
Li et al. combine multiple spaceborne A-Train sensors to investigate aerosol–cloud 
interactions (ACI). They assess the susceptibility of cloud droplet number concentration 
(Nd) and liquid water path (LWP), derived from MODIS, to aerosol extinction coefficients 
retrieved at cloud level from CALIPSO. They also examine the relationship between aerosol 
extinction coefficients and the occurrence of precipitation using CloudSat observations. 
The effort to relate aerosol properties at cloud level with cloud characteristics on a global 
scale is scientifically significant. However, the implementation of this study contains 
several methodological shortcomings that have been extensively documented in previous 
literature and should be carefully considered when correlating optical aerosol properties 
with cloud parameters. 

In the introduction, the authors appropriately highlight several known limitations of using 
AOD or AI in ACI studies: 

• Lines 41–43: This is because AOD (or aerosol index) does not uniquely represent 
aerosol concentration or CCN concentration, as variations in aerosol composition, 
particle size distribution, and optical properties can yield the same AOD for different 
aerosol concentrations. 

• Lines 43–44: A second limitation is the inability to disentangle the contributions of 
different aerosol layers to the total AOD, which prevents any meaningful vertical 
collocation between aerosol and cloud layer. 

• Lines 58–60: Moreover, enhanced aerosol swelling, cloud contamination, and three-
dimensional radiative effects can affect the collocated satellite AOD pixels near 
cloud edges (Varnai and Marshak, 2009). 

Given these acknowledgments and the manuscript’s title, one would expect substantive 
progress in addressing these limitations. However, only the issue of vertical collocation has 
been considered, following their previous work (Paneimal et al., 2020). Other important 
sources of uncertainty, such as variations in aerosol type and size distribution and the 
influence of aerosol hygroscopic growth, are equally relevant for CALIPSO-derived 
extinction profiles. These factors are either neglected, deemed insignificant without 
sufficient justification, or, surprisingly, suggested to be not important for future ACI studies 
in the discussion section. 

I have several major concerns, primarily regarding the aerosol and cloud sampling criteria 
employed in this analysis. These include the inappropriate inclusion of precipitating clouds 
in the computation of Nd susceptibility, the use of aerosol properties from highly humid 
regions adjacent to clouds, the restriction to broken-cloud 25 km X 25 km scenes for 
estimating LWP susceptibility, and the fine spatial aggregation applied in the analysis. Each 



of these issues could significantly affect the derived sensitivities and should be carefully 
revisited. Addressing these points is essential for the manuscript to substantiate its claim 
of advancing the assessment of aerosol–cloud interactions.  

Major Comments: 

1. Line 145: The authors limit the 25 by 25 km cloud fraction (CF) to 90% to exclude 
cases where aerosols are fully embedded within cloudy regions, on the premise that 
such situations are affected by aerosol swelling due to hygroscopic growth at high 
relative humidity (RH). However, this filtering does not adequately ensure that 
hygroscopic growth is properly accounted for. Aerosol retrievals in direct contact 
with cloudy pixels (likely cloud-contaminated pixels) can still be significantly 
influenced by hygroscopic growth effects, irrespective of CF. As demonstrated in 
Christensen et al. (2017), this can lead to artificially enhanced correlations between 
Nd and AOD or AI. Since the cloud-level aerosol extinction coefficients are 
considered in the present manuscript, where the RH effect is likely significant, the 
derived susceptibilities may be biased.  
 
I recommend redoing the calculations after omitting aerosol retrievals in pixels 
directly adjacent to cloudy columns irrespective of total CF. This will also address 
another issue in computing dlnLWP/dlnNd (see next paragraph). This approach has 
been adopted in several recent ACI studies using satellite-derived AI to estimate Nd 
susceptibility (e.g., Jia et al., 2022). Alternatively, aerosol retrievals can be filtered 
using an RH threshold (e.g., only including retrievals where RH < 70-80%), within 
which hygroscopic growth is limited for both continental and marine aerosol types. 
RH values can be obtained from the operational CALIPSO product (which includes 
interpolated meteorological parameters) or directly from reanalysis datasets such 
as ERA5 or MERRA-2. This is a fundamental consideration in satellite-based ACI 
studies and should not be overlooked, particularly in a study aiming to advance 
current estimates of Nd susceptibility. 
 
Furthermore, the decision to omit cloud retrievals with CF > 90% (within 25 × 25 km 
scenes) when computing dlnLWP/dlnNd is not justified. Both LWP and Nd are 
derived from MODIS cloud retrievals, which tend to be more reliable in overcast 
cloud fields due to their higher spatial homogeneity. Such conditions better satisfy 
the plane-parallel cloud approximation, and consequently, three-dimensional 
radiative effects are minimized (Zhang and Platnick, 2011). I recommend removing 
the CF filtering from Nd-LWP susceptibility calculations.  
 



