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Abstract. Evapotranspiration (ET) is a key hydrological and meteorological variable, serving as the critical nexus between 

water and energy exchanges. However, accurate estimation of global ET remains a challenging task, as process-based ET 10 

algorithms are often inadequate to capture the nonlinear relationship among environmental factors, and the application of 

data-driven ET algorithms is hindered by sparse and uncertain ET observations. In this study, we developed a novel 

ensemble framework that integrates three existing ET models (process-based algorithm, machine learning-based ET model, 

and hybrid model), aiming to provide high-precision terrestrial ET estimates. The framework is guided by an additional 

classifier that can achieve dynamic per-pixel model selection, thus fully utilizing the spatiotemporal dynamics of each 15 

model’s distinct advantages in mapping global ET and avoiding the typical underestimation of high values by ensemble 

methods. Comprehensive validation of the model was carried out using in-situ ET observations from the FLUXNET2015 

dataset, catchment-scale water balance ET dataset, and six global-scale ET products, including comparisons to individual 

base models and another Attention-Based ensemble model. The quantitative comparisons across statistical metrics (RMSE, 

MAE, R², KGE) indicate that our ensemble model outperforms other evaluated models, especially in extreme samples. 20 

Meanwhile, the introduction of classifier can not only significantly enhance the algorithmic robustness and generalizability, 

but also allow us to gain a basic understanding of the mechanisms behind model selection by interpretability analysis. The 

study demonstrated the effectiveness of the proposed framework in enhancing ET estimation robustness, thereby providing a 

valuable reference for the estimation of other similar variables. 

1 Introduction 25 

Evapotranspiration (ET) plays a crucial role in both global water and energy cycles (Fisher et al., 2017; Good et al., 2015; 

Milly et al., 2005), transferring over 60% of terrestrial precipitation back into the atmosphere (Oki & Kanae, 2006), and 

concurrently consuming a significant amount of energy (Trenberth et al., 2009). Particularly in the context of global 

warming, changes in ET will not only alter the distribution of global available freshwater resources (Greve & Seneviratne, 

2015; Huntington, 2006; Purdy et al., 2018), but also significantly impact the frequency and severity of hydroclimatic 30 

extremes (Miralles et al., 2019; Schwalm et al., 2017). Therefore, reliable ET monitoring at the global scale is of great 

https://doi.org/10.5194/egusphere-2025-4782
Preprint. Discussion started: 2 December 2025
c© Author(s) 2025. CC BY 4.0 License.



2 

 

importance in studying the potential changes in the water cycle and energy budget under climate change conditions (Jung et 

al., 2011; Milly et al., 2005; Wang & Alimohammadi, 2012; Wang & Dickinson, 2012; Xie et al., 2015; Zhang et al., 2019).  

Flux towers can provide reliable in situ ET observations at hourly to sub-hourly timesteps based on the eddy covariance 

method (Williams et al., 2004; Wilson et al., 2001), but their limited spatial representativeness hinders the acquisition of 35 

regional ET. Although regional ET can be measured indirectly through assessing the water balance of catchments, the 

method is only suitable for catchment ET measurements over annual or longer timescales (Reitz et al., 2023). As none of 

existing methods can provide direct global ET measurements with both high precision and continuous spatial coverage 

(Fisher et al., 2017; Reitz et al., 2023; Teuling et al., 2009), remote sensing ET algorithms tend to be used to quantify global 

ET based on temporally and spatially continuous satellite data (e.g., Bastiaanssen et al., 1998; Jung et al., 2011; Kustas & 40 

Norman, 1997; Mu et al., 2011).  

The existing remote sensing ET algorithms can be divided into two categories: process-based algorithms and data-

driven algorithms (Fu et al., 2022; Shang et al., 2023). Process-based algorithms (e.g., Monteith, 1965; Penman, 1948; 

Priestley & Taylor, 1972; Su, 2002) employ flux equations to estimate ET based on physically-founded methods, such as the 

Monin-Obukhov similarity theory, energy balance method and aerodynamic method (Monteith, 1965; Penman, 1948; Allen 45 

et al., 1998). However, uncertainties remain in process-based ET algorithms, arising from the insufficient theoretical bases 

on the complex physical and biological factors involved in ET processes (Mu et al., 2011; Polhamus et al., 2013). With the 

influx of satellite and in situ observations, data-driven algorithms, especially the machine learning (ML) methods, have 

become popular in large-scale ET estimation (e.g., Xu et al., 2018; Zhang et al., 2022; Granata, 2019; Lyu & Yong, 2024). 

ML-based ET models can characterize the nonlinear relationship between different ET-related variables and efficiently 50 

capture the spatiotemporal dynamics features of ET from meteorological data streams (Reichstein et al., 2019), thus 

providing overall more accurate ET estimation than process-based algorithms in data-dense regions. However, due to the 

lack of global-scale ET observations, these ML-based ET models have to be trained based on in situ observations (Jung et 

al., 2010). The density of in situ observations is insufficient to represent global ET information, particularly in heterogeneous 

and data-sparse regions, hindering the use of these ML-based ET models at the global scale (Zhao et al., 2019).  55 

Combining ML-based ET models with process-based algorithms may be a feasible way to improve the generalizability 

of ML-based ET models (e.g., Brenowitz & Bretherton, 2018; Karpatne et al., 2017; Reichstein et al., 2019; Willard et al., 

2022). In these hybrid models, ML methods can be employed for improving parameterizations, or replacing a sub-model of 

physical model (Reichstein et al., 2019). For example, ML models can be used to estimate the parameters with high 

uncertainty, such as surface resistance (rs) in PM equation (Chen et al., 2022; Shang et al., 2023), or to estimate both 60 

aerodynamic resistance (ra) and rs (ElGhawi et al., 2023). ML models can also be coupled to stress-based ET models by 

replacing the formulation of transpiration stress (St) (Koppa et al. 2022). However, hybrid models still rely on sufficient 

availability of training data; therefore, they cannot take the place of process-based algorithms, especially in data-sparse 

regions and heterogeneous surfaces (Shang et al., 2023). On the other hand, due to the uncertainties in the coupling of 

machine learning and physical laws (Shang et al., 2023), hybrid models cannot consistently outperform pure ML-based ET 65 
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models in the data-dense regions. 

Given the different characteristics of process-based algorithms, ML-based ET models, and hybrid models, it is essential 

to explore a method to utilize the distinct advantages of the three models. Ensemble learning, a common approach to 

integrate multiple ML models to achieve better performance (Ganaie et al., 2022; Mohammed & Kora, 2023), may have the 

potential to address this issue. Several existing ensemble frameworks have been demonstrated to have the capability to 70 

achieve better performance than single model (e.g., Pérez-Rodríguez et al., 2023; Tseng, 2023). For example, genetic 

algorithm can be employed to determine the weights for the ensemble of multiple different ML models (Ayan et al. 2020). 

Similarly, the attention mechanism in neural network can dynamically assign weights to provide effective model integration 

(Liu et al. 2022). Statistical methods, such as Bayesian model averaging, can utilize the probability distributions of each 

model to assess their relative prediction performance, thereby assigning ensemble weights (Huang & Merwade, 2023). 75 

However, these approaches exhibit limitations in global ET estimation, either due to the sparse distribution of in situ 

observations, similar to the challenges encountered by pure ML-based ET models, or due to the non-dynamic weight 

assignments that cannot reflect the spatiotemporal distribution of distinct model advantages. Previous studies have 

demonstrated the significantly superior performance of observation-calibrated ML-based models over process-based 

algorithms at the site scale (Shang et al., 2023), thus when only site-observed ET is the most reliable data source, existing 80 

data-driven ensemble methods may not fully utilize the advantages of process-based algorithms. In addition, the existing 

ensemble models mainly focus on the integration between ML models and whether they are efficient to the integration 

among ML models, process-based algorithms and hybrid models have not been substantially validated.  

Hence, we proposed a novel ensemble framework and developed a model called Classifier-Guided Ensemble model to 

utilize the individual advantages of three base models (process-based algorithms, ML-based ET models, and hybrid models) 85 

by decomposing the ET estimation process into two steps, that is, the classification of input data and the regression of ET. An 

additional explainable ML classifier was trained to dynamically select the ‘dominant model’ to be used at each pixel. Since 

the ML classifier is used for classification rather than directly calculating ET, both in situ ET observations and global ET 

datasets can serve as reference datasets for deriving classifier training labels, resulting in improved classification accuracy 

and generalizability of the ensemble framework. In this study, the main objectives are to (a) use the proposed ensemble 90 

framework to generate global ET estimation based on in situ observations, satellite retrievals, reanalysis data, and multiple 

ET products; (b) carry out comprehensive evaluation of the model across multiple spatial scales to analyze model’s 

robustness and generalizability; (c) assess the impact of introducing ML classifier; (d) analyze the interpretability of the ML 

classifier to gain insights into the implicit meteorological and vegetation features suitable for different ET models. In doing 

so, our framework offers a reference for ET estimation and contributes to the understanding of the mechanisms behind ET 95 

estimation. 
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2 Methodology 

The same input covariates for all ML model used were selected: International Geosphere-Biosphere Programme (IGBP) land 

cover types, leaf area index (LAI), normalized difference vegetation index (NDVI), atmospheric pressure (P), incident solar 

radiation (Rs), soil moisture (SM), air temperature (Ta), soil temperature (Ts), vapor pressure deficit (VPD), wind speed 100 

(WS), with a monthly temporal scale, because these variables are key parameters in ET mechanisms and have been proved to 

be effective for ET estimation in other studies (Koppa et al., 2022; Shang et al., 2023). The calculation process and the 

models used are as follows: 

2.1. Machine learning model  

We chose to use Autogluon for all machine learning components in this study. Autogluon is an open-source AutoML 105 

framework that can automatically conduct the selection, combination, and parameterization of multiple ML methods, 

allowing us to achieve high-accuracy results without manual intervention (Erickson et al., 2020).  

Several ML algorithms are provided by Autogluon, including k-Nearest Neighbors, Extremely Randomized Trees, 

LightGBM boosted trees (Ke et al., 2017), CatBoost boosted trees (Dorogush et al., 2018), Random Forests (Breiman, 2001), 

neural networks, etc. These models have been widely used with their own distinct characteristics and advantages (Fan et al., 110 

2019; da Silva Júnior et al., 2019; Zhangzhong et al., 2023). Autogluon can combine them using methods known as stacking 

and bagging (Erickson et al., 2020), and can achieve better performance than individual models. More detailed algorithm 

information can be found in Erickson et al. (2020).  

