Supplementary materials

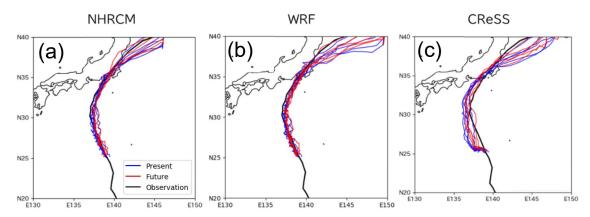


Figure S1 The track of Typhoon Hagibis as reproduced by (a) NHRCM02, (b) WRF, and (c) CReSS models. The blue (red) lines indicate the track from five present (future 4K) ensemble experiments and black line is best track.

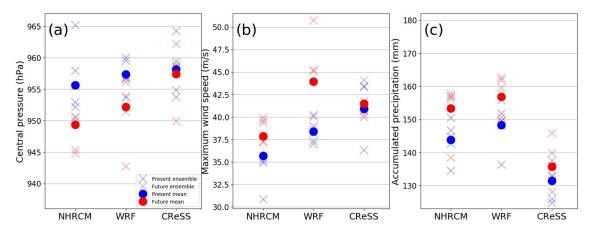
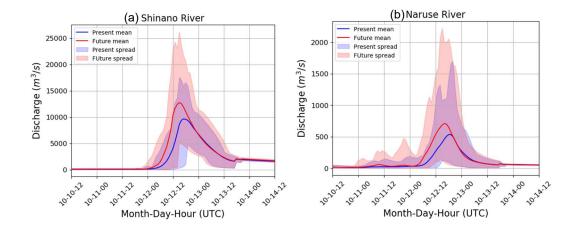



Figure S2 Same as Fig. 4, except for the results from the 2K experiment.

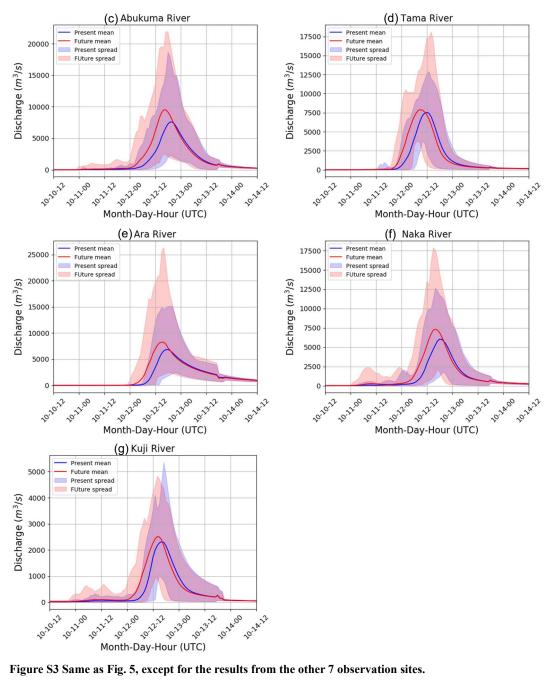


Figure S3 Same as Fig. 5, except for the results from the other 7 observation sites.

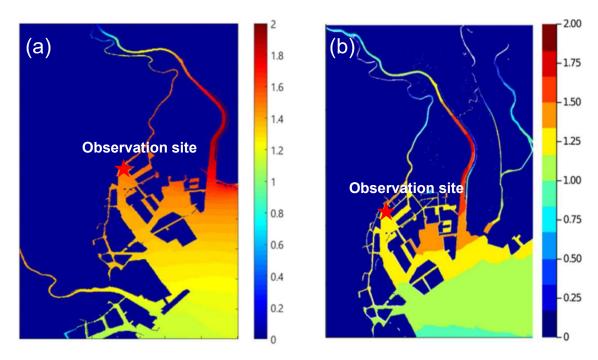


Figure S4 Spatial distribution of maximum tidal level deviation by storm surge models, (a) SuWAT and (b) GeoClaw based on 4K warming experiments with NHRCM using an initial condition.

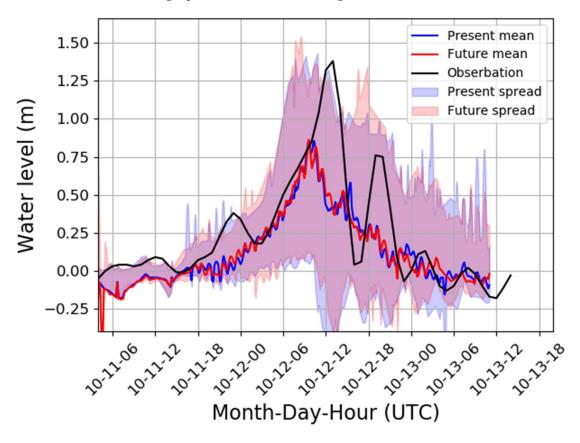


Figure S5 Same as Fig. 8, except for the results from the 2K experiment.

