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Abstract. Understanding the impacts of climate change and human activities on large endorheic lakes is crucial for sustainable 

water management, yet quantitative attribution remains a significant challenge. This study introduces the Hydrological 10 

Attribution and Analysis Framework (HAAF), a novel three-stage methodology, to provide a comprehensive explanation for 

the nearly-centennial (1931-2024) water balance dynamics of Lake Balkhash. The HAAF first establishes a high-fidelity 

hydrological reconstruction using a Physics-Informed Machine Learning (PIML) model, then employs the Budyko framework 

to attribute runoff changes, and finally links these catchment-scale drivers to the lake's terminal water balance. Our results 

confirm the robustness of the PIML model in simulating historical runoff (KGE > 0.75). The attribution analysis then reveals 15 

a complex interplay of competing forces. During the intensive intervention period (1970-1990), a substantial human-induced 

runoff reduction of -9.21 km³ completely masked a significant climate-driven wetting potential (+6.13 km³), triggering the 

lake's sharp decline. In the recent period (1991-2024), the basin's hydrology has been governed by a fragile stalemate in which 

a massive, climate-driven potential for increased runoff (+10.80 km³) was almost entirely neutralized by the persistent negative 

impact of human water use (-11.36 km³). At the lake level, this translated into an apparent stability sustained only by a favorable 20 

climatic subsidy. Future projections under various climate scenarios indicate that this climatic buffer is transient and unlikely 

to persist, exposing the lake to a high risk of rapid decline. We conclude that the recent stability of Lake Balkhash is not a sign 

of systemic recovery but a "masked vulnerability." This highlights the urgent need for sustainable and forward-looking water 

management strategies that account for these underlying, competing drivers. 

 25 

1 Introduction 

Endorheic lakes in arid and semi-arid regions are widely recognized as sensitive indicators of hydroclimatic change (Zhang et 

al., 2021). The water level and ecological health of these lakes are governed by a delicate balance between water inputs from 

their catchments and evaporative losses. Today, this balance is increasingly under pressure from two primary forces: global 

climate change, which alters precipitation patterns, temperature, and cryospheric contributions, and direct human activities, 30 
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such as water withdrawal for agriculture and reservoir regulation (Immerzeel and Bierkens, 2012; Li et al., 2016; Mandal and 

Chanda, 2023). For instance, the Aral Sea has dramatically shrunk due to irrigation diversions, while Lake Urmia faces similar 

threats from water abstraction and drought. These examples underscore the global relevance of understanding water balance 

dynamics in closed basins, where water cycles are tightly coupled with climate and anthropogenic activities. Disentangling the 

individual impacts of these concurrent drivers is a fundamental challenge in hydrology and Earth system science. A robust 35 

quantitative attribution is not only crucial for understanding past hydrological dynamics but also essential for developing 

sustainable water management strategies and predicting the future trajectory of these vital ecosystems. 

Lake Balkhash exemplifies these interactions, with its large basin situated in southeastern Kazakhstan, primarily fed by the Ili 

River which originates in the Tianshan Mountains (Duan et al., 2020). Historical fluctuations include sharp declines in the 

20th century, followed by relative stability, amid accelerating warming and human water use (Duan et al., 2021). As an 40 

endorheic lake, Lake Balkhash has no outlet, and all incoming runoff is ultimately lost to evaporation. Its primary source 

region is experiencing a warming rate significantly higher than the global average, accelerating glacial melt (Jin et al., 2024). 

While this melt initially boosts lake inflow in the short term, it signals a long-term depletion of solid water reserves. This 

shifting composition of water sources heightens the lake's sensitivity to climatic fluctuations, underscoring the profound impact 

of climate change on its hydrology. Concurrently, anthropogenic activities, particularly water consumption in the lower Ili 45 

River basin, have been identified as a key driver of the lake's water level decline in the latter half of the 20th century, sparking 

significant concerns regarding regional water management and sustainability (Cai et al., 2014). 

Reduced inflow not only directly lowers the water level of Lake Balkhash but also triggers a cascade of ecological 

consequences, such as delta ecosystem degradation (Starodubtsev and Truskavetskiy, 2011), increased lake salinity (Shen et 

al., 2021), and the destruction of aquatic habitats (Li et al., 2021). Although previous research has identified climate and human 50 

activities as the primary drivers of runoff change and attempted to quantify their relative contributions (Gan et al., 2022; Wang 

et al., 2024; Yu et al., 2025), these studies often fail to integrate their findings with the lake's terminal water balance, hindering 

a comprehensive explanation. The region's scarcity of long-term, high-quality observational data on inflow, especially for 

naturalized flow (i.e., runoff unaltered by human interference), poses a significant challenge. For the same reason, simulations 

using traditional hydrological models or machine learning (ML) methods in this area are subject to high uncertainty. These 55 

limitations impede a clear differentiation and comparison of the impacts of climate change and human activities across different 

periods, leaving a critical knowledge gap regarding the dominant factors governing the lake's water fluctuations. 

To address these existing gaps, this study introduces and implements the Hydrological Attribution and Analysis Framework 

(HAAF), a methodology designed to rigorously distinguish the drivers of hydrological change. The strength of HAAF lies in 

its structured approach, which first employs a PIML model for high-fidelity hydrological reconstruction to generate robust 60 

long-term interannual runoff time series. It then utilizes the Budyko framework for quantitative driver attribution, separating 

climatic from anthropogenic impacts on runoff. Finally, the framework provides a system-level impact linkage by connecting 

these attributed catchment-scale changes directly to the lake's water balance dynamics. This integrated workflow allows for a 

https://doi.org/10.5194/egusphere-2025-4778
Preprint. Discussion started: 19 November 2025
c© Author(s) 2025. CC BY 4.0 License.



3 
 

complete diagnosis from cause to effect, thereby offering a perspective on studying the water balance of lakes in arid regions, 

comparable to studies on other lakes where similar attribution challenges persist. 65 

The main objective of this paper is to provide a comprehensive quantitative explanation for the centennial dynamics of Lake 

Balkhash's water volume by applying the HAAF methodology. To achieve this, our study is structured around the three core 

stages of the HAAF framework: 

(1) Reconstructing the annual naturalized and human-impacted runoff into Lake Balkhash for the past century (1931-2024), 

employing the PIML model as the high-fidelity reconstruction engine. 70 

(2) Quantitatively separating the relative contributions of climate change and direct human activities to the observed runoff 

changes across three distinct historical periods, using the Budyko framework for attribution. 

