Supplement to: FRIDA-Clim v1.0.0: a Simple Climate Model with Process-Based Carbon Cycle used in the FRIDAv2.1 IAM

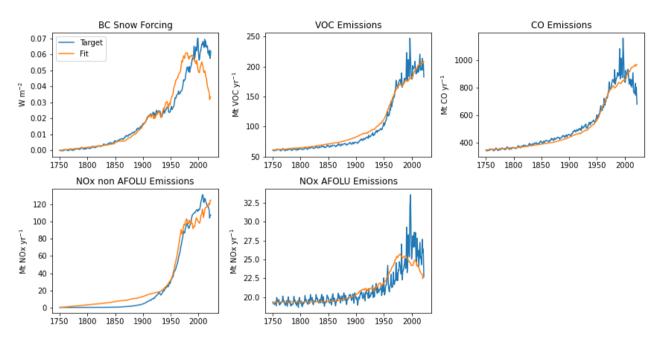


Figure S1: Regression predictions of NO_x, VOC, and CO emissions, and the BC Snow forcing; see Section 2.1 for details.

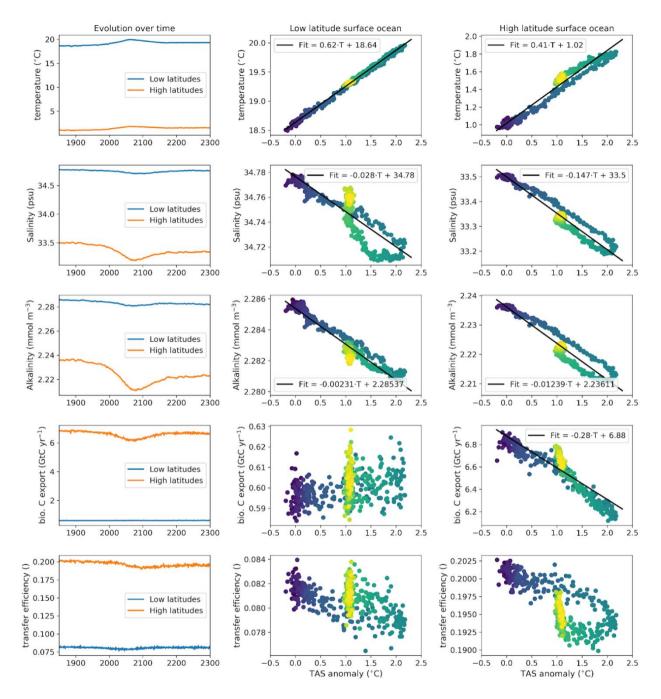


Figure S2: Analysis of MPI-ESM1.2-LR emission-driven simulations of the SSP5-3.4-over scenario used to inform the ocean carbon module in FRIDA. Each row represent a different quantity (from top to bottom): surface ocean temperature, surface ocean salinity, surface ocean alkalinity (all averaged over the upper 90 m of the ocean), downward export of biological carbon out of the surface layer and fraction of carbon that is exported below 1000 m depth (transfer efficiency). The left column shows the evolution

of the MPI-ESM1.2-LR data as time series, and the middle and right columns show their relationship to the global mean temperature anomaly for the low and high latitude surface ocean respectively. A regression line is plotted for those quantities that are parameterized via a linear temperature relationship in FRIDA-Clim. Data taken from https://esgf-metagrid.cloud.dkrz.de/search; for more information see https://cmiphub.cloud.dkrz.de/esgf-projects/mpi-edriven-le.php and Li et al., (2023).