2.2. Hybrid model 

The original P-M equation (Monteith, 1965; Penman, 1948) is as follows:  115 

𝜆𝐸𝑃𝑀 =
𝛥(𝑅𝑛−𝐺)+𝜌⋅𝐶𝑃⋅𝑉𝑃𝐷/𝑟𝑎

𝛥+𝛾⋅(1+𝑟𝑠/𝑟𝑎)
 (1) 

where λEPM is the latent heat flux (W m-2), Δis the slope of the saturated vapor pressure vs temperature curve (k Pa ◦C−1), Rn 

is the net radiation (W m-2), G is the soil heat flux (W m-2),ρis the air density (kg m-3), Cp is the specific heat capacity of air 

at constant pressure (J kg-1 k-1), VPD is the vapor pressure deficit of the air (Pa), γ is the psychrometric constant (k Pa ◦C-1) , 

ra and rs are the aerodynamic resistance and surface resistance (s m-1).  120 

Although some studies have optimized the estimation of parameter rs (Wang et al., 2010a, 2010b), estimating parameter 

rs remains a challenging task. So in hybrid model, we replaced the empirical expression of rs with ML model, similar to the 

surface conductance-based ML model as proposed by Shang et al. (2023). The target label rs in ML model is obtained by 

inverting the Equation 1, due to the lack of observations for parameter rs. As the other variables in Equation 1 can be 

calculated based on the covariates for ML model, the estimated ET can be computed by Equation 1 after obtaining the 125 

parameter rs from the ML model. 
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2.3. Process-based ET algorithms 

We chose to use a MODIS global terrestrial ET algorithm from Mu et al. (2011, 2007) based on the PM equation. They 

improved the methods to estimate some parameters in traditional PM algorithms and included additional ET sources into the 

algorithm. They divided ET into three main components: wet canopy evaporation, plant transpiration, and soil evaporation, 130 

with soil evaporation further divided into the saturated surface and the moist surface. Some of the main formulas are listed 

below: 

𝜆𝐸 = 𝜆𝐸𝑤𝑒𝑡𝑐
+ 𝜆𝐸𝑡𝑟𝑎𝑛𝑠 + 𝜆𝐸𝑠𝑜𝑖𝑙  (2) 

𝜆𝐸𝑤𝑒tc
=

(𝑠×𝐴𝐶×𝐹𝐶+𝜌×𝐶𝑝×(𝑒𝑠𝑎𝑡−𝑒)×
𝐹𝐶

𝑟ℎ𝑟𝑐
)×𝐹𝑤𝑒𝑡

𝑠+
𝑃𝑎×𝐶𝑝×𝑟𝑣𝑐

𝜆×𝜀×𝑟ℎ𝑟𝑐

 (3) 

𝜆𝐸𝑡𝑟𝑎𝑛𝑠 =
(𝑠×𝐴𝐶×𝐹𝐶+𝜌×𝐶𝑝×(𝑒𝑠𝑎𝑡−𝑒)×

𝐹𝐶
𝑟𝑎

)×(1−𝐹𝑤𝑒𝑡)

𝑠+𝛾×(1+
𝑟𝑠
𝑟𝑎

)
 (4) 135 

𝜆𝐸𝑤𝑒𝑡𝑠𝑜𝑖𝑙
=

(𝑠×𝐴𝑠𝑜𝑖𝑙+𝜌×𝐶𝑝×(1.0−𝐹𝐶)×
𝑉𝑃𝐷

𝑟𝑎𝑠
)×𝐹𝑤𝑒𝑡

𝑠+𝛾×
𝑟tot
𝑟𝑎𝑠

 (5) 

𝜆𝐸𝑠𝑜𝑖𝑙𝑝𝑜𝑡
=

(𝑠×𝐴𝑆𝑂𝐼𝐿+𝜌×𝐶𝑝×(1.0−𝐹𝐶)×
𝑉𝑃𝐷

𝑟𝑎𝑠
)×(1.0−𝐹𝑤𝑒𝑡)

𝑠+𝛾×
𝑟𝑡𝑜𝑡
𝑟𝑎𝑠

 (6) 

𝜆𝐸𝑆𝑂𝐼𝐿 = 𝜆𝐸𝑤𝑒𝑡𝑠𝑜𝑖𝑙
+ 𝜆𝐸𝑠𝑜𝑖𝑙𝑝𝑜𝑡

× (
𝑅𝐻

100
)

𝑉𝑃𝐷

𝛽
 (7) 

where 𝜆𝐸𝑤𝑒t_c  is evaporation from wet canopy surface, 𝜆𝐸𝑡𝑟𝑎𝑛𝑠  is plant transpiration, 𝜆𝐸𝑤𝑒𝑡_𝑠𝑜𝑖𝑙  and 𝜆𝐸𝑠𝑜𝑖𝑙_𝑝𝑜𝑡  are 

evaporation from soil surface and potential soil evaporation, respectively.  140 

Additionally, they improved the method to estimate vegetation cover fraction, soil heat flux, and parameters such as rs, 

ra, etc., and calculated ET as the sum of daytime and nighttime components, thereby enhancing accuracy. More detailed 

information on the algorithms and the parameters can be found in Mu et al. (2011, 2007). In applying this algorithm, we 

mainly used input variables LAI, IGBP, P, Rs, Ta, VPD, etc., all of which were also employed by the ML models, without 

introducing any additional data. 145 

2.4 Classifier-Guided Ensemble model  

The Classifier-Guided Ensemble model aims to integrate three base models (process-based algorithm, ML-based ET model, 

and Hybrid model) to optimize the global ET estimation by dividing the ET estimation process into two sub - problems: (a) 

training a ML classifier to identify the ‘dominant model’ at each pixel, and (b) using the corresponding ‘dominant model’ at 

each pixel to estimate ET (Fig. 1).  150 
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Figure 1. Schematic of the Classifier-Guided Ensemble model. The red arrows indicate the modeling steps of the ML Classifier. P 

is atmospheric pressure, Rs is incident solar radiation, SM is soil moisture, Ta is air temperature, Ts is soil temperature, VPD is 

vapor pressure deficit, WS is wind speed, LAI is leaf area index, NDVI is normalized difference vegetation index. 

Before training the ML classifier, we needed to first use the three base models to estimate ET at both site and global 155 

scales. The estimated ET, in situ ET observations and other global ET products were processed for classification task, in 

order to obtain the training target. At the site scale, we classified the data at each site for every time point into three types 

(‘ML model-dominated’, ‘hybrid model-dominated’, and ‘process-based algorithm-dominated’) based on the relative errors 
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between the model-estimated ET and the observed ET. The model with the smallest relative error was the ‘dominant model’ 

for the corresponding site and time. Specifically, at the site scale, we conducted ten-fold cross-validation on three base 160 

models and used ET estimates from the validation sets for classification task, to avoid abnormally high accuracy resulting 

from model overfitting. 

At the global scale, due to the lack of reliable ET observations, we used six widely used global ET products as 

references to extract some relatively reliable data from the global dataset for the classification task. We calculated the 

relative errors between estimated ET of base models and global ET products at each pixel for every time point, obtaining six 165 

error values for each base model. If all six relative error values of a base model were lower than those of the other two base 

models, data of this pixel and time point was added to the training data and the model was considered to be the ‘dominant 

model’ of this pixel and time point. Due to differences in the spatial patterns of various ET products, data from other pixels 

were excluded to reduce uncertainty.  

In the training set, we performed the aforementioned classification task, using the classification results as training target 170 

for the ML classifier, with the other data serving as input covariates. After training the ML classifier, we could use the global 

covariate dataset in the validation set to obtain classification results for each pixel and time point, and employ the 

corresponding ‘dominant model’ to produce global ET estimates. 

2.5 Other ensemble models used for comparison 

We use the Attention-Based ensemble technique used by Liu et al. (2022) as a comparison. The Attention Mechanism is 175 

similar to human selective attention and is a method to mimic the human visual and cognitive systems. This technique 

utilizes the focusing ability of the self-attention mechanism (Zhang et al., 2021), which allows the neural network to focus on 

what it considers important. It can improve model performance by automatically assigning higher weights to sub-models 

with higher accuracy. The core formula of this model is as follows:  

𝑓𝐴𝐸(𝑥) = ∑  𝑁
𝑖=1 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖(𝑥)

= ∑  𝑁
𝑖=1 𝑓𝑖

𝑆𝐸(𝑥) ⋅ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑖𝑓𝑖
𝑆𝐸(𝑥))

= ∑  𝑁
𝑖=1 𝑓𝑖

𝑆𝐸(𝑥) ⋅
𝑒𝑥𝑝(𝑊𝑖𝑓𝑖

𝑆𝐸(𝑥))

∑  𝑁
𝑖=1 𝑒𝑥𝑝(𝑊𝑖𝑓𝑖

𝑆𝐸(𝑥))

 (8) 180 

where 𝑓𝐴𝐸(𝑥) is the output of Attention-Based ensemble network, 𝑓𝑖
𝑆𝐸(𝑥) is the output of i-th base model, 𝑊𝑖 is attention 

coefficient, N is the number of base models (N = 3 in this study). More detailed algorithm information can be found in Liu et 

al. (2022). 

We used the site-scale ET estimation from three base models as input variables, and ground observed ET as the training 

target to train a neural network model with attention mechanism which was then used to estimate the global ET as a 185 

comparison. 
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3. Data and model validation 

3.1 In situ observations 

In this study, we take ground observed surface latent heat flux (LE) to calculate the ET values for training and validation. 

We used data from 129 flux tower sites (Table A1 and Fig. 2a.) in the FLUXNET2015 dataset (https://fluxnet.org/) 190 

(Pastorello et al., 2020) with the sampling frequency of half - hourly or hourly. These selected sites represent a wide range of 

major IGBP land cover types: cropland (CRO, 15 sites), deciduous broadleaf forests (DBF, 14 sites), evergreen broadleaf 

forests (EBF, 10 sites), evergreen needleleaf forests (ENF, 28 sites), grasslands (GRA, 28 sites), mixed forests (MF, 5 sites), 

open shrublands (OSH, 7 sites), savannas (SAV, 13 sites) and permanent wetlands (WL, 9 sites). 

