

1 Spatiotemporal Variability and Environmental Controls on Aquatic Methane Emissions in an Arctic
2 Permafrost Catchment

3 Michael W. Thayne¹, Karl Kemper^{1,2}, Christian Wille¹, Aram Kalhori¹, & Torsten Sachs^{1,3}

4 ¹ GFZ Helmholtz Centre for Geosciences, Potsdam, Germany

5 ² Department of Geosciences, University of Cologne, Cologne, Germany

6 ³ Institute of Geoecology, Technical University of Braunschweig, Braunschweig, Germany

7 Correspondence email: Michael W. Thayne (m_thayne@me.com)

8 Abstract

9 Understanding spatiotemporal dynamics and drivers of methane (CH_4) fluxes from rapidly changing
10 permafrost regions is critical for improving our understanding of such changes. Between May and
11 August 2023 and 2024, we measured CH_4 using floating chambers in a small Arctic permafrost
12 catchment on Disko Island, Greenland. Fluxes were derived from 707 chamber measurements using
13 a semi-automated algorithm incorporating boosted regression trees and generalized additive
14 models. Highest fluxes occurred in streams and along lakeshores associated with inlets. Diffusive
15 fluxes dominated (~98% of observations), while only ~1% of chamber deployments exhibited non-
16 linear concentration increases indicative of ebullition, while the other ~1% were attributed to
17 uptake. Median diffusive fluxes were $5.0 \text{ nmol m}^{-2}\text{s}^{-1}$, (-0.1 to 271.8), peaking at ice-break. Ebullition
18 had a median of $939 \text{ nmol m}^{-2}\text{s}^{-1}$ (5.2 - 14,893), but did not impact overall fluxes. Model results
19 suggest that thaw-season CH_4 fluxes were initially driven by meteorological conditions and
20 catchment soil conditions, but shifted rapidly—within approximately one week after ice-off—to
21 biogeochemical controls, including dissolved organic matter, oxygen saturation, and pH.

22 1 Introduction

23 Permafrost regions across the Arctic store substantial amounts of carbon. Climate warming
24 is rapidly changing permafrost regions and consequently their carbon storage dynamics, creating a
25 critical climate feedback mechanism (Schuur et al., 2015; Miner et al., 2022). At current warming
26 rates, models project approximately 77% of shallow permafrost will be lost by 2100 (Fox-Kemper et
27 al. 2021), suggesting large implications for the global carbon budget and how carbon emissions are
28 distributed across permafrost landscapes. The underlying issue is that thawing permafrost can
29 release previously frozen organic matter, delivering labile nutrients to soil microbes which accelerate
30 the decomposition of soil organic carbon as a result of their metabolic processes (Schuur et al., 2015;
31 Keskitalo et al., 2021; Olefeldt et al., 2021). Subtle changes in microbial processes in soils can
32 enhance positive feedback mechanisms which compounds atmospheric warming. Lateral movement
33 of water through active layer soils is a critical pathway for CH_4 emissions from surface waters (Street
34 et al., 2016; Olid et al., 2021, 2022; Fazi et al., 2021). Hydrological and catchment system dynamics in
35 particular play a critical role in distributing dissolved carbon throughout permafrost environments.
36 Catchment systems, such as thermokarst lakes and wetlands, have been shown to be “hotspots” for
37 CH_4 release, where daily emission rates between 10 and $200 \text{ mg m}^{-2}\text{d}^{-1}$ have been reported (Walter
38 Anthony et al., 2018; Elder et al., 2020). However, while localized high emissions have been
39 reported, the overall contribution of Arctic and permafrost freshwater bodies to global methane
40 budgets is fairly low at 2-6% when compared to other ecoregions such as the tropics at 64%
41 (Bastviken et al., 2004; Saunois et al., 2025; Virkkala et al., 2024). Nonetheless, with such drastic
42 change expected, well designed field studies exploring which processes are the most important for