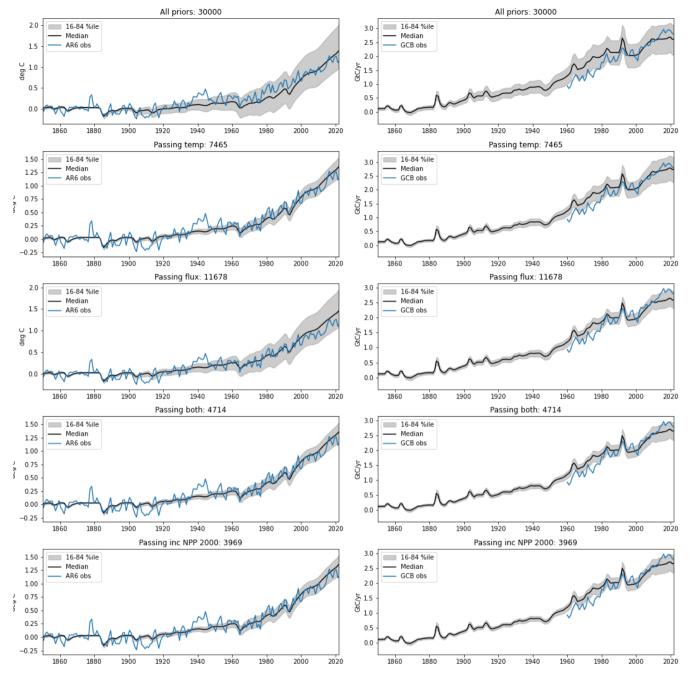


Figure S3: The initial constraints applied to the 30,000 member priors in FRIDA-Clim, and their effects on the ensemble GMST (left) and air-sea CO_2 flux (right). The prior ensemble (top row) is reduced to 7,000-11,000 members when the GMST and air-sea CO_2 flux constraints are applied separately (2nd and 3rd rows), and just over 4,500 when applied together (4th row). The single-year NPP constraint further reduces this to 3,969 members, completing the initial constraints step (bottom row).

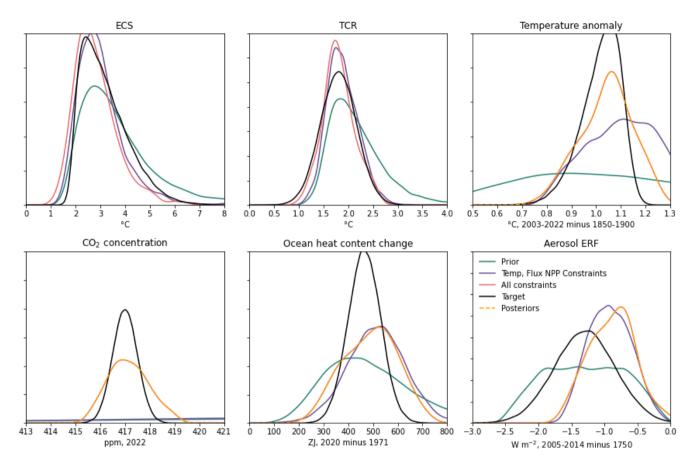


Figure S4: The application of the distributional constraints to the FRIDA-Clim ensemble. Shown are the distributions of the variables used in the constraining process (Figure 4), for the target reference distributions, the 30,000 priors, the 3,969 members passing the initial constraints, the 100 members selected in this distributional constraining step, and the results of running these 100 members through FRIDA-Clim again to verify their consistency.

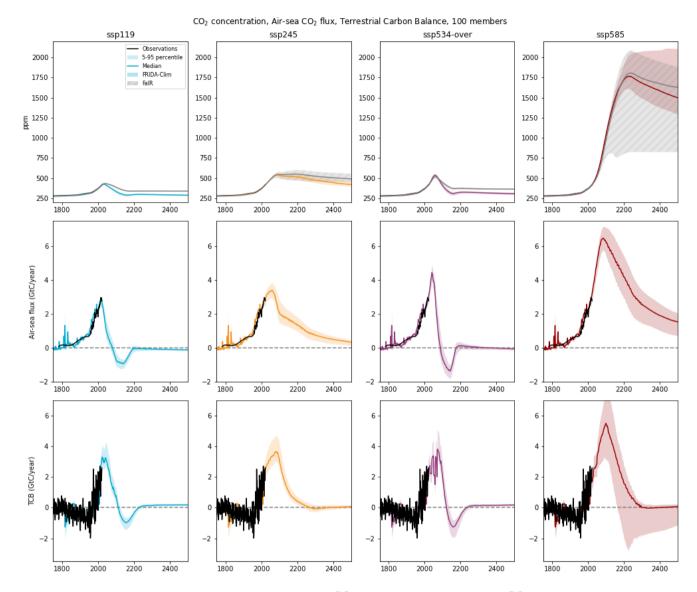


Figure S5: As for the top row of Figure 6, instead showing CO_2 concentration (top), air-sea CO_2 flux (middle), and terrestrial carbon balance (bottom), along with observations for each (Smith et al., (2024) for CO_2 , and Friedlingstein et al., (2025) for the carbon fluxes). Note that this data is produced with a version of FRIDA-Clim calibrated to RCMIP emissions (see main text).