 195 

Figure 2. Locations of a) the 129 Flux sites and b) the 38 global catchments chosen for analysis in this study. The land cover types 

are identified based on the International Geosphere-Biosphere Programme (IGBP) biome classification. The red boxes indicate the 

locations of the 30 sites used in the independent validation. 

To mitigate the effects of the uncertainty from data, we only chose the sites with high-quality data and rejected the non-

observed data, missing values and data with energy closure less than 70% in the original dataset. Due to potential issues with 200 

eddy covariance technology and measurements under rainy conditions (Medlyn et al., 2011), we excluded rainy day samples 

to avoid errors. We also applied the Bowen ratio closure method to address the issue of energy imbalance in original 

observations (Foken, 2008; Twine et al., 2000). If the filtered data had more than 20% missing values in a month, the data 
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for that month was removed. The remaining data were then processed using linear interpolation and averaging to generate 

monthly-scale data.  205 

3.2. Catchment- scale ET 

At the catchment scale, the water balance method can be used to obtain a more reliable ET data (Pascolini-Campbell et al., 

2020). The catchment-scale ET can be calculated as: 

𝐸𝑇 = 𝑃 − 𝑄 −
𝑑𝑆

𝑑𝑡
 (9) 

where P is precipitation, Q is runoff at the basin outlet, and dS/dt is the change in total water storage. We used the dataset of 210 

the water-balance-based evapotranspiration of global typical large river basins published by Ma et al. (2024a). This dataset 

spans a 34-year period from 1983 to 2016 and can be downloaded from the National Tibetan Plateau Data Center (Ma, 

2024b). This data is derived from water balance methods combined with four different precipitation data sources (P), three 

types of terrestrial water storage change estimates (dS/dt) and observed flow data from control sites (Q). We selected 38 

major catchments (>200,000 square kilometers) in this dataset as our validation data (Fig. 2b and Table A2). 215 

3.3. Global- scale datasets 

At the global scale, we collected 6 widely used ET products generated from different data sources, different forcing data, 

different calculation methods to evaluate model performance. (1) FLUXCOM (Jung et al., 2019; Tramontana et al., 2016) 

provides a latent heat dataset, with 0.0833° × 0.0833° resolution and time spanning a 75-year period from 1950 onwards 

generated, from energy flux measurements from FLUXNET eddy covariance towers and meteorological data utilizing only 220 

machine learning methods. (2) Process-based Land Surface Evapotranspiration/Heat Fluxes (PLSH) (Zhang et al., 2015) is a 

product with 0.0833° × 0.0833° resolution and time spanning a 32-year period from 1982 to 2013. The dataset is driven by 

satellite observations of photosynthetic canopy cover and surface meteorology inputs. (3) Global Land Evaporation 

Amsterdam Model (GLEAM) version 3.8a (Martens et al., 2017; Miralles et al., 2011) is an established ET product based on 

satellite and reanalysis data with 0.25◦ × 0.25◦ resolution and time spanning the 44-year period from 1980 to 2022. (4) 225 

GLEAM version 3.8b (Martens et al., 2017; Miralles et al., 2011) is also selected because of its different forcing data. It is 

based on only satellite data with 0.25◦ × 0.25◦ resolution and time spanning the 20-year period from 2003 to 2022. (5) Global 

Land Data Assimilation System (GLDAS) version 2.1 (Rodell et al., 2004; Beaudoing & Rodell, 2020), a product with 0.25° 

× 0.25° resolution and time spanning a 24-year period from 2001 onwards, is generated by combining data assimilation 

techniques with satellite and ground-based observations. (6) European Centre for Medium-range Weather Forecasts 230 

(ECMWF)-ERA5-Land product (Muñoz Sabater, 2019) is a reanalysis product based on multi-source data with 0.1◦ × 0.1◦ 

and time spanning a 75-year period from 1950 onwards.  
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In the input training data, variables P, Rs, SM, ST, Ta, VPD, WS are also sourced from the ERA5-land product. Since 

the ERA5-Land dataset only provides dew point temperature data, we used the following formula for calculation (Abbott & 

Tabony, 1985):  235 

𝑉𝑃𝐷 = 0.6108 [𝑒
17.27𝑇

𝑇+237.3 − 𝑒
17.27𝑇𝑑

𝑇𝑑+237.3] (10) 

Here, T and Td represent temperature and dew point temperature respectively(℃). Although these data are also available 

in the in situ observations, we chose to use the global-scale dataset instead to avoid issues caused by inconsistencies in 

spatial scales between the training data and the calculation data (Xiao et al., 2008). We employed an inverse distance 

weighting method to extract data at the coordinates of the corresponding sites for training data.  240 

Other variables LAI and NDVI are sourced from the Global Inventory Modeling and Mapping Studies (GIMMS) NDVI 

and LAI products (Cao et al., 2023; Li et al., 2023), which are half-month products with 0.0833° × 0.0833° resolution. We 

averaged the two values for the month to obtain the monthly average data. The IGBP variables are sourced from the MODIS 

Land Cover Climate Modeling Grid Product (MCD12C1) (Friedl & Sulla-Menashe, 2015), which is a spatially aggregated 

and reprojected version of the tiled MCD12Q1 product with 0.05° × 0.05° resolution. We resampled all these data to 0.1° 245 

spatial resolution, the same as the ERA5-Land product that contains the most input variables. 

3.4. Model validation 

3.4.1 Site and catchment scale validation 

Given that both in situ observations and the total catchment ET calculated by the water balance method are relatively reliable 

datasets, we can directly compare the ET generated by our model with these datasets at site and catchment scale. At the site 250 

scale, we conducted k-fold cross-validation with k = 10. In each fold we selected 10% of the data at each site as the 

validation set and the remaining data as the training set. In addition, we carried out independent validation by selecting 30 

independent sites excluded from the training data (Table A3 and Fig. 2a) to evaluate the spatial simulation performance of 

our Classifier-Guided Ensemble model. The selected independent validation sites cover multiple land cover types and most 

of the major regions. Also, we evaluated the ET estimation performance of our model on extreme samples sorted in 255 

ascending order within the 0th – 1st percentiles and 99th - 100th percentiles for six variables (LAI, NDVI, Rs, SM, Ta, VPD) 

to verify the extrapolation performance of the model. At the catchment scale, we used calculated catchment ET to compare 

with the total catchment ET estimated by our model and other global ET products.  

To quantitatively validate the performance of our model, we used several statistical metrics: Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R²), and Kling-Gupta Efficiency (KGE) (Table 1). 260 

MAE and RMSE are used to measure the closeness between the model results and observations. R² can be used to assess the 

correlations. KGE comprehensively considers the relative error, correlation coefficient and variance of the model results, 

providing a comprehensive assessment of the model's overall performance. 
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Table 1. The explanation of statistical metrics used to evaluate model performance in this study. 

Statistic metrics Unit Equation Suitable value 

RMSE mm month-1 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑  

𝑛

𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)2 0 

MAE mm month-1 𝑀𝐴𝐸 =
1

𝑛
∑  

𝑛

𝑖=1

|𝑦𝑖 − 𝑦̂𝑖| 0 

R2 NA 𝑅2 = 1 −
∑  𝑛

𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)2

∑  𝑛
𝑖=1 (𝑦𝑖 − 𝜇𝑦)2

 1 

KGE NA 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 

𝛼 =
𝜇𝑦̂

𝜇𝑦
, 𝛽 =

𝜎𝑦̂

𝜎𝑦
 

1 

Note. 𝑦𝑖 and 𝑦̂𝑖 represent observations and estimations, respectively, 𝛼 is the bias ratio, 𝛽 is the variability ratio, σ represents the standard 265 
deviation, μ represents the average. 

3.4.2 Global scale validation 

Taking into account the available years of each product, we analyzed the data for the period from 2003 to 2013, with the data 

of 2003 and 2004 serving as the training set and the data of remaining years as the validation set. At global scale, due to the 

lack of reliable ET observations, conventional validation methods are not feasible. Therefore, we used the three-cornered hat 270 

(TCH) method (Tavella & Premoli, 1994) to quantify the uncertainties of ET estimation. TCH is a reliable method for 

estimating the uncertainty of various time series products and has been used for validation of multiple datasets (Liu et al., 

2021). We used the same formula as in (Xie et al., 2024). The time series of ET at each pixel can be expressed as: 

𝑋𝑘 = 𝑋𝑡 + 𝜀𝑘, ∀𝑘 = 1,2,3, … , 𝑁 (11) 

where k represents the index of the corresponding ET product, N is the total number of ET products included in the 275 

validation, 𝑋𝑡 represents the true value and 𝜀𝑘 represents the error term.  

The truth value of ET cannot be obtained, so we need to get the 𝜀𝑘  without 𝑋𝑡 . To solve this problem, the TCH 

algorithm defines a product as a reference product to get a matrix 𝑌𝑘,𝑚  as: 

𝑌𝑘,𝑚 = 𝑋𝑘 − 𝑋𝑅 = 𝜀𝑘 − 𝜀𝑅 , ∀𝑘 = 1,2,3, … , 𝑁 − 1 (12) 

where 𝑋𝑅 is the arbitrarily selected reference product, 𝑌𝑘,𝑚 is an M × (N – 1) matrix, M is the length of the time series of X. S, 280 

the covariance matrix of Y, is related to the unknown M × N covariance matrix of the individual noise Q as (Galindo & 

Palacio, 2003): 

𝑆 = 𝐽 ∙ 𝑄 ∙ 𝐽𝑇 (13) 
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𝐽𝑁−1,𝑁 = [

1 0 ⋯ 0 −1
0 1 ⋯ 0 −1
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ −1

] (14) 

Since the number of equations is still less than the number of unknowns, it is impossible to solve the equation. They 285 

used the Kuhn-Tucker theorem proposed by Galindo & Palacio (1999) to solve the con­strained minimization problem. The 

definition of the objective function and constraint function is: 

𝐹(𝑟1𝑁,…𝑟𝑁𝑁) = −
1

𝐾2 ⋅ ∑  𝑁
𝑖<𝑗 𝑟𝑖𝑗

2  (15) 

𝐻(𝑟1𝑁,…𝑟𝑁𝑁) = −
|𝑄|

|𝑆|⋅𝐾
< 0 (16) 

where 𝑟1𝑁, … 𝑟𝑁𝑁 are the elements of the corresponding Q. They also used the initial conditions for the iteration proposed by 290 

Torcaso et al. (1998): 

𝑟𝑖𝑁
0 = 0, 𝑖 < 𝑁; (17) 

𝑟𝑁𝑁
0 =

1

2∙𝑆∗ , 𝑆∗ = [1, … ,1] ∙ 𝑆−1 ∙ (1, … ,1)𝑇 (18) 

Finally, the Q value is obtained by minimizing the objective function. More detailed information can be found in their 

paper (Galindo & Palacio, 1999, 2003; Torcaso et al., 1998; Xie et al., 2024). 295 

3.4.3 ML model interpretability analysis 

We used SHAP (SHapley Additive exPlanations) to analyze the interpretability of the ML classifier we used. SHAP was 

originally proposed in game theory (Shapley, 1952) and was used as a method to equitably distribute benefits by calculating 

each member's marginal contribution. Subsequently, it was used to compute the marginal contribution of each input variables 

to enhance the interpretability of machine learning (Lundberg & Lee, 2017). 300 

The Python library of SHAP was used to calculate the SHAP values for each input feature. SHAP library is applicable 

for interpretability analysis of ensemble models that integrate multiple ML models. In this study, SHAP values were 

employed to enhance our understanding of how our ML classifier selects the ‘dominant model’. 

