Reply to Reviewers’ comments (Reviewer#2)

Ref: Manuscript ID egusphere-2025-4778

Title: Disentangling the Key Drivers of Water Balance in Central Asia's Lake Balkhash:
A Relative Contribution Assessment (Original title: Revealing the Driving Factors of
Water Balance in Lake Balkhash Through Integrated Attribution Modeling)

Dear Reviewer,

We would like to express our sincere gratitude for your constructive and insightful
comments on our manuscript. We appreciate the time and effort you have dedicated to
reviewing our work. We have carefully considered all your suggestions. Below, we
provide a point-by-point response to your comments. The reviewer’s comments are

highlighted in red, and our responses are highlighted in black.

Major comments:
1. Inappropriate terminology regarding the PIML.

The manuscript characterizes the proposed model as Physics-Informed Machine
Learning (PIML); however, it looks more like a ML-corrected SEGSWAT+ to me. In
this study, the physics-based model (SEGSWAT+) run independently, and a ML model
is subsequently trained to predict the discrepancy between the simulated outputs and
observations. While this strategy can improve predictive skill, it does not incorporate
physical laws, constraints, or governing equations into the learning process itself. As
such, the ML component operates as a statistical correction to the physics model rather

than being informed by physics during model training or optimization.

Under commonly used definitions, PIML frameworks require explicit physical
constraints to be embedded within the model architecture, loss function, or parameter
evolution (see Raissi et al., 2019; Shen et al., 2023). The proposed method would
therefore be more accurately described as ML-corrected SEGSWAT+ or a hybrid model
rather than a PIML. I would suggest the authors change the terminology in order to
avoid conceptual ambiguity and ensure consistency with established definitions in the

literature.

Raissi, M., Perdikaris, P, & Karniadakis, G. E. (2019). Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems

involving nonlinear partial differential equations. J. Comput. Phys., 378, 686—707. doi.:
10.1016/j.jcp.2018.10.045



Shen, C., Appling, A. P, Gentine, P, Bandai, T, Gupta, H., Tartakovsky, A., ...Lawson,
K. (2023). Differentiable modelling to unify machine learning and physical models for
geosciences. Nat. Rev. Earth Environ., 4, 552-567. doi: 10.1038/s43017-023-00450-9

Response: We greatly appreciate the reviewer's crucial conceptual clarification. We
fully agree with your assessment that our initial use of the term "Physics-Informed
Machine Learning (PIML)" did not strictly adhere to the core idea of the field (as
defined by Raissi et al., 2019; Shen et al., 2023), which is to directly embed physical
laws during machine learning training. Our model architecture does indeed better fit the
description of a "hybrid model" or "physical model for machine learning error
correction."

To ensure accuracy in terminology and clarity of concept, we have adopted your
suggestion and made systematic revisions throughout the paper: Terminology
Correction:

(1) We have replaced the term "PIML" throughout the paper with the more accurate
"hybrid hydrological model" or "a framework that couples the process-based... model
with a ML error-correction module."

(2) Updated Method Description: In section 2.3.1, "Hybrid Hydrological
Reconstruction Model," we have revised the model's structure, explicitly stating that it
is a two-stage hybrid modeling strategy, rather than an end-to-end, physically
constrained machine learning model. We emphasize that the advantage of this approach
lies in leveraging a physical model to provide a physically consistent benchmark
simulation, which is then learned and corrected for by the ML model to correct for
systematic residuals.

We believe this revision makes our methodological description more rigorous and
consistent with current academic definitions. Thank you again for your accurate
correction.

1. Research gap

Line 50-60: The research gap is not clearly explained. Previous studies have already
developed multiple models to quantify the contributions of different drivers to lake
water balance changes. For example, Yu et al. (2025) developed a distributed
Geomorphology-Based Hydrological Model (GBHM) to quantify the contributions of
multiple drivers. What is the key difference or advancement of your approach compared
to GBHM in terms of the study objective (i.e., driver attribution)? The authors claim
that previous models did not “integrate their findings with the lake’s terminal water
balance,” but this statement is vague. What does the “terminal water balance” mean

exactly? Does this imply that previous studies did not directly simulate lake water levels



or storage changes?