Variable Name	Units	Treatment within climate calibration
Energy Balance Model Parameters		

Energy Balance Model.Heat Capacity of Land & Ocean Surface	W yr ⁻¹ metre ⁻² K ⁻¹	Sampled based on 4xCO ₂ Earth System Model data as in Smith, Cummins, et al., (2024).
Energy Balance Model.Heat Capacity of Thermocline Ocean	W yr ⁻¹ metre ⁻² K ⁻¹	"
Energy Balance Model.Heat Capacity of Deep Ocean	W yr ⁻¹ metre ⁻² K ⁻¹	"
Energy Balance Model.Deep Ocean Heat Uptake Efficacy Factor	Dimensionless	"
Energy Balance Model.Heat Transfer Coefficient between Land & Ocean Surface and Space	W metre ⁻² K ⁻¹	
Energy Balance Model.Heat Transfer Coefficient between Surface and Thermocline Ocean	W metre ⁻² K ⁻¹	"
Energy Balance Model.Heat Transfer Coefficient between Thermocline Ocean and Deep Ocean	W metre ⁻² K ⁻¹	"
Radiative Forcing Parameters		
CO ₂ Forcing.Atmospheric CO ₂ Concentration 1750 *	ppm	Sampled as in Smith, Cummins, et al., (2024).
Aerosol Forcing.Scaling Aerosol Cloud Interactions Effective Radiative Forcing scaling factor	W metre ⁻²	"
Aerosol Forcing.Logarithmic Aerosol Cloud Interactions Effective Radiative Forcing scaling	1/(MtSO ₂ yr ⁻¹)	"

factor		
Aerosol Forcing.Effective Radiative Forcing from Aerosol Radiation Interactions per unit SO ₂ Emissions	(W metre ⁻²))/(MtSO ₂ yr ⁻¹)	
CH ₄ Forcing.Calibration scaling of CH ₄ forcing	Dimensionless	"
N ₂ O Forcing.Calibration scaling of N ₂ O forcing	Dimensionless	
Minor GHGs Forcing.Calibration scaling of Minor GHG forcing	Dimensionless	"
Stratospheric Water Vapour Forcing.Calibration scaling of Stratospheric H2O forcing	Dimensionless	"
BC on Snow Forcing.Calibration scaling of Black Carbon on Snow forcing	Dimensionless	
Land Use Forcing.Calibration scaling of Albedo forcing	Dimensionless	
Land Use Forcing.Calibration scaling of Irrigation forcing	Dimensionless	Sampled as a skewnorm distribution to match Forster et al., (2021) estimates of -0.05 (-0.10 to 0.05) W/m2 in the present-day.
Natural Forcing.Calibration scaling of Volcano forcing	Dimensionless	Sampled as in Smith, Cummins, et al., (2024).
CO ₂ Forcing.Calibration scaling of CO ₂ forcing	Dimensionless	"
Natural Forcing.Amplitude of Effective Radiative Forcing from Solar Output Variations	Dimensionless	
Natural Forcing.Linear trend in Effective Radiative Forcing from Solar Output Variations	W metre ⁻² yr ⁻¹	

Ozone Forcing.Ozone forcing per unit CH ₄ concentration change	W metre ⁻² ppb ⁻¹	"
Ozone Forcing.Ozone forcing per unit N ₂ O concentration change	W metre ⁻² ppb ⁻¹	
Ozone Forcing.Ozone forcing per unit Montreal gases equivalent effective stratospheric chlorine concentration change	W metre ⁻² CFC11eq ⁻¹	
Ozone Forcing.Ozone forcing per unit CO emissions change	(W metre ⁻²)/(Mt CO yr ⁻¹)	
Ozone Forcing.Ozone forcing per unit VOC emissions change	(W metre ⁻²)/(MtVOC yr ⁻¹)	
Ozone Forcing.Ozone forcing per unit NO _x emissions change	(W metre ⁻²)/(MtNO _x yr ⁻¹)	
Ocean Parameters		
Ocean.Depth of warm surface ocean layer *	Metres	Uniformly sampled in the ocean spinup between 50 and 500.
Ocean.Thickness of intermediate ocean layer *	Metres	Uniformly sampled in the ocean spinup between 300 and 1000.
Ocean.Depth of cold surface ocean layer *	Metres	Uniformly sampled in the ocean spinup between 50 500.
Ocean.Reference overturning strength in Sv *	Sverdrup	Uniformly sampled in the ocean spinup between 10 and 30.
Ocean.Reference intermediate to warm surface ocean mixing strength *	Sverdrup	Uniformly sampled in the ocean spinup between 50 and 90.
Ocean.Reference cold surface to deep ocean	Sverdrup	Uniformly sampled in the ocean spinup