(3) Elucidating how these attributed changes in water inputs have governed the historical water storage fluctuations of Lake 

Balkhash by linking them through a lake water balance equation. 

2 Materials and Methods 75 

2.1 Study Area and Historical Periodization 

 
Figure 1: Geographic location of the study area. 

Lake Balkhash, one of the largest endorheic lakes in the arid region of Central Asia, is situated in southeastern Kazakhstan 

(Duan et al., 2020). It covers an area of approximately 16,400 km², has an average depth of 5.8 meters, and exhibits pronounced 80 

differences in water quality between its western (freshwater) and eastern (saline) sections (Shen et al., 2021). The lake receives 

inflow from five primary rivers, predominantly the Ili River, which accounts for over 70% of the total inflow (Liu et al., 2024). 
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Other significant tributaries include the Karatal, Aksu, Lepsy, and Ayaguz rivers, originating from the Tien Shan and 

Dzungarian Alatau mountains. The Lake Balkhash basin encompasses a total area of approximately 413,000 km² and features 

an elevation range from 60 to 6,000 m (Fig. 1). The mountainous upper reaches of the river are an area of widespread glaciers 85 

and seasonal snowpack, and these ice/snowmelt waters have traditionally been one of the main sources of water for Lake 

Balkhash. The entire basin is deep within the Eurasian continent, with a typical temperate continental arid climate, sparse and 

uneven spatial distribution of precipitation - the mountainous areas receive significantly more precipitation than the plains and 

lakes (Cao et al., 2022). 

The hydrological history of Lake Balkhash is marked by critical turning points that have reshaped its ecosystem, influenced 90 

by both natural variability and human activities. During the 1970s and 1980s, the lake underwent a severe ecological crisis, 

principally driven by the impoundment of the Kapchagay Reservoir on its main tributary, the Ili River (Yu et al., 2025). This 

event triggered a sharp decline in the lake’s water level, a corresponding rise in salinity, and significant biodiversity loss. 

Following the dissolution of the Soviet Union in 1991, while direct reservoir impoundment pressures lessened, subsequent 

political and economic shifts introduced new complexities, intensifying challenges in regional water allocation and altering 95 

regional water management paradigms (Jia et al., 2020). In light of these pivotal events, we have structured our investigation 

by dividing the entire study period (1931-2024) into three distinct periods based on the 1970 and 1991 milestones to facilitate 

a dynamic attribution analysis. This segmentation aligns with previous studies that have validated its reasonableness for 

capturing shifts in hydrological drivers (Wang et al., 2024). A summary of these periods is presented in Table 1. 
Table 1 Summary of the three defined historical periods 100 

Period Time Frame Designation Key Characteristics 
P1 1931-1969 Reference Period Limited direct hydrological intervention, with water 

availability primarily governed by natural climate 
variability. 

P2 1970-1990 Intensive Intervention Period Dominated by intense human interference, where major 
hydrological engineering fundamentally altered the 
regional water balance. 

P3 1991-2024 Compounded Pressures Period Defined by the combined effects of stabilized engineering 
impacts, post-Soviet shifts in water management policy, 
and accelerating climate change. 

2.2 Datasets 

This study employed a diverse range of datasets to support the hydrological modeling and analysis of hydro-climatic changes. 

These datasets include a Digital Elevation Model (DEM), soil properties, land use/land cover (LULC) maps, glacier inventories, 

glacier elevation changes, meteorological forcings, and observed streamflow data. A summary of these datasets is presented 

in Table 2, including key variables, spatial and temporal resolutions, coverage periods, and access links for reproducibility. 105 
Table 2: Summary of datasets used in this study 
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Dataset Key Variables Spatial 
Resolution Temporal Coverage Source 

Copernicus 
GLO-90 DEM Elevation 90 m Static OpenTopography 

DSOLMap Bulk density, hydraulic conductivity, 
available water capacity 250 m Static WateriTech 

GLC_FCS30D Land cover classes (35 subcategories) 30 m 1985–2022 Zenodo 
Randolph 
Glacier 
Inventory 
(RGI v7.0) 

Glacier outlines, attributes Vector ~2000 snapshot GLIMS 

SWORD v15 River reaches, nodes, hydrological 
networks, lake boundaries 

~10 km reaches, 
200 m nodes Static Zenodo 

Hugonnet et 
al. (2021) Glacier elevation change rates (dh/dt) 100 m 2000–2019 Original publication 

CRU JRA v2.5 Temperature, precipitation, wind speed, 
vapor pressure, etc. 

0.5° (downscaled 
to 0.05°) 1901–2024 (daily) CEDA Archive 

TerraClimate Max/min temperature, precipitation, 
solar radiation, vapor pressure deficit 1/24° 1958–present (monthly) Climatology Lab 

Observed 
Streamflow Discharge (daily/monthly) Point Varies (1931–2024) National Cryosphere 

Desert Data Center 
The Digital Elevation Model used was the Copernicus GLO-90 DEM, which provides elevation data at a spatial resolution of 

90 meters and is accessible via OpenTopography. Soil hydraulic parameters (e.g., bulk density, hydraulic conductivity, 

available water capacity) were derived from DSOLMap (Lopez-Ballesteros et al., 2023), a 250m-resolution dataset available 

through WateriTech. For Land Use/Land Cover, we used the GLC_FCS30D dataset (Zhang et al., 2024), which offers the 110 

highest available resolution (30m) for a global, long-term LULC time series covering 1985–2022 with 35 land-cover 

subcategories, and is available on the Zenodo platform. Glacier outlines and attributes were obtained from the Randolph 

Glacier Inventory v7.0 (RGI), provided by the Global Land Ice Measurements from Space (GLIMS) initiative. Hydrological 

networks and lake boundaries were delineated using the Surface Water and Ocean Topography mission river database 

(SWORD) v15, which is based on a 30m DEM and has demonstrated superior accuracy compared to the widely used 115 

HydroSHEDS dataset (Altenau et al., 2021). Glacier elevation change data from the study by Hugonnet et al. (2021) were used 

for calibrating glacier melt parameters. For historical climate forcing data, we primarily utilized the CRU JRA v2.5 dataset (an 

update to the originally referenced v3.0 for consistency with recent releases), which provides daily meteorological variables 

