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Abstract. This study systematically evaluated the quality of ionosphere-corrected bending angles from Fengyun3 (FY3) D/E
satellites (equipped with GPS and BDS receivers) using ERAS5 data as references and MetOp products as comparisons. The
quality of subsequent retrieved optimized bending angles, refractivity, and temperature were also analysed. lonosphere-
corrected bending angle were assessed via two approaches: outlier detection across 10-80 km and bias/noise quantification.
Overall quality evaluation showed that FY'3 ionosphere-corrected bending angles were consistent with MetOp below 40 km.
Above 40 km, FY3 bending angles exhibited larger errors than MetOp. In outlier detection, MetOp had Jess than 5% bad
profiles, followed by FY3D (<10%), while FY3E (GPS/BDS) had about 20% bad profiles. FY3E-GPS bending angles are
prone to have large outliers in the height range of 35-50 km. For bias and noise quantification, the daily mean biases and noise
levels of FY3 satellites were higher than those of MetOp. Specifically, FY3E-GPS showed notable large daily mean biases of
about -0.4 prad and most of these biases are in setting RO events. FY3D and FY3E-BDS ranked second, with biases of
approximately -0.1 prad. MetOp had the smallest biases, at around —0.05 prad. Regarding noises, FY3D, FY3E-GPS exhibited
comparable noise levels, at roughly 2.5 purad; FY3E-BDS had lower noises of 1.5 prad. MetOp noises are smallest at about 1.0
urad. Due to the larger biases and noises at high altitudes, FY3’s optimized bending angles were strongly corrected by
background bending angles. Refractivity and temperature were also influenced by the strong correction of optimized bending
angle. In summary, FY3 ionosphere-bending angles show high quality below 40 km. However, at high altitudes, further efforts
are required for improving FY3 data’s utility in numerical weather prediction and climate studies, especially for stratospheric

applications.

1 Background

Global Navigation Satellite System (GNSS) radio occultation is a robust atmospheric remote sensing technique for sensing the
Earth’s atmosphere (Kursinski et al., 1997; Hajj et al., 2022). It provides vertical profiles, such as temperature, pressure, density
and water vapour of the Earth’s atmosphere. The basic theory of GNSS RO is to put RO receivers on the Low Earth Orbit
(LEO) satellite to receive GNSS signals. While propagating through the atmosphere, GNSS signals will be bent due to
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refractive gradient. Given the orbits of GNSS and LEO satellites, the accumulated bending angle can be retrieved using

geometric optic method (Melbourne, 1994). Since refractivity is related to bending angle, it can be calculated through the Abel
transform. In dry air condition, where the existence of water vapour can be neglected (Foelsche et al., 2008), temperature,
density and pressure can be resolved using existing atmospheric relation equations in terms of the Smith-Weintraub equation,
the ideal-gas law and the hydrostatic equation (Kursinski et al., 1997; Hajj et al., 2002). In moist air condition, additional

background temperature/humidity profiles are required, for calculating atmospheric profiles (e.g., Healy and Eyre, 2000;

Syndergaard et al., 2018; Li et al., 2019).
RO data has several distinctive advantages, such as high vertical resolution, high accuracy (in the upper troposphere and lower
stratosphere), self-calibration, all;weather condition and long-term consistency (Kirchengast, 2004; Steiner et al., 2011).

Therefore, RO data has been widely used in numerical weather prediction, climate monitoring and space weather researches

(Anthes, 2011). Positive impacts were received from these applications. For example, assimilation of RO data has significantly

detection (e.g., Steiner et al., 2011, 2020), atmospheric boundary detection (e.g., Ao et al., 2012; Guo et al., 2011; Sokolovskiy

et al., 2006), tropopause identification (e.g., Rieckh et al., 2014; Schmidt et al., 2010), sudden stratospheric warming events
diagnostics (e.g., Li et al., 2021, 2023) and also tropical cyclones detection (e.g., Teng et al., 2023; Yang et al., 2023).

The first Low Earth Orbit (LEO) mission to employ the Radio Occultation (RO) technique was GPS/MET, launched in 1995
(Hocke, 1997; Ware et al., 1996). This mission successfully observed and retrieved highly accurate atmospheric profiles in the
upper troposphere and lower stratosphere (Rocken et al., 1997; Steiner et al., 1999), thereby validating the concept of the
GNSS RO technique for Earth’s atmospheric sensing. Since 2000, a series of continuous RO missions have been launched,
starting with the Challenging Mini-Satellite Payload (CHAMP) mission (Wickert et al., 2001), followed by the Gravity
Recovery and Climate Experiment (GRACE) mission (Wickert et al., 2005). In 2006, the Constellation Observing System for
Meteorology, lonosphere, and Climate (COSMIC) mission—composed of six satellites—greatly advanced RO observations
(Schreiner et al., 2007). Beginning in 2008, the European Meteorological Operational (MetOp) satellite program launched
MetOp-A (Luntama et al., 2008), followed by MetOp-B in 2012 and MetOp-C in 2018. In 2013, China launched its first RO
satellite: the Fengyun (FY) 3C (Liao et al., 2015, 2016a; 2016b, Sun et al., 2018). This satellite carried China’s first
domestically designed GNSS Occultation Sounder (GNOS) receiver. After FY3C, subsequent satellites in the FY3 series—
FY3D through FY3G—have been gradually launched in recent years (Sun et al., 2023; Liu et al., 2023; He et al., 2023; Mo et
al., 2024)._Among these series of satellites, the FY3C and FY3D carried the first version of GNOS receiver (GNOS-I) and
FY3E to FY3G carried the second version of GNOS RO receiver (GNOS-I1).