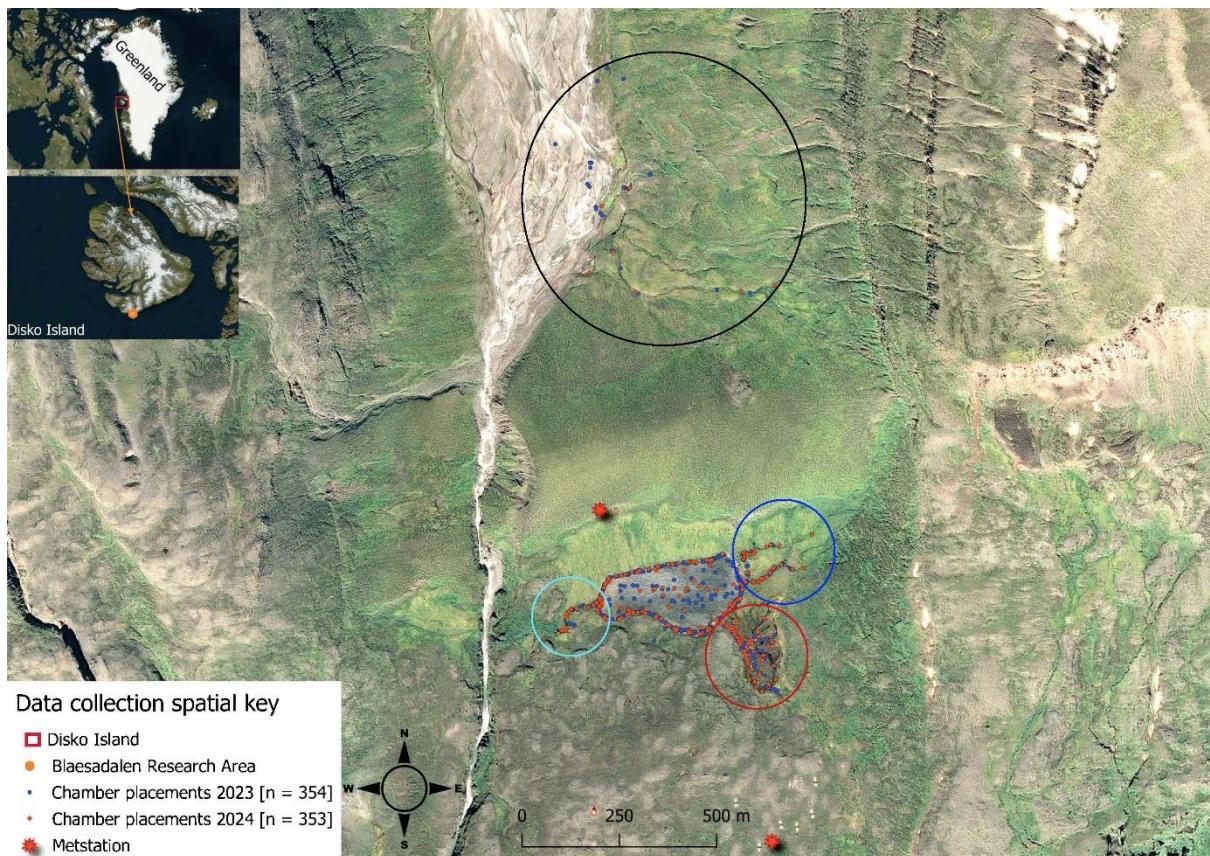
43 governing CH₄ emissions from permafrost regions, are critical data sources for validating climate
44 models and simulations (Bartsch et al. 2025).