(e.g., temperature, precipitation, wind speed, vapor pressure) at a 0.5° spatial resolution from 1901 to 2024, making it the 

longest daily historical climate forcing dataset currently available. It is accessible through the CEDA Archive. This dataset is 120 

derived from the CRU TS dataset, whose reliability in Central Asia after 1930 has been confirmed in numerous studies (Duan 

et al., 2020). Based on this confirmed post-1930 reliability, our study period was set from 1931 to 2024 to ensure the accuracy 

of our simulations. To enhance the precision of these climate inputs, particularly for smaller sub-basins, the CRU JRA data 

was downscaled to a finer 0.05° resolution. This was achieved using the delta-change statistical downscaling method with bias 
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correction (Peng et al., 2019), leveraging the monthly TerraClimate dataset (1/24° resolution), which is also derived from CRU 125 

TS, to ensure consistency across datasets. The observed streamflow dataset  is provided by the National Cryosphere Desert 

Data Center and previous related studies (Duan et al., 2020; Guo et al., 2015). 

2.3 Methodology 

The core methodology of this study is the Hydrological Attribution and Analysis Framework (HAAF), a structured three-stage 

process designed to attribute the causes of lake water volume changes. The workflow begins with hydrological process 130 

modeling in the catchment, followed by driver attribution, and concludes by linking these drivers to the lake's response. Figure 

2 shows a conceptual flowchart, and the following is a detailed description of the three stages. 

 
Figure 2: AAF Flowchart (Step 1: PIML-based Reconstruction, Step 2: Budyko Framework Attribution, Step 3: Lake 
System Response Linkage, with inputs like dynamic forcings and outputs like ∆Vclimate and ∆Vhuman.) 135 

2.3.1 PIML-based Hydrological Reconstruction 

Physics-informed machine learning (PIML) integrates conceptual hydrological models with machine learning (ML) to 

synergistically leverage the predictive power of ML algorithms and the process-based understanding of physical models 

(Bhasme et al., 2022). This integration also enhances the model's physical consistency and interpretability. The SWAT model 

and its improved versions are widely used in hydrological simulation processes. In our framework, we employed the 140 

Sublimation-Enhanced Glacier SWAT+ model (SEGSWAT+), which is an iteration of the SWAT model specifically adapted 
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for glacial hydrology and has been proven effective for simulating the glacially-influenced runoff in the Lake Balkhash basin 

(Yang et al., 2024). By combining inputs (precipitation, potential evapotranspiration), state variables (groundwater storage, 

soil moisture), and intermediate outputs (actual evapotranspiration) leading to a target variable (simulated runoff at specific 

gauge locations). Subsequently, a suite of ML methods competed to learn the residuals—the discrepancies between 145 

SEGSWAT+ simulated runoff and observed streamflow—to correct and improve the final output accuracy. The architecture 

of our PIML framework is illustrated in Fig. 3. The rationale for this PIML design is that the residual between a model 

prediction and an observation represents a composite error stemming from inherent limitations of the process-based 

hydrological model and uncertainties in driving data. By learning these complex residual patterns, the ML component enhances 

hydrological accuracy without severe overfitting biases, as residuals from a reliable physical model are inherently bounded 150 

and cannot exceed the runoff magnitude, constraining the ML model and preserving physical plausibility. 

For the ML component, we employed a diverse ensemble of architectures common in hydrology and Earth science applications, 

including Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM) networks, Random Forest (RF), and 

XGBoost (Behrouz et al., 2022; Guo et al., 2023; Srinivasulu and Jain, 2006; Wang and Peng, 2024). The best-performing 

model from this competitive ensemble was selected for each simulation period, a method known for its robustness in capturing 155 

water balance dynamics. The proposed PIML model was run for the three distinct periods, calibrated using multi-objective 

functions (including Kling-Gupta Efficiency (KGE), Nash-Sutcliffe Efficiency (NSE), and percent bias) against data from 16 

hydrological stations, with cross-validation to ensure generalizability. 

 
Figure 3 PIML structure 160 

2.3.2 Budyko-based Driver Attribution 

To quantitatively distinguish the impacts of climate change from those of direct human activities on runoff, we employed the 

Budyko framework (Budyko and Miller, 1974). This framework provides a robust, first-order approximation of the long-term 

water balance in a catchment by describing the partitioning of precipitation (P) into actual evapotranspiration (E) and runoff 

(Q). Its core hypothesis is that the ratio of actual evapotranspiration to precipitation (E/P) is primarily a function of the aridity 165 

index (𝛷𝛷), defined as the ratio of potential evapotranspiration (𝐸𝐸0) to precipitation (P). The total change in mean annual runoff 

(∆𝑄𝑄) between a baseline and an altered period can be decomposed into contributions from climate change (∆𝑄𝑄𝑐𝑐) and direct 
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human activities (∆𝑄𝑄ℎ). For this decomposition, we adopted a climate elasticity method (Dooge et al., 1999). This method 

approximates the contribution of any controlling factor x (e.g., the precipitation P) to the total runoff change (∆𝑄𝑄) as the 

product of the change in that factor (∆𝑥𝑥) and the sensitivity of runoff to that factor (𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕). This relationship is mathematically 170 

grounded in the widely used Choudhury-Yang equation (Yang et al., 2008), i.e., Equation 1, which is a one-parameter form of 

the Budyko curve: 

𝐸𝐸
𝑃𝑃

= 1
[1+(𝑃𝑃/𝐸𝐸0)𝑛𝑛]1/𝑛𝑛             (1) 

This equation features a single catchment parameter, n, which represents the integrated control of the underlying landscape 

characteristics (e.g., vegetation, soil, topography) on the partitioning of effective precipitation into runoff and 175 

evapotranspiration. Consequently, the change in this parameter (∆𝑛𝑛) between periods can be interpreted as the integrated effect 

of direct human activities that alter these landscape properties (e.g., land use change, reservoir construction). 