2. Lines 236–237: The authors state, “Indeed, global ACI for non-precipitating (Zmax < 
–15 dBZ) and precipitating (Zmax > –15 dBZ) segments is 0.13 and 0.08, 
respectively.” It is unclear how this information can be inferred from Fig. 5. I assume 
that the authors averaged the ACI indices over grid points with the minimum or 
maximum probability of precipitation (POP). If this interpretation is correct, further 
clarification is necessary on how this separation was implemented and statistically 
represented in the figure. Based on this assumption, I have an additional related 
comment below. 
 

3. Another fundamental issue not addressed in this study is the inclusion of 
precipitating clouds in the calculation of the ACI index or Nd susceptibility, which 
leads to two key issues. First, precipitating clouds introduce significant uncertainty 
in Nd retrievals, as the assumption of adiabaticity no longer holds. Second, 
collision-coalescence reduces Nd independent of aerosol loading, thereby 
distorting the aerosol–cloud relationship. The inclusion of precipitating scenes can 
lead to a non-causal positive bias in Nd susceptibility of approximately 21% (Jia et 
al., 2022). Since the authors already utilize CloudSat observations to identify 
precipitating clouds, it would be straightforward to exclude precipitating clouds 
from the analysis and recompute Nd susceptibility accordingly. 
 

4. Since the authors use LWP and Nd from MODIS following a similar approach to 
previous studies (e.g., Gryspeerdt et al., 2019), the primary differences between 
their results and those in the literature appear to stem from the finer aggregation 
scale (25 km × 25 km instead of 100 km × 100 km) and the exclusion of pixels with 
CF > 90%. One concern here is the use of such a fine grid size. A 25 km × 25 km 
domain may not be sufficiently large to capture the structural or morphological 
variability within cloud systems over oceans. While cloud-top Nd tends to be 
relatively homogeneous in non-precipitating clouds, as it is primarily governed by 
the initially activated CCN population, the situation is different for LWP. Within a 
cloud, LWP typically peaks in the core regions and decreases toward the periphery, 
leading to substantial intra-cloud heterogeneity. This variability becomes even more 
pronounced in precipitating clouds. So, for similar Nd, we can have two different 
LWP, because of the cloud morphology, not directly because of aerosols. It is 
unclear how these in-cloud variations are accounted for in the current analysis, and 
clarification on this point is necessary to assess the robustness of the derived 
susceptibilities. 
 



5. Line 319: The authors state that “future analyses should be framed in terms of the 
ambient aerosol extinction coefficient.” It is unclear how this recommendation is 
justified, given that aerosol hygroscopic growth is known to bias Nd susceptibility 
estimates. Numerous previous studies have recognized and explicitly accounted for 
this effect (e.g., Christensen et al., 2017; Hasekamp et al., 2019; Jia et al., 2022; 
Quaas et al., 2020). The authors should clarify the rationale behind this suggestion. 

Minor comments: 

6. Line 26: “Observational estimates …” instead of “Estimates”? 
7. Lines 48-49: Do you mean the “updraft limited regime” (Reutter et al., 2009)? 
8. Line 64: Citing the authors: “Regrettably, the application of spaceborne lidar 

observations to the ACI computation is still surprisingly lacking.” This is not entirely 
true. Alexandri et al. (2024) combined CALIPSO-derived CCN concentrations with 
Nd from geostationary observations in a sophisticated cloud-by-cloud framework 
using an advanced cloud tracking and matching algorithm. 

9. Line 106: Which wavelength was used for the effective radius and why? Did the 
authors apply the condensation rate temperature correction based on Gryspeerdt et 
al. (2019) when calculating Nd? 

10. Which correlation coefficient is shown in Figures 2 and 3? Please mention it in the 
caption. I recommend the pearson’s correlation coefficient. If the authors prefer 
spearman, please provide the figures with pearson’s correlation coefficient in the 
supplementary. 

11. Figure 4: How do the authors interpret negative dlnNd/dlnEXT 
12. Line 262: dlnLWP/dlnNd is also affected by sampling bias due to missing cloud 

properties in MODIS as a result of retrieval failure, particularly the positive 
dlnLWP/dlnNd response (Choudhury and Goren, 2025). 

13. I suggest the authors provide a supplementary figure showing 
dlnNd/dln(EXTsurface) and dlnNd/dln(AOD)? 

14. A general observation from Figures 4 and 9 is low or negative ACI index over pristine 
oceans. Can the authors comment on why this could happen in both CALIPSO and 
MODIS retrievals? 
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