mixing strength *		between 10 and 30.
Ocean.Reference strength of biological carbon pump in low latitude ocean *	GtC yr ⁻¹	Uniformly sampled in the ocean spinup between 0 and 3.
Ocean.Reference strength of biological carbon pump in high latitude ocean *	GtC yr ⁻¹	Uniformly sampled in the ocean spinup between 4 and 12.
Ocean.High latitude carbon pump transfer efficiency *	Dimensionless	Uniformly sampled in the ocean spinup between 0.1 and 0.5.
Ocean.Warm surface ocean alkalinity sensitivity to global T anomaly	K-1	Uniformly sampled in the historical prior ensemble between -4E-6 and -1E-6.
Ocean.Cold surface ocean alkalinity sensitivity to global T anomaly	K-1	Uniformly sampled in the historical prior ensemble between -3E-5 and -5E-6.
Ocean.High latitude carbon pump sensitivity to global T anomaly	GtC yr ⁻¹ K ⁻¹	Uniformly sampled in the historical prior ensemble between -0.5 and 0.
Ocean.Warm surface ocean temperature sensitivity to global T anomaly	Dimensionless	Uniformly sampled in the historical prior ensemble between 0.4 and 1.0.
Ocean.Cold surface ocean temperature sensitivity to global T anomaly	Dimensionless	Uniformly sampled in the historical prior ensemble between 0.3 and 1.0.
Ocean.Warm surface ocean salinity sensitivity to global T anomaly	K-1	Uniformly sampled in the historical prior ensemble between -0.04 and -0.01- co-varying with the warm surface alkalinity sensitivity.
Ocean.Cold surface ocean salinity sensitivity to global T anomaly	K ⁻¹	Uniformly sampled in the historical prior ensemble between -0.3 and -0.05 - co-varying with the warm surface

		alkalinity sensitivity.
Land model parameters (FRIDA-Clim only)		
Crop.normal harvest index for food crops**	Dimensionless	Uniformly sampled in the spinup between 0.4 and 0.45.
Crop.sensitivity of effect of crop yield on harvest index**	Dimensionless	Uniformly sampled in the spinup between 0.05 and 0.1.
Crop.crop yield 1980 reference**	PCal Mha ⁻¹ yr ⁻¹	Uniformly sampled in the spinup between 5.5 and 6.5.
Crop.harvest index for feed crops**	Dimensionless	Uniformly sampled in the spinup between 0.5 and 0.8.
Crop.sensitivity of effect of crop residue production on field fraction**	Dimensionless	Uniformly sampled in the spinup between 0 and 0.75.
soil carbon decay.cropland litter input share slow soil carbon**	Dimensionless	Uniformly sampled in the spinup between 0.01 and 0.03.
soil carbon decay.grassland litter input share slow soil carbon**	Dimensionless	Uniformly sampled in the spinup between 0.01 and 0.03.
soil carbon decay.mature forest litter input share slow soil carbon**	Dimensionless	Uniformly sampled in the spinup between 0.015 and 0.035.
soil carbon decay.young forest litter input share slow soil carbon**	Dimensionless	Uniformly sampled in the spinup between 0.01 and 0.035.
soil carbon decay.natural decay rate fast soil carbon**	yr ⁻¹	Uniformly sampled in the spinup between 0.025 and 0.035.
soil carbon decay.natural decay rate litter carbon**	yr ⁻¹	Uniformly sampled in the spinup between 0.6 and 0.8.

