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Abstract. Evapotranspiration (ET) is a key hydrological and meteorological variable, serving as the critical nexus between
water and energy exchanges. However, accurate estimation of global ET remains a challenging task, as process-based ET
algorithms are often inadequate to capture the nonlinear relationship among environmental factors, and the application of
data-driven ET algorithms is hindered by sparse and uncertain ET observations. In this study, we developed a novel
ensemble framework that integrates three existing ET models (process-based algorithm, machine learning-based ET model,
and hybrid model), aiming to provide high-precision terrestrial ET estimates. The framework is guided by an additional
classifier that can achieve dynamic per-pixel model selection, thus fully utilizing the spatiotemporal dynamics of each
model’s distinct advantages in mapping global ET and avoiding the typical underestimation of high values by ensemble
methods. Comprehensive validation of the model was carried out using in-situ ET observations from the FLUXNET2015
dataset, catchment-scale water balance ET dataset, and six global-scale ET products, including comparisons to individual
base models and another Attention-Based ensemble model. The quantitative comparisons across statistical metrics (RMSE,
MAE, R2 KGE) indicate that our ensemble model outperforms other evaluated models, especially in extreme samples.
Meanwhile, the introduction of classifier can not only significantly enhance the algorithmic robustness and generalizability,
but also allow us to gain a basic understanding of the mechanisms behind model selection by interpretability analysis. The
study demonstrated the effectiveness of the proposed framework in enhancing ET estimation robustness, thereby providing a

valuable reference for the estimation of other similar variables.

1 Introduction

Evapotranspiration (ET) plays a crucial role in both global water and energy cycles (Fisher et al., 2017; Good et al., 2015;
Milly et al., 2005), transferring over 60% of terrestrial precipitation back into the atmosphere (Oki & Kanae, 2006), and
concurrently consuming a significant amount of energy (Trenberth et al., 2009). Particularly in the context of global
warming, changes in ET will not only alter the distribution of global available freshwater resources (Greve & Seneviratne,
2015; Huntington, 2006; Purdy et al., 2018), but also significantly impact the frequency and severity of hydroclimatic
extremes (Miralles et al., 2019; Schwalm et al., 2017). Therefore, reliable ET monitoring at the global scale is of great
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importance in studying the potential changes in the water cycle and energy budget under climate change conditions (Jung et
al., 2011; Milly et al., 2005; Wang & Alimohammadi, 2012; Wang & Dickinson, 2012; Xie et al., 2015; Zhang et al., 2019).

Flux towers can provide reliable in situ ET observations at hourly to sub-hourly timesteps based on the eddy covariance
method (Williams et al., 2004; Wilson et al., 2001), but their limited spatial representativeness hinders the acquisition of
regional ET. Although regional ET can be measured indirectly through assessing the water balance of catchments, the
method is only suitable for catchment ET measurements over annual or longer timescales (Reitz et al., 2023). As none of
existing methods can provide direct global ET measurements with both high precision and continuous spatial coverage
(Fisher et al., 2017; Reitz et al., 2023; Teuling et al., 2009), remote sensing ET algorithms tend to be used to quantify global
ET based on temporally and spatially continuous satellite data (e.g., Bastiaanssen et al., 1998; Jung et al., 2011; Kustas &
Norman, 1997; Mu et al., 2011).

The existing remote sensing ET algorithms can be divided into two categories: process-based algorithms and data-
driven algorithms (Fu et al., 2022; Shang et al., 2023). Process-based algorithms (e.g., Monteith, 1965; Penman, 1948;
Priestley & Taylor, 1972; Su, 2002) employ flux equations to estimate ET based on physically-founded methods, such as the
Monin-Obukhov similarity theory, energy balance method and aerodynamic method (Monteith, 1965; Penman, 1948; Allen
et al., 1998). However, uncertainties remain in process-based ET algorithms, arising from the insufficient theoretical bases
on the complex physical and biological factors involved in ET processes (Mu et al., 2011; Polhamus et al., 2013). With the
influx of satellite and in situ observations, data-driven algorithms, especially the machine learning (ML) methods, have
become popular in large-scale ET estimation (e.g., Xu et al., 2018; Zhang et al., 2022; Granata, 2019; Lyu & Yong, 2024).
ML-based ET models can characterize the nonlinear relationship between different ET-related variables and efficiently
capture the spatiotemporal dynamics features of ET from meteorological data streams (Reichstein et al., 2019), thus
providing overall more accurate ET estimation than process-based algorithms in data-dense regions. However, due to the
lack of global-scale ET observations, these ML-based ET models have to be trained based on in situ observations (Jung et
al., 2010). The density of in situ observations is insufficient to represent global ET information, particularly in heterogeneous
and data-sparse regions, hindering the use of these ML-based ET models at the global scale (Zhao et al., 2019).

Combining ML-based ET models with process-based algorithms may be a feasible way to improve the generalizability
of ML-based ET models (e.g., Brenowitz & Bretherton, 2018; Karpatne et al., 2017; Reichstein et al., 2019; Willard et al.,
2022). In these hybrid models, ML methods can be employed for improving parameterizations, or replacing a sub-model of
physical model (Reichstein et al., 2019). For example, ML models can be used to estimate the parameters with high
uncertainty, such as surface resistance (r;) in PM equation (Chen et al., 2022; Shang et al., 2023), or to estimate both
aerodynamic resistance (7,) and r; (ElGhawi et al., 2023). ML models can also be coupled to stress-based ET models by
replacing the formulation of transpiration stress (S;) (Koppa et al. 2022). However, hybrid models still rely on sufficient
availability of training data; therefore, they cannot take the place of process-based algorithms, especially in data-sparse
regions and heterogeneous surfaces (Shang et al., 2023). On the other hand, due to the uncertainties in the coupling of

machine learning and physical laws (Shang et al., 2023), hybrid models cannot consistently outperform pure ML-based ET
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models in the data-dense regions.

Given the different characteristics of process-based algorithms, ML-based ET models, and hybrid models, it is essential
to explore a method to utilize the distinct advantages of the three models. Ensemble learning, a common approach to
integrate multiple ML models to achieve better performance (Ganaie et al., 2022; Mohammed & Kora, 2023), may have the
potential to address this issue. Several existing ensemble frameworks have been demonstrated to have the capability to
achieve better performance than single model (e.g., Pérez-Rodriguez et al., 2023; Tseng, 2023). For example, genetic
algorithm can be employed to determine the weights for the ensemble of multiple different ML models (Ayan et al. 2020).
Similarly, the attention mechanism in neural network can dynamically assign weights to provide effective model integration
(Liu et al. 2022). Statistical methods, such as Bayesian model averaging, can utilize the probability distributions of each
model to assess their relative prediction performance, thereby assigning ensemble weights (Huang & Merwade, 2023).
However, these approaches exhibit limitations in global ET estimation, either due to the sparse distribution of in situ
observations, similar to the challenges encountered by pure ML-based ET models, or due to the non-dynamic weight
assignments that cannot reflect the spatiotemporal distribution of distinct model advantages. Previous studies have
demonstrated the significantly superior performance of observation-calibrated ML-based models over process-based
algorithms at the site scale (Shang et al., 2023), thus when only site-observed ET is the most reliable data source, existing
data-driven ensemble methods may not fully utilize the advantages of process-based algorithms. In addition, the existing
ensemble models mainly focus on the integration between ML models and whether they are efficient to the integration
among ML models, process-based algorithms and hybrid models have not been substantially validated.

Hence, we proposed a novel ensemble framework and developed a model called Classifier-Guided Ensemble model to
utilize the individual advantages of three base models (process-based algorithms, ML-based ET models, and hybrid models)
by decomposing the ET estimation process into two steps, that is, the classification of input data and the regression of ET. An
additional explainable ML classifier was trained to dynamically select the ‘dominant model’ to be used at each pixel. Since
the ML classifier is used for classification rather than directly calculating ET, both in situ ET observations and global ET
datasets can serve as reference datasets for deriving classifier training labels, resulting in improved classification accuracy
and generalizability of the ensemble framework. In this study, the main objectives are to (a) use the proposed ensemble
framework to generate global ET estimation based on in situ observations, satellite retrievals, reanalysis data, and multiple
ET products; (b) carry out comprehensive evaluation of the model across multiple spatial scales to analyze model’s
robustness and generalizability; (c) assess the impact of introducing ML classifier; (d) analyze the interpretability of the ML
classifier to gain insights into the implicit meteorological and vegetation features suitable for different ET models. In doing
so, our framework offers a reference for ET estimation and contributes to the understanding of the mechanisms behind ET

estimation.
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2 Methodology

The same input covariates for all ML model used were selected: International Geosphere-Biosphere Programme (IGBP) land
cover types, leaf area index (LAI), normalized difference vegetation index (NDVI), atmospheric pressure (P), incident solar
radiation (Rs), soil moisture (SM), air temperature (Ta), soil temperature (Ts), vapor pressure deficit (VPD), wind speed
(WS), with a monthly temporal scale, because these variables are key parameters in ET mechanisms and have been proved to
be effective for ET estimation in other studies (Koppa et al., 2022; Shang et al., 2023). The calculation process and the

models used are as follows:

2.1. Machine learning model

We chose to use Autogluon for all machine learning components in this study. Autogluon is an open-source AutoML
framework that can automatically conduct the selection, combination, and parameterization of multiple ML methods,
allowing us to achieve high-accuracy results without manual intervention (Erickson et al., 2020).

