIR) 

To identify MPs on the Anodisc filters, hyperspectral data were recorded using an FPA-μ-FTIR system (64×64 

pixel detector, Cary 670 FTIR instrument, Cary 610 IR microscope, Agilent, USA). A 15× IR objective was used which 

resulted in a resolution of 5.5 µm/pixel and an area of 352 μm×352 μm for each FPA measurement. All analyses were 165 
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conducted in transmission mode and covered the wavenumbers between 3900 and 1250 cm−1 at a spectral resolution of 8 

cm−1. The measurements were integrated 24 times and the background was integrated 64 times. To account for the time -

consuming FPA-μ-FTIR measurements, a random window subsampling method was employed (Jacob et al., 2023). 

Typically, 11 subsampling windows of 8×8 FPA squares were randomly generated, corresponding to roughly one -third of 

the filter's analysable area. For each subsampling window, the respective area was (manually) set in focus by adjusting the 170 

height of the stage (z-coordinate).  

The data from the FPA-μ-FTIR measurements were evaluated using the Microplastics Finder software (Purency, 

Austria), which is based on a random forest decision algorithm for MP classification (Hufnagl et al., 2019, 2022). 

Microplastics Finder relies on two proprietary parameters for classification – similarity and relevance – which range from 0 

to 1. Similarity describes the quality of the fit between the experimental and the reference spectra, whereas relevance 175 

indicates how confident the model is with the polymer classification. Thresholds for similarity and relevance applied in this 

study (see Supplement, Table S2) were determined on a polymer-specific basis based on expert judgement, which entailed a 

visual confirmation that the experimental spectra, obtained through the analysis of real atmospheric deposition samples, 

agreed well with the reference spectra of the respective polymers. 

3.3.3 Custom software platform for combining results of optical microscopy and FPA-μ-FTIR 180 

For extracting particle related information from optical microscopy and to correlate images from optical microscopy to 

chemical images derived from FPA-μ-FTIR measurements, we developed a software environment called "YAMANAKA" in 

Python.  

Key features of YAMANAKA are outlined in Figure 3 and include: i) Referencing the coordinates of the optical 

microscopic image of the filter to the stage coordinates of the FPA-μ-FTIR instrument, thus enabling correlative microscopy, 185 

e.g., overlay of optical and chemical (FPA-μ-FTIR ) images, ii) generating randomized subsampling windows on Anodisc 

filters for automated FPA-μ-FTIR measurements (Fig. 3a), iii) detecting individual particles (including non-MPs) on a filter 

based on optical microscopy images (Fig. 3b), and thereby enabling the quantification of subsampling uncertainties, and iv) 

identifying surrogate standards based on optical microscopy (Fig. 3c) and correlating the results to chemical images (Fig. 

3d). Based on the latter, recoveries of surrogates were calculated. These features greatly facilitated and streamlined the 190 

sample analysis steps of the analytical chain. Further details about YAMANAKA, such as the models used for optical image 

analyses, are provided in the Supplement (Sect. S3).  
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Figure 3: Features of a custom software platform "YAMANAKA" for the quantification of microplastics (MPs) based on 

correlative optical microscopy and FPA-μ-FTIR spectroscopy. (a) Generation of random subsampling windows across Anodisc 195 
filter (optical image shown) for FPA-μ-FTIR spectroscopy; (b) Analysis of the total number of particles on an Anodisc filter based 

on its optical image (processed image shown); (c) Analysis of the total number of surrogate standards on an Anodisc filter based on 

its optical image; (d) correlation of results obtained through FPA-μ-FTIR spectroscopy (left panel) and optical microscopy (middle 

panel) for the calculation of surrogate recoveries as well as determination of environmental MPs in a sample (right panel).  

3.4 Data interpretation 200 

3.4.1 Microplastic particle size-to-mass estimation 

Measurements by FPA-μ-FTIR provide 2D projections of particles from which the length (L) and the width (W) of 

the particles are derived. The values of L and W, defined as the dimensions of the smallest rectangle enclosing individual 

projected particles, were calculated directly by the Microplastics Finder software. However, there is no information on the 

third dimension, i.e. the height or thickness (H) of the particles , for which assumptions have to be made. 205 

To estimate the mass of MPs in a given sample, it is often assumed that the particles are of ellipsoidal shape 

(Barchiesi et al., 2023) and that they are deposited on the filter in their most stable position. Thus, H is smaller than W and 

L. We used in our study the particle volume calculation done by Simon et al. (2018), which assumes that H/W is equal to the 

median of the ratio of W and L of all particles in a given sample analyzed by 2D imaging. The volume of an individual MP 

particle in the sample can then be expressed as: 210 
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The mass of individual MPs was calculated by multiplying the ellipsoid-based volume of the MPs using Eq. (1) 

with the density of their respective polymer type obtained from selected literature (Bellasi et al., 2021; Caldwell et al., 2022; 

Horton et al., 2017; Lusher et al., 2020; Huo et al., 2022). The polymer densities applied in this study are available in the 

Supplement (Table S2). The total mass of MPs in a sample was then calculated by summing the masses of all individual MPs 215 

identified in a subsample and extrapolating the mass of the subsample to that of the full sample as outlined  for MP numbers 

in Sect. 4.5.  

3.4.2 Determination of atmospheric microplastic deposition rates 

Deposition rates, referring to the number or mass of MPs deposited per area and time, were calculated based on the 

area of the opening of the wet and dry sampling setups (0.042 m2), sampling duration (28 days) and the MP number counts 220 

or respective MP masses in the corresponding samples. For mass deposition rates, we assume that the determined 

distribution of MP particles in the (sub)sample is representative of the true mass distribution of MPs at the measurement 

location during the measurement period. 