45 Carbon dynamics in permafrost regions have been shown to be governed by interactions
46 between soil, vegetation, hydrology, and atmospheric processes (Walter Anthony et al., 2012;
47 Virkkala et al., 2024; Yuan et al., 2024; Kleber et al. 2025). Located on the central-west coast of
48 Greenland, Qeqertarsuaq, also known as Disko Island, has become an important data point for
49 understanding environmental interactions which govern Arctic tundra carbon dynamics. The island
50 provides a natural laboratory for observing interactions between permafrost, vegetation, microbial
51 activity and aquatic ecosystems (Humlum, 1998; Humlum et al., 1999; Callaghan et al., 2011;
52 Christiansen et al., 2015; D'Imperio et al., 2017). Previous work from the study area has suggested
53 shifting hydrology, historic permafrost thaw, nutrient cycling, and microbial activity in the active and
54 permafrost layers as possible drivers of CH₄ fluxes from surface water bodies (Zastruzny et al., 2017;
55 Kluge et al., 2021; Stevenson et al., 2021; Juncher Jørgensen et al., 2024). These studies highlight the
56 interconnectedness of terrestrial and aquatic ecosystems, and the effect they may have on CH₄
57 fluxes from lakes and streams on Disko Island. There is yet to be an extensive study on CH₄ fluxes
58 from the island's lakes and streams. However, it has been suggested that permafrost thaw and
59 warming air temperatures may have an effect on greenhouse gas fluxes (Kluge et al., 2021; Juncher
60 Jørgensen et al., 2024). Soil warming experiments and studies of increased snow cover in winter
61 were shown to regulate carbon fluxes through accelerated carbon turnover (Ravn et al., 2020; Xu et
62 al., 2021). Carbon fluxes are further controlled by plant uptake and through microbial activity
63 regulating the availability of nutrients and subsequent CH₄ production (Laanbroek, 2010; Liebner et
64 al., 2011; D'Imperio et al., 2017). Sedimentary processes in lakes promote carbon storage, whereas
65 methanotrophic and methanogenic microbial assemblages along an upland–wetland environmental
66 gradient regulate CH₄ consumption and emission, respectively. Therefore, freshwater ecosystems
67 play a critical role storing, producing, and emitting CH₄ (Christiansen et al., 2015; Žárský et al., 2018;
68 Stevenson et al., 2021).

69 The hydrology of Disko Island is strongly influenced by past volcanic activity during the
70 Paleocene epoch. With extensive basaltic lava flows characterizing the landscape, the island's terrain
71 is formed by the Maligåt and Vaigat Formations, which are comprised of highly permeable layers of
72 basalt interbedded with fluvial and lacustrine sediments (Westergaard-Nielsen et al., 2020; Larsen &
73 Larsen, 2022). The high permeability of these geologic formations enables substantial subsurface
74 flow, subsequently forming perennial water features such as warm springs. In spring, the soils which
75 make up the active layer allow for rapid infiltration of meltwater, which laterally distributes
76 nutrients and organic matter throughout the island's aquatic ecosystems (Westergaard-Nielsen et
77 al., 2020). For example, during spring runoff meltwater and hillside topography was found to largely
78 drive the distribution of nitrates from terrestrial to aquatic ecosystems (Zastruzny et al., 2017;
79 Stevenson et al., 2021). Thus, pools of nutrients available during the growing season may vary
80 dramatically from one year to the next. Lateral flow of snowmelt and permafrost thaw may influence
81 CH₄ fluxes due to changes in physio- and biogeochemical properties of the lakes, streams and rivers
82 on the island (Liebner et al., 2011; Rautio et al., 2011; Walvoord & Kurylyk, 2016; Stevenson et al.,
83 2021). Although Disko Island has discontinuous permafrost (Christiansen et al., 2015; Kluge et al.,
84 2021), thawing can release trapped organic matter and nutrients into aquatic ecosystems,
85 potentially affecting CH₄ fluxes by providing new substrates for microbial activity (Ravn et al., 2020;
86 Stevenson et al., 2021; Westergaard-Nielsen et al., 2020; Xu et al., 2021).

87 The distribution and drivers of aquatic CH₄ emissions in permafrost regions remain poorly
88 constrained, particularly across small lakes and streams which may arise as emission hotspots.

89 Previous studies on Disko Island have highlighted the potential importance of hydrology, permafrost
90 thaw, and microbial processes for greenhouse gas fluxes, but comprehensive spatial and seasonal
91 assessments of CH₄ are lacking. In this study we address this gap by quantifying CH₄ fluxes from 707
92 floating chamber measurements across a permafrost-affected catchment (Sanningasup Tasia). Using
93 boosted regression trees, we evaluate the partial effects of physiochemical water conditions,
94 catchment soil conditions, and meteorology in regulating emissions from ice-break through the
95 growing season. Our objective was to determine how spatial heterogeneity and seasonal dynamics
96 shape CH₄ emissions from Arctic freshwater ecosystems and to identify the key processes that
97 control flux variability in permafrost catchments.