Following this framework, the total runoff change (∆𝑄𝑄) can be partitioned into contributions from changes in climatic variables 

(rainfall, snowmelt, glacial melt, 𝐸𝐸0) and human-induced landscape changes (represented by ∆𝑛𝑛). The sensitivity coefficients 

of runoff to each of these factors are detailed in Equations (2a-2c), and equation (3) provides a comprehensive expression: 180 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐸𝐸𝐸𝐸
𝑃𝑃

( 𝐸𝐸𝑇𝑇0
𝑛𝑛

𝐸𝐸𝑇𝑇0
𝑛𝑛+𝑃𝑃𝑛𝑛

)           (2a) 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑇𝑇0

= 𝐸𝐸𝐸𝐸
𝐸𝐸𝑇𝑇0

( 𝑃𝑃𝑛𝑛

𝐸𝐸𝑇𝑇0
𝑛𝑛+𝑃𝑃𝑛𝑛

)           (2b) 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐸𝐸𝐸𝐸
𝑛𝑛

(ln�𝐸𝐸𝑇𝑇0
𝑛𝑛+𝑃𝑃𝑛𝑛�
𝑛𝑛

− 𝐸𝐸𝑇𝑇0
𝑛𝑛 ln 𝐸𝐸𝑇𝑇0+𝑃𝑃𝑛𝑛 ln 𝑃𝑃
𝐸𝐸𝑇𝑇0

𝑛𝑛+𝑃𝑃𝑛𝑛
)         (2c) 

∆𝑄𝑄 = �1 − 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� ∆𝑃𝑃 − 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑇𝑇0
∆𝐸𝐸𝑇𝑇0 −

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

∆𝑛𝑛         (3) 

2.3.3 Lake System Response Linkage 185 

The change in Lake Balkhash's water storage (∆𝑉𝑉) over a defined period (∆𝑡𝑡) is essentially determined by the balance between 

water inflow and water dissipation. Its water balance equation can be expressed as follows: 

∆𝑉𝑉
∆𝑡𝑡

= 𝐴𝐴(ℎ)(𝑃𝑃 − 𝐸𝐸) + 𝑄𝑄𝑖𝑖𝑖𝑖            (4) 

Where 𝐴𝐴 is the lake surface area, which is a function of water level (ℎ), 𝑄𝑄𝑖𝑖𝑖𝑖 is the inflow. The time series of annual water 

levels for Lake Balkhash during the study period was obtained from the work of Nakayama et al. (1997) and Duan et al. (2020) 190 

Subsequently, the corresponding lake surface area time series was derived using the level-to-area conversion function provided 

by the former. The ∆𝑉𝑉 was then calculated based on the methodology established by Zhang et al. (2013), an approach whose 

reliability for Lake Balkhash has been previously validated (Wang et al., 2022). It is important to note that, given the long-
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term temporal scale of this study, the exchange between the lake and surrounding groundwater systems was considered 

negligible and thus omitted from the water balance calculations. 195 

The final stage of the HAAF connects the attribution results from Stage 2 to the observed changes in the lake's water storage, 

thereby achieving an end-to-end attribution. This linkage is achieved through the lake's water balance equation. The total 

change in lake storage (∆𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜) between two periods (e.g., an altered period vs. a baseline period) can therefore be expressed 

as: 

∆𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = ∆𝑄𝑄𝑖𝑖𝑖𝑖 + ∆𝑃𝑃 − ∆𝐸𝐸           (5) 200 

The key innovation in Stage 3 is to decompose this total storage change into contributions from climate change and human 

activities. We achieve this by substituting the attributed runoff changes from Stage 2 into Equation (5). The ∆𝑄𝑄𝑖𝑖𝑖𝑖 was already 

separated into ∆𝑄𝑄𝑐𝑐  and ∆𝑄𝑄ℎ  components. Changes in lake precipitation and lake evaporation are, by definition, driven by 

climatic factors. Therefore, we can re-organize Equation (5) to separate the total storage change (∆𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜) into its climatic (∆𝑉𝑉𝑐𝑐) 

and human-activity (∆𝑉𝑉ℎ) driven components: 205 

∆𝑉𝑉𝑐𝑐 = ∆𝑄𝑄𝑐𝑐 + ∆𝑃𝑃 − ∆𝐸𝐸           (6a) 

∆𝑉𝑉𝑐𝑐 = ∆𝑄𝑄𝑐𝑐 + ∆𝑃𝑃 − ∆𝐸𝐸           (6b) 

This set of equations (6a and 6b) represents the core of the "attribution transference" in the HAAF framework. It allows us to 

quantitatively determine how much of the observed change in the lake's total water volume is due to natural climate variability 

(acting on both the catchment and the lake itself) and how much is due to direct human activities. This provides a complete, 210 

system-level quantitative explanation for the lake's historical dynamics. 

2.3.4 Model Evaluation and Uncertainty Metrics 

The hydrological simulation performance of the PIML model was rigorously evaluated by comparing the simulated daily and 

monthly streamflow against observed data. For this purpose, we selected three widely used metrics: the Coefficient of 

Determination (R2), the Kling-Gupta Efficiency (KGE), Percent Bias (PBIAS), and the Nash-Sutcliffe Efficiency of the 215 

logarithm of streamflow (logNSE) (Yang et al., 2023). To evaluate the agreement between simulated and observed values, the 

R2 was calculated, which measures the proportion of the variance in the dependent variable that is predictable from the 

independent variables. KGE is a comprehensive metric that decomposes model performance into three distinct components: 

correlation (r), bias ratio (𝛽𝛽), and variability ratio (𝛾𝛾). This decomposition allows for a more nuanced diagnosis of model 

deficiencies by distinguishing between errors in timing (correlation), overall water balance (bias), and flow dynamics 220 

(variability). KGE is calculated as follows: 

𝐾𝐾𝐾𝐾𝐾𝐾 = 1 − �(𝑟𝑟 − 1)2 + (𝛽𝛽 − 1)2 + (𝛾𝛾 − 1)2        (7) 

https://doi.org/10.5194/egusphere-2025-4778
Preprint. Discussion started: 19 November 2025
c© Author(s) 2025. CC BY 4.0 License.