3.5 Quality assurance and quality control steps 

3.5.1 Positive controls 225 

For field samples, a known number of red PE spheres of 53-63 µm diameter were added to the respective sampling 

vessels (glass dish for dry deposition and filtration device for wet deposition) before sample collection. After sample 

collection and after samples had returned to the laboratory, a known number of blue PE spheres of 53-63 µm diameter were 

additionally added. The procedure for counting and adding the PE spheres to the samples is described in the Supplement 

(Sect. S1). These added PE spheres served as surrogate standards and were used to quantify sample -specific recoveries, 230 

referring to the amount of PE spheres recovered at the end of our analytical chain divided by the amount of PE spheres 

spiked, as described by Philipp et al. (2022). The use of red and blue PE spheres allowed us to distinguish between losses 

during sample collection and/or transport versus losses occurring during sample treatment in the laboratory.  

3.5.2 Negative controls 

Negative controls (n = 12), i.e. field- or procedural blanks, were used to quantify contamination levels, and to minimize 235 

false positives and false negatives (see Sect. 5). Field- and procedural blanks were handled exactly as the field samples were, 

except for the exposure to the atmosphere. A procedural blank here refers to a clean stainless-steel mesh placed in a clean 

250 mL glass beaker. A wet deposition field blank refers to an aluminium filtration device fitted with a steel mesh taken to 

the sampling site. A dry deposition field blank refers to a glass dish with glycerol taken to the sampling site.  

 240 
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3.5.3 Measures to limit contamination in the laboratory 

To minimize the contamination of samples with MPs from the laboratory, all reagents were filtered through either 0.2 

μm polycarbonate membranes (Whatman Nuclepore, Cytiva, Germany) or 15 μm stainless steel meshes before use. All 

glassware and metallic vessels were muffled for four hours at 450°C prior to use. A white, cotton lab coat was worn during 

sample processing. Sampling vessels and other glassware were covered with aluminium foil whenever stored or not actively 245 

undergoing treatment. 

The use of plastic-based lab equipment was avoided as much as possible. However, for the vacuum filtration step in the 

laboratory, we used a filtration funnel made of polysulfone. We therefore excluded polysulfone from our analyses of field 

samples and corresponding blanks. 

To monitor potential contamination by airborne MPs in the lab, a clean Anodisc filter was placed in a glass petri dish, 250 

which was put on the bench where sample processing steps were carried out, and exposed to laboratory air for six months. 

The filter was analyzed by FPA-μ-FTIR, which revealed negligible contamination by airborne lab MPs even after six months 

of exposure, corresponding to <1 MP per filter and day. 

4 Assessment of total measurement uncertainty 

Each step in the analytical chain described above involves actions that can lead to measurement uncertainties, 255 

including random and systematic errors. Measurement uncertainties can be estimated in two main ways – directly by 

comparing the results of measurements of true replicates, or indirectly by identifying individual components of uncertainties , 

assessing their standard uncertainties and adding them to obtain a total uncertainty (International Organization for 

Standardization, 2007). 

In this study, the indirect approach was used and the measurement uncertainty of our analytical chain was assessed 260 

following the approach of the Guide to the expression of uncertainty in measurement (Joint Committee for Guides in 

Metrology, 2008). In doing so, three so-called "levels" of uncertainty were quantified. Level 1 (L1) uncertainties refer to 

those that relate to the direct results of the sample analysis; in this case, the quantification of the number of MPs on an 

Anodisc filter.  

To identify L1 uncertainties, first, the key steps of the analytical chain that contributed to the overall measurement 265 

uncertainty on the number of MPs were identified. These were 1) the losses of particles during sample collection, transport 

and treatment, 2) repeatability of FPA-μ-FTIR measurements, 3) impact of filter topography or differential MP sizes on 

FPA-μ-FTIR measurement results, 4) (mis)classification of MPs when assigning experimental FPA-μ-FTIR spectra, and 5) 

subsampling uncertainty during FPA-μ-FTIR measurements. The identified components of uncertainty aligned well with 

those identified in an interlaboratory comparison study by Ciornii et al. (2025).  270 
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Level 2 and level 3 uncertainties are those arising when additional data extrapolations are made, such as converting 

the number of MPs on an Anodisc filter to a wet or dry atmospheric deposition rate at a given location (L2) or converting 

particle numbers and their size and composition information to mass (L3). Table 1 gives an overview of the determined 

individual components of uncertainty and their contributions to total measurement uncertainty, which are discussed below.  

 275 

Table 1: Contributions of the different components of uncertainty to the total measurement uncertainty of our 

analytical chain for the quantification of microplastics in wet and dry atmospheric deposition samples. MPs = 

microplastics; PE = polyethylene, FPA-μ-FTIR = focal plane array μ-Fourier transform infrared spectroscopy; L1 = 

level 1 uncertainties related to the quantification of MP numbers on an Anodisc filter; L2 = level 2 uncertainty 

related to the extrapolation of MP deposition rates; L3 = level 3 uncertainty related to the conversion of MP number 280 
and size information to MP mass. 

Component of uncertainty Percentage 

uncertainty 

Comments 

Recovery of surrogate MPs (L1) 19% Variability of recoveries of red PE surrogates across n = 59 field 

samples; indicates losses of particles during sample collection, 

transport and processing 

Repeatability of FPA-μ-FTIR 

measurements (L1) 

5% Based on six replicate analyses of MP standards; indicates inherent 

uncertainties associated with the measurement device 

Impact of filter topography / 

differential MP sizes on FPA-μ-

FTIR results (L1) 

24% Based on analyses of MP standards at three z-coordinates; indicates 

uncertainties associated with uneven filter topography or different 

particle sizes 

Subsampling error associated with 

FPA-μ-FTIR (L1) 

26% Indicates the uncertainty associated with the extrapolation of MP 

counts when scaling up the FPA-μ-FTIR analysis of a subsample to 

the entire sample. Note that the percentage uncertainty is sample-

specific. Here the mean subsampling uncertainty across n = 59 field 

samples is given. 