In addition to these satellites launched by institutional entities, a large number of commercial satellites have also been deployed.

One of the earliest commercial RO satellites was launched by Spire in 2017. To date, Spire has launched approximately 60

RO satellites and now provides around 20,000 high-quality atmospheric profiles per day (Bowler, 2020; Nguyen et al., 2022).
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PlanetiQ has launched five RO-related satellites and delivers over 6,600 high-quality neutral atmospheric profiles daily
(Kursinski et al., 2024). In China, both the Tianmu and Yunyao satellite constellations have been put into operation: the
companies behind these constellations have launched dozens of RO satellites, with more planned for future deployment (Xu
et al., 2025). Collectively, these institutional and commercial satellites have created unique opportunities for weather and
climate research.

In recent years, the Radio Occultation modelling experiment (ROMEX) has been endorsed by the international radio

occultation working group (Anthes, 2024). This experiment collects up to 35000 RO profiles per day pover a three months’
period and tests the impacts of these data on numerical weather prediction system. The data are available to all users for testing
in global and regional models, and they are also available for other scientific studies in weather and climate. Initial results

found good impacts on Numerical Weather Prediction (NWP) system (e.g., Anlauf et al.,, 2024; Li, et al., 2024; Lonitz et al,
2024) and on, forecasts of Atlantic hurricanes (Miller et al., 2024). /

The purpose of our work is to further evaluate and improve data quality of Fengyun series RO satellites in the stratospheric

region. As a first step, this study works on analysing the quality aspects of Fengyun RO ionosphere-corrected bending ar

in terms of data quality as well as biases and noises. Several works have analysed the quality of Fengyun series RO satellites.

Liao et al, (2016b) has validated RO refractivity of FY3C satellite. Results showed that its refractivity quality were similar to |
COSMIC and MetOp in the height range of 0-30 km. In addition, it also points out that FY3C products needed further
improvement above 30 km. Sun.et al, (2018) reviewed the FY3C GNOS instrument, RO data processing, and data gualit

evaluation. Their results further demonstrated that FY3C can provide accurate atmospheric profiles below 30 km and reliable

ionospheric products. Bai et al. (2018) discussed the differences between the single-difference and zero-difference clock ,/
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angle quality. Unlike the case of statistical optimization and 1dVAR (e.qg., Li et al., 2013, 2019), the retrieval of bending angle

is not influenced by background models. Understanding the quality of ionosphere-corrected bending angle js useful for ™
assessing the quality of subsequently retrieved RO products. However, the quality of bending angle has rarely been discussed

before, especially above the middle stratospheric layers (>30 km). In order to further improve Fengyun data quality and get

ready for ymore widely numerical weather prediction applications, it is important to improve Fengyun atmospheric profiles

above middle stratospheric layers. Therefore, this research works on gxaming the quality of Fengyun ionosphere-corrected
bending angle and their influences on subsequently retrieved RO profiles in terms of optimized bending angle, refractivity and

temperature. This study is a joint work petween Innovation Academy for Precision Measurement Science and Technology
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Chinese Academy of Sciences (CAS) and China Meteorology Administration Earth System Modeling and Prediction Centre

Chinese Meteorology Administration (CMA) aiming at improving the performance of Fengyun data in its NWP system. It is
expected that the outcome of this study and also our subsequent research are useful for further enhancing NWP system of

CMA and for improving the application of Fengyun data in stratospheric climate applications.

2 Data and methodology
2.1 Data

In this study, we used Fengyun-3D (FY3D), Fengyun-3E GPS (FY3E-GPS), Fengyun-3E BDS (FY3E-BDS) and MetOp

the National Satellite Meteorological Center (NSMC) CMA. It is also known that the Fengyun data has been updated since

MERRIAE: .

M EIPIZE: we used is one of the latest version of

2025 to improve its data quality below 30 km, However, this does not affect our results in this study since we focus on bending

angle quality above 30 km. The MetOp data we used are the Interim Climate Data Records (ICDRs). Such data can be
downloaded from the official website of ROMSAF. It provides reprocessed bending angle, refractivity, dry temperature, 1dVar

products. There products have a high degree of internal consistency, which is important for climate monitoring.