98 2 Methods

99 2.1 Study Site

100 Lake Sanningasup Tasia in Greenlandic, or Moræne sø in Danish, is situated between
101 moraines in the north and east and an outlet which drains into the Red River to the west (Figure 1).
102 The lake is primarily fed by a large warm spring which enters the lake from the southeast, forming a
103 wetland type ecosystem. The other inlets of the lake are primarily fed by seasonal snowmelt. The
104 heterogeneity of the catchment provides an exemplary study site, allowing us to understand the
105 mechanisms regulating CH₄ emissions from a lake, streams, and wetland. According to a 2018 report
106 from the University of Copenhagen, the lake has a maximum depth of 4.5 m and is generally
107 phosphorus limited with nitrogen concentrations being seasonally variable, where concentrations
108 during ice cover are higher than during periods of no ice cover (Westergaard-Nielsen et al., 2020).
109 We found water temperature of the lake to range between 1.1 and 13.9 °C with a mean of 7.9 °C. To
110 our knowledge there has never been an extensive study on the greenhouse gas fluxes from the lake
111 and surrounding water bodies.

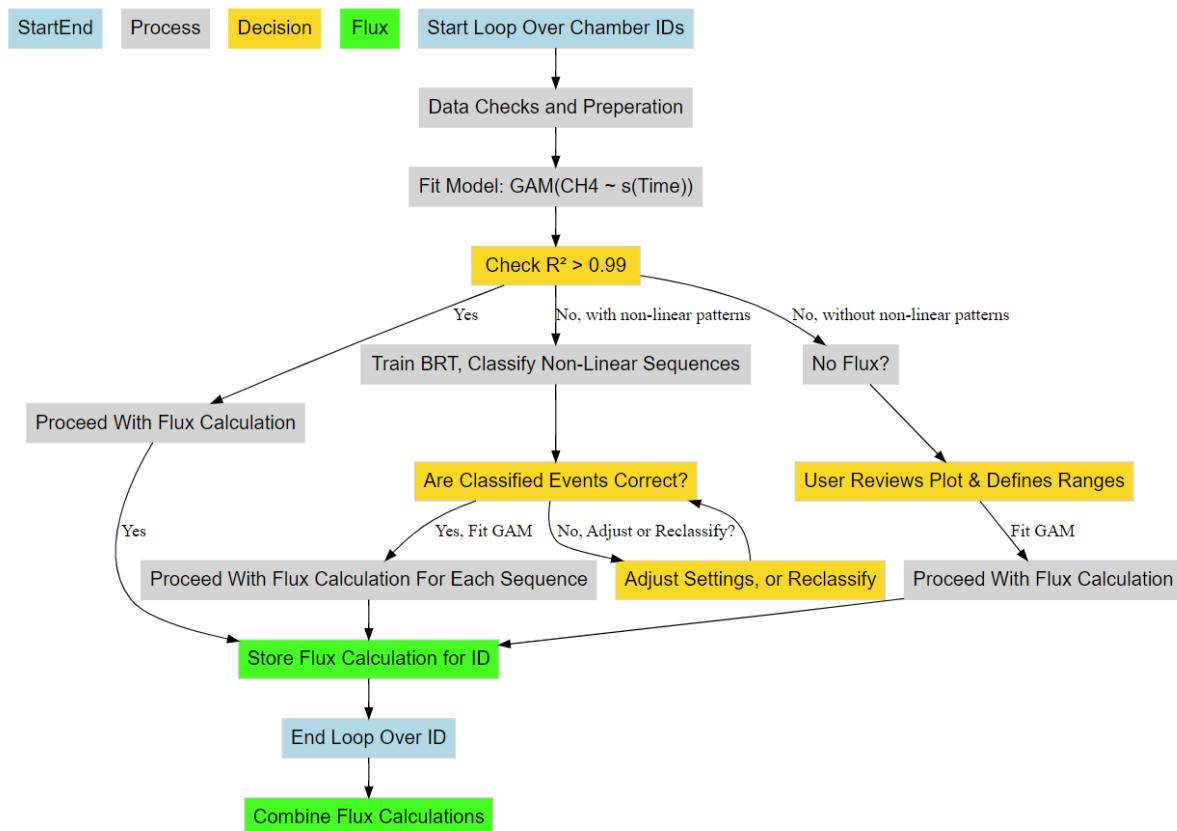
112

113

114

115 Figure 1. Map showing the 707 chamber measurements (blue and brown dots). Points in the south
116 are concentrated around Lake Sanningasup Tasia and its connected streams. The blue circle indicates
117 streams fed by snowmelt and the turquoise circle indicates the outlet of the lake. The red circle
118 indicates the warm spring area which forms a wetland type ecosystem. Points inside the black circle
119 north of the lake indicate measurements taken from the Red River and its stream tributaries.
120 Orthomosaic background image © CNES (2024), Distribution Airbus DS, produced from Pléiades 1B
121 satellite imagery.