10 
 

where 𝛽𝛽 = 𝜇𝜇𝑠𝑠/𝜇𝜇𝑜𝑜 and 𝛾𝛾 = (𝜎𝜎𝑠𝑠
𝜇𝜇𝑠𝑠

)/(𝜎𝜎𝑜𝑜
𝜇𝜇𝑜𝑜

). 𝜇𝜇 and 𝜎𝜎 represent the mean and standard deviation of the simulated (s) and observed (o) 

streamflow, respectively, and r is the Pearson correlation coefficient between them. A KGE value greater than -0.41 is generally 

considered acceptable for hydrological modeling, indicating that the model performs better than the mean flow benchmark. 225 

PBIAS measures the average tendency of the simulated data to be larger or smaller than their observed counterparts, providing 

a straightforward assessment of model bias. It is calculated as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = ∑ 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠−𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜
𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜

𝑛𝑛
𝑖𝑖=1 × 100          (8) 

where 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 represents the simulated runoff and 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 represents the observed runoff. A PBIAS value within the range of ±25% 

is typically considered satisfactory, with values closer to 0 indicating better model performance. The 𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁𝑁𝑁𝑁𝑁 is a modification 230 

of the standard Nash-Sutcliffe Efficiency (NSE) that is particularly sensitive to model performance during low-flow periods. 

This is critically important for hydrological modeling in arid and semi-arid regions. It is calculated as: 

𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁𝑁𝑁𝑁𝑁 = 1 − ∑ (𝑙𝑙𝑙𝑙𝑙𝑙 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠−𝑙𝑙𝑙𝑙𝑙𝑙 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜)2𝑛𝑛
𝑖𝑖=1

∑ (𝑙𝑙𝑙𝑙𝑙𝑙 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜−𝑙𝑙𝑙𝑙𝑙𝑙 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜������������)2𝑛𝑛
𝑖𝑖=1

         (9) 

where log𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜���������� represents the mean of the logarithm of the runoff observations. A 𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁𝑁𝑁𝑁𝑁 value greater than 0.36 is generally 

considered to indicate a satisfactory to good model performance for low-flow simulations. 235 

3. Results 

3.1 Hydrological Model Performance Evaluation 

Accurate hydrological runoff modeling is the first step in HAAF. Based on the PIML model, parameterization is performed 

by combining field measurements, geospatial datasets, and remote sensing products (e.g., topographic data, soil texture maps, 

and soil hydraulic parameters). The calibrated parameters included: (1) snow module parameters (critical melt temperature and 240 

degree-day factors); (2) vegetation and land surface parameters (root depth, soil anisotropy ratio, surface depression storage 

capacity, and surface roughness); and (3) glacier module parameters (critical melt temperature, degree-day factors, and area-

volume scaling parameters. Detailed calibration parameters can be referenced in the study by Yang et al (2022). Model 

calibration and validation were performed independently for each of the three study periods, resulting in three distinct 

parameter sets. Notably, the parameter set for P1 was specifically configured to simulate naturalized streamflow under 245 

conditions free of significant human intervention. For each period and station, the available observed streamflow data were 

partitioned into calibration (70%) and validation (30%) subsets. 

The predictive performance of machine learning models was evaluated using the R2 metric to determine the optimal model 

for modeling the residual runoff (Fig. 4). While the Random Forest (RF), Long Short-Term Memory (LSTM), and XGBoost 

models all demonstrated high predictive accuracy, with respective R2 values of 0.865, 0.863, and 0.912, XGBoost 250 

distinguished itself. Its predictions not only achieved the highest coefficient of determination but were also the most tightly 
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clustered around the 1:1 reference line, indicating superior stability and minimal variance. In contrast, the Artificial Neural 

Network (ANN) exhibited inferior performance (R2 = 0.810), characterized by a widely scattered data distribution and 

significant deviation from the 1:1 line, which suggests substantial bias. Given its superior accuracy and reliability, XGBoost 

was therefore selected as the optimal model to adjust the final streamflow simulations. 255 

 
Figure 4 Scatter plot of residual predictions and actual values 

Based on the optimal machine learning model, the final runoff results obtained were compared with the measured runoff data 

through a multi-indicator assessment. The comprehensive performance assessment results are shown in Fig. 5. The first ten 

hydrological stations, which control the main stem of the Ili River, demonstrated strong model performance. For all these 260 

stations, KGE values exceeded 0.75, PBIAS was within ±10%, and logNSE was above 0.7, indicating an excellent fit to the 

observed runoff. Specifically, the Ushzharma station, located at the river's terminus just before it enters the lake, exhibited 

outstanding performance with a KGE of 0.847, a low bias (PBIAS = 5.1%), and exceptional skill in simulating low flows 

(logNSE = 0.929). The remaining stations, which monitor the four eastern tributary rivers, showed similarly robust results. 

KGE values were consistently above 0.8 and PBIAS remained within ±10%. Except for the Chiganak station, where the 265 

logNSE of 0.699 is still considered indicative of good low-flow simulation, all other eastern stations achieved logNSE values 

greater than 0.7. This confirms that the model accurately simulates runoff for all major rivers flowing into the eastern part of 
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the lake. This robust performance establishes a solid foundation for the subsequent lake water balance calculations and the 

application of the Budyko framework for attribution analysis. 

 270 
Figure 5 Results of the runoff fitting assessment 

3.2 Quantification of The Impacts on Variations in Runoff 

The total runoff into Lake Balkhash was calculated as the sum of simulated streamflow from all modeled tributary rivers, 

adjusted for deltaic water consumption using the methodology of Thevs et al. (2016). The simulation strategy to generate the 

final time series was as follows: Naturalized Runoff (Qnat), the parameter set calibrated for the baseline period (P1) was used 275 

to simulate naturalized streamflow across the entire study period (1931-2024). Human-Impacted Runoff (Qreal), the 

construction of the historical, human-impacted runoff series involved a multi-step process. The parameter set for P2 was used 

to simulate runoff for both the P1 and P2 periods (1931-1990), while the P3 parameter set was applied exclusively to its own 

period (1991-2024). For any year where direct observational data were available, these records superseded the simulated values 

to create the final composite Qreal series. The results of the reconstruction of interannual natural runoff and actual runoff over 280 

nearly a century are shown in Fig. 6. 
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Figure 6 Natural runoff and actual runoff into the lake 

During the baseline period (1931-1969), the Qnat and Qreal time series exhibit a remarkably close correspondence, tracking 

each other's inter-annual fluctuations with high fidelity. Analysis of the deviations between naturalized (Qnat) and observed 285 

(Qreal) runoff reveals a distinct three-stage evolution of human impact on the basin's hydrology. During the baseline period 