Several ML algorithms are provided by Autogluon, including k-Nearest Neighbors, Extremely Randomized Trees,
LightGBM boosted trees (Ke et al., 2017), CatBoost boosted trees (Dorogush et al., 2018), Random Forests (Breiman, 2001),
neural networks, etc. These models have been widely used with their own distinct characteristics and advantages (Fan et al.,
2019; da Silva Jcnior et al., 2019; Zhangzhong et al., 2023). Autogluon can combine them using methods known as stacking
and bagging (Erickson et al., 2020), and can achieve better performance than individual models. More detailed algorithm
information can be found in Erickson et al. (2020).

2.2. Hybrid model

The original P-M equation (Monteith, 1965; Penman, 1948) is as follows:

AEpy = A(Rp—G)+p-Cp-VPD1q 1)

A+y-(1415/7g)

where 1Epy is the latent heat flux (W m?), Ais the slope of the saturated vapor pressure vs temperature curve (k Pa °C™?), Ry
is the net radiation (W m-2), G is the soil heat flux (W m2), ois the air density (kg m=3), C; is the specific heat capacity of air
at constant pressure (J kgt k1), VPD is the vapor pressure deficit of the air (Pa), y is the psychrometric constant (k Pa °C),
r. and rs are the aerodynamic resistance and surface resistance (s m4).

Although some studies have optimized the estimation of parameter r; (Wang et al., 2010a, 2010b), estimating parameter
rs remains a challenging task. So in hybrid model, we replaced the empirical expression of rs with ML model, similar to the
surface conductance-based ML model as proposed by Shang et al. (2023). The target label rs in ML model is obtained by
inverting the Equation 1, due to the lack of observations for parameter rs. As the other variables in Equation 1 can be
calculated based on the covariates for ML model, the estimated ET can be computed by Equation 1 after obtaining the

parameter rs from the ML model.
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2.3. Process-based ET algorithms

We chose to use a MODIS global terrestrial ET algorithm from Mu et al. (2011, 2007) based on the PM equation. They
improved the methods to estimate some parameters in traditional PM algorithms and included additional ET sources into the
algorithm. They divided ET into three main components: wet canopy evaporation, plant transpiration, and soil evaporation,
with soil evaporation further divided into the saturated surface and the moist surface. Some of the main formulas are listed
below:

AE = AEyye, + ABrans + AEson )

Fc
(s><AC><FC+p><Cpx(esat—e)xﬁ)waet

AEwetc = PgXCpxrve (3)

s+ Axexrhrec

F
(sxACch+p><Cpx(esat—e)x—c)x(l—Fwet)
Ta

AE prgns = 4)
trans s
s+y><(1+ra)
(sxAsm-l+p><Cpx(l.O—FC)x%)waet
ALwetson = e (5)
Tas
(SXA501L+p><CpX(l.O—FC)X%)X(l.O—Fwet)
AEsoilpot - s+y><rt°t (6)
Tas
VPD
RH\ B
AEgorr, = 2Ewetsyy + AEsoityg, X (1) )

where AE,.. . is evaporation from wet canopy surface, AE;.q,s is plant transpiration, AE,e; soi aNd AEsq por are
evaporation from soil surface and potential soil evaporation, respectively.

Additionally, they improved the method to estimate vegetation cover fraction, soil heat flux, and parameters such as rs,
ra, etc., and calculated ET as the sum of daytime and nighttime components, thereby enhancing accuracy. More detailed
information on the algorithms and the parameters can be found in Mu et al. (2011, 2007). In applying this algorithm, we
mainly used input variables LAI, IGBP, P, Rs, Ta, VPD, etc., all of which were also employed by the ML models, without

introducing any additional data.

2.4 Classifier-Guided Ensemble model

The Classifier-Guided Ensemble model aims to integrate three base models (process-based algorithm, ML-based ET model,
and Hybrid model) to optimize the global ET estimation by dividing the ET estimation process into two sub - problems: (a)
training a ML classifier to identify the ‘dominant model’ at each pixel, and (b) using the corresponding ‘dominant model’ at

each pixel to estimate ET (Fig. 1).
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Figure 1. Schematic of the Classifier-Guided Ensemble model. The red arrows indicate the modeling steps of the ML Classifier. P
is atmospheric pressure, Rs is incident solar radiation, SM is soil moisture, Ta is air temperature, Ts is soil temperature, VPD is
vapor pressure deficit, WS is wind speed, LAI is leaf area index, NDVI is normalized difference vegetation index.

Before training the ML classifier, we needed to first use the three base models to estimate ET at both site and global

scales. The estimated ET, in situ ET observations and other global ET products were processed for classification task, in

order to obtain the training target. At the site scale, we classified the data at each site for every time point into three types

(‘ML model-dominated’, ‘hybrid model-dominated’, and ‘process-based algorithm-dominated’) based on the relative errors

6
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between the model-estimated ET and the observed ET. The model with the smallest relative error was the ‘dominant model’
for the corresponding site and time. Specifically, at the site scale, we conducted ten-fold cross-validation on three base
models and used ET estimates from the validation sets for classification task, to avoid abnormally high accuracy resulting
from model overfitting.

At the global scale, due to the lack of reliable ET observations, we used six widely used global ET products as
references to extract some relatively reliable data from the global dataset for the classification task. We calculated the
relative errors between estimated ET of base models and global ET products at each pixel for every time point, obtaining six
error values for each base model. If all six relative error values of a base model were lower than those of the other two base
models, data of this pixel and time point was added to the training data and the model was considered to be the ‘dominant
model’ of this pixel and time point. Due to differences in the spatial patterns of various ET products, data from other pixels
were excluded to reduce uncertainty.

In the training set, we performed the aforementioned classification task, using the classification results as training target
for the ML classifier, with the other data serving as input covariates. After training the ML classifier, we could use the global
covariate dataset in the validation set to obtain classification results for each pixel and time point, and employ the

corresponding ‘dominant model’ to produce global ET estimates.

2.5 Other ensemble models used for comparison

We use the Attention-Based ensemble technique used by Liu et al. (2022) as a comparison. The Attention Mechanism is
similar to human selective attention and is a method to mimic the human visual and cognitive systems. This technique
utilizes the focusing ability of the self-attention mechanism (Zhang et al., 2021), which allows the neural network to focus on
what it considers important. It can improve model performance by automatically assigning higher weights to sub-models
with higher accuracy. The core formula of this model is as follows:
fas(x) = T, Attention;(x)

=2 £ (x) - softmax(WifF (x))

— ZN f-SE(X) . M
i=1 Ji Z§V=1 exp(WifiSE(x))

®)

where f,z(x) is the output of Attention-Based ensemble network, £;°% (x) is the output of i-th base model, W; is attention
coefficient, N is the number of base models (N = 3 in this study). More detailed algorithm information can be found in Liu et
al. (2022).

We used the site-scale ET estimation from three base models as input variables, and ground observed ET as the training
target to train a neural network model with attention mechanism which was then used to estimate the global ET as a
comparison.
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3. Data and model validation
3.1 In situ observations

In this study, we take ground observed surface latent heat flux (LE) to calculate the ET values for training and validation.
We used data from 129 flux tower sites (Table Al and Fig. 2a.) in the FLUXNET2015 dataset (https:/fluxnet.org/)
(Pastorello et al., 2020) with the sampling frequency of half - hourly or hourly. These selected sites represent a wide range of
major IGBP land cover types: cropland (CRO, 15 sites), deciduous broadleaf forests (DBF, 14 sites), evergreen broadleaf
forests (EBF, 10 sites), evergreen needleleaf forests (ENF, 28 sites), grasslands (GRA, 28 sites), mixed forests (MF, 5 sites),
open shrublands (OSH, 7 sites), savannas (SAV, 13 sites) and permanent wetlands (WL, 9 sites).
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Figure 2. Locations of a) the 129 Flux sites and b) the 38 global catchments chosen for analysis in this study. The land cover types
are identified based on the International Geosphere-Biosphere Programme (IGBP) biome classification. The red boxes indicate the
locations of the 30 sites used in the independent validation.

To mitigate the effects of the uncertainty from data, we only chose the sites with high-quality data and rejected the non-
observed data, missing values and data with energy closure less than 70% in the original dataset. Due to potential issues with
eddy covariance technology and measurements under rainy conditions (Medlyn et al., 2011), we excluded rainy day samples
to avoid errors. We also applied the Bowen ratio closure method to address the issue of energy imbalance in original
observations (Foken, 2008; Twine et al., 2000). If the filtered data had more than 20% missing values in a month, the data
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for that month was removed. The remaining data were then processed using linear interpolation and averaging to generate
monthly-scale data.

3.2. Catchment- scale ET

At the catchment scale, the water balance method can be used to obtain a more reliable ET data (Pascolini-Campbell et al.,

2020). The catchment-scale ET can be calculated as:

ET=P-Q-% ©)

where P is precipitation, Q is runoff at the basin outlet, and dS/dt is the change in total water storage. We used the dataset of
the water-balance-based evapotranspiration of global typical large river basins published by Ma et al. (2024a). This dataset
spans a 34-year period from 1983 to 2016 and can be downloaded from the National Tibetan Plateau Data Center (Ma,
2024b). This data is derived from water balance methods combined with four different precipitation data sources (P), three
types of terrestrial water storage change estimates (dS/dt) and observed flow data from control sites (Q). We selected 38

major catchments (>200,000 square kilometers) in this dataset as our validation data (Fig. 2b and Table A2).