122 2.2 Data Collection


123 We used closed floating chamber systems connected to an ABB/Los Gatos Research GLA131
124 Series Micro portable Gas Analyzer in 2023, and to a LI-COR® LI-7810 Trace Gas Analyzer in 2024,
125 with the goal of capturing the spatial and temporal variability of CH₄ fluxes in the catchment area. In
126 2023, we used a self-built cylindrical chamber made of semi-transparent plastic material with
127 volumetric capacity of 0.016 m³ and a basal area of 0.096 m². In 2024, we used a West Systems type
128 C flux chamber made of stainless steel with a volumetric capacity of 0.013 m³ and a basal area of
129 0.07 m². Both chambers included a fan for mixing air and a temperature sensor. The semi-
130 transparent plastic chamber used a circular foam floater that was wrapped around the outside of
131 the chamber, allowing 2cm of the chamber to be below the water surface, forming a 100% airtight
132 seal. The West Systems chamber was inserted into a closed-cell foam floater, where the seal was
133 created once the chamber was inserted into the floater. Despite differing chamber materials and
134 flotation devices, median fluxes between 2023 and 2024 were identical at 5.0 nmol m⁻²s⁻¹. However,
135 to evaluate whether changes in chamber construction between years introduced systematic bias in
136 CH₄ flux estimates, we fit a linear model using log-transformed flux as the response and chamber
137 type, latitude, longitude, and Julian day as predictors. Chamber type was not a significant predictor

138 ($p = 0.13$), and QQ plots of log-transformed fluxes across years showed no consistent deviation
139 across the flux distribution, except at lower emission rates (Figure S1). These findings suggest that
140 differences in chamber construction did not substantively influence the calculated fluxes. Chamber
141 measurements were conducted on the surface of the lake and surrounding water bodies at a spatial
142 distance of 10 to 20 m with a closure time of 10 minutes. The chamber and gas analyzer were
143 connected in a closed loop, and sample air was continuously pumped through the gas analyzer. CH₄
144 concentrations were measured with a frequency of 1 Hz. Each flux measurement was given a unique
145 id based on its spatial location or water body type. For the lake, ids were given based on what
146 shoreline we were measuring on. For example, if on the east shore, ids would be e1, e2, e3, ... etc.
147 The majority of flux measurements on the lake were conducted within 0.2 m from the shore. Open
148 water measurements in the lake were made using a small boat and anchor system. CH₄
149 concentrations in streams were measured by starting at, or near the headwaters and then taking
150 measurements progressively downstream with consideration to the changing terrestrial vegetation
151 and stream dynamics (i.e., fast, slow, or eddie pool). In 2023, we measured isolated meltwater pools
152 during the thaw to represent control conditions (water not yet connected to the lake or streams). In
153 2024, to capture an even earlier baseline, we conducted chamber measurements on top of snow
154 and lake ice prior to thaw onset, providing a true pre-thaw control period. Overall, we made 707
155 chamber measurements, representing ~10-15 chamber placements taking place daily, around the
156 lake and surrounding streams giving us an extensive view of the spatial and temporal variability of
157 CH₄ fluxes in the study area. While floating chambers isolate the headspace from light wind
158 disturbance, increased surface turbulence may influence gas exchange in the open space of the
159 chamber (Vachon and Prairie 2013). Our approach captures diffusive exchange under mostly
160 calm-water conditions (i.e., wind speed up to ~4 ms⁻¹), but we acknowledge that regional wind-
161 driven mixing may contribute to flux variability beyond individual chamber footprints. We
162 simultaneously measured water temperature using Truebner EC-100 RS-485 EC/Temperature
163 sensors in 2023 and a suite of water parameters were collected in 2024 using an AquaTroll 600
164 water sonde (see section: Decoding Methane Drivers). Meteorological data and soil characteristics
165 were collected from nearby meteorological stations maintained by Aarhus University which are part
166 of the Greenland Ecosystem Monitoring Database (Greenland Ecosystem Monitoring, 2025a-d) (see
167 section “Decoding Methane Drivers” for list of variables used).