Assignment of experimental 

spectra (L1) 

17% Based on a pooled analysis of total MP numbers from n = 59 

samples after incrementally increasing and decreasing spectral 

similarity thresholds in Microplastics Finder, and comparing the 

range of MPs detected when these thresholds were applied 

Sampling representativeness (L2) 23% Based on parallel measurements of total (water-insoluble) aerosol 

mass deposition at similar sampling stations  

Conversion of particle dimensions 

to mass (L3) 

50% Systematic over- or under-estimation of (ellipsoid-equivalent) 

particle volumes due to assumptions of (unmeasured) particle 

thickness/height 

4.1 Recovery of surrogate MPs (L1) 

Microplastic particles, including surrogate standards, can adhere to container walls during collection, storage and processin g, 

leading to sample losses along the analytical chain. These losses were estimated by assessing the recovery rates of added 

surrogate standards, assuming that environmental MPs experience similar losses as the surrogates during transport and 285 
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processing.  Based on the analysis of 59 field samples using the YAMANAKA software, average recoveries of red and blue 

PE surrogate standards were found to be 65 ± 19% and 73 ± 20%, respectively (Table S3). These recovery values and the 

variabilities are within the range reported in the literature (e.g. Hagelskjær et al., 2023). The variabilities likely reflect 

manual handling steps, such as rinsing and transferring particles between containers.  

The sample-specific recovery of red PE spheres is then used to correct the final MP number in the given sample. 290 

However, the variability of recoveries across multiple samples adds uncertainty to such a correction. To illustrate its 

contribution to the overall uncertainty in MP numbers, we attribute 19% (Table 1) based on the variability of the recovery of 

red PE surrogates across 59 samples, as the relative uncertainty associated with particles losses that occurred between sample 

collection and the end of sample processing (steps 2 to 4 in Fig. 1). 

 4.2 Repeatability of FPA-μ-FTIR measurements (L1) 295 

To assess the repeatability of FPA-μ-FTIR measurements, we prepared an Anodisc filter on which red PE and blue PS 

particles were deposited (see Supplement, Fig. S1). An area corresponding to 6% of the Anodisc's analyzable area, which 

contained 44 red PE spheres and 22 blue PS spheres, and therefore a total of 66 MP spheres, was analyzed six times 

consecutively using the same measurement parameters. Figure 4 (a, b) shows the results of six replicate measurements of the 

same particles (n = 66) measured with the same parameters. The total number of red PE and blue PS spheres measured 300 

across replicates was variable, and ranged between 59 and 65 particles, with a mean of 62 and a standard deviation of 2.8. 

This translated into a relative uncertainty of ~5% (Table 1), i.e. standard deviation × 100 / mean, which was included in the 

calculation of the total measurement uncertainty. 
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 305 

Figure 4: Number of spherical reference MPs identified during replicate FPA-μ-FTIR measurements (a, b) and at different focal 

heights (c, d). In (c) and (d), "bottom" refers to when the IR beam focused on the filter surface (red PE and blue PS spheres 

appeared blurry), "middle" when the IR beam focused ~50 µm above the filter surface (red PE spheres in focus, blue PS spheres 

slightly blurred) and "top" when the IR beam focused ~100 microns above the filter surface (red PE spheres slightly blurred, blue 

PS spheres in focus). 310 
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4.3 Impact of filter topography or differential MP sizes on FPA-μ-FTIR measurement results (L1) 

As our FPA-μ-FTIR spectrometer does not feature an autofocus routine, every individual subsampling area is 

investigated at a fixed z-coordinate. Variations in the topography of the Anodisc filter and/or MPs of different sizes (heights) 

therefore result in an over- or under-focused IR beam with respect to the MPs. To quantify the uncertainties related to such 

changing focal heights (variable degree of defocus of the IR beam), 219 MPs (76 red PE and 143 blue PS spheres, same 315 

Anodisc filter as described in Sect. 4.2) were analyzed by FPA-μ-FTIR at three different z-coordinates. The three z-

coordinates corresponded to i) IR beam focused on the filter surface (red PE and blue PS spheres appeared blurry), ii) IR 

beam focused ~50 µm above the filter surface (red PE spheres in focus, blue PS spheres slightly blurred) and iii) IR beam 

focused ~100 µm above the filter surface (red PE spheres slightly blurred, blue PS spheres in focus). Polyethylene and PS 

particles were identified based on FPA-μ-FTIR data using Microplastics Finder in combination with YAMANAKA. The 320 

numbers of identified red PE and the blue PS spheres were between 53 and 73 (red PE), and 167 and 208 (blue PS) across 

the measurements (Fig. 4, c, d). The results indicated that when the z-coordinates were set such that the IR beam focused 50 

or 100 µm above the filter surface, the particles were detected with a higher success rate than when only the surface of the 

Anodisc was in focus. 

The associated relative uncertainty was calculated using the largest deviation in measured particle numbers from the true 325 

particle number observed across the three focal height test measurements. This was estimated as 24% (Table 1), which was 

included in the estimation of the overall uncertainty of the analytical chain.  

 4.4 Assignment of experimental FPA-μ-FTIR spectra (L1) 

Experimental FPA-μ-FTIR spectra of MPs found in the environment can substantially differ from the FTIR spectra of 

the respective (pure) polymers that are included in reference databases. Exposure to UV light can for example lead to 330 

photooxidation of the MP surfaces, which is reflected in the appearance of a carbonyl peak (Rouillon et al., 2016; Yan et al., 

2023). Furthermore, MP particles are often polymer blends composed of more than one polymer type. The assignment of the 

experimental spectra to specific polymer types is therefore associated with uncertainties and misclassifications cannot be 

excluded. A quantitative assessment of these uncertainties and degree of misclassifications would require a priori knowledge 

of the MP types present on the filter substrate. Such information, however, is not available when investigating environmental 335 

samples.  