3.3. Global- scale datasets

At the global scale, we collected 6 widely used ET products generated from different data sources, different forcing data,
different calculation methods to evaluate model performance. (1) FLUXCOM (Jung et al., 2019; Tramontana et al., 2016)
provides a latent heat dataset, with 0.0833< > 0.0833resolution and time spanning a 75-year period from 1950 onwards
generated, from energy flux measurements from FLUXNET eddy covariance towers and meteorological data utilizing only
machine learning methods. (2) Process-based Land Surface Evapotranspiration/Heat Fluxes (PLSH) (Zhang et al., 2015) is a
product with 0.0833<x0.0833resolution and time spanning a 32-year period from 1982 to 2013. The dataset is driven by
satellite observations of photosynthetic canopy cover and surface meteorology inputs. (3) Global Land Evaporation
Amsterdam Model (GLEAM) version 3.8a (Martens et al., 2017; Miralles et al., 2011) is an established ET product based on
satellite and reanalysis data with 0.25° x 0.25¢ resolution and time spanning the 44-year period from 1980 to 2022. (4)
GLEAM version 3.8b (Martens et al., 2017; Miralles et al., 2011) is also selected because of its different forcing data. It is
based on only satellite data with 0.25° x 0.25¢ resolution and time spanning the 20-year period from 2003 to 2022. (5) Global
Land Data Assimilation System (GLDAS) version 2.1 (Rodell et al., 2004; Beaudoing & Rodell, 2020), a product with 0.25°
x 0.25°resolution and time spanning a 24-year period from 2001 onwards, is generated by combining data assimilation
techniques with satellite and ground-based observations. (6) European Centre for Medium-range Weather Forecasts
(ECMWF)-ERA5-Land product (Mufbz Sabater, 2019) is a reanalysis product based on multi-source data with 0.1° x 0.1°

and time spanning a 75-year period from 1950 onwards.
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In the input training data, variables P, Rs, SM, ST, Ta, VPD, WS are also sourced from the ERA5-land product. Since
the ERA5-Land dataset only provides dew point temperature data, we used the following formula for calculation (Abbott &
Tabony, 1985):

17.27T 17.27Tg

VPD = 0.6108 |eT+2z373 — eTa+2373 o)

Here, T and Ty represent temperature and dew point temperature respectively(‘C). Although these data are also available
in the in situ observations, we chose to use the global-scale dataset instead to avoid issues caused by inconsistencies in
spatial scales between the training data and the calculation data (Xiao et al., 2008). We employed an inverse distance
weighting method to extract data at the coordinates of the corresponding sites for training data.

Other variables LAl and NDVI are sourced from the Global Inventory Modeling and Mapping Studies (GIMMS) NDVI
and LAI products (Cao et al., 2023; Li et al., 2023), which are half-month products with 0.0833<>0.0833 “resolution. We
averaged the two values for the month to obtain the monthly average data. The IGBP variables are sourced from the MODIS
Land Cover Climate Modeling Grid Product (MCD12C1) (Friedl & Sulla-Menashe, 2015), which is a spatially aggregated
and reprojected version of the tiled MCD12Q1 product with 0.05°> 0.05<resolution. We resampled all these data to 0.1°

spatial resolution, the same as the ERA5-Land product that contains the most input variables.

3.4. Model validation
3.4.1 Site and catchment scale validation

Given that both in situ observations and the total catchment ET calculated by the water balance method are relatively reliable
datasets, we can directly compare the ET generated by our model with these datasets at site and catchment scale. At the site
scale, we conducted k-fold cross-validation with k = 10. In each fold we selected 10% of the data at each site as the
validation set and the remaining data as the training set. In addition, we carried out independent validation by selecting 30
independent sites excluded from the training data (Table A3 and Fig. 2a) to evaluate the spatial simulation performance of
our Classifier-Guided Ensemble model. The selected independent validation sites cover multiple land cover types and most
of the major regions. Also, we evaluated the ET estimation performance of our model on extreme samples sorted in
ascending order within the Oth — 1st percentiles and 99th - 100th percentiles for six variables (LAI, NDVI, Rs, SM, Ta, VPD)
to verify the extrapolation performance of the model. At the catchment scale, we used calculated catchment ET to compare
with the total catchment ET estimated by our model and other global ET products.

To quantitatively validate the performance of our model, we used several statistical metrics: Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Coefficient of Determination (R% and Kling-Gupta Efficiency (KGE) (Table 1).
MAE and RMSE are used to measure the closeness between the model results and observations. R=can be used to assess the
correlations. KGE comprehensively considers the relative error, correlation coefficient and variance of the model results,
providing a comprehensive assessment of the model's overall performance.

10
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Table 1. The explanation of statistical metrics used to evaluate model performance in this study.

Statistic metrics Unit Equation Suitable value

RMSE mm month™! RMSE = 0
1 n
MAE mm month™! MAE = —Z ly: — il 0
=
n oy — )2
R NA RZ =1 Zrll_l (vi yl)2 1
Zi=1 i — ﬂy)
KGE=1—-J@—-12+(a—1)*+ (- 1)?
KGE NA uy oy 1

Note. y; and J; represent observations and estimations, respectively, « is the bias ratio, 3 is the variability ratio, o represents the standard
deviation, p represents the average.

3.4.2 Global scale validation

Taking into account the available years of each product, we analyzed the data for the period from 2003 to 2013, with the data
of 2003 and 2004 serving as the training set and the data of remaining years as the validation set. At global scale, due to the
lack of reliable ET observations, conventional validation methods are not feasible. Therefore, we used the three-cornered hat
(TCH) method (Tavella & Premoli, 1994) to quantify the uncertainties of ET estimation. TCH is a reliable method for
estimating the uncertainty of various time series products and has been used for validation of multiple datasets (Liu et al.,
2021). We used the same formula as in (Xie et al., 2024). The time series of ET at each pixel can be expressed as:

X =X, +,Vk=123,..,N (11)

where k represents the index of the corresponding ET product, N is the total number of ET products included in the
validation, X, represents the true value and g, represents the error term.

The truth value of ET cannot be obtained, so we need to get the g, without X;. To solve this problem, the TCH
algorithm defines a product as a reference product to get a matrix Y; ,,, as:

Yem =X — Xg = & — &g, Vk = 1,23,..,N — 1 (12)

where Xp is the arbitrarily selected reference product, Y ,, is an M (N — 1) matrix, M is the length of the time series of X. S,
the covariance matrix of Y, is related to the unknown M > N covariance matrix of the individual noise Q as (Galindo &
Palacio, 2003):

s=J-QJ" (13)
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10 - 0 -1
o1 - 0 -1

N-1,N = S : : : (14)
o o0 o - -1

Since the number of equations is still less than the number of unknowns, it is impossible to solve the equation. They
used the Kuhn-Tucker theorem proposed by Galindo & Palacio (1999) to solve the con-strained minimization problem. The

definition of the objective function and constraint function is:

1
F(T1N~--TNN) = xS §V<J' Tl%' (15)
H =-19 -9 16)
TiN-TNN) T T |s1k (

where ryy, ... Tyy are the elements of the corresponding Q. They also used the initial conditions for the iteration proposed by
Torcaso et al. (1998):
r =0,i<N; a7

1 N _
v =558 = [L.1] 57 (1, DT (18)

Finally, the Q value is obtained by minimizing the objective function. More detailed information can be found in their
paper (Galindo & Palacio, 1999, 2003; Torcaso et al., 1998; Xie et al., 2024).

3.4.3 ML model interpretability analysis

We used SHAP (SHapley Additive exPlanations) to analyze the interpretability of the ML classifier we used. SHAP was
originally proposed in game theory (Shapley, 1952) and was used as a method to equitably distribute benefits by calculating
each member's marginal contribution. Subsequently, it was used to compute the marginal contribution of each input variables
to enhance the interpretability of machine learning (Lundberg & Lee, 2017).

The Python library of SHAP was used to calculate the SHAP values for each input feature. SHAP library is applicable
for interpretability analysis of ensemble models that integrate multiple ML models. In this study, SHAP values were
employed to enhance our understanding of how our ML classifier selects the ‘dominant model’.

4. Results

4.1 Model evaluation with in situ observations
4.1.1 Model Evaluation using EC observations

To evaluate the model simulation performance, we conducted a ten-fold cross-validation at all selected EC sites (Fig. 3).
First, we check whether the integrated base models could accurately estimate ET at site scale (Fig. 3b, ¢ and e). It is found
that both ML model and Hybrid model perform well with R=2and KGE nearing 0.9, ensuring the reliability of ensemble

12
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model while process-based algorithm exhibits relatively lower performance, with a KGE of 0.65, R? of 0.48, MAE of 17.41
mm month?, RMSE of 26.45 mm month. Despite the lower accuracy of process-based algorithm at site scale, it is also

integrated as the employed physically-founded equations enable process-based algorithm to maintain acceptable
performance in data-sparse regions.

a) meb) ML model _ c) Hybrid model
250 ’ 250 250
k= 5 3
€ 2004 & 200 g 200 '
£ g =
£ g g
E 1504 EEY E 150
= 5 &
"E 1004 = . "8 100 A "g 100 A .
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Figure 3. Performance of a) Classifier-Guided Ensemble model, b) ML model, ¢) Hybrid model, d) Attention-Based Ensemble

model, e) process-based algorithm and f) Classifier-Guided Ensemble model (enhanced by additional global-scale training data) in
ten-fold cross-validation.