4. Results 

4.1 Model evaluation with in situ observations 305 

4.1.1 Model Evaluation using EC observations 

To evaluate the model simulation performance, we conducted a ten-fold cross-validation at all selected EC sites (Fig. 3). 

First, we check whether the integrated base models could accurately estimate ET at site scale (Fig. 3b, c and e). It is found 

that both ML model and Hybrid model perform well with R² and KGE nearing 0.9, ensuring the reliability of ensemble 
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model while process-based algorithm exhibits relatively lower performance, with a KGE of 0.65, R2 of 0.48, MAE of 17.41 310 

mm month-1, RMSE of 26.45 mm month-1. Despite the lower accuracy of process-based algorithm at site scale, it is also 

integrated as the employed physically-founded equations enable process-based algorithm to maintain acceptable 

performance in data-sparse regions. 

 

Figure 3. Performance of a) Classifier-Guided Ensemble model, b) ML model, c) Hybrid model, d) Attention-Based Ensemble 315 
model, e) process-based algorithm and f) Classifier-Guided Ensemble model (enhanced by additional global-scale training data) in 

ten-fold cross-validation. 

The performance of our Classifier-Guided Ensemble model and the model with more training data are shown in Fig. 3a 

and 3f. Although when trained using only site-scale data, our Classifier-Guided Ensemble model performs well with a KGE 

of 0.91, R2 of 0.88, MAE of 9.64 mm month- 1, RMSE of 14.31 mm month-1, showing clear advantages over base models, it 320 

cannot significantly outperform the Attention-Based Ensemble model with the same KGE and R2, lower RMSE of 14.27 mm 

month-1 and lower MAE of 9.62 mm month-1 (Fig. 3d). As illustrated in Fig. 3e, the process-based algorithm exhibits inferior 

performance to data-driven models at the site scale, resulting in its near exclusion from the classifier when trained only on in 

situ observations. Expanding the training dataset with global datasets enables the classifier to better recognize the scenarios 

where each base model performs best, with accuracy improving from 70% to 90%, particularly for process-based algorithm. 325 

Therefore, our model can achieve the best performance among all of the models used for comparison in the validation 

dataset, with a KGE of 0.92, R2 of 0.89, MAE of 8.66 mm month-1, RMSE of 13.48 mm month-1.  
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Figure 4. The a) R2 and b) KGE of the Classifier-Guided Ensemble model, Attention-Based Ensemble model, ML model, and 

Hybrid model in independent validation. The red lines represent the median of the validation metrics, and the red dots represent 330 
the average values of the validation metrics. 

The independent validation results shown in Fig. 4 and Table A4 also indicate that our model exhibits excellent 

generalizability in these independent sites. The ET estimation from Classifier-Guided Ensemble model achieves the best 

performance among all compared models, with a higher average R2 of 0.35 and a higher average KGE of 0.60. The 

Classifier-Guided Ensemble model performs well in most of the selected independent sites, especially at the CH-Dav and 335 

US-ARM sites, as it can make better use of the process-based algorithm’s extrapolation strengths, yielding better outcomes 

even when ML model and Hybrid model struggle, while the Attention-Based Ensemble model's results are closer to those of 

the ML model at most sites, resulting in poorer performance in independent validation. 

The results from the k-fold cross-validation and independent validation indicate that our Classifier-Guided Ensemble 

model performs well in estimating ET at site scale, exhibiting better stability and generalizability, and the inclusion of 340 

global-scale data makes our model perform better. 

4.1.2 Model Evaluation under different sites and vegetation cover conditions. 

In situ observations were also used to evaluate the performance of models across different sites and land cover types, thereby 

validating the models' spatial simulation performance. The Taylor diagram is used to compare the performance of the models, 

where the two axes represent the root mean square error (RMSE, in mm month-1), and the curves indicate the Pearson’s 345 

correlation coefficient (r). 
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Figure 5. Taylor diagram that compares the performance of the four models with ground observations for a) different sites and b) 

different land cover types. 

As Fig. 5a and Table 2 demonstrates, Classifier-Guided Ensemble model performs the best among the four models in 350 

the majority of the site, with lower average RMSE of 14.55 mm month- 1 (Attention-Based Ensemble model: 15.41 mm 

month-1, Hybrid model: 15.52 mm month-1, ML model: 15.46 mm month-1), and higher average correlation coefficient(r) of 

0.90 (Attention-Based Ensemble model: 0.88, Hybrid model: 0.88, ML model: 0.87). Classifier-Guided Ensemble model 

also demonstrates greater performance than the other three models in the majority of land cover types (Fig. 5b and Table 3), 

with lower average RMSE of 16.88 mm month-1 (Attention-Based Ensemble model: 17.40 mm month-1, Hybrid model: 355 

17.38 mm month-1, ML model: 17.94 mm month-1), and higher average correlation coefficient(r) of 0.93 (Attention-Based 

Ensemble model: 0.92, Hybrid model: 0.93, ML model: 0.92). Classifier-Guided Ensemble model outperforms other models 

across most land cover types, with the exception of the CSH, where its performance is slightly inferior to Attention-Based 

Ensemble model and Hybrid model.  

Table 2. Performance of different ET models as indicated by averaged RMSE and R2 for all sites. 360 

Model RMSE (mm month-1) R2 

Classifier-Guided Ensemble model 14.55 0.90 

Attention-Based Ensemble model 15.41 0.88 

Hybrid model 15.52 0.88 

ML model 15.46 0.87 

Further, we notice that the Attention-Based Ensemble model assigns more ‘attention’ to the ML model, since the ML 

model performs best at the site scale among the three base models. Therefore, the performance of the Attention-Based 

Ensemble model is inferior to that of the hybrid model under different land cover types, while Classifier-Guided Ensemble 

model can fully utilize the characteristics of the base models and get better results, which is consistent with the conclusion 
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from independent validation. In summary, the proposed model better fits the data from different sites and different land 365 

cover types, which demonstrates the effectiveness of our ensemble method. 

Table 3. Performance of different ET models as indicated by RMSE and R2 for all IGBP land cover types. 

IGBP 

Classifier-Guided 

Ensemble model 

 Attention-Based 

Ensemble model 

 
Hybrid model 

 
ML model 

RMSE 

(mm  

month-1) 

R2 

 RMSE 

(mm   

month-1) 

R2 

 RMSE 

 (mm 

month-1) 

R2 

 RMSE  

(mm 

month-1) 

R2 

ENF 9.57  0.96   9.99  0.96   10.44  0.95   9.99  0.96  

EBF 14.23  0.90   15.01  0.89   14.70  0.89   14.96  0.89  

DBF 11.68  0.96   11.45  0.96   12.13  0.96   11.76  0.96  

MF 9.49  0.96   10.79  0.95   10.65  0.95   10.52  0.95  

CSH 56.82  0.84   54.77  0.83   52.81  0.88   60.26  0.80  

OSH 9.08  0.94   10.33  0.92   10.97  0.91   10.14  0.92  

SV 12.80  0.95   12.99  0.95   13.33  0.94   12.92  0.95  

GRA 12.30  0.94   13.62  0.93   13.82  0.93   13.45  0.93  

CROP 15.92  0.94   17.62  0.93   17.54  0.93   17.44  0.93  

Average 16.88  0.93   17.40  0.92   17.38  0.93   17.94  0.92  

4.1.3 Model Evaluation using extreme samples 

In order to verify the extrapolation performance of the models for extreme samples, we compared the performance of these 

models for multiple extreme samples. The heatmaps in Fig. 6 indicate that for the majority of these extreme samples, our 370 

Classifier-Guided Ensemble model can accurately estimate ET. 

For the 99th – 100th percentiles of the VPD in particular, Classifier-Guided Ensemble model performs significantly 

better than the other models, with a KGE of 0.66, R2 of 0.36, while the KGE of other models is below 0.3 and the R² is less 

than 0. This shows that Classifier-Guided Ensemble model has the potential to efficiently select the ‘dominant model’ to 

achieve good results even when these existing ML models perform poorly. Under the cases of high Ta, high Rs and low Ta, 375 

Classifier-Guided Ensemble model performs significantly better than the other models. Only under the three cases of low 

VPD, low Rs and low LAI, Classifier-Guided Ensemble model is not as good as the other models and the difference is not 

significant, with the KGE being 0.08, 0.02 and 0.08 lower than that of the Attention-Based Ensemble model, respectively. In 

most extreme cases, Classifier-Guided Ensemble model can yield stronger extrapolation performance than individual base 

models or other ensemble models, providing more accurate ET estimates under extreme weather events.  380 
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Figure 6. The comparison of different models (A Classifier-Guided Ensemble model, B Attention-Based Ensemble model, C ML 

model, D Hybrid model) under extreme conditions in the form of heatmaps. a) and b) represent the extreme samples sorted in 

ascending order within the 0th – 1st percentiles and 99th - 100th percentiles, respectively. 