In addition, the authors state that data scarcity, particularly limited lake inflow
observations, is a major challenge for existing hydrological models. It is unclear why
this limitation would affect physics-based hydrological models and machine-learning
models, but not the proposed hybrid model. If the uncertainty arises from insufficient
data for model calibration, this limitation would appear to be a general issue for all
modeling approaches rather than one unique to existing models.

It’s very important (perhaps the most important) to clearly and explicitly articulate the
specific research gap, the limitations of previous studies, and how the proposed

approach meaningfully advances beyond existing models.

Response: Thank you for pointing out the shortcomings in our description of the
research gaps. Your feedback prompted us to re-examine and more clearly articulate the
core contributions of this study. We have made significant revisions to the introduction
to explicitly answer your questions.

Specific revisions and explanations are as follows:

Identifying the Research Gap (Differences from Existing Research): We now clearly
identify two key gaps.

(1) The first gap is methodological: We acknowledge that data sparsity is a common
challenge for all models. However, we highlight the unique advantages of hybrid
models in addressing the tradeoff between uncertainty and data sparsity. In the
introduction to the revised manuscript, we stated: “The specific advantage of the hybrid
approach lies in mitigating this ‘uncertainty vs. data scarcity’ trade-off. By using a
physics-based model to simulate the fundamental hydrological processes and then
employing ML solely to learn the residuals, this approach enforces physical constraints
while effectively correcting the structural biases of the physical model, improving
accuracy beyond what traditional calibration can achieve with limited data.”

(2) The second gap concerns the “broken chain” problem at the research scale: Your
question about “terminal water balance” is very apt. We mean that many studies (such
as Yu et al., 2025, which you mentioned) quantify the driving factors at the watershed
outlet, but fail to directly and quantitatively transfer and link the contributions of these
upstream driving factors (such as a reduction in glacial meltwater at a specific volume
vs. an increase in agricultural water diversion) to the lake’s own water volume and level
changes. In our revised introduction, we clarified this point: "...existing studies typically
focus on decomposing streamflow changes at the catchment outlet but fail to explicitly
link these catchment-scale drivers to the lake water storage volume and water level. ...
This disconnect prevents a direct quantitative explanation of how specific upstream
drivers... translate into the observed vertical fluctuations of the lake itself, which is the



ultimate metric of ecological health." Our study, through a three-stage framework,
achieves an end-to-end quantitative link from "separation of watershed runoff drivers"
to "separation of lake water volume change drivers," a key advancement compared to

previous research.

We believe that, with these revisions, the positioning and innovative aspects of this
study have been more clearly and powerfully articulated.

3. Calibration details

Section 2.3.1 requires additional detail regarding the model calibration strategy.

Specifically:

(1) The calibration (training), validation, and testing periods should be clearly specified
here. (2) Based on Figure 3, the overall strategy appears to involve pre-calibrating
SEGSWAT+ using gauge station observations, followed by training the machine-
learning model to correct the residuals. If this interpretation is correct, it should be
stated explicitly in Section 2.3.1 to avoid confusion. (3) What’s the hyper parameter
selection strategy for each ML/DL model (e.g., number of layers for ANN, sequential
length for LSTM)? (4) A table summarizing the SEGSWAT+ parameters used for
calibration, as well as the machine-learning hyperparameters, is essential. This table
could be placed in the appendix. (5) A comparative table reporting NSE, KGE, PBIAS,
and R? for the raw SEGSWAT+ outputs and the final ML-corrected model across the
calibration (training), validation, and testing periods should be provided to clearly
demonstrate the performance improvement achieved by the ML correction. (6) Section
2.3.4 could be merged into Section 2.3.1. Dedicating an entire section to explaining
KGE, NSE, and PBIAS is unnecessary, as these metrics are widely used and well
understood in hydrological modeling. (7) Multiple evaluation metrics are used in this
study. If these metrics yield conflicting assessments, how is the optimal parameter set

selected?

Response: Thank you for your specific and crucial suggestions regarding the details of
model calibration. A fully transparent and repeatable calibration process is the
cornerstone of research. We have comprehensively supplemented and reorganized the
methods section based on your suggestions.