The performance of our Classifier-Guided Ensemble model and the model with more training data are shown in Fig. 3a
and 3f. Although when trained using only site-scale data, our Classifier-Guided Ensemble model performs well with a KGE
of 0.91, R? of 0.88, MAE of 9.64 mm month !, RMSE of 14.31 mm month*, showing clear advantages over base models, it
cannot significantly outperform the Attention-Based Ensemble model with the same KGE and R?, lower RMSE of 14.27 mm
month and lower MAE of 9.62 mm month* (Fig. 3d). As illustrated in Fig. 3e, the process-based algorithm exhibits inferior
performance to data-driven models at the site scale, resulting in its near exclusion from the classifier when trained only on in
situ observations. Expanding the training dataset with global datasets enables the classifier to better recognize the scenarios
where each base model performs best, with accuracy improving from 70% to 90%, particularly for process-based algorithm.
Therefore, our model can achieve the best performance among all of the models used for comparison in the validation
dataset, with a KGE of 0.92, R? of 0.89, MAE of 8.66 mm month, RMSE of 13.48 mm month.
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Figure 4. The a) R? and b) KGE of the Classifier-Guided Ensemble model, Attention-Based Ensemble model, ML model, and
Hybrid model in independent validation. The red lines represent the median of the validation metrics, and the red dots represent
the average values of the validation metrics.

The independent validation results shown in Fig. 4 and Table A4 also indicate that our model exhibits excellent
generalizability in these independent sites. The ET estimation from Classifier-Guided Ensemble model achieves the best
performance among all compared models, with a higher average R? of 0.35 and a higher average KGE of 0.60. The
Classifier-Guided Ensemble model performs well in most of the selected independent sites, especially at the CH-Dav and
US-ARM sites, as it can make better use of the process-based algorithm’s extrapolation strengths, yielding better outcomes
even when ML model and Hybrid model struggle, while the Attention-Based Ensemble model's results are closer to those of
the ML model at most sites, resulting in poorer performance in independent validation.

The results from the k-fold cross-validation and independent validation indicate that our Classifier-Guided Ensemble
model performs well in estimating ET at site scale, exhibiting better stability and generalizability, and the inclusion of

global-scale data makes our model perform better.

4.1.2 Model Evaluation under different sites and vegetation cover conditions.

In situ observations were also used to evaluate the performance of models across different sites and land cover types, thereby
validating the models' spatial simulation performance. The Taylor diagram is used to compare the performance of the models,
where the two axes represent the root mean square error (RMSE, in mm month™?), and the curves indicate the Pearson’s

correlation coefficient (r).
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Figure 5. Taylor diagram that compares the performance of the four models with ground observations for a) different sites and b)
different land cover types.

As Fig. 5a and Table 2 demonstrates, Classifier-Guided Ensemble model performs the best among the four models in
the majority of the site, with lower average RMSE of 14.55 mm month ! (Attention-Based Ensemble model: 15.41 mm
month, Hybrid model: 15.52 mm month*, ML model: 15.46 mm month'), and higher average correlation coefficient(r) of
0.90 (Attention-Based Ensemble model: 0.88, Hybrid model: 0.88, ML model: 0.87). Classifier-Guided Ensemble model
also demonstrates greater performance than the other three models in the majority of land cover types (Fig. 5b and Table 3),
with lower average RMSE of 16.88 mm month™* (Attention-Based Ensemble model: 17.40 mm month, Hybrid model:
17.38 mm month, ML model: 17.94 mm month), and higher average correlation coefficient(r) of 0.93 (Attention-Based
Ensemble model: 0.92, Hybrid model: 0.93, ML model: 0.92). Classifier-Guided Ensemble model outperforms other models
across most land cover types, with the exception of the CSH, where its performance is slightly inferior to Attention-Based
Ensemble model and Hybrid model.

Table 2. Performance of different ET models as indicated by averaged RMSE and R? for all sites.

Model RMSE (mm month™!) R?
Classifier-Guided Ensemble model 14.55 0.90
Attention-Based Ensemble model 15.41 0.88
Hybrid model 15.52 0.88
ML model 15.46 0.87

Further, we notice that the Attention-Based Ensemble model assigns more ‘attention’ to the ML model, since the ML
model performs best at the site scale among the three base models. Therefore, the performance of the Attention-Based
Ensemble model is inferior to that of the hybrid model under different land cover types, while Classifier-Guided Ensemble

model can fully utilize the characteristics of the base models and get better results, which is consistent with the conclusion
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from independent validation. In summary, the proposed model better fits the data from different sites and different land
cover types, which demonstrates the effectiveness of our ensemble method.
Table 3. Performance of different ET models as indicated by RMSE and R? for all IGBP land cover types.

Classifier-Guided Attention-Based ]
Ensemble model Ensemble model Hybrid model ML model
IGBP RMSE RMSE RMSE RMSE
(mm R? (mm R? (mm R? (mm R?
month™) month) month) month)
ENF 9.57 0.96 9.99 0.96 10.44 0.95 9.99 0.96
EBF 14.23 0.90 15.01 0.89 14.70 0.89 14.96 0.89
DBF 11.68 0.96 11.45 0.96 12.13 0.96 11.76 0.96
MF 9.49 0.96 10.79 0.95 10.65 0.95 10.52 0.95
CSH 56.82 0.84 54.77 0.83 52.81 0.88 60.26 0.80
OSH 9.08 0.94 10.33 0.92 10.97 0.91 10.14 0.92
SV 12.80 0.95 12.99 0.95 13.33 0.94 12.92 0.95
GRA 12.30 0.94 13.62 0.93 13.82 0.93 13.45 0.93
CROP 15.92 0.94 17.62 0.93 17.54 0.93 17.44 0.93
Average 16.88 0.93 17.40 0.92 17.38 0.93 17.94 0.92

4.1.3 Model Evaluation using extreme samples

In order to verify the extrapolation performance of the models for extreme samples, we compared the performance of these
models for multiple extreme samples. The heatmaps in Fig. 6 indicate that for the majority of these extreme samples, our

Classifier-Guided Ensemble model can accurately estimate ET.

For the 99th — 100th percentiles of the VPD in particular, Classifier-Guided Ensemble model performs significantly
better than the other models, with a KGE of 0.66, R? of 0.36, while the KGE of other models is below 0.3 and the R=is less
than 0. This shows that Classifier-Guided Ensemble model has the potential to efficiently select the ‘dominant model’ to
achieve good results even when these existing ML models perform poorly. Under the cases of high Ta, high Rs and low Ta,
Classifier-Guided Ensemble model performs significantly better than the other models. Only under the three cases of low
VPD, low Rs and low LAI, Classifier-Guided Ensemble model is not as good as the other models and the difference is not
significant, with the KGE being 0.08, 0.02 and 0.08 lower than that of the Attention-Based Ensemble model, respectively. In
most extreme cases, Classifier-Guided Ensemble model can yield stronger extrapolation performance than individual base

models or other ensemble models, providing more accurate ET estimates under extreme weather events.
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Figure 6. The comparison of different models (A Classifier-Guided Ensemble model, B Attention-Based Ensemble model, C ML
model, D Hybrid model) under extreme conditions in the form of heatmaps. a) and b) represent the extreme samples sorted in
ascending order within the Oth — 1st percentiles and 99th - 100th percentiles, respectively.

4.2 Model evaluation at catchment scale
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Figure 7. Scatterplot for the relationship between estimated ET and water balance ET (each point represents a catchment over a
one-year period).
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To validate the model performance for the catchment-scale application, we used six ET products, Classifier-Guided
390 Ensemble model, and Attention-Based Ensemble model to estimate ET in each catchment and compare them to the water
balance ET dataset. The results show that Classifier-Guided Ensemble model performs better than other comparison models
and products (Fig. 7), with a KGE of 0.94, R? of 0.92, MAE of 6.17 mm month!, RMSE of 7.73 mm month' and the slope
of the regression of estimated ET versus water balance ET for our model (0.99) is closer to 1 than that of the other ET
products and models. The Attention-Based Ensemble model also performs better than most of the ET products used, with a
395 KGE of 0.89, but the results are not as good as those of our model, ERA5-Land, and GLDAS ET products as it exhibits

higher RMSE and MAE. This proves that our model is in better agreement with the catchment water balance ET.

PLSH

RMSE (mm month™)

12 15 18 21 24 27 30

Figure 8. Distributions of the root-mean-square error (RMSE) for the 38 catchments.
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The spatial distribution of RMSE across 38 catchments (Fig. 8) further demonstrate the superior performance of our
model. Compared to the Attention-Based Ensemble model, our model shows significant improvement in RMSE for
catchment 'Mackenzie', 'Rio Grande', 'Lower Colorado', 'Amazon’, 'Kolyma ', 'Godavari', 'Krishna', 'Orange’, 'Cooper Creek’
and 'Barwon’, with a reduction in RMSE of over 20%. Especially in catchment ‘Godavari', the RMSE of our model is 5.59
mm month* and the RMSE of Attention-Based Ensemble model is 12.02 mm month, with a difference of more than 50%.
In some other catchments (‘Mid-Atlantic’, 'Ohio’, ‘Upper Colorado’, 'Ob' and "Yellow'), the RMSE of the Attention-Based
Ensemble model is over 20% lower than that of our model. Compared to another well-performing GLDAS product, there are
large differences between our model and GLDAS due to the difference in calculation methods, with each of these two
methods having lower RMSE in 19 catchments. In summary, while there are some differences in ET estimation among our
model, the Attention-Based Ensemble model, and other products in different catchments, our model is in better agreement

with the catchment water balance ET in the majority of catchments.