168 2.3 Flux Algorithm & Ebullition Detection

169 In collaboration with ChatGPT 4.0, we wrote an interactive algorithm in R which leverages
170 General Additive Models (GAM) and Boosted Regression Trees (BRT) to robustly and flexibly
171 calculate CH₄ fluxes from individual floating chamber measurements (Figure 6). The flux calculation
172 procedure was applied identically to individual chamber time series for both 2023 and 2024, while
173 controlling for different the chamber constructions.

174

175

176 Figure 2. CH₄ flux calculation workflow from concentration data using predictions from GAM and
 177 BRT. Blue boxes represent the start and end of a single chamber measurement working through the
 178 algorithms processes (grey boxes) and decision logic (gold boxes). Green boxes represent the storage
 179 and combination of the results for further analysis.

180 Rather than fitting concentration data with linear, exponential, and/or polynomial models
 181 (Kutzbach et al., 2007; Pedersen et al., 2010; Hoffmann et al., 2017), the algorithm fits GAM, which
 182 are capable of modelling non-linear patterns without a-priori specification of the functional form of
 183 the relationship between time and concentration. However, before fitting a GAM, the concentration
 184 and accompanying data is checked and processed (Figure 2; “Data Checks and Preparation”) as
 185 follows: The algorithm conducts a preliminary check for the required chamber parameters which
 186 are; id, ordered times of measurement, air temperature (°C), volume, area, and air pressure. In
 187 addition, air temperature is expected to be initially in Celsius, which is automatically converted to
 188 Kelvin during the processing of concentration data in preceding steps. The data is then ordered
 189 based on id and time to maintain correct chronological order of chamber measurements. CH₄ is then
 190 converted from ppm to moles using Ideal Gas Law:

191

$$CH_4_{moles} = \frac{(CH_4_{ppm} \times P \times V)}{(R \times T)} \quad (1)$$

193

194 where P is air pressure (Pa), V is chamber volume (m³), R (8.314 J / (mol × K) is the universal gas
 195 constant, and T is air temperature inside the chamber (K). After preliminary data checks and initial

196 processing of the concentration data, the concentration time series is then fit to a GAM (i.e.
197 $\text{gam}(\text{CH4}_{\text{moles}} \sim \text{s}(\text{time}, \text{k} = \text{gam_knots}))$), where the smoothing parameter 'k' is a user defined
198 parameter named 'gam_knots' which has a default value of 5. The value of 'k' cannot exceed 3 times
199 the degrees of freedom for a given concentration time series, or the algorithm defaults to fitting a
200 linear model. The algorithm then checks the R^2 value of the fitted GAM to see if it meets the default
201 conditional value of ≥ 0.99 , if so, it proceeds to calculate fluxes following these steps:

202

203
$$\Delta \text{CH4}_{\text{moles}} = \left[\frac{\text{CH4}(t_2) - \text{CH4}(t_1)}{t_2 - t_1}, \frac{\text{CH4}(t_3) - \text{CH4}(t_2)}{t_3 - t_2}, \dots, \frac{\text{CH4}(t_n) - \text{CH4}(t_{n-1})}{t_n - t_{n-1}} \right] \quad (2)$$

204

205 Where $\Delta \text{CH4}_{\text{moles}}$ is the rate of change, calculated as the quotient of the predicted differences in
206 CH_4 concentration between successive time points. Flux is then calculated between successive time
207 points by:

208

209
$$\bar{F}_{\text{Flux}} = \frac{1}{n-1} \sum_{i=1}^{n-1} \frac{\Delta \text{CH4}}{A} \quad (3)$$