(P1, 1931-1969), the runoff deficit was minimal, with a mean deviation of only 0.48 km³/yr. The small range between the 

maximum (1.29 km³/yr) and minimum (-0.19 km³/yr) differences indicates that the observed flow was closely aligned with 

natural conditions, fluctuating slightly around the naturalized values. In stark contrast, the intensive intervention period (P2, 

1970-1990) marked a dramatic and persistent shift. The mean runoff deficit surged to 3.11 km³/yr, and critically, the minimum 290 

deviation remained positive (0.93 km³/yr), signifying a systematic and sustained reduction in flow throughout every year of 

this period, directly attributable to the onset of large-scale human activities. Following this, the compounded stress period (P3, 

1991-2024) exhibited a more complex pattern. The mean runoff deficit decreased to 1.35 km³/yr, substantially lower than in 

P2, suggesting a partial mitigation or a shift in human impact, possibly due to changes in water management policies. Overall, 

the statistical progression clearly quantifies the transition from a near-natural state to a period of intense, sustained water 295 

withdrawal, and finally to a recent era characterized by reduced average impact but greater variability and more extreme events. 

The Budyko framework was employed to diagnose the hydro-climatic shifts between the three periods and to quantitatively 

attribute the changes in streamflow. The basin's evolutionary trajectory in the Budyko space is shown in Fig. 7 (a). The Budyko 

analysis, based on a calibrated catchment parameter (n) of 1.776, quantitatively confirms the dominant role of human activities 

in altering the basin's hydrology, particularly during the period of intensive intervention. From the baseline period (P1) to the 300 

period of intensive alteration (P2), the total observed runoff decreased by 0.31 km³/yr. Our attribution results are unequivocal: 

direct human activities were the overwhelming driver of this decline, accounting for -0.27 km³/yr, or 86.3% of the total change. 

Remarkably, this occurred while the climate became slightly less arid (aridity index φ decreased from 1.404 to 1.349). This 

finding underscores that the significant hydrological deficit during this era was not a consequence of adverse climate conditions 
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but was almost entirely driven by anthropogenic water withdrawals, consistent with the reality of large-scale water storage at 305 

the Kapchagay Reservoir. 

 
Figure 7 Budyko analysis and attribution of runoff changes. (a) Trajectory of the basin's hydro-climatic conditions across three 
periods. (b) Attribution of total runoff changes between periods to climate and human activity contributions 

In the subsequent period (P3), the dynamic between drivers shifted dramatically. The observed runoff nearly recovered to 310 

baseline levels (a minor change of -0.06 km³/yr), but this apparent stability masks a critical dynamic of competing forces. The 

climate trend, on its own, would have led to a modest increase in runoff (+0.02 km³/yr) due to a continued shift toward less 

arid conditions (φ = 1.287). However, this potential climatic gain was entirely offset and surpassed by the persistent negative 

impact of human activities (-0.08 km³/yr). This analysis highlights a crucial transition: while the absolute magnitude of human 

impact lessened compared to P2, it remained strong enough to counteract a favorable climate trend, preventing a full 315 

hydrological recovery. The system has thus evolved from one dominated by direct human intervention to one where human 

water use actively suppresses the benefits of a wetter climate cycle. 

A detailed attribution analysis, which decomposes the climatic contribution into its constituent parts, reveals a powerful but 

hidden dynamic of competing forces that have fundamentally reshaped the basin's hydrology (Table 2). During the period of 

intensive alteration (P2 vs. P1), the climate, on its own, would have caused a massive increase in runoff, calculated at +6.13 320 

km³. This seemingly paradoxical result was driven by a very large decrease in potential evapotranspiration (PET), which 

contributed +19.50 km³ to runoff, overwhelmingly compensating for the severe decline in glacial melt (-13.71 km³). However, 

this substantial climatic gain was entirely erased by the immense impact of direct human activities, which caused a -9.21 km³ 

reduction in flow. This demonstrates that the observed moderate decline in runoff was the net result of a massive climate-

driven water surplus being entirely offset by equally massive anthropogenic withdrawals. 325 
Table 3 Decomposition of Climate and Human Impacts on Runoff 

 P2 vs P1 
Component Δxi ∂Q/∂x ΔQi ΔQi/ΔQ(%) 
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Rain 0.674 1.335 0.899 -29.2 
Meltsnow -0.421 1.335 -0.562 18.3 
Meltglacier -10.270 1.335 -13.709 445.4 
PET -18.153 -1.074 19.500 -633.5 
n / / -9.206 299.1 
 P3 vs P1 
Component Δxi ∂Q/∂x ΔQi ΔQi/ΔQ(%) 
Rain 7.801 1.335 10.414 -187.5 
Meltsnow -0.264 1.335 -0.352 63.4 
Meltglacier -12.468 1.335 -16.643 299.7 
PET -16.183 -1.074 17.384 -313.0 
n / / -11.358 204.52 

 
This pattern of opposing forces intensified dramatically in the most recent period (P3 vs. P1). The climate-driven potential for 

runoff generation soared to +10.80 km³, again fueled primarily by a large decrease in PET (+17.38 km³) and a significant 

increase in rainfall (+10.41 km³). These gains were more than enough to offset the continued and worsening decline in glacial 330 

melt (-16.64 km³). Yet, despite this enormous climatic potential for a wetter regime, the observed runoff remained near baseline 

levels. This was because the negative impact of human activities also intensified to -11.36 km³, effectively neutralizing the 

entire climate-driven surplus. These findings expose a critical vulnerability: the basin's apparent hydrological stability is a 

fragile illusion, maintained only by a coincidental and likely temporary opposition of very large, opposing forces. Any change 

in this delicate balance—such as a return of PET to higher levels or a decrease in rainfall—could expose the system to the full, 335 

severe impact of its lost cryospheric storage and sustained human water demand. 
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3.3 Lake System Response to Changes in Water Supply 

 
Figure 8 simulated water volume changes and water volume changes calculated based on lake data 

To provide a final, integrated validation of our entire modeling framework, we compared the reconstructed annual lake water 340 

volume changes (ΔV) with the simulated volume changes (ΔVsim). The reconstructed ΔV was derived from satellite-based 

water level and area data, representing the observed reality of the lake's storage change. The simulated ΔVsim was calculated 

independently as the net result of our modeled total inflow minus lake surface evaporation. As shown in Fig. 8, there is a strong 

visual correspondence between the two time series, with the model successfully capturing the magnitude and timing of the 

major inter-annual fluctuations. This visual agreement is substantiated by robust statistical metrics: the correlation coefficient 345 

(R) is 0.86 (p < 0.01), indicating a highly significant positive relationship, and the mean bias is exceptionally low at 0.135 

km³/yr. This strong agreement serves as a crucial cross-validation, confirming that our framework accurately closes the water 

balance at the lake terminus. Since the simulated volume change is directly dependent on the accuracy of our reconstructed 

inflow, this result provides high confidence in the reliability of the runoff data used for the subsequent attribution analysis. 