4.2 Model evaluation at catchment scale 385 

 

Figure 7. Scatterplot for the relationship between estimated ET and water balance ET (each point represents a catchment over a 

one-year period). 
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To validate the model performance for the catchment-scale application, we used six ET products, Classifier-Guided 

Ensemble model, and Attention-Based Ensemble model to estimate ET in each catchment and compare them to the water 390 

balance ET dataset. The results show that Classifier-Guided Ensemble model performs better than other comparison models 

and products (Fig. 7), with a KGE of 0.94, R2 of 0.92, MAE of 6.17 mm month-1, RMSE of 7.73 mm month-1 and the slope 

of the regression of estimated ET versus water balance ET for our model (0.99) is closer to 1 than that of the other ET 

products and models. The Attention-Based Ensemble model also performs better than most of the ET products used, with a 

KGE of 0.89, but the results are not as good as those of our model, ERA5-Land, and GLDAS ET products as it exhibits 395 

higher RMSE and MAE. This proves that our model is in better agreement with the catchment water balance ET. 

 

Figure 8. Distributions of the root-mean-square error (RMSE) for the 38 catchments. 
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The spatial distribution of RMSE across 38 catchments (Fig. 8) further demonstrate the superior performance of our 

model. Compared to the Attention-Based Ensemble model, our model shows significant improvement in RMSE for 400 

catchment 'Mackenzie', 'Rio Grande', 'Lower Colorado', 'Amazon', 'Kolyma ', 'Godavari', 'Krishna', 'Orange', 'Cooper Creek' 

and 'Barwon', with a reduction in RMSE of over 20%. Especially in catchment 'Godavari', the RMSE of our model is 5.59 

mm month-1 and the RMSE of Attention-Based Ensemble model is 12.02 mm month-1, with a difference of more than 50%. 

In some other catchments ('Mid-Atlantic', 'Ohio', 'Upper Colorado', 'Ob' and 'Yellow'), the RMSE of the Attention-Based 

Ensemble model is over 20% lower than that of our model. Compared to another well-performing GLDAS product, there are 405 

large differences between our model and GLDAS due to the difference in calculation methods, with each of these two 

methods having lower RMSE in 19 catchments. In summary, while there are some differences in ET estimation among our 

model, the Attention-Based Ensemble model, and other products in different catchments, our model is in better agreement 

with the catchment water balance ET in the majority of catchments. 

4.3. Model evaluation at global scale 410 

To further validate the performance of our model on larger spatial scales, we compared the multi-year average ET estimated 

by Classifier-Guided Ensemble model and Attention-Based Ensemble model, and other ET products. We primarily 

compared our Classifier-Guided Ensemble model with Attention-Based Ensemble model to validate the performance of our 

ensemble method and with FLUXCOM, which is an ET product generated based on pure ML models, to evaluate the 

differences between ensemble model and pure ML models. Additionally, other ET products were included as reference for 415 

the analysis. Some ET products, like FLUXCOM, contain missing values in certain regions, and these regions were excluded 

from the comparison. 

4.3.1 Evaluation of multi-year average ET estimates  

Fig. 9 shows the spatial distribution of the multiyear (2005-2013) mean global ET estimates for the ET models and products. 

Our Classifier-Guided Ensemble model shows expected global patterns of ET and all of these ET models and products 420 

generally show similar spatial pattern. ET values are relatively higher in mid-latitude regions near the equator, including the 

Amazon Basin, the Congo Basin, and Southeast Asia, while lower ET values are shown in some arid regions, including the 

Sahara Desert and Central Asia, as well as in high-latitude alpine regions, including northern Russia, and northern Canada. 

The multiyear mean ET ranges from 46.99 mm month-1 to 49.69 mm month-1, with FLUXCOM having the highest average 

ET and GLEAM_B having the lowest average ET. 425 

Despite their great consistency in spatial patterns, there are still some regional discrepancies detected among these 

datasets. Compared with other products, the Attention-Based Ensemble model shows the largest discrepancy in tropical 

regions, as it provides lower ET estimates, with almost no regions exhibiting ET exceeding 120 mm month-1. This may be 

attributed to the ML model's limited ability to estimate extreme high values, as well as the potential underestimation of ET 

by the ensemble model (Cai et al., 2024). Compared with the Attention-Based Ensemble model, our Classifier-Guided 430 
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Ensemble model shows better spatial consistency with other ET products and avoids the underestimation of high values. The 

latitudinal average ET distribution for each dataset also confirms this conclusion. The Attention-Based Ensemble model 

shows lower ET estimates in both high-ET and low-ET regions and the FLUXCOM product tends to overestimate ET in 

low-latitude regions, particularly in areas slightly below the peak values, while the ET profile estimated by our model shows 

improvement in these areas. Overall, our model generally performs well and provides a reasonable global ET estimate, 435 

indicating a distinct improvement in generalizability with the introduction of ML classifier. 

 

Figure 9. Average annual land evapotranspiration from 2005 to 2013 for Classifier-Guided Ensemble model, Attention-Based 

Ensemble model and other ET products. The latitudinal profiles of these datasets are shown in the right panel. 
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4.3.2 Uncertainty analysis at global scale 440 

 

Figure 10. Average monthly uncertainty from 2005 to 2013 for Classifier-Guided Ensemble model, Attention-Based Ensemble 

model and other ET products. 

The proposed model also demonstrates strong stability in the uncertainty analysis. Fig. 10 illustrates the uncertainty 

distribution estimated from the TCH method for eight global ET estimates during the period from 2005 to 2013. All of these 445 

datasets exhibit high stability, with less than 5 mm month-1 mean uncertainty in most areas. The lowest mean uncertainty is 

achieved by Classifier-Guided Ensemble model (1.45), followed by FLUXCOM (1.54), Attention-Based Ensemble model 

(1.63), GLEAM_A (1.84), GLEAM_B (1.88), PLSH (1.93), ERA5 (2.25), GLDAS (3.08). The uncertainty distribution of 

these datasets also shows a similar spatial pattern and typically high uncertainty is found in low-latitude areas. Many studies 

have investigated the uncertainty of these ET products. Xie et al. (2024) used the TCH method to assess the uncertainty of 450 
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several products from 2003 to 2015 and found that FLUXCOM had the lowest uncertainty. Zhu et al. (2022) and Li et al., 

(2022) also evaluated several products and found that the GLEAM product exhibited lower uncertainty. The uncertainty of 

these products we calculated is consistent with the results of these previous studies. 

Compared to Attention-Based Ensemble model, our model shows lower uncertainty in high ET regions near the equator 

and shows lower uncertainty compared to FLUXCOM in the southern North America and Australia. These results confirm 455 

preceding analysis that our Classifier-Guided Ensemble model consistently perform well at global scale, showcasing the 

potential of our ensemble method to enhance the generalizability. 

5. Discussion 

In this work, by developing a novel ML Classifier-Guided Ensemble ET model, we provide a simple but effective way to 

integrate different base models (process-based algorithm, ML-based ET model, and hybrid model) to estimate ET or similar 460 

variables lacking reliable global observations. Through the introduction of ML classifier, Classifier-Guided Ensemble model 

can utilize the distinct advantages of the three base models with better performance at multiple spatial scales. Compared with 

individual base models and Attention-Based Ensemble model, Classifier-Guided Ensemble model fit ET observations better, 

especially in extreme samples and under different sites and vegetation cover conditions, demonstrating improved 

generalizability and avoiding the underestimation of high values compared to traditional ensemble models. At catchment 465 

scale, ET estimates from Classifier-Guided Ensemble model show a greater agreement with catchment ET calculated from 

water balance, with performance comparable to other widely used ET products (ERA5, FLUXCOM, GLDAS, GLEAM_A, 

GLEAM_B, and PLSH). At global scale, the evaluation of multi-year average ET estimates and uncertainty analysis indicate 

that Classifier-Guided Ensemble model can provide a reasonable and stable global ET estimate. The main advantage of 

Classifier-Guided Ensemble model is the improved generalizability, which is primarily attributed to the introduction of ML 470 

classifier due to the ML Classifier’s capacity to include a broader range of training data and to select the appropriate model 

at each pixel, especially for process-based algorithm. 

5.1 Evaluation of the Effectiveness of ML classifier. 

As the additionally incorporated ML classifier is the core of the proposed ensemble framework, we further validated its 

effectiveness at both site and global scales. Fig. 11a shows that in ‘process-based algorithm-dominated’ type derived from in 475 

situ observations, our Classifier-Guided Ensemble model achieves better results than other models, with a KGE of 0.94, R2 

of 0.94, MAE of 5.07 mm month-1, RMSE of 8.71 mm month-1. As demonstrated by the results in Section 4.1.1, the 

process-based algorithm has a poor accuracy of ET estimation at site scale, with a KGE of 0.65, so ensemble model based on 

in situ observations cannot take good advantage of the process-based algorithm. In Attention-Based Ensemble model, the 

process-based algorithm contributes much less than the other two models, so neither ML model nor Attention-Based 480 
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Ensemble model can outperform our Classifier-Guided Ensemble model when the ET estimated by process-based algorithm 

is the closest to the observed ET.  

 

Figure 11. The comparison of model performance among 1) Ensemble model, 2) Attention-Based Ensemble model, 3) Hybrid 

model and 4) ML model under a) ‘process-based algorithm-dominated’ type, b) ‘Hybrid model-dominated’ type, c) ‘ML model-485 
dominated’ type based on in situ observations. d) The comparison of global average monthly land evapotranspiration from 2005 to 

2013 under ‘process-based algorithm-dominated’ type. 

We also analyzed the case of two other types: ‘hybrid model-dominated’ and ‘ML model-dominated’ derived from in 

situ observations. In ‘hybrid model-dominated’ type (Fig. 11b), the hybrid model performs the best as expected, with a KGE 
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of 0.98, R2 of 0.98, MAE of 2.66 mm month-1, RMSE of 4.61 mm month-1. Classifier-Guided Ensemble model also performs 490 

better in this case compared to Attention-Based Ensemble models, with a KGE of 0.98, R2 of 0.98, MAE of 2.83 mm month-

1, RMSE of 4.92 mm month-1. The Attention-Based Ensemble model pays more ‘attention’ to the ML model which has 

higher accuracy at site scale, so in ‘hybrid model-dominated’ type, its results are closer to the ML model, while our model 

can use hybrid model in most points based on the results of the ML classifier, leading to better results for our models. 

However, in ‘ML model-dominated’ type (Fig. 11c), Attention-Based Ensemble model performs better than Classifier-495 

Guided Ensemble model, with a higher R2 of 0.97, lower RMSE of 6.43 mm month-1 and MAE of 4.30 mm month-1. 

Classifier-Guided Ensemble model cannot perform as well as the ML model because the accuracy of ML classifier is not 

100%, while the Attention-Based Ensemble model gets better performance by combining the results of the three models. 