Specific modifications are as follows:

(1) Clearly define the time periods: In the caption of Figure 6, we clearly state: "The
shaded gray background indicates the calibration period, while the unshaded area
represents the validation period." Additionally, in section "2.3.1 Hybrid...", we have
supplemented the explanation of the dataset partitioning for the machine learning part:
"The dataset for each period was split into training (70%) and validation (30%)



subsets."

(2) Clearly define the two-stage workflow: Your understanding of our workflow is
entirely correct. We have clearly outlined this two-stage calibration strategy at the

2

beginning of section “2.3.1 Hybrid...”: “The workflow proceeds in two distinct
stages... First, the SEGSWAT+ model was independently calibrated using observed
streamflow... Subsequently, the residuals... were calculated. A suite of ML algorithms

was then trained to predict these residuals...”

(3) Hyperparameter selection strategy: We supplemented the hyperparameter
optimization method in section “2.3.1 Hybrid...”: “Hyperparameters for each model
were optimized using a grid search strategy (details in Appendix Table B2).”

Table B2. Hyperparameter optimization ranges and selected values for the machine learning

models

Model Hyperparameter Search Range Optimal Value

ANN Hidden Layers [1,2, 3] 2
Neurons per Layer [16, 32, 64, 128] 64
Learning Rate [0.001, 0.01, 0.1] 0.01
Activation Function [ReLU, Tanh, Sigmoid] ReLU

LSTM Hidden Units [32, 64, 128, 256] 128
Lookback Window [5, 10, 15, 30] days 15
Dropout Rate [0.1,0.2,0.3,0.5] 0.2
Epochs [50, 100, 200] 100

Random Forest n_estimators (Trees) [100, 300, 500, 1000] 500
Max Depth [10, 20, 30, None] 20
Min Samples Split [2,5,10] 5

XGBoost Learning Rate (eta) [0.01, 0.05, 0.1, 0.3] 0.05
Max Depth [3,5,7,9] 7
n_estimators [100, 500, 1000] 500
Subsample [0.6,0.8, 1.0] 0.8

(4) New parameter summary table: We added Appendix Table B2 to the appendix,
which details the hyperparameter search range and the finally selected optimal values
for each machine learning model.



(5) New performance comparison table: To quantitatively demonstrate the superiority

of our hybrid method, we added Appendix Table B3 to the appendix. This table provides

a detailed comparison of the performance metrics (KGE, NSE, PBIAS) of the original
SEGSWAT+ model and the final hybrid model during the calibration and validation
periods at major hydrological stations, clearly demonstrating the significant

performance improvement brought about by ML error correction.

Table B3. Performance comparison of SEGSWAT+ (Raw) and the Hybrid Model (Corrected)

across calibration and validation periods

River Station Period Metric SEGSWAT+ (Raw) Hybrid Model (Corrected)
Ili Ushzharma  Calibration = KGE 0.68 0.89
NSE 0.72 0.93
PBIAS(%) -9.5 32
Validation KGE 0.65 0.85
NSE 0.68 0.88
PBIAS(%) -16.8 5.1
Karatal Ushtobe Calibration =~ KGE 0.74 0.89
NSE 0.76 0.91
PBIAS(%) 11.2 6.4
Validation KGE 0.71 0.86
NSE 0.72 0.85
PBIAS(%) 18.5 7.5
Aksu Chann Calibration =~ KGE 0.66 0.83
NSE 0.64 0.84
PBIAS(%) -9.3 -2.8
Validation KGE 0.62 0.80
NSE 0.60 0.78
PBIAS(%) -13.5 -3.4
Lepsy Lepsinsk Calibration = KGE 0.70 0.82
NSE 0.71 0.84
PBIAS(%) 9.8 -5.1



Validation KGE 0.68 0.80

NSE 0.67 0.77

PBIAS(%) 11.5 -6.2

Ayaguz Ayaguz Calibration = KGE 0.63 0.89
NSE 0.61 0.88

PBIAS(%) -15.4 -0.5

Validation KGE 0.71 0.86

NSE 0.68 0.83

PBIAS(%) -8.45 -1.8

(6) Binding Section: This is an excellent suggestion. We have integrated the content of
the original “2.3.4 Model Evaluation and Uncertainty Metrics” into the “2.3.1 Hybrid...”
section, making the description of the methodology more concise and fluent.