Figure 1 shows the number of observations of all four types of observations in August. It can be seen that Fengyun observations
are generally of similar numbers to MetOp with observed profiles vary from 500 to 600 per day. However, from 18 August to
24 August, the numbers FY3D and FY3E-GPS decrease with values are about 400-500. Panel (b) shows the latitudinal
distributions of these four types of RO observations during three days of Aug 14-16, 2023. RO observations are found to be
largest in two middle latitudes of both two hemispheres, i.e., 20°S -60°S and 20°N - 60N. In the two polar regions,
observations are smallest with numbers are about 200 for the three days. Panel (c) shows numbers of setting observations and

rising observations. .The differences between rising and setting events for all four types of observations are generally within

events, and the reason for this remains unknown, which requires further investigation in the future. Overall, the number of RO

observations, and also latitudinal distributions or the types of RO events between Fengyun and MetOp satellites are of si

characteristics.

In order to calculate RO biases and observations, we also used European Centre for Medium-Range Weather Forecasts
(ECMWE) reanalysis version 5 (ERAS) data in this study as a comparison to calculate these uncertainties. ERA5 is the fifth-
generation ECMWEF atmospheric reanalysis of the global weather and climate (Hersbach et al., 2019, 2020; Simmons et al.,
2020). It was produced for the European Copernicus Climate Change (C3S) by ECMWF and replaces the ERA-Interim
reanalysis (Dee et al., 2011), which stopped being produced by August 2019. Such reanalysis data combines model data with
observations from across the world into a globally complete and consistent dataset using the laws of physics. It provides
atmospheric profiles on regular spatial grids and temporal layers. Most of the current researches used ERAS5 data on 37 vertical
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levels. However this type of data is only up to about 40 km. In order to compare data from middle stratospheric above, this
research used 137 vertical levels’ data from the surface up to an altitude of about 80 km. Four time layers, in terms of 00, 06,
12 and 18 UTC are used. In order to match with the horizontal resolution of RO data, we used the 2.5<lat ><2.5<lon resolution
ERAS data.

Jt should be noted that both MetOp data and FY3 data have been assimilated into ERA5. However, the impacts on our results

can be minor for two reasons. First, assimilation of RO data are mostly below the middle stratosphere. However, this study

mainly focus on the quality of bending angle above the middle stratosphere. Secondly, due to relatively smaller number of

MetOp and FY3 RO observations, their influences on the calculated ERAS data can be neglected.

2.2 Methodology

In designing a quality control scheme for RO bending angles, we reviewed several published quality control schemes. For
instance, Scherllin-Pirscher et al. (2015) developed a series of quality control schemes for constructing BAROCLIM bending
angle model. Angerer et al. (2017) proposed a new set of quality control schemes for RO bending angles. Additionally,
ROMSAF has developed a series of quality control systems for its reprocessing system (Syndergaard et al., 2018). The quality

control schemes pf pur study are empirically based. First of all, we used the quality control of above mentioned studies as basis
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and then apply them to Fengyun and MetOp data, After thatye compare the galculated statistical errors with results in previous

literatures and then adjusting corresponding schemes. For example, current schemes lack quality control in the height range of

35 — 50 km. However, we found that quality control in this height range js necessary since some Fengyun data may have

outliers. Moreover, some previous schemes employ a minimum bending angle quality control method. However, it is also not
suitable for MetOp data since MetOp exhibits lower noise level in its RO bending angles (Angerer et al., 2017). By several

iterative process, we finally obtained the quality control scheme in this study as shown in Table 1.

Based on the above empirical quality control schemes and our own analysis on Fengyun data in this study, we designed an
empirically derived bending angle quality control scheme (as shown in Table 1) for Fengyun and MetOp products. This scheme
height range of 50-80 km, 35-50 km, and 10-35 km height ranges, respectively. The thresholds are empirically obtained based
on the experience of existing publications as discussed above and also our internal tests. QF4 and QF5 are used to reject RO
profiles with excessive bending angle noise at high-altitude regions. Bending angle biases and noises are calculated as the
mean systematic differences and standard deviations of ionosphere-corrected bending angle against ERA5 bending angle from
the height range of 50 km to 80 km (or to the top of a profile). The specifically equations can be seen from Pirscher et al,
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corrected bending angle aro against ERAS bending angle aeras from the height range of 50 km to 80 km (or to the top of a

profile). The specifically equations are taken from Pirscher et al. (2010):
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and the equation of bending angle noise is:

noise = [——X0kM [(aro)e — ((@ro)ic + bias)]?_. @

It should be noted that compared to Pirscher et al. (2010), we use bending angles down to 50 km due to relatively larger noises

of Fengyun data. QF4 is used to reject profiles where the bending angle bias exceeds the noise level—indicating that bias-
inducing error sources are so significant that they outweigh the noise, making such bending angles unreliable. Furthermore,
QFS5 is used to reject profiles where bending angle noise exceeds 22 prad. We assume that if one of the bending angle quality

flags is not equal to zero (good quality), this profile is not reliable and should be rejected.