210

211 Where mean flux of the chamber measurement is estimated by calculating flux at each
212 successive time step, where flux is determined by dividing $\Delta \text{CH4}_{\text{moles}}$ by the basal area (A) of the
213 chamber, expressed in (m^2). A plot of the time series and model fit is generated and saved in the file
214 directory defined by the user by setting the parameter 'save_directory' (Figures S1-5). Because
215 fluxes were derived from high-frequency (1 Hz) concentration data fitted using a GAM with a strict
216 acceptance threshold of $R^2 \geq 0.99$, analytical uncertainty in the rate-of-change estimation is
217 negligible. Conventional uncertainty propagation (e.g., based on regression slope error or replicate
218 chambers) is not meaningful in this context because the GAM approach fits a smooth curve through
219 hundreds of data points per deployment, effectively minimizing noise and preventing poor-quality
220 fits from contributing to the final flux values. This ensures that the dominant source of variability in
221 the dataset reflects true environmental heterogeneity rather than analytical error. Furthermore,
222 because the chamber headspace was fully sealed and isolated from external turbulence, wind-
223 induced variability—which often motivates uncertainty corrections—is mechanically removed from
224 the flux calculation process. For these reasons, we report spatial variability (e.g., medians, ranges,
225 and interquartile spread) rather than analytical uncertainty, as it provides a more ecologically
226 relevant representation of flux variability across the catchment.

227 In the cases where the initial GAM fit does not meet the $R^2 \geq 0.99$ condition, the algorithm
228 can follow two pathways (Figure 2). Pathway (1) is a result of the algorithm having detected non-
229 linear concentration increases using BRT, while pathway (2) the algorithm has found the chamber
230 measurement has not met any of the conditional requirements for flux calculations, or more
231 generally stated, there was no measurable concentration increase detected automatically. Both
232 pathways are interactive as the user is prompted to confirm the classification of "ebullition" versus.
233 diffusive data sequences in pathway (1), while in pathway (2) the user confirms there is indeed no
234 concentration increase by reviewing the diagnostic plots (see Supplemental text and Figures S2-S6).
235 Once confirmed, the user initiates flux calculations by manually entering the time range of the
236 measurement that should be fitted (Figure 2). "Ebullition" in the context of the algorithm refers to a

237 sudden, non-linear CH_4 increases identified by the algorithm, which likely includes ebullitive events,
238 but does not strictly infer all fluxes calculated this way were from bubbles entering the chamber.

239 2.4 Lake and Stream Metabolism

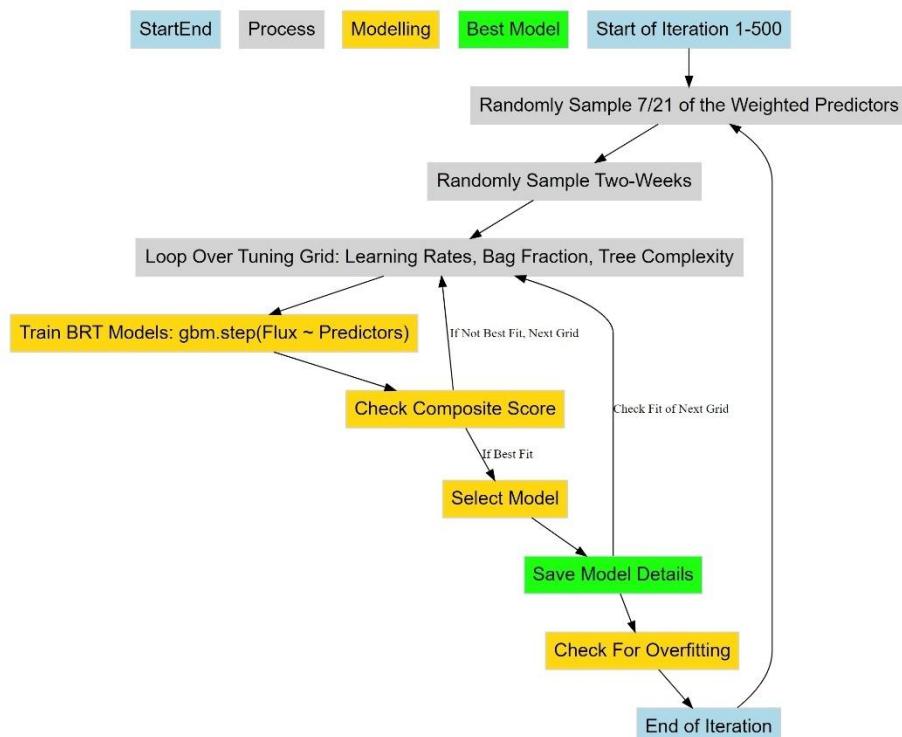
240 In 2024, we calculated the metabolic parameters net ecosystem production (NEP), gross
241 primary production (GPP), and ecosystem respiration (ER) of oxygen for the lake and streams using
242 dissolved oxygen (DO) collected at a one-minute frequency during chamber measurements (DO
243 sensor accuracy: $\pm 0.1 \text{ mg L}^{-1}$; resolution 0.01 mg L^{-1}). Including metabolic parameters as predictors
244 in the BRT models gave us an understanding of the role microbial oxygen production plays in
245 regulating or not CH_4 emissions from water. DO saturation was adjusted using temperature-
246 dependent solubility constants (Garcia & Gordon, 1992). Oxygen flux at the air-water interface was
247 determined using wind derived gas exchange coefficients and adjusted for water temperature (Cole
248 & Caraco, 1998). NEP was calculated as the rate of change in DO concentration over each chamber
249 deployment, adjusted for air-water exchange (Hall & Madinger, 2018; Noss et al., 2018). GPP and ER
250 were partitioned from NEP by applying a threshold of $200 \text{ } \mu\text{mol m}^{-2} \text{ s}^{-1}$ photosynthetically active
251 radiation (PAR), which distinguishes intervals with effective photosynthesis from those with
252 negligible light-driven production, despite continuous daylight during Arctic summer. Aggregating
253 each chamber DO measurement into one-minute intervals, we calculated mean NEP, GPP, and ER for
254 each chamber placement (Winslow et al., 2016). While this methodology is sound for the lake, there
255 is some caveats in relation to stream metabolism. Because we are using a model which assumes
256 wind driven gas exchange for small streams, we likely underestimate gas exchange in parts of the
257 streams where turbulence from streambed roughness dominates. Nonetheless, the approach
258 captures broadly the metabolic trends in lake and stream metabolism observed in other Arctic and
259 Boreal waterbodies (Mulholland et al., 2001; Rocher-Ros et al., 2021; Ayala-Borda et al., 2024; Klaus
260 et al., 2022; Myrstener et al., 2021) and is useful for comparing fluxes across aquatic biomes.