soil carbon decay.natural decay rate slow soil carbon**	yr ⁻¹	Uniformly sampled in the spinup between 0.0008 and 0.0012.
soil carbon decay.e0**	К	Uniformly sampled in the spinup between 290 and 300.
soil carbon decay.temp_response**	К	Uniformly sampled in the spinup between 55 and 60.
degraded land soil carbon.degraded land productivity reduction factor**	Dimensionless	Uniformly sampled in the spinup between 0.01 and 0.1.
Land Use.forest recovery time**	yr	Uniformly sampled in the spinup between 50 and 70.
Forest.tree net primary production in 1750**	GtC Mha ⁻¹ yr ⁻¹	Uniformly sampled in the spinup between 0.005 and 0.0095.
Grass.grass net primary production in 1750**	GtC Mha ⁻¹ yr ⁻¹	Uniformly sampled in the spinup between 0.0035 and 0.005.
Forest.forest aboveground biomass 1750**	GtC	Uniformly sampled in the spinup between 500 and 700.
Land Use.Initial young forest area**,a	Mha	Uniformly sampled in the spinup between 50 and 300.
Forest. Young mature forest biomass ratio**,a	Dimensionless	Uniformly sampled in the spinup between 0.3 and 0.7.
Forest.CO ₂ tree net primary production parameter	ppm ⁻¹	Uniformly sampled in the historical prior ensemble between 0.0008 and 0.0012.
Forest.STA maximum aboveground biomass per area parameter	K-1	Uniformly sampled in the historical prior ensemble between 0.3 and 0.5.

Forest.STA squared maximum aboveground biomass per area parameter	K-2	Uniformly sampled in the historical prior ensemble between -0.05 and -0.02.
Forest.STA squared tree net primary production parameter	K-2	Uniformly sampled in the historical prior ensemble between -0.05 and -0.01.
Forest.STA tree net primary production parameter	K-1	Uniformly sampled in the historical prior ensemble between 0.1 and 0.15.
Grass.CO ₂ grass net primary production parameter	ppm ⁻¹	Uniformly sampled in the historical prior ensemble between 0.0008 and 0.0012.
Grass.STA grass net primary production parameter	K-1	Uniformly sampled in the historical prior ensemble between 0.1 and 0.15.
Grass.STA squared grass net primary production parameter	K-2	Uniformly sampled in the historical prior ensemble between -0.05 and -0.1.
Crop.harvest index for energy crops	Dimensionless	Uniformly sampled in the historical prior ensemble between 0.6 and 0.95.

Table S1: the parameters varied within the model calibration, along with their units and some summary information on their treatment within the procedure. Also listed are the output stocks from the Climate Module calibration to FRIDAv2.1. *The 10 parameters varied in the ocean spinup in the Climate Module. **The 21 land parameters additionally varied in the FRIDA-Clim spinup. *These two forest parameters are varied in the FRIDA-Clim spinup, but redundant in the priors due to the use of the young and mature forest area and biomass stocks. See the Code Availability section for the calibration procedure code.

Parameter name in main text	Units	Value in FRIDA-Clim v1.0.0
$f_1^{CO_2}$	W m ⁻²	4.57
$f_3^{CO_2}$	W m ⁻² ppm ^{-1/2}	0.086
$f_3^{CH_4}$	W m ⁻² ppb ^{-1/2}	0.038
$f_3^{N_2O}$	W m ⁻² ppb ^{-1/2}	0.106
A_{oceans}	m	3.6×10 ¹⁴
F^i	dimensionless	0.85 / 0.15 for warm / cool ocean

f_1^{ACI}	Aerosol Forcing.Scaling Aerosol Cloud Interactions Effective Radiative Forcing
	scaling factor
f_1^{ARI}	Aerosol Forcing.Logarithmic Aerosol Cloud Interactions Effective Radiative
	Forcing scaling factor
F_{SO_2}	Aerosol Forcing.Effective Radiative Forcing from Aerosol Radiation Interactions
	per unit SO ₂ Emissions
a	Forest.STA tree net primary production parameter;
	Grass.STA grass net primary production parameter
b	Forest.STA squared tree net primary production parameter;
	Grass.STA squared grass net primary production parameter
С	Forest.CO ₂ tree net primary production parameter;
	Grass.CO ₂ grass net primary production parameter
d	Forest.STA maximum aboveground biomass per area parameter
e	Forest.STA squared maximum aboveground biomass per area parameter
e_0	soil carbon decay.e0
R	soil carbon decay.temp_response

Table S2: units and values of parameters referred to in the main text. Non-constant parameters are referred to their model names in Table S1.