In addition to bending angle quality, we also check quality of refractivity and temperature profiles in the height range of 10 —
35 km height range. This is used to further reject RO events that may suffer from large errors. Both refractivity and temperature
profiles are checked in the height range of 10-35 km. If refractivity difference profile exceed the threshold of 10% (QF®6) or if

a temperature profile exceed threshold of 10 K (QF7), then this profile is discarded. QFO jndicates a profile of good quality,

3 lonosphere-corrected bending angle quality

Based on the above methodology, this section presents the Fengyun bending angle quality evaluation results. Subsection 3.1
presents bending angle statistical errors as an overall view for understanding Fengyun bending angle quality. Subsection 3.2
introduces bending angle outlier rejection results and the characteristics of these quality flags are also analysed. Subsection
3.3 then introduces the quality issues related to biases and noises and their characteristics.

3.1 Bending angle statistical errors

Figure 2 presents systematic differences and standard deviations between ionosphere-corrected bending angles and ERA5
bending angles across six latitudinal bands globally: the entire globe (90<S to 90N, Global), low latitudes (205 to 20N,
Tropics = TRO), mid-latitudes (20<S/N to 60<S/N, with SHSM/NHSM referring to the southern/northern hemisphere
subtropics and mid-latitudes), and high latitudes (60 <5/N to 90 <S/N, SHP/NHP = southern/northern hemisphere high latitudes).
four observations_among the six latitudinal bands below 40 km are small and comparable. However, discrepancies become
apparent above 40 km. The Fengyun series exhibit larger biases, while MetOp has the smallest biases. In terms of bending
angle noise, FY3E-GPS and FY3D have the highest levels of bending angle noise—approximately 1% to 3% larger than those
of MetOp. Bending angle noises of FY3E-BDS falls in the middle, being roughly 0.5% to 2% higher than that of MetOp. This
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two reasons. First, the constellation geometry of BDS, which includes GEO and IGSO satellites with much slower relative

motion with respect to LEO platform. This leads to relatively smaller Doppler rate and more stable carrier-phase tracking for

BDS occultation. Second, GPS satellites P2 signal operates in a code-free tracking model, which consequently results in a

slightly inferior tracking performance.

When comparing statistical errors across different latitudinal bands, the largest errors are found in the SHP (Southern
Hemisphere Polar) region. This can be attributed to the high uncertainty of ECMWF data in polar regions (Li et al., 2013,
2015). A spike transition at about 25 km is observable in the error profiles of Fengyun satellites. This is primarily due to jwo

algorithm has been revised at CMA. First, the extrapolation height of L2 will be determined by the quality of L2 signal. Second,
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the middle and upper stratosphere helps to further filter out outliers of Fengyun satellites—particularly for FY3E-GPS. This is
the reason we introduced QF=3: specifically, if the absolute difference between values at 35 km and 50 km exceeds 100%, the
profile is discarded (see Section 2). This criterion removes approximately 2% of additional Fengyun profiles but is highly
effective in eliminating outliers in the middle and upper stratosphere.

Figure 3 presents the exemplary correlation functions and correlation coefficient contours of ionosphere-corrected bending
angles. The top two rows display correlation functions at exemplary heights of 20 km, 40 km, and 60 km, covering the same
six latitudinal bands as shown in Figure 2. The third row shows the correlation coefficient contours for FY3D, FY3E-GPS,
and MetOp. Since the correlation coefficients of FY3E-BDS are similar to FY3E-GPS, the contours for FY3E-BDS are not

included here. Examining the first two rows, the ionosphere-corrected bending angle correlation coefficients of all three
satellites are generally comparable at the main peak, with shapes resembling an exponential function and correlation lengths
of approximately 1 km. The correlation functions exhibit greater noise in the TRO (Tropical) and NHP (Northern Hemisphere
Polar) regions, which is attributed to the smaller number of atmospheric profiles available in these areas. All Fengyun bending
angles show anomalous curves below 26 km; this phenomenon is also associated with the transition from the Geometric Optics
(GO) method to the Wave Optics (WO) method. This finding is also consistent with Lewis et al., 2025. The third row presents
the correlation coefficients of all three sets of observations. Overall, the correlations are weak and comparable across the three
observations. Similarly, the correlation coefficients of Fengyun bending angles exhibit abnormal biases of 0.2-0.4 from 26 km

downward.

3.2 Bending angle quality evaluation

Figure 4 presents the daily time series of the percentage of poor-quality flags for RO bending angles across all four

observational datasets. To quantify the characteristics of each quality flag, individual profiles were inspected for all flag
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categories; consequently, a single profile may be assigned multiple quality flags. Focusing on QF8 (denoted by red dots),
which indicates overall poor-quality profiles, FY3E-GPS profiles exhibit the highest percentage of poor-quality profiles among
all datasets, ranging from 35% to 45%. FY3E-BDS bending angles rank second, with their proportion of poor-quality profiles
also spanning 30% to 40%. The quality of FY3D observations is superior to that of FY3E: the percentage of poor-quality
profiles for FY3D mostly varies between 20% and 30%. In contrast, MetOp data demonstrate the best quality, with the
percentage of poor-quality profiles typically around 20%. Since the overall quality also jncludes quality control on refractivity,
which we set as a strict criteria, the bad quality percentage are higher than that solely use bending angle.