4.3. Model evaluation at global scale

To further validate the performance of our model on larger spatial scales, we compared the multi-year average ET estimated
by Classifier-Guided Ensemble model and Attention-Based Ensemble model, and other ET products. We primarily
compared our Classifier-Guided Ensemble model with Attention-Based Ensemble model to validate the performance of our
ensemble method and with FLUXCOM, which is an ET product generated based on pure ML models, to evaluate the
differences between ensemble model and pure ML models. Additionally, other ET products were included as reference for
the analysis. Some ET products, like FLUXCOM, contain missing values in certain regions, and these regions were excluded

from the comparison.

4.3.1 Evaluation of multi-year average ET estimates

Fig. 9 shows the spatial distribution of the multiyear (2005-2013) mean global ET estimates for the ET models and products.
Our Classifier-Guided Ensemble model shows expected global patterns of ET and all of these ET models and products
generally show similar spatial pattern. ET values are relatively higher in mid-latitude regions near the equator, including the
Amazon Basin, the Congo Basin, and Southeast Asia, while lower ET values are shown in some arid regions, including the
Sahara Desert and Central Asia, as well as in high-latitude alpine regions, including northern Russia, and northern Canada.
The multiyear mean ET ranges from 46.99 mm month* to 49.69 mm month, with FLUXCOM having the highest average
ET and GLEAM_B having the lowest average ET.

Despite their great consistency in spatial patterns, there are still some regional discrepancies detected among these
datasets. Compared with other products, the Attention-Based Ensemble model shows the largest discrepancy in tropical
regions, as it provides lower ET estimates, with almost no regions exhibiting ET exceeding 120 mm month1. This may be
attributed to the ML model's limited ability to estimate extreme high values, as well as the potential underestimation of ET

by the ensemble model (Cai et al., 2024). Compared with the Attention-Based Ensemble model, our Classifier-Guided
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Ensemble model shows better spatial consistency with other ET products and avoids the underestimation of high values. The
latitudinal average ET distribution for each dataset also confirms this conclusion. The Attention-Based Ensemble model
shows lower ET estimates in both high-ET and low-ET regions and the FLUXCOM product tends to overestimate ET in
low-latitude regions, particularly in areas slightly below the peak values, while the ET profile estimated by our model shows
435 improvement in these areas. Overall, our model generally performs well and provides a reasonable global ET estimate,

indicating a distinct improvement in generalizability with the introduction of ML classifier.
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Figure 9. Average annual land evapotranspiration from 2005 to 2013 for Classifier-Guided Ensemble model, Attention-Based
Ensemble model and other ET products. The latitudinal profiles of these datasets are shown in the right panel.
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440 4.3.2 Uncertainty analysis at global scale
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Figure 10. Average monthly uncertainty from 2005 to 2013 for Classifier-Guided Ensemble model, Attention-Based Ensemble
model and other ET products.

The proposed model also demonstrates strong stability in the uncertainty analysis. Fig. 10 illustrates the uncertainty
445  distribution estimated from the TCH method for eight global ET estimates during the period from 2005 to 2013. All of these
datasets exhibit high stability, with less than 5 mm month-* mean uncertainty in most areas. The lowest mean uncertainty is
achieved by Classifier-Guided Ensemble model (1.45), followed by FLUXCOM (1.54), Attention-Based Ensemble model
(1.63), GLEAM_A (1.84), GLEAM_B (1.88), PLSH (1.93), ERA5 (2.25), GLDAS (3.08). The uncertainty distribution of
these datasets also shows a similar spatial pattern and typically high uncertainty is found in low-latitude areas. Many studies
450 have investigated the uncertainty of these ET products. Xie et al. (2024) used the TCH method to assess the uncertainty of
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several products from 2003 to 2015 and found that FLUXCOM had the lowest uncertainty. Zhu et al. (2022) and Li et al.,
(2022) also evaluated several products and found that the GLEAM product exhibited lower uncertainty. The uncertainty of
these products we calculated is consistent with the results of these previous studies.

Compared to Attention-Based Ensemble model, our model shows lower uncertainty in high ET regions near the equator
and shows lower uncertainty compared to FLUXCOM in the southern North America and Australia. These results confirm
preceding analysis that our Classifier-Guided Ensemble model consistently perform well at global scale, showcasing the

potential of our ensemble method to enhance the generalizability.

5. Discussion

In this work, by developing a novel ML Classifier-Guided Ensemble ET model, we provide a simple but effective way to
integrate different base models (process-based algorithm, ML-based ET model, and hybrid model) to estimate ET or similar
variables lacking reliable global observations. Through the introduction of ML classifier, Classifier-Guided Ensemble model
can utilize the distinct advantages of the three base models with better performance at multiple spatial scales. Compared with
individual base models and Attention-Based Ensemble model, Classifier-Guided Ensemble model fit ET observations better,
especially in extreme samples and under different sites and vegetation cover conditions, demonstrating improved
generalizability and avoiding the underestimation of high values compared to traditional ensemble models. At catchment
scale, ET estimates from Classifier-Guided Ensemble model show a greater agreement with catchment ET calculated from
water balance, with performance comparable to other widely used ET products (ERA5, FLUXCOM, GLDAS, GLEAM_A,
GLEAM_B, and PLSH). At global scale, the evaluation of multi-year average ET estimates and uncertainty analysis indicate
that Classifier-Guided Ensemble model can provide a reasonable and stable global ET estimate. The main advantage of
Classifier-Guided Ensemble model is the improved generalizability, which is primarily attributed to the introduction of ML
classifier due to the ML Classifier’s capacity to include a broader range of training data and to select the appropriate model

at each pixel, especially for process-based algorithm.

5.1 Evaluation of the Effectiveness of ML classifier.

As the additionally incorporated ML classifier is the core of the proposed ensemble framework, we further validated its
effectiveness at both site and global scales. Fig. 11a shows that in ‘process-based algorithm-dominated’ type derived from in
situ observations, our Classifier-Guided Ensemble model achieves better results than other models, with a KGE of 0.94, R?
of 0.94, MAE of 5.07 mm month-1, RMSE of 8.71 mm month™. As demonstrated by the results in Section 4.1.1, the
process-based algorithm has a poor accuracy of ET estimation at site scale, with a KGE of 0.65, so ensemble model based on
in situ observations cannot take good advantage of the process-based algorithm. In Attention-Based Ensemble model, the

process-based algorithm contributes much less than the other two models, so neither ML model nor Attention-Based
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Ensemble model can outperform our Classifier-Guided Ensemble model when the ET estimated by process-based algorithm
is the closest to the observed ET.
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Figure 11. The comparison of model performance among 1) Ensemble model, 2) Attention-Based Ensemble model, 3) Hybrid

485 model and 4) ML model under a) ‘process-based algorithm-dominated’ type, b) ‘Hybrid model-dominated’ type, ¢) ‘ML model-
dominated’ type based on in situ observations. d) The comparison of global average monthly land evapotranspiration from 2005 to
2013 under ‘process-based algorithm-dominated’ type.

We also analyzed the case of two other types: ‘hybrid model-dominated’ and ‘ML model-dominated’ derived from in
situ observations. In ‘hybrid model-dominated’ type (Fig. 11b), the hybrid model performs the best as expected, with a KGE
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of 0.98, R? of 0.98, MAE of 2.66 mm month*, RMSE of 4.61 mm month. Classifier-Guided Ensemble model also performs
better in this case compared to Attention-Based Ensemble models, with a KGE of 0.98, R? of 0.98, MAE of 2.83 mm month-
! RMSE of 4.92 mm month. The Attention-Based Ensemble model pays more ‘attention’ to the ML model which has
higher accuracy at site scale, so in ‘hybrid model-dominated’ type, its results are closer to the ML model, while our model
can use hybrid model in most points based on the results of the ML classifier, leading to better results for our models.
However, in ‘ML model-dominated’ type (Fig. 11c), Attention-Based Ensemble model performs better than Classifier-
Guided Ensemble model, with a higher R? of 0.97, lower RMSE of 6.43 mm month* and MAE of 4.30 mm month™.
Classifier-Guided Ensemble model cannot perform as well as the ML model because the accuracy of ML classifier is not
100%, while the Attention-Based Ensemble model gets better performance by combining the results of the three models.
Therefore, although our model performs well in estimating ET at various scales, there are still some limitations. The core of
our model is to select the potential optimal model as ‘dominant model’ for each pixel as determined by the ML classifier, so
in regions where a single model already achieves the best results, Classifier-Guided Ensemble model does not improve
performance. In this case, other ensemble model, such as Attention-Based Ensemble model, performs better, as they can
improve performance by integrating multiple models.