Full Model Calibration Variable	Calibration Data Source
CO ₂ Emissions	See Table 1
CO ₂ Emissions from Energy	"
CO ₂ Emissions from Food and Land Use	"
N ₂ O Emissions from Food and Land Use	"
N ₂ O Emissions from Other	"
N ₂ O Emissions from Energy	"
CH ₄ Emissions from Energy	ч

CH ₄ Emissions from Food and Land Use	··
CH ₄ Emissions from Other	u .
SO ₂ Emissions from Energy	u .
SO ₂ Emissions from Food and Land Use	"
HFC134a-eq Emissions	
CO Emissions	CEDS v2024_07_08 plus GFED BB4CMIP. (Hoesly et al., 2024; van Marle et al., 2017)
VOC Emissions	u .
NO _x non AFOLU Emissions	CEDS sectors 1, 2, 5, 6, and 7.
NO _x AFOLU Emissions	CEDS sector 3, plus GFED.
Total CH ₄ Emissions	Summed over sectors.
Total CO ₂ Emissions	
Total SO ₂ Emissions	· ·
Total N ₂ O Emissions	
Total NO _x Emissions	
CO ₂ Effective Radiative Forcing	Indicators of Global Climate Change (Smith, Walsh, et al., 2024)
CH ₄ Effective Radiative Forcing	
N ₂ O Effective Radiative Forcing	
Atmospheric CO ₂ Concentration	· ·
Atmospheric N ₂ O Concentration	··
Atmospheric CH ₄ Concentration	

Energy Balance Model.Surface Temperature	"
Anomaly	

Table S3: the variables associated with the Climate Module which are included within the full model calibration, and their data sources. See Code Availability for code containing full details and procedure.

References

60

- Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame, D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M., & Zhang, H. (2021). The Earth's Energy Budget, Climate Feedbacks, and Climate Sensitivity. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group
 I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 923–1054). Cambridge University Press. https://doi.org/10.1017/9781009157896.009
 - Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., Le Quéré, C., Li, H., Luijkx, I.
 T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R.
 B., Alin, S. R., ... Zeng, J. (2025). Global Carbon Budget 2024. Earth System Science Data, 17(3), 965–1039. https://doi.org/10.5194/essd-17-965-2025
 - Hoesly, R., Smith, S. J., Prime, N., Ahsan, H., Suchyta, H., O'Rourke, P., Crippa, M., Klimont, Z., Guizzardi, D., Behrendt, J., Feng, L., Harkins, C., McDonald, B., Mott, A., McDuffie, A., Nicholson, M., & Wang, S. (2024). CEDS v 2024 07 08 Release Emission Data. Zenodo. https://doi.org/10.5281/zenodo.12803197
- Li, H., Ilyina, T., Loughran, T., Spring, A., & Pongratz, J. (2023). Reconstructions and predictions of the global carbon budget with an emission-driven Earth system model. *Earth System Dynamics*, *14*(1), 101–119. https://doi.org/10.5194/esd-14-101-2023
 - Smith, C., Cummins, D. P., Fredriksen, H.-B., Nicholls, Z., Meinshausen, M., Allen, M., Jenkins, S., Leach, N., Mathison, C., & Partanen, A.-I. (2024). fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections. *Geoscientific Model Development*, 17(23), 8569–8592. https://doi.org/10.5194/gmd-17-8569-2024
 - Smith, C., Walsh, T., Gillett, N., Hall, B., Hauser, M., Krummel, P., Lamb, W., Lamboll, R., Lan, X., Muhle, J., Palmer, M., Ribes, A., Schumacher, D., Seneviratne, S., Trewin, B., von Schuckmann, K., & Forster, P. (2024). ClimateIndicator/data: Indicators of Global Climate Change 2023 revision 2 . Zenodo. https://doi.org/10.5281/zenodo.11388387
- vlon Marle, M. J. E., Kloster, S., Magi, B. I., Marlon, J. R., Daniau, A.-L., Field, R. D., Arneth, A., Forrest, M., Hantson, S., Kehrwald, N. M., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Yue, C., Kaiser, J. W., & van der Werf, G. R. (2017). Historic

global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). *Geoscientific Model Development*, 10(9), 3329–3357. https://doi.org/10.5194/gmd-10-3329-2017