An analysis of bending angle quality (QF1-QF5) reveals that MetOp bending angles have minimal quality issues. This can be
attributed to the high-quality GRAS radio occultation (RO) receiver, Only a small fraction (Jess than 5%) of MetOp profiles

are flagged with QF4, which indicates quality problems where bending angle biases are larger than noises. This low QF4
percentage is primarily due to the very high signal-to-noise ratio (SNR) of the MetOp RO receiver (Angerer et al., 2017).
Therefore, QF4 might not be truly useful for MetOp observations. In contrast, Fengyun datasets—particularly FY3E—exhibit
much more bending angle quality control issues at high altitudes. When comparing QF1 to QF3 (which assess bending angle
outliers across three distinct height ranges), the percentages of these flags are generally comparable. This suggests that if a
profile exceeds the threshold in one height range, it is highly likely to exceed thresholds in other height ranges. However, the
percentages of these QFs do not fully overlap, which emphasizes the necessity of evaluating bending angle quality across
multiple height ranges. For FY 3D and FY3E-BDS, QF3 (which targets the 10-35 km height range) has the highest percentage.
For FY3E-GPS, QF2 (focusing on the 35-50 km range) is more prominent, indicating a greater possibility for outliers in the
middle and upper stratosphere. As noted in the analysis of bending angle statistical errors (section 3.1), removing this outlier
effect in the 35-50 km range would result in larger biases for FY3E-GPS—a phenomenon not pbvious in the other three
datasets.

Quality flags 4 and 5 (QF4 and QFb5) are associated with bending angle biases and noises. For Fengyun bending angles, FY3D
demonstrates overall smaller bending angle biases and noise quality problems compared to the two FY3E bending angles.
Their percentage of QF4 vary around 10%, while the percentage of QF5 is consistently less than 5%. For FY3E-BDS, QF4
percentages are generally small (less than 5%), whereas QF5 (large bending angle noises) percentages range from 15% to 20%.
This indicates that FY3E-BDS bending angles are prone to significant noise-related quality issues. For FY3E-GPS bending
angles, both QF4 and QF5 percentages range from 10% to 15%, suggesting that this dataset is affected by both large biases
and noise-related quality problems. As discussed earlier, only Jess than 5% METC bending angle profiles exhibit biases larger
than noise (QF4).

Quality flags 6 and 7 represent the quality of refractivity and temperature, respectively. Since our quality control for refractivity
is relatively strict, QF6 has the highest percentage among all quality flags. Again, MetOp refractivity has the smallest
percentage, at around 15%, followed by FY3D refractivity, which is approximately 20%. The two FY3E datasets have the
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highest percentages, at around 30%. For QF7, which represents temperature quality, the percentage for MetOp is nearly zero.
The percentages for FY3D and FY3E-GPS are also small, at less than 5%. However, FY3E-BDS shows approximately 10%
of temperature data with poor quality.

The bottom panel of Figure 4 shows the monthly mean percentage of each quality flag. Focusing on the overall quality of
bending angle profiles (QF1-QF3), MetOp observations exhibit almost no quality issues. The proportion of quality problems
for FY3D is consistently below 10%, which is significantly lower than the approximately 20% observed for both FY3E-GPS
and FY3E-BDS. Regarding QF4, FY3E-GPS has notably higher percentages (exceeding 10%) compared to the other three
datasets, whose QF4 percentages all remain below 5%. Such biases of FY3E-GPS bending angles will be further illustrated in
section 3.3. For QF5, FY3E-BDS has the highest percentage (around 15%), followed by FY3E-GPS and then FY3D; MetOp
data show almost no QF5-related quality issues. For QF6, both FY3E datasets (FY3E-GPS and FY3E-BDS) have large
percentages (close to 30%), followed by FY3D (approximately 20%) and MetOp (around 15%). For QF7, FY3E-BDS has the
highest percentage (about 10%), while FY3D and FY3E-GPS have QF7 percentages of less than 5%; MetOp data show no
temperature-related quality issues. For QF8 (which represents overall profile quality), approximately 40% of FY3E-GPS
observations are classified as poor quality, followed by FY3E-BDS (35%), FY3D (25%), and MetOp (less than 20%).

Figure 5 shows monthly mean percentage of each quality flags in the same six Jatitude bands as Figure 2. It can be seen that
for almost all quality flags, the percentage of bad quality flags are most distinctive in TRO (20<5-20N) and NHSM (20N-
60N) regions. This can be attributed to that these two regions suffer more from the disturbance of ionospheric residual errors
and also the influences of water vapour. Percentage of bad quality flags ranks the second in NHP region (northern hemisphere

polar), especially for FY3E-BDS observations. The reason of this needs further investigations.