Based on expert judgement following a visual comparison in Microplastics Finder of measured spectra of particles 

identified as plastic with reference FTIR spectra of polymers, we defined similarity thresholds on a polymer-specific basis 

above which the measured and reference spectra showed good agreement (see Supplement, Table S2). The thresholds were 

set such that false positives and false negatives would be minimized.  340 

To determine the uncertainty value arising from the selection of these thresholds, we performed a sensitivity 

analysis to see how the MP numbers changed if the polymer-specific similarity thresholds were increased or decreased by a 
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value of 0.05, which we considered as realistic variations. The difference in the number of polymers detected with the upper 

and lower thresholds was calculated for each polymer type. A relative misclassification uncertainty was calculated by first 

dividing the difference by two and then further dividing this by the detected number of the given polymer at the selected 345 

threshold. Table S4 shows total and polymer-specific MP counts at three similarity thresholds (i.e. selected threshold, upper 

threshold and lower threshold) pooled from the analyses of n = 59 environmental samples, together with polymer-specific 

uncertainties. For reasons of consistency and simplicity, and because not all uncertainties along the analytical chain could be 

determined for all polymers, we applied the uncertainty value of 17% (Table 1) calculated across all polymer types rather 

than polymer-specific uncertainties when calculating the total measurement uncertainty. 350 

4.5 Subsampling error (L1) 

Vacuum filtration as we used in our study (step 4i in Fig. 1) can result in uneven deposition patterns of the particles 

on a filter (Schymanski et al., 2021). An extrapolation of the MP numbers detected in the analyzed subsample to the total 

number of particles present on the whole filter can therefore lead to a bias in the total amount of MPs present in the 

individual samples, if the extrapolation is based simply on the area fraction analyzed. We, therefore, applied a scaling 355 

approach based on the fraction of particle numbers analyzed as proposed by Schwaferts et al. (2021), which is based on the 

theory of random sampling.  

To apply this approach, the total number of particles on the entire filter (N) and the number of particles in the 

subsampled windows (S) must be known. These were derived from automated analyses of optical images using the 

YAMANAKA software. Next, the number of MPs in the subsampled windows (SMP) was determined from FPA-μ-FTIR 360 

measurements in combination with the analysis of spectra by Microplastics Finder. The ratio of MPs to all particles in the 

subsample rs = SMP/S was calculated and considered as representative for the ratio of MPs to all particles deposited on the 

entire filter. The number of MPs on the entire filter (NMP) was estimated as: 

𝑁𝑀𝑃 = 𝑟𝑆 ∙ 𝑁                    (2) 

The determined rs can be regarded as an estimate of the true ratio of the number of MPs and total number of particles on the 365 

entire filter. The relative subsampling error e rel can be expressed as: 

𝑒𝑟𝑒𝑙 =
𝑧1−𝛼 2⁄ ∙𝑠𝑑(𝑟𝑆)

r𝑆
                   (3) 

with 𝑠𝑑(𝑟𝑆) the standard deviation of 𝑟𝑆    

𝑠𝑑(𝑟𝑆) = √
𝑟𝑆 ∙(1−𝑟𝑆)

𝑆
∙

𝑁−𝑆

𝑁−1
                   (4) 

and 𝑧1−𝛼 2⁄  the (1 − 𝛼 2)⁄ -quantile of the normal distribution, where 𝛼 denotes the confidence level. For the 95% confidence 370 

level as applied here, 𝛼 = 0.05 and 𝑧1−𝛼 2⁄ = 𝑧0.975 , which has a value of 1.96. We refer to Schwaferts et al. (2021) for a 

detailed discussion and derivation of Eq. (2) and (3).  
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The sample-specific subsampling uncertainties of n = 59 field samples were determined using this approach. On 

average, the subsampling uncertainty value was 26% (raw data in Supplement, Table S3). This average value was used to 

illustrate the typical contribution of subsampling uncertainty to the overall uncertainty budget of the analytical chain (Tab le 375 

1). It is noted that when reporting the total uncertainty of a given sample's measurement, the subsampling uncertainty 

specific to that sample should be used, rather than the average subsampling uncertainty of 26% mentioned above.  

The subsampling uncertainty calculations could indeed also be used prior to FPA-μ-FTIR analysis to optimize 

measurement time or limit subsampling uncertainty. By estimating the expected proportion of MPs in a sample based on 

gained experience from prior measurements and calculating the total number of particles in an individual sample via optical 380 

image analysis, one could proactively determine the number and size of random subsampling windows that need to be 

analyzed to achieve a subsampling uncertainty below the desired threshold. 

4.6 Representativeness of sample collection (L2) 

The heterogeneous wet and dry deposition rates of particulate matter, including MPs, at the local scale additionally 

contribute to uncertainty when quantifying MPs in atmospheric dry and wet deposition samples. Understanding to what 385 

extent the MP content in a wet or dry deposition sample collected in a 0.042 m2 catchment area is representative of a larger 

area, e.g. a measurement station, would require multiple parallel measurements at corresponding scales. Due to the limited 

number of atmospheric dry and wet deposition samplers available for this study, such measurements were not conducted. 

Moreover, given the other sources of uncertainties in the quantification of MPs with our analytical chain discussed above 

(total uncertainty >80%), it would be challenging to attribute any observed variability in MP numbers across replicates as 390 

being caused by unrepresentative sampling. 