The dynamic reconstruction of the Lake Balkhash water balance, illustrated in Fig. 9, reveals a dramatic history of change 350 

driven primarily by fluctuations in river inflow. During P1, the lake existed in a state of relative equilibrium. Mean annual 

inflow of 18.4 km³/yr was nearly balanced by lake surface evaporation of 20.4 km³/yr, resulting in a negligible mean storage 

change (ΔV) of +0.07 km³/yr. The lake experienced years of water gain and loss in roughly equal measures (46% vs. 54%). 

This stability was abruptly shattered in the P2. A sharp decline in mean annual inflow to 15.3 km³/yr, a drop of over 3 km³/yr, 

directly tipping the balance into a state of sustained deficit. Despite a concurrent decrease in evaporation, the reduced input 355 

was so significant that the lake's storage declined by an average of 1.0 km³/yr, with two-thirds of the years in this period 

experiencing a net water loss and a cumulative volume reduction of 21.0 km3. 
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Figure 9 Long-term water balance of Lake Balkhash 

The P3 marked a phase of partial recovery and re-stabilization. Inflow rebounded significantly to 17.8 km³/yr, approaching 360 

pre-1970 levels. This recovery in water supply was sufficient to counteract the evaporative losses (19.8 km³/yr), bringing the 

mean storage change back to a near-neutral state (+0.04 km³/yr) and restoring a majority of years (55.9%) to a positive water 

balance. A noteworthy and perhaps counter-intuitive finding is the statistically significant, albeit slight, decreasing trend in 

total lake surface evaporation over the entire 1931-2024 period (p < 0.05). This suggests that despite a warming climate, other 

factors such as changes in wind speed, humidity, or lake surface thermal dynamics may have modulated and even slightly 365 

reduced long-term open-water evaporation. Across all periods, river inflow consistently accounted for ~90% of the total water 

input, making it the primary lever controlling the lake's state. The lake's storage volume, and by extension its water level, is 

thus extremely sensitive to the marginal difference between these massive inputs and outputs. The ~17% reduction in inflow 

during P2 was sufficient to trigger a prolonged period of decline, while its subsequent recovery was the key factor in the lake's 

recent stabilization. This highlights the critical dependence of this vital ecosystem on the hydrological health of its catchment. 370 

To synthesize our findings into a comprehensive explanation for the lake's historical trajectory, we performed a final attribution 

analysis on the changes in the mean annual lake water storage, with the results presented in Fig. 10. During the intensive 

alteration period (P2 vs. P1), the lake's water balance paradoxically improved, with the mean storage change increasing by a 

substantial +4.54 km³. This was driven by a powerful, positive climatic contribution of +7.17 km³, primarily caused by a 

significant reduction in lake surface evaporation. However, this massive climatic benefit was simultaneously counteracted by 375 

the negative impact of direct human activities (-2.63 km³), which, through reduced inflow, consumed more than a third of the 
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potential gain. This reveals that the lake's water balance improved despite, not because of, the anthropogenic pressures of that 

era. 

This dynamic of opposing forces became even more pronounced in the most recent period (P3 vs. P1). The positive climatic 

contribution soared to an immense +12.49 km³, fueled by both a continued decrease in evaporation and a substantial increase 380 

in direct precipitation over the lake. While the negative impact of human activities persisted (-0.87 km³), it was dwarfed by 

the magnitude of the favorable climate trend, resulting in a large net increase in the lake's storage change of +11.62 km³. 

Ultimately, these results provide a critical insight: the apparent hydrological stability and recovery of Lake Balkhash are not a 

sign of intrinsic resilience but are instead precariously balanced and heavily subsidized by a highly favorable, and potentially 

transient, climatic trend. The persistent underlying water deficit caused by human use remains, masked by this climatic boon. 385 

Any reversal of these favorable climate conditions could rapidly expose the lake's profound vulnerability. 

 
Figure 10 Attribution of changes in Lake Balkhash water Storage 

4. Discussion 

This study successfully introduced and implemented a novel attribution framework to disentangle the complex, century-long 390 

interplay between climate change and human activities on the hydrology of the Lake Balkhash basin. Our results not only 

quantifying the drivers of streamflow change but also by explicitly linking these changes to the lake's ultimate water balance 

response. A key finding is that the basin's hydrology has been shaped by a powerful, and often counter-intuitive, dynamic of 

large, opposing forces. While previous research has correctly identified the Kapchagay Reservoir's impoundment as the 

primary cause of the lake's decline in the 1970s and 80s (Duan et al., 2021; Kezer & Matsuyama, 2006), our detailed attribution 395 

provides a more nuanced understanding. We demonstrate that this human-induced water withdrawal was so immense (-9.21 
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km³) that it completely masked a significant, climate-driven potential for a wetter regime (+6.13 km³), a phenomenon largely 

overlooked in prior assessments. This finding underscores that the era's ecological crisis was even more severe than the 

observed runoff decline alone would suggest, as it unfolded against a favorable climatic backdrop. 

The most recent period (post-1991) reveals a critical evolution in the basin's vulnerability. Our analysis shows that while direct 400 

human impact has lessened, the basin's apparent stability is heavily subsidized by an exceptionally favorable climatic trend, 

characterized by increased rainfall and decreased potential evapotranspiration. This aligns with recent findings of increasing 

precipitation in parts of Central Asia (Jin et al., 2024), but our study is the first to quantify how this "climatic boon" (+10.80 

km³) has been almost entirely neutralized by ongoing human water use (-11.36 km³). This exposes a fragile equilibrium: the 

current stability of Lake Balkhash is not a sign of intrinsic resilience or successful water management, but rather a coincidental 405 

and likely temporary stalemate between massive, opposing forces. This finding challenges the narrative of a simple "recovery" 

and instead highlights a state of heightened, masked vulnerability. Any future reversal of the recent favorable precipitation or 

PET trends could rapidly expose the system to the full, unbuffered impact of this lost storage and sustained human demand. 