(7) Clarifying the Criteria for metric selection: In the “2.3.1 Hybrid...” section, we have
added the decision criteria when evaluation metrics conflict: “In cases where metrics
yielded conflicting assessments, the KGE was prioritized as the primary selection
criterion due to its balanced decomposition of correlation, bias, and variability errors,
with PBIAS acting as a constraint to ensure water balance closure.”

Minor comments:

(1) Line 27-31: These texts do not explain the environmental issue well. “This balance

b

is under pressure..” on which direction? Increasing or decreasing water storage...
Please state the issue clearly. Consider use simple sentences: “Decreasing water storage
has become a widespread issue for these lakes, posing a significant threat to their
ecological health (reference). The decline in water storage is driven by two primary

factors: climate change and human activities. (reference).”

Response: Thank you for your suggestions, which made the statement of the problem
more direct and powerful. We have adopted your wording and revised it to: “However,
decreasing water storage has become a widespread issue for these lakes, posing a
significant threat to their ecological health (Li et al., 2025). This decline is primarily
driven by two concurrent forces: ..."

(2) Line 41: omit “Lake Balkhash has no outlet”.

Response: Following your suggestion, the redundant information “Lake Balkhash has



no outlet” has been removed.

(3) Line 43: “It signals a long-term depletion of solid water reserves”. What does that
mean? Do you mean the increasing evaporation outweighs the glacier melt? If yes, it is
important to add references to support your statement. Consider “While increasing
glacier melt can temporarily raise inflow, the associated increase in evaporation

outweighs this effect and leads to overall water depletion.”

Response: Thank you for pointing out the ambiguity here. We wanted to express the
non-renewable depletion of solid water reserves by glaciers. We have revised it to:
“While increasing glacier melt can temporarily raise inflow, it leads to the irreversible
depletion of solid water reserves. This continuous loss of ice storage implies that the
current meltwater increase is transient, and future water availability will be threatened
as the glacial volume diminishes.”

(4) Line 67: Swap “To achieve this” with “Specifically”

Response: Revised.

(5) Figure 1: Consider remove political borders and just focus on watershed boundaries.

Response: Taking into account the reviewers' suggestions, we assessed the impact of
removing the border lines on the communication of map information. Since the Lake
Balkhash basin is a transboundary basin (Kazakhstan and China), the border lines are
of significant reference value for understanding potential transboundary water resource
management issues in the region. Therefore, we prefer to retain the border lines and
hope for your understanding.
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Figure 1. Geographic location of the study area.

(6) Table 1: I appreciate this style! Just a minor suggestion: consider place references

in “Source” column instead of simply saying it’s from Zenodo.

Response: Your suggestion is very correct. We have revised the content of the "Source"
column in Table 2 to the full reference format (e.g., Harris, 2024).

Table 2. Summary of datasets used in this study

. Spatial Temporal Source
Dataset Key Variables Resolution Coverage (Reference)
Copernicus GLO- . . European  Space
90 DEM Elevation 90 m Static Agency (2019)
Bulk density, hydraulic
DSOLMap conductivity, available 250 m Static Lopez-Ballesteros

water capacity etal. (2023)

Land cover classes (35 Google Earth

GLC _FCS30D subcategories) 30 m 19852022 Engine(Zhang et
& al., 2024)
Randolph  Glacier :
Inventory (RGI Glacier outlines, attributes Vector Target year: 2000 RGI ~ Consortium
> -y (2023)
v7.0) (varies by region)
River reaches, nodes, ~10 km (Altenau et al
SWORD vl15 hydrological networks, reaches, 200 m Static ’
. (2021)
lake boundaries nodes
. Glacier elevation change Hugonnet et al.
Glacier mass loss rates (dh/dt) 100 m 2000-2019 (2021)

Temperature, precipitation, 0.5 1901-2024

CRU JRA v3.0 wind speed, vapor (downscaled to , . Harris (2024)
o (daily)
pressure, etc. 0.05°)
Max/min temperature,
. precipitation, solar o 1958-2024 Abatzoglou et al.
TerraClimate radiation, vapor pressure 124 (monthly) (2018)
deficit
NEX-GDDP- Daily temperature 0.25° 2015-2100 Thrasher et al.
CMIP6 (max/min), precipitation ’ (Daily) (2022)
. . . 1931-2024 NCDC (2024);
Observations Discharge, water level Point (monthly) Duan et al. (2020)

(7) Figure2: Spell AAF in the caption. Figure and table captions should be self-
explanatory. All acronyms must be fully spelled out in the captions, even if they have
already been defined in the main text. Also, check the font style of the caption.