Therefore, to get an estimate on the intra-site sampling uncertainty, we relied on available data of duplicate 

measurements of total water-insoluble aerosol deposition taken at four-week intervals from January 2024 to May 2025 at 

seven stations of the Swiss National Air Pollution Monitoring Network that operate similarly to the one in Duebendorf, 

where we collected our wet and dry deposition samples. The relative standard deviation of parallel bulk aerosol deposition 395 

measurements (rsdaerosol) was calculated as 

𝑟𝑠𝑑𝑎𝑒𝑟𝑜𝑠𝑜𝑙 =
√

∑ (𝑥𝑖,1−𝑥𝑖,2)2𝑛
𝑖

2∙𝑛

1

2∙𝑛
∑ (𝑥𝑖,1+𝑥𝑖,2)2

𝑖

                                                                                (5) 

where xi,1 and xi,2 are the results of parallel bulk aerosol deposition measurements and n is the number of 

measurements that have been pooled from the seven sampling locations (n=139). We determined rsd aerosol = 0.23. Based on 

these data, and assuming that i) the uncertainty of the bulk aerosol deposition measurements is negligible and ii) wet and dry 400 

MP deposition patterns are similar to that of bulk aerosol deposition, the rsd aerosol of 23% can be seen as an estimate for the 

dependence of the number of measured MPs in the choice of the exact sampling point.  
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4.7 Estimation of mass (L3) 

The L3 uncertainty components are related to the conversion of particle dimensions and numbers to overall MP mass on 

an Anodisc filter. For such a conversion, the uncertainties associated with the measurement of particle dimensions, 405 

estimation of particle volumes and the selection of polymer densities  play a role. 

4.7.1 Uncertainty in particle size measurements by FPA-μ-FTIR 

The uncertainty associated with the determination of particle dimensions (e.g. length and width) by  FPA-μ-FTIR 

was calculated by comparing the diameters of surrogate standards measured by FPA-μ-FTIR versus those measured based on 

optical microscopy. Based on diameter measurements of n = 4452 surrogate standards across 59 atmospheric deposition 410 

samples, we identified a systematic underestimation of 9% by FPA-μ-FTIR (details in Supplement, Sect. S5). This was taken 

into account when propagating the error associated with converting particle size to volume and eventually to mass.  

4.7.2 Uncertainty in ellipsoid volume estimations 

The magnitude of the error to be expected when applying the Simon model (Equation 1) for particle volume 

estimations was investigated by Contreras et al. (2024), where a set of 203 plastic particles with sizes of a few millimeters 415 

was collected in marine environments and where the size of all three dimensions as well as the mass of the individual 

particles were measured experimentally. The data set consists of plastic particles of different shapes that could be classifi ed 

into three classes according to their elongation (1D) (e.g. fibers), flatness (2D) (e.g. films) and uniformity in all three 

dimensions (3D) (e.g. fragments). Note that the mean size of these particles is larger than five millimeters (length of longest 

dimension), so these particles cannot be regarded as MPs. Generation of a similar test data set for MP particles is, however, 420 

hardly possible. 

Contreras et al. (2024) showed that the accuracy of the Simon model strongly depends on the particle shape. For 3D 

particles, the ellipsoidal shape is a reasonable approximation, and the mass of 3D particles is only slightly overestimated. 

However, the mass of elongated 1D particles is systematically underestimated, on average by about 44%. The largest errors 

occur with the thin 2D particles, for which the calculated thickness H is too large. For a distribution of particle shapes as  in 425 

the test data set from Contreras et al. (2024) (1D: 44.3%, 2D: 24.1%, 3D: 31.5%), the error in the calculated particle mass i s 
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dominated by the overestimation of the mass of the thin 2D particles and about 70% in total. However, these uncertainty 

estimations assume that the measured dimensions have no error. Applying the 9% underestimation of particle dimension 

described in Sect. 4.7.1. to the data set kindly provided to us by the authors of Contreras et al. (2024), the resulting 

uncertainty in the particle mass calculation using the Simon model was found to range between an underestimation of 53% 430 

for 1D particles and an overestimation of 142% for 2D particles. For the distribution of particle shapes as in the test data set 

of Contreras et al. (2024), the percentage error of MP mass calculation reduces to 29% (see Supplement, Sect. S5). Given 

that the distribution of particle shapes in atmospheric deposition samples is unknown, a conservative but realistic systematic 

error range of ±50% is considered when calculating the MP volume based on the measured number and size information.  

4.7.3 Selection of polymer densities 435 

For several polymers, there is a range of densities reported in the literature (see Supplement, Table S5). To estimate the 

uncertainties associated with using a specific density when there is a range of possible densities, we selected seven polymer s 

that were frequently detected in our samples – namely PE, polyethylene terephthalate (PET), PP, polyurethane, polymethyl 

methacrylate, PS and polyvinyl chloride – and listed their respective minimum and maximum density values as reported in 

selected literature (Bellasi et al., 2021; Caldwell et al., 2022; Horton et al., 2017; Lusher et al., 2020; Huo et al., 2022) . The 440 

density value we chose when converting the volume to mass was the mean of the minimum and maximum densities reported 

across those studies. Considering the deviations of the mean from the respective minimum and maximum densities, we 

calculated polymer-specific percentage uncertainties associated with the use of the mean densities of each polymer when 

converting volume to mass. The range of uncertainties in the densities of the selected polymers was 2 -15%. The most 

common polymers – PE, PET and PP – had an uncertainty of 5%. Compared to the large uncertainties of ~50% associated 445 

with volume estimations, we assumed the selection of polymer densities to play a minor role in the total uncertainty of mass 

estimations and we did not consider it in the overall mass uncertainty calculation.  