3.3 Bending angle biases and noises

Figures 6 to 8 show the characteristics of bending angle biases and noises for the four types of RO bending angles. These
results are obtained using all QF=0 RO profiles. Figure 6 presents the individual RO bending angle biases (panel (a)) and
noises (panel (b)) over three exemplary days: 14-16 August 2023. The individual bending angle biases of MetOp are overall

small, with values varying within +1 prad. In contrast, the biases of Fengyun are larger than those of MetOp data, with values
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mostly vary within 2 prad. The noises of MetOp are mostly within 2 prad, while bending angle noises of Fengyun are

significantly larger—many of these noises range in magnitude from 5 to 15 prad. Panels (c) and (d) show the percentages of
bending angle biases (in absolute terms) and noises that fall into each error range, respectively. MetOp data exhibit the smallest
bending angle biases and noises, while Fengyun observations show generally larger biases and noises. Among the Fengyun
series, FY3D-BDS exhibits smaller bending angle noises than the other two Fengyun observations. A more comprehensive

overview of the monthly results is presented in Figure 8.
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Figure 7 illustrates the percentages of bending angle biases and noises within the same ranges as Figure 6, but separated by

or settin

rising and setting events. Darker colours represent positive biases, while lighter colours represent negative biases.

events, the positive and negative biases of MetOp are of similar magnitudes overall. More than 85% of MetOp biases are less

than 0.5 urad. For the Fengyun satellite series, however, negative errors outnumber positive errors, and this trend is even more
pronounced for FY3E-GPS bending angles. For example, within the bias range of 0.5-1.0 urad, approximately 45% of the

biases are negative, while only 5% are positive. When comparing the bias magnitudes across Fengyun satellites, FY3E-GPS

bending angles show the largest biases, with about 50% of FY3E-GPS observations falling within the 0.5-1.0 prad error range.

Among all Fengyun satellites, FY3E-BDS has the smallest biases, as over 95% of its biases are less than 0.5 urad. FY3D biases

fall in between, with roughly 70% of'its biases below 0.5 urad. For rising events (panel (b)), all four RO bending angles exhibit

more negative biases than positive ones, and this characteristic is also more prominent for FY3E-GPS observations. When

comparing setting and rising events, the proportion of large bending angle biases (greater than 0.5 urad) in FY3E-GPS

observations is less than 20%.

Figure 8 presents the temporal series of daily mean biases and noises (upper panel) and the percentages of biases and noises
falling within specific error ranges (bottom two panels). Focusing on the upper panel, both the RO bending angle biases and
noises exhibit no significant temporal variations. MetOp shows the smallest bending angle biases, with values around -0.5
urad. FY3D and FY3E-BDS rank the second, with values around -0.1 prad. In contrast, FY3E-GPS exhibits significantly larger
bending angle biases than the other three datasets, with values varying around -0.4 urad. This result is consistent with the
findings of the ROMSAF report (Lewis, et al., 2025). Both our results and the ROMSAF report found large bending angle
biases in FY3E observations. We further found that such large biases mainly come from the FY3E-GPS observations rather

than FY3E-BDS observations. In addition, the ROMSAF report suggest positive biases while we found negative biases. This

may due to different background data,used for the calculation of biases and noises at high altitudes. Turning to bending angle

noises, MetOp again has the smallest values, which vary around 1 prad. FY3E-BDS ranks second, with values varying around
1.5 prad. FY3D and FY3E-GPS—both equipped with GNOS-GPS receivers—exhibit similar noise values, approximately 2.5
prad.

A further examination of the bias_(in absolute terms) and noise ranges (bottom two panels of Figure 8) shows that more than
90% of MetOp bending angle biases fall within the 0.5 prad range, with more than 50% within the 0.2 prad range. More than

80% of the bending angle biases for FY3E-BDS and FY3D also fall within ranges smaller than .5 urad. For FY3E-GPS biases,

however, only approximately 60% fall within ranges less than 0.5 prad, while the remaining values fall within ranges larger
than 0.5 prad. This further explains why the daily mean bending angle biases of FY3E-GPS are much larger than those of the
other three datasets (Panel (a)). Turning to RO bending angle noises, approximately 90% of MetOp noises fall within the 0—2
urad range, followed by FY3E-BDS, for which about 80% of the noises fall within this range. For FY3D and FY3E-GPS, only
about 40% of the noises fall within this range. More than 40% of the bending angle noises for FY3D and FY3E-GPS fall within
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Fengyun data, however, the differences between setting and rising
events are more pronounced. In the case of FY3D, rising events
exhibit generally smaller biases than setting events, though these
overall differences are slight. For FY3E-GPS, rising events show
significantly larger bias values than setting events, and most of the
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percentage of rising events is 30% higher than that of setting events.
For FY3E-BDS, the biases of rising events are generally smaller: the
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the 2—4 prad range, and the remaining 20% fall within ranges larger than 4 prad. This further explains why the observations
from FY3D and FY3E-GPS exhibit larger noises than those from the other two datasets.

4 Optimized bending angle, refractivity and temperature

This section presents the statistical errors of optimized bending angle, refractivity and temperature. These profiles are directly

obtained from CMA and ROMSAF (c.f., section 2.2). Both data centers use the ROPP software to process their RO retrievals.