At global scale, we also conducted additional analysis and validation of the results of the ML classifier within our
model. Since ML model and Hybrid model perform well at global scale, while process-based algorithm has lower overall
accuracy, we focused on whether the ML classifier can identify pixels where the process-based algorithm performs well and
use it to improve the estimation robustness in these areas. Fig. 11d shows the line chart of the monthly mean ET series for all
datasets at the points corresponding to ‘process-based algorithm-dominated’ type derived from the ML classifier. It is found
that the Attention-Based model yields the lowest ET estimation among all datasets around May and FLUXCOM
overestimates ET around February, September, October and November, while our Classifier-Guided Ensemble model shows
improvements in these cases. In comparison to the Attention-Based Ensemble model’s performance (R? with the various
products as follows, ERA5: 0.60, FLUXCOM: 0.71, GLDAS: 0.29, GLEAM_A: 0.54, GLEAM_B: 0.51, and PLSH: 0.73),
our model’s results are closer to these widely used ET products (R=2with the various products as follows, ERA5: 0.85,
FLUXCOM: 0.72, GLDAS: 0.60, GLEAM_A: 0.67, GLEAM_B: 0.71, and PLSH: 0.84). This also demonstrates that using
the process-based algorithm instead of ML models in these regions has led to an improvement in the reliability of the ET
estimation. Overall, the introduction of the ML classifier did improve the performance of our model at both site and global

scale.

5.2 Interpretability of machine learning used in Classifier-Guided Ensemble model

For machine learning-based models, improvement of the model performance is important, but the interpretability of the
model is equally crucial. Especially for our model, the explanation of ML classifier can give us more insight into how it
selects the ‘dominant model’, and under which meteorological conditions a particular model is preferred to be selected at

both global and site scales, providing valuable support for future research. Interpretable machine learning models are gaining
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increasing attention, and various methods, such as LIME and SHAP, have been widely used to explain various machine
learning models (e.g. Chakraborty et al., 2021; Chu et al., 2024; Eskandari et al., 2024). In this study, we used SHAP values
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to analyze the interpretability of the ML classifier within Classifier-Guided Ensemble model and we used both site-scale and
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Figure 12. a) The bar plot and b) summary plot of the SHAP values for 1) ‘process-based algorithm-dominated’ type, 2) ‘Hybrid
model-dominated’ type and 3) ‘ML model-dominated’ type. The bar plot exhibits the mean absolute SHAP values for each
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530 covariate and the summary plot exhibits the distribution of SHAP values.

The contribution of different covariates to the results varies across the different classes (Fig. 12a). As Fig. 13a shows,

the covariates VPD, Ta, and Rs have a higher contribution, while NDVI, LAI, P, U, and V have a lower contribution. For

‘process-based algorithm-dominated’ type, the contribution of VPD accounts for 25.09%, followed by Ta (17.68%), Rs
(12.22%), Ts (10.78%), IGBP (8.25%), SM (6.31%), LAI (6.08%), NDVI (5.77%), P (3.86%), U (2.10%), V (1.85%). For
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‘ML model-dominated’ type, the distribution of SHAP values shows some similarity to ‘process-based algorithm-dominated’
type (Fig. 13b), with Ta having the highest contribution (18.67%) and VPD the second highest (17.52%). Previous studies
have demonstrated that variables VPD, Ta, and Rs make significant contributions to the estimation of ET, whether using
machine learning methods or the process-based algorithm (Mu et al., 2011; Shang et al., 2023). The similarity in the
contribution distribution of ML model and process-based algorithm may be attributed to the fact that they directly estimate

ET, while differences may result from their different algorithms.
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Figure 13. a) The bar plot of the mean absolute SHAP values for three types and b) the changes in variable contributions across 1)
‘process-based algorithm-dominated’ type, 2) ‘ML model-dominated’ type, 3) ‘Hybrid model-dominated’ type.

For ‘Hybrid model-dominated’ type, it is still VPD that dominates the feature contribution, with its proportion rising to
33.39%. The distribution of covariates under ‘Hybrid model-dominated’ type is somewhat distinct from ‘process-based
algorithm-dominated’ type and ‘ML model-dominated’ type, with a higher contribution from SM and a slightly reduced
contribution from Ta (Fig. 13b). Machine learning was used in the hybrid model for the estimation of rs, and it was strongly
correlated with water content (VPD, SM), and temperature (Ta) (Gan et al., 2018; Leuning et al., 2008; Mallick et al., 2015).
In the hybrid model ML-GS developed by Shang et al., (2023), the distribution of SHAP values for their input variables is
similar to that in our ‘Hybrid model-dominated’ type. Therefore, it can be seen that the variables with a higher contribution
when selecting the ‘dominant model’ in the ML classifier have a certain correlation with those having a higher contribution
when estimating ET.

The Fig. 12b shows the summary plot, where the horizontal axis represents the SHAP values, indicating the
contribution of each covariate and color represents the magnitude of the variable values, with redder colors indicating larger
variable values. The summary plot illustrates that, in certain conditions, a specific base model may have higher SHAP values,
indicating its greater likelihood of being selected. For instance, under high VPD, low Ta and high Rs conditions, process-
based algorithm is more likely to be selected. Also, there is a tendency to select Hybrid model under conditions of low VPD,
low SM and under high Ta conditions, the ML model tends to be selected. The results in the summary plot show some
correlation to the extreme samples analysis (Section 4.1.3) that for the Oth — 1st percentiles of the VPD and SM, hybrid

model outperforms ML model, making hybrid model the preferred choice. Despite these clear conditions, model selection
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remains unclear in some cases, particularly for ML model and Hybrid model, possibly due to their inter-correlation as both
of them are based on ML method.

In summary, the interpretability analysis provides insights into the covariates with the high contribution to model
selection, as well as scenarios where the three base models are more likely to be selected. However, the model selection for
some cases such as high VPD, low radiation, etc. is not fully determined and further research is needed to explore the deeper

mechanisms of model selection.

5.3 Uncertainties of Classifier-Guided Ensemble model

Despite better performance than other models in estimating ET at multiple spatial scales, there are still uncertainties in our
model. First, the inclusion of a ML classifier in our ensemble model may introduce uncertainties. Although we used multiple
global ET products as references when adding global-scale training data, these are not as reliable as ET observations, so we
are still unsure of the accuracy of classification. Moreover, the classification results of machine learning model are not
completely accurate, leading to the fact that the ML classifier does not guarantee optimal model selection. To minimize the
impact of this issue, we have chosen models that have been shown to be excellent for global ET estimation in previous
studies, so even if the ML classifier does not accurately choose the optimal model as ‘dominant model’ at some pixels, the
results of the other models will not differ significantly.

Second, the base models selected may introduce uncertainties. We chose to integrate ML-based ET models, process-
based algorithms, and hybrid models. Although process-based algorithms have been widely used for ET estimation, there is
still no widely recognized optimal method for the parameterization of some ET processes (Jiménez et al., 2018; Mu et al.,
2011). While ML-based ET models perform well in regions with sufficient data, they tend to have poor generalizability in
regions with limited data and may suffer from local optima or overfitting problems (Koppa et al., 2022; Yuan et al., 2020).
For hybrid model, there are also uncertainties in the synergy between physical laws and machine learning (Shang et al.,
2023).

Lastly, our model contains many input variables that incorporate multiple data sources including: satellite data,
reanalysis data, and in situ observations, which may introduce uncertainty. At site scale, water flux observations obtained by
the eddy covariance method have inherent random errors from the measuring instruments (Mizoguchi et al., 2009).
According to the previous study, the biases between the reanalysis data and the satellite meteorological data (Rienecker et al.,
2011) and the inconsistency between in situ observations and global-scale data also introduces uncertainty (Cao et al., 2021).
We have made efforts to reduce uncertainties caused by data inconsistencies by replacing in situ covariate observations with

the corresponding data from global-scale datasets at the same coordinates, but the uncertainties remain unavoidable.

5.4 Future perspectives

Despite the uncertainties and limitations, our model offers a new perspective on integrating multiple models and utilizing the

complementarity between ML models and physical models, and there remains potential for further improvement. First,
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various alternatives still exist for the selection of base models. For example, there are many other ML models that can be
chose and have their own advantages, such as some deep learning models (LSTM, CNN, etc.). These deep learning models
or their improved forms have been shown to effectively estimate ET in previous studies (Guo et al., 2024; Karbasi et al.,
2022; de Oliveira e Lucas et al., 2020). There are also some ET estimation methods based on other frameworks without
using the three base models we chose, such as a Bayesian-driven ensemble learning method (Ochege et al., 2024). Better
results might be obtained by choosing different models or by integrating more models, which could be a potential direction
for future research.

Second, more rigorous and reasonable methods are needed for model integration. One of the advantages of the proposed
framework is that we can add global data as training data even when there are no global-scale observations, which offers a
novel approach to improving the generalizability of model, but how to identify the ‘dominant model’ from additional data
remains a problem. If there is a more rigorous and reasonable method to optimize the model selection, it can not only
improve the reliability of the final ET estimation, but also contribute to the study of the regions where each base model
demonstrates its advantages. Additionally, after the ML classifier has selected the ‘dominant model’ at each pixel, if we
discard the simple use of the selected model and adopt more advanced methods for model integration, the results of
Classifier-Guided Ensemble model may be further improved. We have tried optimizing the results under three different
classes using both genetic algorithms and machine learning models, but the results were not as good as expected. Since these
methods are still limited by in situ observations, they do not perform as well as using the original models directly when
upscaled to a global scale. It is still worth exploring how to better utilize these models.