4.8 Total uncertainty budget 

The individual standard uncertainties (u i, i=1, …, m) of the individual components of L1 uncertainty presented 

above are assumed to be independent and random. Therefore, the combined standard uncertainty (u) can be expressed as:  450 

𝑢2 = ∑ 𝑢𝑖
2𝑚

𝑖=1                         (6) 
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The expanded measurement uncertainty 𝑈 of the considered components of uncertainty is then calculated as 𝑈 = 𝑘 ∙

𝑢 with the coverage factor 𝑘. We applied a coverage factor of 𝑘 = 2 so that 𝑈 corresponds to a confidence level of 95%. 

The uncertainty that is related to the representativeness of the sample collection (L2), which impacts the results 

when converting the number of MPs in a sample to an atmospheric deposition rate at a given location, can also be assumed 455 

to be a random uncertainty. Thus, the expanded measurement uncertainty of atmospheric deposition rates can be calculated 

from the propagation of L1 and L2 uncertainty components, i.e. including the representativeness of the sample collection as 

an additional component of uncertainty in Eq. (6).  

The L3 uncertainty components related to the conversion of MP particle numbers into mass most likely results in a 

systematic error, of which the estimation of particle volume has the highest contribution. This is caused by the fact that the 460 

actual shape of the particles deviates from the assumed ellipsoidal shape, and the magnitude of over- or under-estimation 

depends on the actual morphologies of MPs found in samples. Therefore, they cannot be treated as random uncertainties, and 

the expected systematic error in the conversion from the number to the mass of MPs is considered separately and added to 

the random measurement uncertainties caused by L1 and L2. 

Based on the individual components of L1 uncertainties described in Sect. 4.1 to 4.5, the extended total uncertainty 465 

when quantifying MP numbers on an Anodisc filter was determined to be approximately 88%. Note that the contribution of 

the subsampling error is sample-specific and therefore the uncertainty of MP numbers in a sample may vary between 

samples.  

Although such a quantitative estimation of total measurement uncertainty for MPs is, to our knowledge, not 

available in the literature, we could compare the contributions of uncertainty from individual steps in our analytical chain to 470 

similar steps identified in the interlaboratory comparison study by Ciornii et al. (2025). For example, the contribution of 

sample losses during filtration was described as being "high" and estimated at 10-30% (Ciornii et al., 2025). This 

corresponds well with the average sample losses of 35% that we observed in our study (based on an average recovery of red 

PE surrogates of 65%). It is noted that our losses may be higher because they capture more than only the losses occurring 

during the filtration step. Similarly, the contribution of "extrapolation of results" was described by Ciornii et al. (2025) as 475 

having a "middle-high" contribution. This type of uncertainty corresponds to what we describe as subsampling uncertainty, 

which on average was 26% and rather high relative to other components of uncertainty in our analytical chain. "Instrumental 

settings", which included the threshold to positively identify spectra by comparison against spectral databases as well as 

optical focus, were considered to have a "middle-high" contribution (Ciornii et al., 2025). In our case, the assignment of 

experimental spectra was associated with an uncertainty of 17% and the influence of focus related to filter topography or 480 

differential MP sizes was 24%, which also translated to middle-high contributions to the total measurement uncertainty 

relative to other components in our analytical chain. The quantitative assessment of uncertainties carried out in our study 

therefore agreed well with the qualitative assessment of uncertainties by Ciornii et al. (2025).  

The L2 uncertainty component that is related to the representativeness of the sample collection was determined 

based on co-located measurements of total atmospheric particle deposition and found to be 23%. Combining this additional 485 
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L2 uncertainty component with the L1 uncertainties resulted in a total expanded uncertainty of approximately 99% for the 

estimation of MP number deposition rates of individual wet and dry atmospheric deposition samples. Note that L1 and L2 

uncertainties can be regarded as random uncertainties and the uncertainty for their mean values derived from analyses of a 

number n of atmospheric deposition samples decreases with the size of n; more specifically, it decreases as a function of the 

inverse of the square root of n.  490 

 For the overall uncertainty of the mass of microplastics in a sample and the associated mass deposition rate, we also 

apply the relative overall uncertainty of the number of MPs to the calculated total MP mass in the sample. This approach 

implicitly assumes that the measured size distribution and type of MPs in the collected sample is representative of the true 

mass distribution of MPs during that sampling time at the sampling location. This results in an uncertainty interval for the 

calculated total MP mass due to the L1 and L2 uncertainty components. The systematic error caused by converting the MP 495 

number into MP mass is then taken into account by assuming a systematic overestimation of the upper limit and a systematic 

underestimation of the lower limit of the uncertainty interval by 50% in each case. This leads to the range in which the true 

MP mass in a sample could lie, given all the uncertainties associated with the measurements, calculations, and assumptions.  

5 Critical level (LC) and limit of detection (LOD) of the analytical chain 

The LC and LOD for the quantification of MP numbers specific to our analytical chain were determined following 500 

an approach outlined by Currie (1968). Based on the number of MPs detected in individual blank samples, first the LC was 

defined as 

𝐿𝐶 = 𝜇𝐵 + 𝑡𝑛−1,1−𝛽 ∙ 𝜎𝐵                   (7) 

where 𝜇𝐵 is the mean number of MPs in n blank samples and 𝑡𝑛−1,1−𝛽 the 1 − 𝛽 quantile of the t distribution given 

n-1 degrees of freedom. The LC is the threshold value above which a signal can be interpreted as "detected" and above which 505 

the risk that a measurement of MP is interpreted as an actual signal even though no MP is present (false positives) is 

minimized. We set the confidence level 𝛽 = 0.05, and therefore 𝑡11,0.95 = 1.796. Note that the one-sided quantile applies 

here. 