Therefore, although our model performs well in estimating ET at various scales, there are still some limitations. The core of 

our model is to select the potential optimal model as ‘dominant model’ for each pixel as determined by the ML classifier, so 500 

in regions where a single model already achieves the best results, Classifier-Guided Ensemble model does not improve 

performance. In this case, other ensemble model, such as Attention-Based Ensemble model, performs better, as they can 

improve performance by integrating multiple models.  

At global scale, we also conducted additional analysis and validation of the results of the ML classifier within our 

model. Since ML model and Hybrid model perform well at global scale, while process-based algorithm has lower overall 505 

accuracy, we focused on whether the ML classifier can identify pixels where the process-based algorithm performs well and 

use it to improve the estimation robustness in these areas. Fig. 11d shows the line chart of the monthly mean ET series for all 

datasets at the points corresponding to ‘process-based algorithm-dominated’ type derived from the ML classifier. It is found 

that the Attention-Based model yields the lowest ET estimation among all datasets around May and FLUXCOM 

overestimates ET around February, September, October and November, while our Classifier-Guided Ensemble model shows 510 

improvements in these cases. In comparison to the Attention-Based Ensemble model’s performance (R² with the various 

products as follows, ERA5: 0.60, FLUXCOM: 0.71, GLDAS: 0.29, GLEAM_A: 0.54, GLEAM_B: 0.51, and PLSH: 0.73), 

our model’s results are closer to these widely used ET products (R² with the various products as follows, ERA5: 0.85, 

FLUXCOM: 0.72, GLDAS: 0.60, GLEAM_A: 0.67, GLEAM_B: 0.71, and PLSH: 0.84). This also demonstrates that using 

the process-based algorithm instead of ML models in these regions has led to an improvement in the reliability of the ET 515 

estimation. Overall, the introduction of the ML classifier did improve the performance of our model at both site and global 

scale. 

5.2 Interpretability of machine learning used in Classifier-Guided Ensemble model 

For machine learning-based models, improvement of the model performance is important, but the interpretability of the 

model is equally crucial. Especially for our model, the explanation of ML classifier can give us more insight into how it 520 

selects the ‘dominant model’, and under which meteorological conditions a particular model is preferred to be selected at 

both global and site scales, providing valuable support for future research. Interpretable machine learning models are gaining 
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increasing attention, and various methods, such as LIME and SHAP, have been widely used to explain various machine 

learning models (e.g. Chakraborty et al., 2021; Chu et al., 2024; Eskandari et al., 2024). In this study, we used SHAP values 

to analyze the interpretability of the ML classifier within Classifier-Guided Ensemble model and we used both site-scale and 525 

global-scale data to calculate SHAP values. 

 

Figure 12. a) The bar plot and b) summary plot of the SHAP values for 1) ‘process-based algorithm-dominated’ type, 2) ‘Hybrid 

model-dominated’ type and 3) ‘ML model-dominated’ type. The bar plot exhibits the mean absolute SHAP values for each 

covariate and the summary plot exhibits the distribution of SHAP values. 530 

The contribution of different covariates to the results varies across the different classes (Fig. 12a). As Fig. 13a shows, 

the covariates VPD, Ta, and Rs have a higher contribution, while NDVI, LAI, P, U, and V have a lower contribution. For 

‘process-based algorithm-dominated’ type, the contribution of VPD accounts for 25.09%, followed by Ta (17.68%), Rs 

(12.22%), Ts (10.78%), IGBP (8.25%), SM (6.31%), LAI (6.08%), NDVI (5.77%), P (3.86%), U (2.10%), V (1.85%). For 
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‘ML model-dominated’ type, the distribution of SHAP values shows some similarity to ‘process-based algorithm-dominated’ 535 

type (Fig. 13b), with Ta having the highest contribution (18.67%) and VPD the second highest (17.52%). Previous studies 

have demonstrated that variables VPD, Ta, and Rs make significant contributions to the estimation of ET, whether using 

machine learning methods or the process-based algorithm (Mu et al., 2011; Shang et al., 2023). The similarity in the 

contribution distribution of ML model and process-based algorithm may be attributed to the fact that they directly estimate 

ET, while differences may result from their different algorithms. 540 

 

Figure 13. a) The bar plot of the mean absolute SHAP values for three types and b) the changes in variable contributions across 1) 

‘process-based algorithm-dominated’ type, 2) ‘ML model-dominated’ type, 3) ‘Hybrid model-dominated’ type. 

For ‘Hybrid model-dominated’ type, it is still VPD that dominates the feature contribution, with its proportion rising to 

33.39%. The distribution of covariates under ‘Hybrid model-dominated’ type is somewhat distinct from ‘process-based 545 

algorithm-dominated’ type and ‘ML model-dominated’ type, with a higher contribution from SM and a slightly reduced 

contribution from Ta (Fig. 13b). Machine learning was used in the hybrid model for the estimation of rs, and it was strongly 

correlated with water content (VPD, SM), and temperature (Ta) (Gan et al., 2018; Leuning et al., 2008; Mallick et al., 2015). 

In the hybrid model ML-GS developed by Shang et al., (2023), the distribution of SHAP values for their input variables is 

similar to that in our ‘Hybrid model-dominated’ type. Therefore, it can be seen that the variables with a higher contribution 550 

when selecting the ‘dominant model’ in the ML classifier have a certain correlation with those having a higher contribution 

when estimating ET. 

The Fig. 12b shows the summary plot, where the horizontal axis represents the SHAP values, indicating the 

contribution of each covariate and color represents the magnitude of the variable values, with redder colors indicating larger 

variable values. The summary plot illustrates that, in certain conditions, a specific base model may have higher SHAP values, 555 

indicating its greater likelihood of being selected. For instance, under high VPD, low Ta and high Rs conditions, process-

based algorithm is more likely to be selected. Also, there is a tendency to select Hybrid model under conditions of low VPD, 

low SM and under high Ta conditions, the ML model tends to be selected. The results in the summary plot show some 

correlation to the extreme samples analysis (Section 4.1.3) that for the 0th – 1st percentiles of the VPD and SM, hybrid 

model outperforms ML model, making hybrid model the preferred choice. Despite these clear conditions, model selection 560 
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remains unclear in some cases, particularly for ML model and Hybrid model, possibly due to their inter-correlation as both 

of them are based on ML method. 

In summary, the interpretability analysis provides insights into the covariates with the high contribution to model 

selection, as well as scenarios where the three base models are more likely to be selected. However, the model selection for 

some cases such as high VPD, low radiation, etc. is not fully determined and further research is needed to explore the deeper 565 

mechanisms of model selection. 

5.3 Uncertainties of Classifier-Guided Ensemble model 

Despite better performance than other models in estimating ET at multiple spatial scales, there are still uncertainties in our 

model. First, the inclusion of a ML classifier in our ensemble model may introduce uncertainties. Although we used multiple 

global ET products as references when adding global-scale training data, these are not as reliable as ET observations, so we 570 

are still unsure of the accuracy of classification. Moreover, the classification results of machine learning model are not 

completely accurate, leading to the fact that the ML classifier does not guarantee optimal model selection. To minimize the 

impact of this issue, we have chosen models that have been shown to be excellent for global ET estimation in previous 

studies, so even if the ML classifier does not accurately choose the optimal model as ‘dominant model’ at some pixels, the 

results of the other models will not differ significantly.  575 

Second, the base models selected may introduce uncertainties. We chose to integrate ML-based ET models, process-

based algorithms, and hybrid models. Although process-based algorithms have been widely used for ET estimation, there is 

still no widely recognized optimal method for the parameterization of some ET processes (Jiménez et al., 2018; Mu et al., 

2011). While ML-based ET models perform well in regions with sufficient data, they tend to have poor generalizability in 

regions with limited data and may suffer from local optima or overfitting problems (Koppa et al., 2022; Yuan et al., 2020). 580 

For hybrid model, there are also uncertainties in the synergy between physical laws and machine learning (Shang et al., 

2023).  

Lastly, our model contains many input variables that incorporate multiple data sources including: satellite data, 

reanalysis data, and in situ observations, which may introduce uncertainty. At site scale, water flux observations obtained by 

the eddy covariance method have inherent random errors from the measuring instruments (Mizoguchi et al., 2009). 585 

According to the previous study, the biases between the reanalysis data and the satellite meteorological data (Rienecker et al., 

2011) and the inconsistency between in situ observations and global-scale data also introduces uncertainty (Cao et al., 2021). 

We have made efforts to reduce uncertainties caused by data inconsistencies by replacing in situ covariate observations with 

the corresponding data from global-scale datasets at the same coordinates, but the uncertainties remain unavoidable.  

5.4 Future perspectives 590 

Despite the uncertainties and limitations, our model offers a new perspective on integrating multiple models and utilizing the 

complementarity between ML models and physical models, and there remains potential for further improvement. First, 

https://doi.org/10.5194/egusphere-2025-4782
Preprint. Discussion started: 2 December 2025
c© Author(s) 2025. CC BY 4.0 License.



28 

 

various alternatives still exist for the selection of base models. For example, there are many other ML models that can be 

chose and have their own advantages, such as some deep learning models (LSTM, CNN, etc.). These deep learning models 

or their improved forms have been shown to effectively estimate ET in previous studies (Guo et al., 2024; Karbasi et al., 595 

2022; de Oliveira e Lucas et al., 2020). There are also some ET estimation methods based on other frameworks without 

using the three base models we chose, such as a Bayesian-driven ensemble learning method (Ochege et al., 2024). Better 

results might be obtained by choosing different models or by integrating more models, which could be a potential direction 

for future research. 

Second, more rigorous and reasonable methods are needed for model integration. One of the advantages of the proposed 600 

framework is that we can add global data as training data even when there are no global-scale observations, which offers a 

novel approach to improving the generalizability of model, but how to identify the ‘dominant model’ from additional data 

remains a problem. If there is a more rigorous and reasonable method to optimize the model selection, it can not only 

improve the reliability of the final ET estimation, but also contribute to the study of the regions where each base model 

demonstrates its advantages. Additionally, after the ML classifier has selected the ‘dominant model’ at each pixel, if we 605 

discard the simple use of the selected model and adopt more advanced methods for model integration, the results of 

Classifier-Guided Ensemble model may be further improved. We have tried optimizing the results under three different 

classes using both genetic algorithms and machine learning models, but the results were not as good as expected. Since these 

methods are still limited by in situ observations, they do not perform as well as using the original models directly when 

upscaled to a global scale. It is still worth exploring how to better utilize these models. 610 

Finally, more effective integration of machine learning and physical models has the potential to further improve ET 

estimation. Since physical models have higher interpretability and extrapolation capabilities, while machine learning can 

utilize data more effectively, how to better integrate the complementary advantages of them is a topic worthy of in-depth 

investigation. Moreover, ML models, especially deep learning models, are data-driven, but the available data cannot provide 

sufficient information for ML models to achieve better results. Leveraging physical models to extract more meaningful 615 

information from limited data is a viable way to enhance model performance. 