Finally, more effective integration of machine learning and physical models has the potential to further improve ET
estimation. Since physical models have higher interpretability and extrapolation capabilities, while machine learning can
utilize data more effectively, how to better integrate the complementary advantages of them is a topic worthy of in-depth
investigation. Moreover, ML models, especially deep learning models, are data-driven, but the available data cannot provide
sufficient information for ML models to achieve better results. Leveraging physical models to extract more meaningful

information from limited data is a viable way to enhance model performance.

6. Conclusions

The poor generalizability is a common limitation across ML-based global ET models due to the sparse distribution of in situ
observations. In this study, we developed a novel ensemble framework for combining the distinct advantages of process-
based algorithms (extrapolation performance in data-sparse regions), ML-based ET models (data adaptability in data-dense
regions), and hybrid models (overall performance) by introducing an additional ML classifier. Taking advantage of the ML
classifier's capacity for automatic model selection, we are able to improve the generalizability of ML-based ET models by
employing physically-founded process-based algorithm and hybrid model at appropriate pixel and avoid the typical

underestimation of high values by ensemble methods.
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The evaluation results across site and catchment scales indicate that our Classifier-Guided Ensemble model is overall
more accurate than the individual base models, Attention-Based Ensemble model and other widely used global terrestrial ET
products (ERA5, FLUXCOM, GLDAS, GLEAM_A, GLEAM_B, and PLSH) with lower RMSE and MAE and higher R?
and KGE, especially in extreme samples where existing ML models perform poorly. At global scale, our model also exhibits
higher stability, as well as greater consistency with these global ET products in both spatial patterns and latitude-averaged
values.

In addition, the analysis of ML classifier’s effectiveness demonstrates that the ML classifier can reasonably select the
base models used at both global and site scales, highlighting the potential to further enhance the model's generalizability.
Moreover, by further analyzing the SHAP values of different input covariates when the ML classifier select the ‘dominant
model’, we gained a simple understanding of the mechanisms behind the selection of ‘dominant model’ that just as VPD, Ta,
and Rs are critical for ET estimation, these variables also play a crucial role in model selection and identified some specific
scenarios in which each model is most suitable. However, we chose to introduce global-scale training data to enhance the
generalizability of the ML classifier, which has indeed led to improvements in ET estimation, but since these data were not
obtained from ET observations, this may introduce uncertainties. Therefore, while our framework demonstrates significant
potential to advance global ET estimation, further in-depth analysis and investigation are required, especially for the
introduction of the ML classifier.

Appendix A: Supplementary tables

Table Al. Information for the 129 EC Flux Tower Sites, including the Site Name, Latitude (Lat), Longitude (Lon), International
Geosphere-Biosphere Programme Land Cover Types (IGBP).

Name Start year End year Lat Long IGBP
AR-SLu 2009 2011 -33.46 -66.46 MF
AT-Neu 2002 2012 47.12 11.32 GRA
AU-Ade 2007 2009 -13.08 131.12 SV

AU-ASM 2010 2014 -22.28 133.25 SV
AU-Cpr 2010 2014 -34.00 140.59 SV
AU-Cum 2012 2014 -33.62 150.72 EBF

AU-DaP 2007 2013 -14.06 131.32 GRA
AU-DaS 2008 2014 -14.16 131.39 SV
AU-Dry 2008 2014 -15.26 132.37 SV
AU-Emr 2011 2013 -23.86 148.47 GRA
AU-Fog 2006 2008 -12.55 131.31 WL
AU-Gin 2011 2014 -31.38 115.71 SV
AU-GWW 2013 2014 -30.19 120.65 SV
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Name Start year End year Lat Long IGBP
AU-How 2001 2014 -12.49 131.15 SV
AU-Lox 2008 2009 -34.47 140.66 DBF
AU-RDF 2011 2013 -14.56 132.48 SV
AU-Rig 2011 2014 -36.65 145.58 GRA
AU-Rob 2014 2014 -17.12 145.63 EBF
AU-Stp 2008 2014 -17.15 133.35 GRA
AU-TTE 2012 2014 -22.29 133.64 GRA
AU-Tum 2001 2014 -35.66 148.15 EBF
AU-Wac 2005 2008 -37.43 145.19 EBF
AU-Whr 2011 2014 -36.67 145.03 EBF

AU-Wom 2010 2014 -37.42 144.09 EBF
AU-Ync 2012 2014 -34.99 146.29 GRA
BE-Bra 1996 2014 51.31 4.52 MF
BE-Lon 2004 2014 50.55 4.75 CROP
BE-Vie 1996 2014 50.30 6.00 MF
BR-Sa3 2000 2004 -3.02 -54.97 EBF

CA-Gro 2003 2014 48.22 -82.16 MF
CA-Obs 1997 2010 53.99 -105.12 ENF
CA-Qfo 2003 2010 49.69 -74.34 ENF
CA-SF1 2003 2006 54.49 -105.82 ENF
CA-SF2 2001 2005 54.25 -105.88 ENF
CA-SF3 2001 2006 54.09 -106.01 OSH
CA-TP1 2002 2014 42.66 -80.56 ENF
CA-TP2 2002 2007 42.77 -80.46 ENF
CH-Cha 2005 2014 47.21 8.41 GRA
CH-Dav 1997 2014 46.82 9.86 ENF
CH-Fru 2005 2014 47.12 8.54 GRA
CN-Cng 2007 2010 44.59 123.51 GRA
CN-Du2 2006 2008 42.05 116.28 GRA
CN-Du3 2009 2010 42.06 116.28 GRA
CN-HaM 2002 2004 37.37 101.18 GRA
CZ-wet 2006 2014 49.02 14.77 WL
DE-Geb 2001 2014 51.10 10.91 CROP
DE-Gri 2004 2014 50.95 1351 GRA
DE-Hai 2000 2012 51.08 10.45 DBF
DE-Kli 2004 2014 50.89 13.52 CROP
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Name Start year End year Lat Long IGBP
DE-Lkb 2009 2013 49.10 13.30 ENF
DE-Lnf 2002 2012 51.33 10.37 DBF
DE-Obe 2008 2014 50.79 13.72 ENF
DE-RuR 2011 2014 50.62 6.30 GRA
DE-SfN 2012 2014 47.81 11.33 WL
DE-Tha 1996 2014 50.96 13.57 ENF
DE-Zrk 2013 2014 53.88 12.89 WL
DK-Fou 2005 2005 56.48 9.59 CROP
DK-Sor 1996 2014 55.49 11.64 DBF
ES-LgS 2007 2009 37.10 -2.97 OSH
ES-LJu 2004 2013 36.93 -2.75 OSH
Fl-Hyy 1996 2014 61.85 24.29 ENF

Fl-Jok 2000 2003 60.90 2351 CROP

Fl-Let 2009 2012 60.64 23.96 ENF
Fl-Lom 2007 2009 68.00 24.21 WL

F1-Sod 2001 2014 67.36 26.64 ENF
FR-LBr 1996 2008 44.72 -0.77 ENF
FR-Pue 2000 2014 43.74 3.60 EBF
GH-Ank 2011 2014 5.27 -2.69 EBF
GL-ZaF 2008 2011 74.48 -20.55 WL
IT-CAl 2011 2014 42.38 12.03 DBF
IT-CA2 2011 2014 42.38 12.03 CROP
IT-CA3 2011 2014 42.38 12.02 DBF

IT-Col 1996 2014 41.85 13.59 DBF

IT-Lav 2003 2014 45.96 11.28 ENF
IT-MBo 2003 2013 46.01 11.05 GRA
IT-PT1 2002 2004 45.20 9.06 DBF

IT-Ren 1998 2013 46.59 11.43 ENF
IT-Ro2 2002 2012 42.39 11.92 DBF

IT-Tor 2008 2014 45.84 7.58 GRA
MY-PSO 2003 2009 297 102.31 EBF
NL-Loo 1996 2014 52.17 5.74 ENF
RU-Cok 2003 2014 70.83 147.49 OSH
RU-Fyo 1998 2014 56.46 32.92 ENF
RU-Hal 2002 2004 54.73 90.00 GRA
SD-Dem 2005 2009 13.28 30.48 SV
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Name Start year End year Lat Long IGBP
SN-Dhr 2010 2013 15.40 -15.43 SV
US-AR1 2009 2012 36.43 -99.42 GRA
US-AR2 2009 2012 36.64 -99.60 GRA
US-ARb 2005 2006 35.55 -98.04 GRA
US-ARc 2005 2006 35.55 -98.04 GRA

US-ARM 2003 2012 36.61 -97.49 CROP
US-Blo 1997 2007 38.90 -120.63 ENF
US-Cop 2001 2007 38.09 -109.39 GRA
US-CRT 2011 2013 41.63 -83.35 CROP
US-GBT 1999 2006 41.37 -106.24 ENF
US-GLE 2004 2014 41.37 -106.24 ENF
US-Goo 2002 2006 34.25 -89.87 GRA
US-Ivo 2004 2007 68.49 -155.75 WL
US-Lin 2009 2010 36.36 -119.09 CROP
US-Los 2000 2014 46.08 -89.98 WL

US-LWW 1997 1998 34.96 -97.98 GRA
US-Mel 2004 2005 44.58 -121.50 ENF
US-Me2 2002 2014 44.45 -121.56 ENF
US-Me4 1996 2000 44.50 -121.62 ENF
US-Meb5 2000 2002 44.44 -121.57 ENF

US-MMS 1999 2014 39.32 -86.41 DBF
US-Nel 2001 2013 41.17 -96.48 CROP
US-Ne2 2001 2013 41.16 -96.47 CROP
US-Ne3 2001 2013 41.18 -96.44 CROP
US-NR1 1998 2014 40.03 -105.55 ENF
US-Oho 2004 2013 41.55 -83.84 DBF

US-Prr 2010 2014 65.12 -147.49 ENF
US-SRC 2008 2014 3191 -110.84 OSH
US-SRG 2008 2014 31.79 -110.83 GRA
US-SRM 2004 2014 31.82 -110.87 SV
US-Syv 2001 2014 46.24 -89.35 MF
US-Ton 2001 2014 38.43 -120.97 SV
US-Tw2 2012 2013 38.10 -121.64 CROP
US-Tw3 2013 2014 38.12 -121.65 CROP
US-Tw4 2013 2014 38.10 -121.64 WL
US-Twt 2009 2014 38.11 -121.65 CROP
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Name Start year End year Lat Long IGBP
US-Var 2000 2014 3841 -120.95 GRA
US-WCr 1999 2014 45.81 -90.08 DBF
US-Whs 2007 2014 31.74 -110.05 OSH
US-Wi0 2002 2002 46.62 -91.08 ENF
US-Wi3 2002 2004 46.63 -91.10 DBF
US-Wi6 2002 2003 46.62 -91.30 OSH
US-Wkg 2004 2014 31.74 -109.94 GRA
ZM-Mon 2000 2009 -15.44 23.25 DBF

Table A2. Information for the 38 Selected Catchments.