Next, the LOD of the method was considered. While the LOD is often defined as 3𝜎𝐵 or 𝜇𝐵 +  3𝜎𝐵, with 𝜎𝐵 being 

the standard deviation of blank samples (Dawson et al., 2023; Keith et al., 1983), this definition does not take the variance of 510 

a real test sample into account and therefore only accounts for Type I errors (false positives) but not for Type II errors (false 

negatives) (Holstein et al., 2015). We therefore defined LOD as the threshold value above which both false positives and 

false negatives are minimized, the latter is the risk that an actual signal is incorrectly not recognized as such. The LOD is  

given as  

𝐿𝑂𝐷 = 𝐿𝐶 + 𝑈 𝐿𝑂𝐷                               (8) 515 
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with 𝑈 𝐿𝑂𝐷 being the expanded measurement uncertainty of the measurement of MPs at a signal that is in the range of the 

LOD (expressed as absolute MP number per sample). With the selection of the confidence level 𝛽 and the coverage factor 

used for the calculation of the combined measurement uncertainty (Sect. 4.8), the LOD has a confidence level of 95%.  

Measurements above LC are a reliable proof of the existence of MPs in the sample and used as the primary reporting limit. 

Measurements between LC and LOD should, however, be interpreted carefully, because the increased risk for a Type II error 520 

might result in an underestimation of the true MP number in a sample. A more detailed discussion of the chosen approach for 

the specification of detection limits can be found in Sect. S6 in the Supplement. 

To determine specific LC and LOD values for our method, blank samples (n = 12) comprising four procedural, four 

wet deposition, and four dry deposition field blanks, processed identically to environmental samples, were analyzed by FPA-

μ-FTIR as described in Sect. 3.3.2. The most frequently observed polymers were PP, PET, and PE, with average counts of 5, 525 

2, and 2 particles per blank, respectively (see Supplement, Fig. S4). Other polymers appeared at much lower frequencies.  

With an average blank value of 13 ± 9 MPs in the analyzed subsamples, an LC of 29 MPs and LOD of 58 MPs was 

determined. The average blank value, scaled up for the entire sample, is within the range of blank values reported in the 

literature and would be considered a medium-level contamination (i.e. average of 10-50 MPs in blanks) according to Lao and 

Wong (2023). As the polymer-specific particle numbers were low, to ensure a conservative, yet robust, correction across all 530 

samples, we integrated the blank values across all polymer types when evaluating the method's LC and LOD. 

6 Quantitative assessment of MP content in wet and dry atmospheric deposition samples  

The above-described analytical chain was used to quantify MPs in monthly samples of wet and dry atmospheric 

deposition collected during a one-year monitoring campaign at multiple sites. Here, we report specifically on the results for a 

pair of wet and dry deposition samples collected between July 18 and August 15, 2024, at a suburban site in Duebendorf, 535 

Switzerland, to illustrate the strength of our approach. A description of the results of the entire monitoring campaign would 

go beyond the scope of this study and will be presented elsewhere. 

The wet and dry deposition samples were treated according to the steps described in Sect. 3, except for density 

separation as it was deemed unnecessary. Following sample processing and deposition of extracted particles onto Anodisc 

filters, the recoveries of surrogate standards for the wet deposition sample were 80% for both red and blue surrogates, 540 

whereas for the dry deposition sample, the recoveries were 81% for red and 86% for blue surrogates. The total number of 

particles (including non-MPs) on the filters were 48,546 and 59,638, respectively for the wet and dry deposition samples. 

Random subsampling windows contained 15,588 and 18,856 particles (including non-MPs) each and were measured via 

FPA-μ-FTIR. In the subsampled fractions of the Anodisc filters, 165 (wet deposition) and 109 (dry deposition) MPs were 

detected. As shown in Fig. 5, the most frequently detected polymer types in the dry deposition sample were PP, PET and 545 

ethylene-vinyl acetate, whereas the wet deposition sample was largely dominated by PE. 
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Figure 5: Number of microplastics by polymer type and size detected in the analyzed subsamples of dry deposition 

(left) and wet deposition (right) samples collected from Duebendorf, Switzerland between 18 July 2025 and 15 August 

2025. ABS = acrylonitrile butadiene styrene, EVAc = ethylene vinyl acetate, EVOH = ethylene vinyl alcohol, PBT = 550 
polybutylene terephthalate, PE = polyethylene, PET = polyethylene terephthalate, PMMA = polymethyl 

methacrylate, PP = polypropylene, PS = polystyrene, PU = polyurethane, PVC = polyvinyl chloride. 

 

The associated subsampling errors for these two samples were 13% and 16%, respectively. Both number counts 

were well above the method's critical level LC of 29 MPs and LOD of 58 MPs. After blank-correcting by subtracting the 555 

mean blank value of 13 MPs, the likely numbers of MPs in the analyzed subsamples were determined to be 152 MPs (wet 

deposition) and 96 MPs (dry deposition). The detected number counts of MPs in the subsamples were scaled to the entire 

filter area using Eq. (2) and multiplied with factors 1.25 and 1.23 to account for the incomplete recoveries of the red PE 

surrogate standards. To calculate the total uncertainty in the number count of MPs in the entire wet and dry deposition 

sample, the sample-specific subsampling error and the remaining L1 uncertainty components listed in Table 1 were 560 

propagated to calculate the expanded measurement uncertainty, resulting in 592 (± 446) and 375 (± 291) MPs for the wet and 

the dry deposition sample, respectively. 