6. Conclusions 

The poor generalizability is a common limitation across ML-based global ET models due to the sparse distribution of in situ 

observations. In this study, we developed a novel ensemble framework for combining the distinct advantages of process-

based algorithms (extrapolation performance in data-sparse regions), ML-based ET models (data adaptability in data‑dense 620 

regions), and hybrid models (overall performance) by introducing an additional ML classifier. Taking advantage of the ML 

classifier's capacity for automatic model selection, we are able to improve the generalizability of ML-based ET models by 

employing physically-founded process-based algorithm and hybrid model at appropriate pixel and avoid the typical 

underestimation of high values by ensemble methods. 
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The evaluation results across site and catchment scales indicate that our Classifier-Guided Ensemble model is overall 625 

more accurate than the individual base models, Attention-Based Ensemble model and other widely used global terrestrial ET 

products (ERA5, FLUXCOM, GLDAS, GLEAM_A, GLEAM_B, and PLSH) with lower RMSE and MAE and higher R2 

and KGE, especially in extreme samples where existing ML models perform poorly. At global scale, our model also exhibits 

higher stability, as well as greater consistency with these global ET products in both spatial patterns and latitude-averaged 

values. 630 

In addition, the analysis of ML classifier’s effectiveness demonstrates that the ML classifier can reasonably select the 

base models used at both global and site scales, highlighting the potential to further enhance the model's generalizability. 

Moreover, by further analyzing the SHAP values of different input covariates when the ML classifier select the ‘dominant 

model’, we gained a simple understanding of the mechanisms behind the selection of ‘dominant model’ that just as VPD, Ta, 

and Rs are critical for ET estimation, these variables also play a crucial role in model selection and identified some specific 635 

scenarios in which each model is most suitable. However, we chose to introduce global-scale training data to enhance the 

generalizability of the ML classifier, which has indeed led to improvements in ET estimation, but since these data were not 

obtained from ET observations, this may introduce uncertainties. Therefore, while our framework demonstrates significant 

potential to advance global ET estimation, further in-depth analysis and investigation are required, especially for the 

introduction of the ML classifier. 640 

Appendix A: Supplementary tables 

Table A1. Information for the 129 EC Flux Tower Sites, including the Site Name, Latitude (Lat), Longitude (Lon), International 

Geosphere-Biosphere Programme Land Cover Types (IGBP). 

Name Start year End year Lat Long IGBP 

AR-SLu 2009 2011 -33.46 -66.46 MF 

AT-Neu 2002 2012 47.12 11.32 GRA 

AU-Ade 2007 2009 -13.08 131.12 SV 

AU-ASM 2010 2014 -22.28 133.25 SV 

AU-Cpr 2010 2014 -34.00 140.59 SV 

AU-Cum 2012 2014 -33.62 150.72 EBF 

AU-DaP 2007 2013 -14.06 131.32 GRA 

AU-DaS 2008 2014 -14.16 131.39 SV 

AU-Dry 2008 2014 -15.26 132.37 SV 

AU-Emr 2011 2013 -23.86 148.47 GRA 

AU-Fog 2006 2008 -12.55 131.31 WL 

AU-Gin 2011 2014 -31.38 115.71 SV 

AU-GWW 2013 2014 -30.19 120.65 SV 
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Name Start year End year Lat Long IGBP 

AU-How 2001 2014 -12.49 131.15 SV 

AU-Lox 2008 2009 -34.47 140.66 DBF 

AU-RDF 2011 2013 -14.56 132.48 SV 

AU-Rig 2011 2014 -36.65 145.58 GRA 

AU-Rob 2014 2014 -17.12 145.63 EBF 

AU-Stp 2008 2014 -17.15 133.35 GRA 

AU-TTE 2012 2014 -22.29 133.64 GRA 

AU-Tum 2001 2014 -35.66 148.15 EBF 

AU-Wac 2005 2008 -37.43 145.19 EBF 

AU-Whr 2011 2014 -36.67 145.03 EBF 

AU-Wom 2010 2014 -37.42 144.09 EBF 

AU-Ync 2012 2014 -34.99 146.29 GRA 

BE-Bra 1996 2014 51.31 4.52 MF 

BE-Lon 2004 2014 50.55 4.75 CROP 

BE-Vie 1996 2014 50.30 6.00 MF 

BR-Sa3 2000 2004 -3.02 -54.97 EBF 

CA-Gro 2003 2014 48.22 -82.16 MF 

CA-Obs 1997 2010 53.99 -105.12 ENF 

CA-Qfo 2003 2010 49.69 -74.34 ENF 

CA-SF1 2003 2006 54.49 -105.82 ENF 

CA-SF2 2001 2005 54.25 -105.88 ENF 

CA-SF3 2001 2006 54.09 -106.01 OSH 

CA-TP1 2002 2014 42.66 -80.56 ENF 

CA-TP2 2002 2007 42.77 -80.46 ENF 

CH-Cha 2005 2014 47.21 8.41 GRA 

CH-Dav 1997 2014 46.82 9.86 ENF 

CH-Fru 2005 2014 47.12 8.54 GRA 

CN-Cng 2007 2010 44.59  123.51  GRA 

CN-Du2 2006 2008 42.05  116.28  GRA 

CN-Du3 2009 2010 42.06  116.28  GRA 

CN-HaM 2002 2004 37.37  101.18  GRA 

CZ-wet 2006 2014 49.02  14.77  WL 

DE-Geb 2001 2014 51.10  10.91  CROP 

DE-Gri 2004 2014 50.95  13.51  GRA 

DE-Hai 2000 2012 51.08  10.45  DBF 

DE-Kli 2004 2014 50.89  13.52  CROP 
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Name Start year End year Lat Long IGBP 

DE-Lkb 2009 2013 49.10  13.30  ENF 

DE-Lnf 2002 2012 51.33  10.37  DBF 

DE-Obe 2008 2014 50.79  13.72  ENF 

DE-RuR 2011 2014 50.62  6.30  GRA 

DE-SfN 2012 2014 47.81  11.33  WL 

DE-Tha 1996 2014 50.96  13.57  ENF 

DE-Zrk 2013 2014 53.88  12.89  WL 

DK-Fou 2005 2005 56.48  9.59  CROP 

DK-Sor 1996 2014 55.49  11.64  DBF 

ES-LgS 2007 2009 37.10  -2.97  OSH 

ES-LJu 2004 2013 36.93  -2.75  OSH 

FI-Hyy 1996 2014 61.85  24.29  ENF 

FI-Jok 2000 2003 60.90  23.51  CROP 

FI-Let 2009 2012 60.64  23.96  ENF 

FI-Lom 2007 2009 68.00  24.21  WL 

FI-Sod 2001 2014 67.36  26.64  ENF 

FR-LBr 1996 2008 44.72  -0.77  ENF 

FR-Pue 2000 2014 43.74  3.60  EBF 

GH-Ank 2011 2014 5.27  -2.69  EBF 

GL-ZaF 2008 2011 74.48  -20.55  WL 

IT-CA1 2011 2014 42.38  12.03  DBF 

IT-CA2 2011 2014 42.38  12.03  CROP 

IT-CA3 2011 2014 42.38  12.02  DBF 

IT-Col 1996 2014 41.85  13.59  DBF 

IT-Lav 2003 2014 45.96  11.28  ENF 

IT-MBo 2003 2013 46.01  11.05  GRA 

IT-PT1 2002 2004 45.20  9.06  DBF 

IT-Ren 1998 2013 46.59  11.43  ENF 

IT-Ro2 2002 2012 42.39  11.92  DBF 

IT-Tor 2008 2014 45.84  7.58  GRA 

MY-PSO 2003 2009 2.97  102.31  EBF 

NL-Loo 1996 2014 52.17  5.74  ENF 

RU-Cok 2003 2014 70.83  147.49  OSH 

RU-Fyo 1998 2014 56.46  32.92  ENF 

RU-Ha1 2002 2004 54.73  90.00  GRA 

SD-Dem 2005 2009 13.28  30.48  SV 
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Name Start year End year Lat Long IGBP 

SN-Dhr 2010 2013 15.40  -15.43  SV 

US-AR1 2009 2012 36.43  -99.42  GRA 

US-AR2 2009 2012 36.64  -99.60  GRA 

US-ARb 2005 2006 35.55  -98.04  GRA 

US-ARc 2005 2006 35.55  -98.04  GRA 

US-ARM 2003 2012 36.61  -97.49  CROP 

US-Blo 1997 2007 38.90  -120.63  ENF 

US-Cop 2001 2007 38.09  -109.39  GRA 

US-CRT 2011 2013 41.63  -83.35  CROP 

US-GBT 1999 2006 41.37  -106.24  ENF 

US-GLE 2004 2014 41.37  -106.24  ENF 

US-Goo 2002 2006 34.25  -89.87  GRA 

US-Ivo 2004 2007 68.49  -155.75  WL 

US-Lin 2009 2010 36.36  -119.09  CROP 

US-Los 2000 2014 46.08  -89.98  WL 

US-LWW 1997 1998 34.96  -97.98  GRA 

US-Me1 2004 2005 44.58  -121.50  ENF 

US-Me2 2002 2014 44.45  -121.56  ENF 

US-Me4 1996 2000 44.50  -121.62  ENF 

US-Me5 2000 2002 44.44  -121.57  ENF 

US-MMS 1999 2014 39.32  -86.41  DBF 

US-Ne1 2001 2013 41.17  -96.48  CROP 

US-Ne2 2001 2013 41.16  -96.47  CROP 

US-Ne3 2001 2013 41.18  -96.44  CROP 

US-NR1 1998 2014 40.03  -105.55  ENF 

US-Oho 2004 2013 41.55  -83.84  DBF 

US-Prr 2010 2014 65.12  -147.49  ENF 

US-SRC 2008 2014 31.91  -110.84  OSH 

US-SRG 2008 2014 31.79  -110.83  GRA 

US-SRM 2004 2014 31.82  -110.87  SV 

US-Syv 2001 2014 46.24  -89.35  MF 

US-Ton 2001 2014 38.43  -120.97  SV 

US-Tw2 2012 2013 38.10  -121.64  CROP 

US-Tw3 2013 2014 38.12  -121.65  CROP 

US-Tw4 2013 2014 38.10  -121.64  WL 

US-Twt 2009 2014 38.11  -121.65  CROP 
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Name Start year End year Lat Long IGBP 

US-Var 2000 2014 38.41  -120.95  GRA 

US-WCr 1999 2014 45.81  -90.08  DBF 

US-Whs 2007 2014 31.74  -110.05  OSH 

US-Wi0 2002 2002 46.62  -91.08  ENF 

US-Wi3 2002 2004 46.63  -91.10  DBF 

US-Wi6 2002 2003 46.62  -91.30  OSH 

US-Wkg 2004 2014 31.74  -109.94  GRA 

ZM-Mon 2000 2009 -15.44  23.25  DBF 

Table A2. Information for the 38 Selected Catchments. 