To further probe the precarious equilibrium identified in Period 3 and to underscore the system's vulnerability, we extended 

our integrated modeling framework to project future changes in Lake Balkhash's water level through 2100 under three distinct 410 

Shared Socioeconomic Pathways (SSPs): a low-emissions sustainability scenario (SSP1-2.6), a medium-high emissions 

scenario (SSP3-7.0), and a very high-emissions, fossil-fueled development scenario (SSP5-8.5). Parameters were referenced 

from P3, and climate-driven data were obtained from NEX-GDDP-CMIP6. To simulate future land-use changes, we referenced 

the research of (Guo et al., 2015), simulating future land-use conditions based on the land expansion rate over the past 20 years 

and the maximum expansion condition of 15%. 415 

 
Figure 11 Changes in lake water levels under three future scenarios 
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The results as depicted in Fig. 11, reveal a concerning trajectory across all considered futures, unequivocally demonstrating 

that the apparent stability of the late 20th and early 21st centuries is a fragile and transient condition. Under the most optimistic 

scenario (SSP1-2.6), Lake Balkhash is projected to experience a slow but steady decline, with its water level falling by 420 

approximately 2.5 meters from its 2020 level by 2100. This indicates that even with aggressive global climate mitigation, the 

combined pressures of existing human water demand and the legacy of cryospheric decline will likely overwhelm the system's 

resilience. In stark contrast, the medium to high-emissions scenarios (SSP3-7.0 and SSP5-8.5) portend a much more severe 

fate. Under these pathways, the lake experiences a pronounced and accelerated decline, particularly after 2040s. Historically, 

the lowest water level of Lake Balkhash was 340.52 meters, a period marked by severe ecological conditions. Under the 425 

medium emissions scenario, this water level would be reached by the 2070s of this century, while under the high emissions 

scenario, it would occur as early as the 2050s of this century. These scenarios starkly illustrate that the "climatic boon" of 

increased precipitation and reduced PET that subsidized the lake's water balance in recent decades is not guaranteed to continue. 

As this favorable climatic trend wanes or reverses under future warming, the persistent and powerful negative impacts of 

human water demand and the systematic loss of glacial storage—previously masked—are set to become the dominant drivers, 430 

precipitating a rapid contraction of the lake. These future projections confirm our central finding: the current state of Lake 

Balkhash is not one of recovery, but of a masked vulnerability, sustained by a temporary climatic subsidy that is highly likely 

to diminish, exposing the ecosystem to severe and potentially irreversible consequences. 

While HAAF framework demonstrated robust performance and provided novel insights, certain limitations and uncertainties 

should be acknowledged. First, the Budyko framework, despite its strengths, simplifies complex landscape processes into a 435 

single parameter (n). The positive contribution attributed to "human activity" (the Δn term) in our component analysis likely 

captures complex, secondary land-surface feedbacks (e.g., irrigation return flows, land use changes) that are difficult to 

disentangle from the primary impact of direct water withdrawal. Future work could employ more process-detailed models or 

isotopic tracers to further partition these human impacts. Second, although we used the highest-quality, long-term datasets 

available, uncertainties persist in historical meteorological forcings and reconstructed naturalized flows, particularly in the 440 

early 20th century. Our integrated validation of the lake's water balance provides strong confidence in our overall results, but 

continued efforts to improve historical data rescue and reconstruction are vital. 

5. Conclusion 

This study developed and implemented a novel attribution framework HAAF, integrating PIML models with the Budyko 

framework and a lake water balance model, to quantitatively separate the impacts of climate change and human activities on 445 

the centennial hydrology of the Lake Balkhash basin. Our primary objective was to provide a comprehensive, quantitative 

explanation for the lake's historical water level dynamics by tracing the drivers of change from the catchment to the lake 

terminus. Our key findings are as follows: 
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(1) The HAAF successfully reconstructed the naturalized and human-impacted streamflow with high fidelity (KGE > 0.75, 

|PBIAS| < 10% for most stations), establishing a robust foundation for attribution analysis. The final integrated validation 450 

confirmed that our framework accurately closes the lake's water balance, with simulated volume changes strongly correlating 

with satellite-derived observations (R = 0.86). 

(2) At the catchment scale, our attribution of runoff changes revealed a powerful dynamic of opposing forces. During the 

intensive intervention period (1970-1990), direct human activities were the overwhelming driver of runoff decline, causing a 

reduction of -9.21 km³. This immense anthropogenic pressure completely masked a significant climate-driven potential for a 455 

wetter regime (+6.13 km³). Subsequently, during the recent period (1991-2024), the basin's hydrology entered a state of fragile 

equilibrium, where a massive climate-driven potential for runoff increase (+10.80 km³) was almost entirely counteracted by 

the sustained impact of human water use (-11.36 km³). 

(3) These catchment-scale dynamics directly governed the lake's response. The apparent stability of Lake Balkhash in recent 

decades was not a sign of resilience but was heavily subsidized by a highly favorable climatic trend that buffered the system 460 

against persistent anthropogenic water stress. However, our future projections under multiple SSP scenarios reveal that this 

climatic buffer is likely transient. As the favorable climatic conditions wane, the underlying pressures from human activities 

and cryospheric decline are projected to dominate, leading to a rapid and severe drop in the lake's water level. This 

demonstrates that the current equilibrium is precarious and masks a profound long-term vulnerability. 

In conclusion, our research reveals that the apparent recent stability of Lake Balkhash is not a sign of systemic recovery but a 465 

fragile illusion sustained by a transient climatic boon—a state of "masked vulnerability." This study underscores the critical 

need for effective water management strategies that look beyond recent trends and account for the underlying, competing 

drivers of the system. The HAAF framework presented here provides a powerful tool for diagnosing similar complex hydro-

climatic systems globally, offering a crucial scientific basis for sustainable water resource management in an era of accelerating 

environmental change. 470 
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