Figure 9 presents the systematic differences and standard deviations of statistically optimized bending angles across six latitude
bands (upper two panels) and their correlation coefficients (third panel). When examining the systematic differences overall,
the Fengyun optimized bending angles exhibit error magnitudes similar to those of MetOp at high altitudes (above 50 km).
This contrasts with the error characteristics of ionosphere-corrected bending angles. While the standard deviations of
Fengyun’s optimized bending angles below 50 km remain larger than those of MetOp data, the discrepancies are smaller than
those of ionosphere-corrected bending angles. Above 50 km, however, the standard deviations of MetOp data are larger than
those of Fengyun data—this also contrasts with the case of ionosphere-corrected bending angles. These results suggest that
the optimized bending angles from Fengyun satellites are more strongly corrected by background data. This conclusion is
further supported by the bottom panel, which shows the correlation coefficients. Focusing on the correlation coefficients of
Fengyun’s statistically optimized bending angles, strong correlations are observed at high altitudes. If strong correlations are
statistically optimized bending angles are influenced by background bending angles at high altitudes. In contrast, the
correlation coefficients of MetOp optimized bending angle do not exhibit such strong correlations at high altitudes; their values
are similar to those of ionosphere-corrected bending angles (see Figure 3).

To further understand the relationship between ionosphere-corrected bending angles and statistically optimized bending angles,
Figure 10 presents the systematic differences and standard deviations of ionosphere-corrected bending angles relative to
optimized bending angles. On a global scale, MetOp’s ionosphere-corrected bending angles exhibit overall small differences

(less than 0.5%) compared to its optimized bending angles up to an altitude of 60 km. In contrast, for Fengyun data, such small

differences—with magnitudes similar to those of MetOp—are only observed below 50 km, an altitude 10 km lower than that
of MetOp. Above 60 km, the differences in MetOp data gradually increase. However, below 70 km, these values remain mostly

within #2%. This indicates that MetOp’s ionosphere-corrected bending angles remain close to their optimized counterparts

even up to 70 km. For Fengyun data, by comparison, the differences rise significantly above 50 km. This suggests that
Fengyun’s optimized bending angles are more strongly influenced by background bending angles at altitudes above 50 km.

Turning to standard deviations: those of MetOp are less than 0.5% below 50 km. In contrast, the standard deviations of Fengyun
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data increase sharply from 30 km upward. This further confirms that Fengyun’s optimized bending angles are heavily affected
by background data at altitudes above 50 km.

Figure 11 presents the systematic differences in refractivity and temperature across the same six altitude bands as Figure 6. It
can be observed that MetOp exhibits the smallest refractivity errors in the SHSM, SHP, and TRO regions. In the NHSM and
NHP regions, MetOp data are consistent with Fengyun observations below 40 km. Above 40 km, however, Fengyun shows
smaller refractivity errors. This is mainly because the differences in the optimized bending angles of Fengyun data are smaller
than those of MetOp data above 50 km in these two regions. Consequently, refractivity, which is retrieved from optimized
bending angle, show similar characteristics. A similar situation is found for temperature. Below 30 km, the systematic
differences in temperature among all four RO observations are generally similar. Above 30 km, MetOp exhibits the smallest
temperature systematic differences in the SHSM, SHP, and TRO regions. In the NHSM and NHP regions, by contrast, Fengyun
observations show smaller differences. These results are consistent with those of the optimized bending angles and refractivity.

This is also attributed to the uncertainty propagation of the optimized bending angles (Li et al., 2019).

5 Conclusion

This study systematically assesses the quality of ionosphere-corrected bending angles of Fengyun D and E (both GPS and
BDS) satellites using ERAS5 data as references, and with MetOp data as comparisons. An empirical quality control scheme is
developed in this study. The ionosphere-corrected bending angles are evaluated in a twofold way. First, they are checked from
three height rages covering from 10 to 80 km. If bending angles exceed empirically determined thresholds, the profile will be
rejected and corresponding quality flags will be assigned. Secondly, the biases and noises of ionosphere-corrected bending
angles are calculated and if they did not pass our quality control, the profile is also rejected and quality flags will be assigned.
The quality control scheme and thresholds are determined based on experiences of existing studies and our gmpirical analysis

of Fengyun and MetOp bending angles.

A comparison of RO ionosphere-corrected bending angles with ERAS5 bending angles shows that Fengyun’s ionosphere-
corrected bending angles are generally consistent with MetOp’s bending angles below 40 km. Above 40 km, the statistical
errors of Fengyun’s bending angles are consistently larger than that of MetOp’s bending angle. FY3E-GPS and FY3D exhibit
the largest bending angle noises, which are approximately 1%—3% greater than those of MetOp. FY3E-BDS’s bending angle
noises fall in between, being roughly 0.5%—2% greater than MetOp’s—this suggests that GNOS BDS RO pbservations have
smaller noises than GNOS GPS RO pbservations. The bending angle correlations of all three Fengyun observations are
generally consistent with MetOp observations above 30 km.