Catchment Name

Continent

Catchment area (x<10* km?)

Amazon
Congo
Ob
Parana Rio
Yenisey
Lena
Yangtze
Mackenzie
Volga
Missouri
Orange
Yellow
Tocantins Rio
South Atlantic-Gulf
Niger
Arkansas-White-Red
Columbia
Songhua
Upper Mississippi
Texas-Gulf
Ohio
California
Pearl
Kolyma

Great Basin

South America
Africa
Asia
South America
Asia
Asia
Asia
North America
Europe
North America
Africa
Asia
South America
North America
Africa
North America
North America
Asia
North America
North America
North America
North America
Asia
Asia

North America
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467.1
361.9
253.6
252.2
2448
243.7
170.5
169.8
139.3
134.4
82.7
73.0
69.7
69.2
66.5
64.2
60.3
52.8
49.2
46.4
422
415
415
37.1
36.7
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Catchment Name Continent Catchment area (<10* km?)
Lower Colorado North America 36.3
S& Francisco South America 345
Rio Grande North America 34.3
Zambezi Africa 335
Godavari Asia 30.7
Parnaiba Rio South America 29.8
Upper Colorado North America 29.4
Lower Mississippi North America 26.0
Mid-Atlantic North America 25.2
Krishna Asia 24.0
Cooper Creek Australia 23.3
Okavango Africa 22.9
Barwon Australia 20.9

645 Table A3. Information for the 30 Selected EC Flux Tower Sites in Independent Validation.

Name Start year End year Lat Long IGBP
AR-SLu 2009 2011 -33.46 -66.46 MF
AU-ASM 2010 2014 -22.28 133.25 SV
AU-Fog 2006 2008 -12.55 131.31 WL
AU-Ync 2012 2014 -34.99 146.29 GRA
BE-Bra 1996 2014 51.31 4.52 MF
BE-Vie 1996 2014 50.30 6.00 MF
BR-Sa3 2000 2004 -3.02 -54.97 EBF
CA-Qfo 2003 2010 49.69 -74.34 ENF
CA-SF3 2001 2006 54.09 -106.01 OSH
CH-Dav 1997 2014 46.82 9.86 ENF
CN-Du2 2006 2008 42.05 116.28 GRA
DE-Obe 2008 2014 50.79 13.72 ENF
DE-Tha 1996 2014 50.96 13.57 ENF
DK-Sor 1996 2014 55.49 11.64 DBF
ES-LgS 2007 2009 37.10 -2.97 OSH
FI-Hyy 1996 2014 61.85 24.29 ENF
FR-Pue 2000 2014 43.74 3.60 EBF
GH-Ank 2011 2014 5.27 -2.69 EBF
GL-zaF 2008 2011 74.48 -20.55 WL
IT-CAl 2011 2014 42.38 12.03 DBF
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Name Start year End year Lat Long IGBP
RU-Cok 2003 2014 70.83 147.49 OSH
RU-Hal 2002 2004 54.73 90.00 GRA
SD-Dem 2005 2009 13.28 30.48 SV
SN-Dhr 2010 2013 15.40 -15.43 SV
US-ARM 2003 2012 36.61 -97.49 CROP

US-Ivo 2004 2007 68.49 -155.75 WL
US-Nel 2001 2013 41.17 -96.48 CROP
US-Oho 2004 2013 41.55 -83.84 DBF
US-Twt 2009 2014 38.11 -121.65 CROP
ZM-Mon 2000 2009 -15.44 23.25 DBF

Table A4. Performance of Different ET Models in Independent Validation.

Name Classifier-Guided Attention-Based ML model Hybrid model
R? KGE R? KGE R? KGE R? KGE
AR-SLu 0.11 0.43 0.10 0.40 0.08 0.41 0.44 0.56
AU-ASM 0.85 0.68 0.78 0.66 0.78 0.61 0.76 0.65
AU-Fog -0.40 0.17 -0.41 0.02 -0.44 0.05 -0.43 0.03
AU-Ync -1.79 0.32 -2.47 0.20 -2.45 0.25 -2.21 0.24
BE-Bra 0.31 0.36 0.31 0.37 0.25 0.33 0.40 0.42
BE-Vie 0.86 0.78 0.84 0.80 0.84 0.78 0.82 0.78
BR-Sa3 -0.27 0.58 -0.02 0.53 -0.03 0.50 -0.84 0.57
CA-Qfo 0.89 0.85 0.87 0.85 0.86 0.81 0.88 0.85
CA-SF3 0.87 0.85 0.87 0.89 0.86 0.88 0.87 0.89
CH-Dav 0.15 0.57 0.01 0.53 0.08 0.53 -0.03 0.53
CN-Du2 0.89 0.87 0.87 0.86 0.87 0.86 0.86 0.86
DE-Obe 0.87 0.87 0.87 0.87 0.85 0.87 0.87 0.87
DE-Tha 0.76 0.69 0.75 0.67 0.75 0.68 0.75 0.69
DK-Sor 0.84 0.80 0.83 0.84 0.82 0.80 0.83 0.81
ES-LgS -0.25 0.41 -0.59 0.30 -0.60 0.37 -0.86 0.22
FI-Hyy 0.87 0.82 0.83 0.78 0.83 0.79 0.85 0.81
FR-Pue 0.17 0.54 0.14 0.53 0.18 0.55 0.08 0.50
GH-Ank -0.90 -0.04 -1.11 -0.07 -1.12 -0.07 -0.35 -0.08
GL-ZaF -0.58 0.09 -0.66 0.07 -0.80 -0.04 -0.56 0.09
IT-CA1 0.67 0.59 0.70 0.63 0.69 0.63 0.68 0.59
RU-Cok -0.56 0.63 -1.60 0.52 -0.80 0.61 -1.51 0.54
RU-Hal 0.87 0.83 0.85 0.80 0.86 0.82 0.92 0.86
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Name Classifier-Guided Attention-Based ML model Hybrid model

R? KGE R? KGE R? KGE R? KGE
SD-Dem 0.11 0.15 0.09 0.14 0.11 0.15 0.04 0.12
SN-Dhr 0.74 0.70 0.64 0.64 0.71 0.67 0.58 0.61
US-ARM 0.66 0.83 0.44 0.73 0.46 0.74 0.45 0.74
US-Ivo 0.63 0.79 0.51 0.68 0.56 0.76 0.41 0.67
US-Nel 0.94 0.85 0.94 0.87 0.93 0.84 0.94 0.84
US-Oho 0.77 0.62 0.76 0.62 0.75 0.60 0.74 0.59
US-Twt 0.73 0.68 0.70 0.75 0.69 0.68 0.70 0.66
ZM-Mon 0.68 0.83 0.66 0.77 0.64 0.78 0.65 0.80
Average 0.35 0.60 0.25 0.57 0.27 0.57 0.26 0.58

Data and Code availability

All dataset used are publicly available from data sources cited throughout the paper. The in-situ datasets were obtained from
the FLUXNET2015 dataset via https://fluxnet.org/. The ERA5-Land reanalysis products were obtained from the ECMWF
via https://cds.climate.copernicus.eu/. The water-balance-based evapotranspiration product was downloaded from the
National Tibetan Plateau Data Center via https://doi.org/10.11888/Atmos.tpdc.300493. The FLUXCOM product was
obtained via https://www.bgc-jena.mpg.de/geodb/projects/Home.php. The PLSH product was obtained via
http://files.ntsg.umt.edu/data/. The GLEAM product version 3.8a and 3.8b was obtained via https://www.gleam.eu/. The
GLDAS product was obtained via https://doi.org/10.5067/SXAVCZFAQLNO. The NDVI and LAI data was obtained from
GIMMS product (Cao et al., 2023; Li et al., 2023). The MODIS Land Cover Climate Modeling Grid Product (MCD12C1)
was obtained via https://doi.org/10.5067/MODIS/MCD12C1.006. The machine learning models were trained using
AutoGluon version 0.8.2 (Erickson et al., 2020). The code supporting this study is available upon reasonable request from

the corresponding author.
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