Catchment Name Continent Catchment area (×104 km2) 

Amazon South America 467.1 

Congo Africa 361.9 

Ob Asia 253.6 

Parana Rio South America 252.2 

Yenisey Asia 244.8 

Lena Asia 243.7 

Yangtze Asia 170.5 

Mackenzie North America 169.8 

Volga Europe 139.3 

Missouri North America 134.4 

Orange Africa 82.7 

Yellow Asia 73.0 

Tocantins Rio South America 69.7 

South Atlantic-Gulf North America 69.2 

Niger Africa 66.5 

Arkansas-White-Red North America 64.2 

Columbia North America 60.3 

Songhua Asia 52.8 

Upper Mississippi North America 49.2 

Texas-Gulf North America 46.4 

Ohio North America 42.2 

California North America 41.5 

Pearl Asia 41.5 

Kolyma Asia 37.1 

Great Basin North America 36.7 
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Catchment Name Continent Catchment area (×104 km2) 

Lower Colorado North America 36.3 

São Francisco South America 34.5 

Rio Grande North America 34.3 

Zambezi Africa 33.5 

Godavari Asia 30.7 

Parnaiba Rio South America 29.8 

Upper Colorado North America 29.4 

Lower Mississippi North America 26.0 

Mid-Atlantic North America 25.2 

Krishna Asia 24.0 

Cooper Creek Australia 23.3 

Okavango Africa 22.9 

Barwon Australia 20.9 

Table A3. Information for the 30 Selected EC Flux Tower Sites in Independent Validation. 645 

Name Start year End year Lat Long IGBP 

AR-SLu 2009 2011 -33.46  -66.46  MF 

AU-ASM 2010 2014 -22.28  133.25  SV 

AU-Fog 2006 2008 -12.55  131.31  WL 

AU-Ync 2012 2014 -34.99  146.29  GRA 

BE-Bra 1996 2014 51.31  4.52  MF 

BE-Vie 1996 2014 50.30  6.00  MF 

BR-Sa3 2000 2004 -3.02  -54.97  EBF 

CA-Qfo 2003 2010 49.69  -74.34  ENF 

CA-SF3 2001 2006 54.09  -106.01  OSH 

CH-Dav 1997 2014 46.82  9.86  ENF 

CN-Du2 2006 2008 42.05  116.28  GRA 

DE-Obe 2008 2014 50.79  13.72  ENF 

DE-Tha 1996 2014 50.96  13.57  ENF 

DK-Sor 1996 2014 55.49  11.64  DBF 

ES-LgS 2007 2009 37.10  -2.97  OSH 

FI-Hyy 1996 2014 61.85  24.29  ENF 

FR-Pue 2000 2014 43.74  3.60  EBF 

GH-Ank 2011 2014 5.27  -2.69  EBF 

GL-ZaF 2008 2011 74.48  -20.55  WL 

IT-CA1 2011 2014 42.38  12.03  DBF 
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Name Start year End year Lat Long IGBP 

RU-Cok 2003 2014 70.83  147.49  OSH 

RU-Ha1 2002 2004 54.73  90.00  GRA 

SD-Dem 2005 2009 13.28  30.48  SV 

SN-Dhr 2010 2013 15.40  -15.43  SV 

US-ARM 2003 2012 36.61  -97.49  CROP 

US-Ivo 2004 2007 68.49  -155.75  WL 

US-Ne1 2001 2013 41.17  -96.48  CROP 

US-Oho 2004 2013 41.55  -83.84  DBF 

US-Twt 2009 2014 38.11  -121.65  CROP 

ZM-Mon 2000 2009 -15.44  23.25  DBF 

Table A4. Performance of Different ET Models in Independent Validation. 

Name   Classifier-Guided    Attention-Based    ML model   Hybrid model 
  

R2 KGE 
 

R2 KGE 
 

R2 KGE 
 

R2 KGE 

AR-SLu 
 

0.11 0.43 
 

0.10 0.40 
 

0.08 0.41 
 

0.44 0.56 

AU-ASM 
 

0.85 0.68 
 

0.78 0.66 
 

0.78 0.61 
 

0.76 0.65 

AU-Fog 
 

-0.40 0.17 
 

-0.41 0.02 
 

-0.44 0.05 
 

-0.43 0.03 

AU-Ync 
 

-1.79 0.32 
 

-2.47 0.20 
 

-2.45 0.25 
 

-2.21 0.24 

BE-Bra 
 

0.31 0.36 
 

0.31 0.37 
 

0.25 0.33 
 

0.40 0.42 

BE-Vie 
 

0.86 0.78 
 

0.84 0.80 
 

0.84 0.78 
 

0.82 0.78 

BR-Sa3 
 

-0.27 0.58 
 

-0.02 0.53 
 

-0.03 0.50 
 

-0.84 0.57 

CA-Qfo 
 

0.89 0.85 
 

0.87 0.85 
 

0.86 0.81 
 

0.88 0.85 

CA-SF3 
 

0.87 0.85 
 

0.87 0.89 
 

0.86 0.88 
 

0.87 0.89 

CH-Dav 
 

0.15 0.57 
 

0.01 0.53 
 

0.08 0.53 
 

-0.03 0.53 

CN-Du2 
 

0.89 0.87 
 

0.87 0.86 
 

0.87 0.86 
 

0.86 0.86 

DE-Obe 
 

0.87 0.87 
 

0.87 0.87 
 

0.85 0.87 
 

0.87 0.87 

DE-Tha 
 

0.76 0.69 
 

0.75 0.67 
 

0.75 0.68 
 

0.75 0.69 

DK-Sor 
 

0.84 0.80 
 

0.83 0.84 
 

0.82 0.80 
 

0.83 0.81 

ES-LgS 
 

-0.25 0.41 
 

-0.59 0.30 
 

-0.60 0.37 
 

-0.86 0.22 

FI-Hyy 
 

0.87 0.82 
 

0.83 0.78 
 

0.83 0.79 
 

0.85 0.81 

FR-Pue 
 

0.17 0.54 
 

0.14 0.53 
 

0.18 0.55 
 

0.08 0.50 

GH-Ank 
 

-0.90 -0.04 
 

-1.11 -0.07 
 

-1.12 -0.07 
 

-0.35 -0.08 

GL-ZaF 
 

-0.58 0.09 
 

-0.66 0.07 
 

-0.80 -0.04 
 

-0.56 0.09 

IT-CA1 
 

0.67 0.59 
 

0.70 0.63 
 

0.69 0.63 
 

0.68 0.59 

RU-Cok 
 

-0.56 0.63 
 

-1.60 0.52 
 

-0.80 0.61 
 

-1.51 0.54 

RU-Ha1 
 

0.87 0.83 
 

0.85 0.80 
 

0.86 0.82 
 

0.92 0.86 
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Name   Classifier-Guided    Attention-Based    ML model   Hybrid model 
  

R2 KGE 
 

R2 KGE 
 

R2 KGE 
 

R2 KGE 

SD-Dem 
 

0.11 0.15 
 

0.09 0.14 
 

0.11 0.15 
 

0.04 0.12 

SN-Dhr 
 

0.74 0.70 
 

0.64 0.64 
 

0.71 0.67 
 

0.58 0.61 

US-ARM 
 

0.66 0.83 
 

0.44 0.73 
 

0.46 0.74 
 

0.45 0.74 

US-Ivo 
 

0.63 0.79 
 

0.51 0.68 
 

0.56 0.76 
 

0.41 0.67 

US-Ne1 
 

0.94 0.85 
 

0.94 0.87 
 

0.93 0.84 
 

0.94 0.84 

US-Oho 
 

0.77 0.62 
 

0.76 0.62 
 

0.75 0.60 
 

0.74 0.59 

US-Twt 
 

0.73 0.68 
 

0.70 0.75 
 

0.69 0.68 
 

0.70 0.66 

ZM-Mon 
 

0.68 0.83 
 

0.66 0.77 
 

0.64 0.78 
 

0.65 0.80 

Average 
 

0.35 0.60 
 

0.25 0.57 
 

0.27 0.57 
 

0.26 0.58 

Data and Code availability  

All dataset used are publicly available from data sources cited throughout the paper. The in-situ datasets were obtained from 

the FLUXNET2015 dataset via https://fluxnet.org/. The ERA5-Land reanalysis products were obtained from the ECMWF 

via https://cds.climate.copernicus.eu/. The water-balance-based evapotranspiration product was downloaded from the 650 

National Tibetan Plateau Data Center via https://doi.org/10.11888/Atmos.tpdc.300493. The FLUXCOM product was 

obtained via https://www.bgc-jena.mpg.de/geodb/projects/Home.php. The PLSH product was obtained via 

http://files.ntsg.umt.edu/data/. The GLEAM product version 3.8a and 3.8b was obtained via https://www.gleam.eu/. The 

GLDAS product was obtained via https://doi.org/10.5067/SXAVCZFAQLNO.  The NDVI and LAI data was obtained from 

GIMMS product (Cao et al., 2023; Li et al., 2023). The MODIS Land Cover Climate Modeling Grid Product (MCD12C1) 655 

was obtained via https://doi.org/10.5067/MODIS/MCD12C1.006. The machine learning models were trained using 

AutoGluon version 0.8.2 (Erickson et al., 2020). The code supporting this study is available upon reasonable request from 

the corresponding author. 
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