Focusing on the first set of quality flags (QF1-QF3)—which are used to identify outliers in bending angle profiles—we note
that the percentage of poor-quality profiles for MetOp is nearly zero. This is attributed to its high-performance receiver of
MetOp satellite. FY3D ranks second, with fewer than 10% of its profiles containing outliers. The two bending angle datasets
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from FY3E (from GPS and BDS receivers) have the highest percentages of poor bending angle quality profiles, with values
around 20%. Turning to quality issues related to bending angle biases and noises, we also note that MetOp and FY3D have
few such issues (less than 5%). However, the percentage of large biases of FY3E-GPS are approximately to 15% and the
percentage of large noises of FY3E-BDs are also approximately 15%.

Further check the magnitudes of bending angle biases and noises (data with no quality issues) show that MetOp bending angle
biases are smallest with biases are around -0.5 prad. FY3D and FY3E-BDS bending angle biases rank the second with biases
around -0.1 prad. FY3E-GPS bending angles show distinctive much larger biases than the other three observations with values
varying around -0.4 prad, and most of these large biases are detected in rising events. Focusing on bending angle noises,
MetOp bending angle biases again are smallest with values varying around 1urad. FY3E-BDS bending angles rank the second,
with values varying around 1.5 prad. FY3D and FY3E-GPS, which are all GNOS-GPS receivers, show similar noises values
which are about 2.5 prad.

The statistical errors of optimized bending angles are also calculated. Both systematic differences and standard deviations of
Fengyun bending angles at high altitudes are significantly reduced compared to the ionosphere-corrected bending angle.
Furthermore, Fengyun optimized bending angle reveal larger correlations above 50 km. This all suggest that the optimized
bending angle are strongly affected by the background bending angle at high altitudes. Statistical errors of refractivity and
temperature are also calculated. Below 40 km, refractivity errors of all four observations are overall consistent. However,
above 40 km, MetOp refractivity still outperforms in SHSM, SHP, TRO regions. In the NHSM and NHP regions, Fengyun
refractivity outperforms. This may be caused by the strong weighting,given to the optimized bending angle in these two regions.
Similar situation were found in temperature statistical errors.

In conclusion, the ionosphere-corrected bending angles from Fengyun RO satellites exhibit promising quality below 40 km.
Above 40 km, however, both the biases and noises of Fengyun’s bending angles are larger than those of MetOp data. Notably,
FY3E-GPS bending angles exhibit distinct negative biases, The sources of these biases and noises may include three factors:
orbit determination errors, clock errors, or receiver noises/biases. Our future work plan includes further investigating and
quantifying the main causes of the large bending angle errors in Fengyun data at high altitudes. We also aim to develop an
empirical observation error model for the statistical optimization of Fengyun’s ionosphere-corrected bending angles. It is
expected that this work will further enhance the performance of Fengyun data in numerical weather prediction and climate

studies, particularly for stratospheric applications.

Code availability. The code used to produce the results of this study is available from the corresponding author upon qualified

request.

Data availability. These data can be downloaded from Fengyun satellite data service of CMA, and the link is below:

13

(mgepE: o

( BBR# A are

(MimRtRZ: were

[ MIKKBIAZE: in rising events.

B A2 From a review of current literature, however, we found
that Fengyun data already achieve highly accurate orbit determination
and clock performance. Therefore, residual biases and noises should
be the primary cause of the large errors in Fengyun’s bending angles
at high altitudes.




640

645

650

655

660

665

670

675

https://data.nsmc.org.cn/DataPortal/cn/home/index.html. The ICDRs data are available at the website of the official ROMSAF

website, and the link is as below: https://rom-saf.eumetsat.int/product_archive.php. The (numeric) data underlying the results

of this study are available from the corresponding author upon qualified request.
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Table 1. Quality control flags of RO atmospheric profiles

Quality Flags | Description

QF=0 All quality control passed

QF=1 Remove all profiles with bending angles larger than +40 prad or smaller than -40 prad
between 50 and 80 km height

QF=2 If absolute differences between ionosphere-corrected bending angle and ERA5
bending angles are larger than 100% in the height range of 35-50 km

QF=3 If relative difference between ionosphere-corrected bending angle and ERAS5 bending
angles are larger than 20% between 10 and 35 km.

QF=4 If RO bending angle bias is larger than its noise

QF=5 If RO bending angle noise is larger than 22 prad

QF=6 If relative refractivity difference is larger than 10% during the height range from 10-
35 km

QF=7 If temperature difference is larger than 10 K during the height range from 10-35 km

QF=8 If any of the above quality control is not passed
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Figure 9. Upper two rows: systematic differences (thin lines) and standard deviations (thick lines) of optimized bending
875  angle against ERA5 data during 14-16 August 2023 time period in the same six latitudinal bands as Figure 2. Bottom row:
correlation coefficients of optimized bending angle of FY3D, FY3E-GPS and METC observations.
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880 Figure 10. Systematic differences (thin lines) and standard deviations (thick lines) of ionosphere-corrected bending angle
against optimized bending angle during 14-16 August 2023 time period in the same six latitudinal bands as Figure 2.
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Figure 11. Systematic differences (thin lines) and standard deviations (thick lines) of refractivity (upper two rows) and
temperature (bottom two row) against ERA5 data during 14-16 August 2023 time period in the same six latitudinal bands as
885 Figure 2.
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