Table S1 Overview of the three meteorological models

	NHRCM	WRF	CReSS
Governing	Non-hydrostatic fully	Non-hydrostatic fully	Non-hydrostatic
equations	compressible model	compressible model	fully compressible
			model
Time Step	10s	10s	2-5s
Mapping	Lambert conformal	Lambert conformal	Lambert conformal
Vertical layer	Generalized hybrid (Ishida	Terrain-following, mass-	Terrain-following
	2007)	based, sigma-pressure	vertical coordinate
		vertical coordinate	
Vertical levels	50	56	50
Cumulus	Kain-Fritsch scheme	None	None
scheme	(NRCHM20 and NHRCM05)		
	and None (NHRCM02)		
PBL scheme	Improved Mellor-Yamada	Yonsei University nonlocal	Deardorff
	Level3 (Nakanishi and Niino		
	2004)		
Microphysics	Bulk-type microphysics	WRF single-moment 6-	Simple two-moment
	scheme with an ice phase	class microphysics scheme	three-ice bulk
	(Lin et al. 1983; Murakami		scheme
	1990)		
Ocean	Fixed SST	Fixed SST	Slab ocean model
coupling			
Land surface	MJ-SiB (Hirai and Oh'izumi	Five-layer thermal	Bulk scheme by
scheme	2004)	diffusion	Sagami et al. (1989)
Radiation	Clear-sky radiation scheme	New Rapid Radiative	Tsuboki and
scheme	(Yabu et al. 2005)	Transfer Model	Sakakibara (2002)
	Cloud radiation scheme		
	(Kitagawa 2000)		
Spectral	Yes	Yes	No
nudging			

Table S2 Overview of the three River Models (1K-DHM, RRI, and MATSIRO-CaMa-Flood

	1K-DHM	RRI	MATSIRO-CaMa-Flood	
			MATSIRO	CaMa-Flood
Boundary	Rainfall	Rainfall	Rainfall/Surface	Runoff

condition			pressure/Surface air	
Continuen			temperature/Relative	
			humidity/Wind	
			velocity/Downward	
			short and long waves	
Resolution	30 sec	5 sec	60 sec	60 sec
Topography	HydroSHEDS	J-FlwDir	-	J-FlwDir
Flood	Considered	Considered	_	None
control	Considered	Considered	-	None
Inundation	None	Overflow	_	Overflow
mundation	rvone	Slope schem	ne.	Overnow
Subsurface	1-D kinematic	2-D Diffusive wave	MATROF composed of	
runoff			_	_
runon	wave equation	equation with a q-h	baseflow, Dunne runoff and Horton runoff	
	with a q-h	relationship		
	relationship	proposed by	(TOPMODEL) and 1st	
	proposed by	Tachikawa et al.	soil layer runoff	
	Tachikawa et al.	(2004)		
	(2004)			
Infiltration	-	Green-Ampt model	Richards equation	-
Soil	Variable in q-h	Variable in q-h	Variable in MATROF	-
moisture	relationship	relationship		
ET	-	Optional (unused)	Considered in MATROF	-
River scheme				
River	1-D kinematic	1-D diffusive wave	-	1-D local inertial
scheme	wave equation	equation		equation with
				the cumulative
				distribution
				function of
				elevation
River	Rectangular	Rectangular/Real	-	Rectangular??
section		section		

Table S3 Overview of the two storm surge models (SuWAT and GeoCla)

	SuWAT	GeoClaw
Governing	nonlinear shallow water	nonlinear shallow water
equations		

Discretization	Finite difference method, staggered	finite volume method
	mesh	
Numerical	fixed grid, multi domain nesting	adaptive mesh refinement
method		
Lateral	Radiation	Radiation
boundary		
Spatial	2430, 810, 270, 90, 30	~38
resolution [m]		
Forcing	SLP, U10, V10	SLP, U10, V10
Bathymetry	Chubo (Central Cabinet) data	Chubo (Central Cabinet) data
Coastline	10-meter mesh data provided by the	10-meter mesh data provided by the
	Chubo (Central Cabinet), and levees	Chubo (Central Cabinet), and levees
	were not taken into account	were not taken into account

- Hirai, M., and Oh'izumi, M.: Development of a new land-surface model for JMA-GSM, Extended abstract of 20th Conference on Weather Analysis and Forecasting. In 16th Conference on NWP. P (Vol. 2), 2004.
- Ishida, J.: Development of a hybrid terrain-following vertical coordinate for JMA non-hydrostatic model, Mon. Wea. Rev, 134, 1266-1298, 2007.
- Kitagawa, H.: Radiation processes, Separate vol. ann. rep. NPD, 46, 16-31 (in Japanese), 2000.
- Lin, Y. L., Farley, R. D., and Orville, H. D.: Bulk parameterization of the snow field in a cloud model, Journal of Applied Meteorology and climatology, 22(6), 1065-1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2, 1983.
- Murakami, M.: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud The 19 July 1981 CCOPE cloud, Journal of the Meteorological Society of Japan. Ser. II, 68(2), 107-128, https://doi.org/10.2151/jmsj1965.68.2_107, 1990.
- Nakanishi, M., and Niino, H.: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification, Boundary-layer meteorology, 112, 1-31, https://doi.org/10.1023/B:BOUN.0000020164.04146.98, 2004,
- Sagami, H., Lennarz, W. J., and Ogura, K.: The biosynthesis of dehydrodolichyl phosphates by rat liver microsomes, Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1002(2), 218-224, https://doi.org/10.1016/0005-2760(89)90290-7, 1989.
- Tachikawa, Y., Nagatani, G., Takara, K.: Development of stage-discharge relationship equation incorporating saturated-unsaturated flow mechanism, Proceedings of hydraulic engineering, 48, 7-12, 2004.
- Tsuboki, K., and Sakakibara, A.: Large-scale parallel computing of cloud resolving storm simulator. In

International Symposium on High Performance Computing (pp. 243-259), Berlin, Heidelberg: Springer Berlin Heidelberg.FF, https://doi.org/10.1007/3-540-47847-7_21, 2002.

Yabu, S., Murai, S., and Kitagawa, H.: Clear sky radiation scheme, Sep. vol. ann. rep. NPD, 51, 53–64 (In Japanese), 2005.