Based on a catchment area of 0.042 m2 and sampling duration of 28 days and considering the additional L2 

uncertainty related to sampling representativeness, the number-based wet and dry deposition rates were respectively 

calculated as 528 ± 466 MPs/m2 day and 335 ± 302 MPs/m2 day. Although the expanded uncertainties of the proposed 565 

analytical chain respectively amount to 88% and 90% for the wet and dry deposition rate of MPs in these examples, which 

may seem large, it is essential to have such realistic estimates of measurement uncertainties to correctly interpret 

measurements and reliably compare results from different (monitoring) studies. In addition, it should be noted that the 
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measurement uncertainty becomes smaller when mean deposition rates are determined from a larger number of samples 

collected at a given site. Although the interpretation of results from the single samples presented above must be done with 570 

care, the deposition rates we calculated for the suburban site in Duebendorf are within the range of values reported in the 

literature for MPs with particle sizes greater than 20 µm such as in the French Pyrenees (365 with a standard deviation of 69 

MPs/m2 day) (Allen et al., 2019), protected areas in Western USA (range of 48-435 MPs/m2 day) (Brahney et al., 2020), 

Hamburg, Germany (range of 136.5-512 MPs/m2 day) (Klein and Fischer, 2019), London, England (771 with a standard 

deviation of 167 MPs/m2 day) ) (Wright et al., 2020), Lanzhou, China (353.83 with a standard deviation of 159.17 MPs/m2 575 

day) (Liu et al., 2022), and South Africa (212 with a standard deviation of 31 MPs/m2 day) (Mutshekwa et al., 2025). It is 

noted that the studies cited here did not formally calculate measurement uncertainties but rather reported the values (e.g. 

mean or range of MPs) across a range of samples collected at different times or locations. The studies did not include 

surrogate standards either. 

Finally, MP mass deposition rates of 16 µg/m2 day and 7 µg/m2 day for wet and dry deposition, respectively, were 580 

estimated. Based on considerations of L1 and L2 random uncertainties as well as L3 systematic errors, we find 

corresponding plausible values for the above mass deposition rates to range from 0.94-45.2 µg/m2 day and 0.34-20.0 µg/m2 

day for wet and dry deposition, respectively. Few studies have reported mass-based atmospheric deposition rates. Compared 

to studies by Fan et al. (2022) and Rindelaub et al. (2025), who reported MP mass deposition rates of 334 ± 81 μg/m 2 day 

(Fan et al. 2022) and 89 ± 9 μg/m2 day (Rindelaub et al., 2025) at different sites in New Zealand, our results were lower by a 585 

factor of 2 or up to 3 orders of magnitude. However, it should be noted that the studies relied on Py-GC-MS measurements 

for MP classification rather than the μ-FTIR-based approach used in this study and may have targeted different size classes. 

Moreover, the ranges reported by Fan et al. (2022) and Rindelaub et al. (2025) were not based on measurement uncertainties 

but rather captured the variability of MP mass deposition rates over multiple sampling sites. Therefore, observed difference 

in mass deposition rates may reflect methodological and analytical uncertainties rather than geographical variability. Overal l, 590 

this underscores the need for future studies to consider method-specific uncertainties and provide reliable ranges of possible 

values. 

7 Conclusion and outlook 

We developed an analytical chain for the collection, processing and analysis of MPs in wet and dry atmospheric 

deposition samples and quantified the uncertainties of each of the steps. Key developments in this work included a tailored 595 

setup for the separate collection of wet and dry atmospheric deposition samples, a custom software platform that enabled 

correlative optical microscopy and FPA-μ-FTIR spectroscopy, and a detailed assessment of the total uncertainty budget 

associated with the entire analytical pipeline. Although the usefulness of the tailored sampling setup is restricted to 

researchers seeking to collect atmospheric deposition samples, the software features for analyzing colored surrogate 

https://doi.org/10.5194/egusphere-2025-4786
Preprint. Discussion started: 27 October 2025
c© Author(s) 2025. CC BY 4.0 License.



25 
 

standards and total particle numbers, as well as the considerations used for the determination of the total measurement 600 

uncertainty may be applied generally across MP (monitoring) studies regardless of the matrix being investigated.  

The total measurement uncertainty of the number of MPs in a single atmospheric deposition sample with our 

proposed analytical chain was determined to be around 90%, which was deemed reasonable considering the various steps 

involved, including several manual steps during sample processing and analysis. The step-by-step assessment of 

uncertainties identified steps where improvements could be made to reduce uncertainties. In our analytical chain, the most 605 

dominant components of uncertainty for the determination of MP numbers were the subsampling error (26%), influence of 

topography/different MP sizes on FPA-μ-FTIR measurement results (24%) and the variable and incomplete recovery of 

surrogate standards (19%).  

Reducing the subsampling error would require a larger fraction of the filter or ideally the entire filter area to be 

analyzed, which requires long measurement times in the order of several days. The use of higher throughput instruments, 610 

preferably with auto-focus capabilities, could substantially reduce measurements uncertainties in the form of both 

subsampling uncertainties as well as those caused by a loss of focus due to uneven filter topography or differential particle 

sizes on the filter. The incomplete and variable recovery of surrogates is likely an indicator of slight difference s in sample 

handling, which is largely unavoidable due to the many manual steps involved in the analytical chain, such as the rinsing of 

vessels and the transfer of samples from one vessel to another. Such particle losses could be reduced if a closed sample 615 

processing device where all sample processing steps could be conducted were available. 

Additionally, a major source of systematic error when estimating MP mass was the conversion of 2D particle size 

information from the FPA-μ-FTIR measurements to 3D ellipsoid volumes in the absence of information regarding particle 

height. Developments in the automated detection of specific particle morphologies such as fibers and the calculation of 

corresponding cylindrical volumes rather than ellipsoidal volumes could minimize this error.  620 

While many of the uncertainty values are specific to our analytical chain and its operators, the fundamental 

concepts of our uncertainty assessment are transferable to any analytical chain regardless of matrix. It is important that a 

careful assessment of all uncertainties is done prior to their application in monitoring MPs.  
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