Response: We have spelled all abbreviations (such as HADF) in full in the figure
captions and checked and standardized the font of the captions.



(8) Line 140: “The SWAT model and its improved versions are widely used in
hydrological simulation processes.”, such as? Add references of the original literature
of the SWAT model and other publications of the model application.

Response: Based on your suggestion, we have added references to the application of
the SWAT model in the text, such as (Forgrave et al., 2024; Ho et al., 2025; Sanchez-
Gomez et al., 2025).

(9) Line 141: Swap “Iteration” with “variant”.

Response: “Iteration” has been changed to the more accurate “variant”.

(10) Figure 3: Need a higher-resolution figure, the Q final figure is blurred. Also, this
flow diagram is not explained well in the main text. What’s the relationship between
Qsim and Qres. What’s Qres? Is it the discharge into reservoir or the residual of
simulated discharge? Consider explain this figure component by component in section
2.3.1.

Response: We have replaced it with a higher resolution image. In section “2.3.1
Hybrid...”, we have added a detailed explanation of each component of the flowchart,
clarifying the relationship between Qg;,, (physical model simulation of runoff), Qs
(observed runoft), and Q,es (Qops — Qsim., 1.€., residuals).

(11) Line 189: Is “A” static? Or it was calculated by a hypsometric curve between Area
and Storage?

Response: In the section “2.3.3 Lake System Response Linkage”, we clarified that the
lake area A is a function of the water level h, A(h), which is determined by the water
level-area hydrological relationship curve (i.e., the hyposometric curve you mentioned).
This curve is shown in Appendix Figure A2.



25,000 ]

—e— Area Y 175

—e— Volume '/

20,0001 4— 150
; 125 _
—_ / [
& 15,000 dd £
£ // 1100 =
= [ Q
® // £
QLJ o >
< 10,000 / / 75 3
J /2 >

'y 150

Va4
5,000 Fa'd
L. _,.:::,-,' 25
R EDE = - Zond ‘ ‘ Lo
316 322 328 334 340 346
Level (m)

Figure A2. Stage-area and stage-volume relationships for Lake Balkhash. The blue line represents
the relationship between water level and surface area (left axis), while the red line indicates the
relationship between water level and storage volume (right axis). Data derived from

Myrzakhmetov et al. (2022).

(12) Line 194: I understand including groundwater component is challenging. However,
groundwater table decline is also a major contributor to water scarcity in arid regions.
Therefore, evidence supporting the claim that groundwater has a relatively minor
contribution in this study area should be provided here (e.g., relevant observations,

previous studies, or sensitivity analyses).

Response: You raised a very important question. We have added references (Deng et al.,
2011; Wang et al., 2022) to the section “2.3.3 Lake System...” to support our hypothesis
that groundwater exchange accounts for a small proportion of the overall lake water

balance in this study area.

(13) Figure 5: The figure resolution needs to be improved. In addition, consider
segmenting the time series into calibration and validation periods using shaded boxes.
The figure caption should also be revised to “Comparison between observed and
simulated streamflow.” Note that runoff in an open channel should be referred to as

streamflow, not runoff.

Response: We have updated the image to a higher resolution. We have also adopted
your suggestion to use a gray shaded background to distinguish between the calibration
and validation periods, as explained in the figure captions. Furthermore, we have
uniformly changed “runoff” in the figure to the more accurate “streamflow”.



(14) Line 341: Which satellite altimetry & optical data was used to validate the
reconstructed water storage? This needs to be clearly stated in section 2.2.

Response: We have explicitly added the source of the water level data used for
verification in section “2.2 Datasets™: “Historical gauge observations from 1931 to
2015 were obtained from Duan et al. (2020), while recent data (2016-2024) were
extended using satellite altimetry products from the Global Reservoirs and Lakes
Monitor (G-REALM).”

We would like to express our sincerest gratitude once again for your valuable time in
reviewing our manuscript and providing such insightful feedback. We believe that the
quality of the manuscript has been significantly improved under your guidance.
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