261 2.5 Spatial Flux Evaluation

262 We uploaded as a spatial layer in QGIS version 3.40.1 (QGIS Development Team, 2025) an
263 orthomosaic image produced by Airbus satellite Pléiades 1B and the chamber placements as points
264 with their associated flux estimates. We spatially analyzed the CH_4 fluxes by creating bi-weekly
265 emission heatmaps using the Kernel Density Estimation (KDE) algorithm in QGIS. The use of KDE
266 allowed us to smooth across discrete chamber measurements, yielding an intuitive continuous
267 surface representation of CH_4 flux hotspots and their evolution through time (Figure 2). We set the
268 radius to between 30-35 meters to allow some connectivity between points which allows for a
269 smooth representation of any environmental gradients that might be captured. We used the default
270 method using a quartic kernel shape weighted by the flux calculated for each chamber placement.
271 While “ebullitive” fluxes were not considered in further statistical analysis (i.e., in the BRT), those
272 fluxes are depicted in the resulting heatmaps. Overall, using KDE allowed for an intuitive
273 interpretation of the seasonal and spatial development of flux hotspots in the research area.

274 We additionally compared daily CH_4 emissions from Sanningasup Tasia catchment relative to
275 other Arctic-Boreal Lake classes compiled in the Boreal-Arctic Wetland and Lake Dataset (Kuhn et al.
276 2021; Olefeldt et al., 2021). A Kruskal-Wallis test was performed to determine significant differences
277 ($p < 0.05$) in the log transformed daily fluxes from Sanningasup Tasia ($n = 48$) and its streams ($n = 35$)
278 relative to broader biome-scale fluxes from Small Peat Lakes ($n = 50$), Medium Peat Lakes ($n = 36$),
279 Large Lakes ($n = 10$), and Small Yedoma Lakes ($n = 7$). We then performed pairwise Wilcoxon rank-
280 sum tests with Benjamini-Hochberg adjustment for multiple comparisons to highlight specific
281 contrasts between Sanningasup Tasia catchment and the other lake classes. Conducting this

282 provides an understanding of how Sanningasup Tasia catchment emissions compares to other Arctic
283 waterbody types.

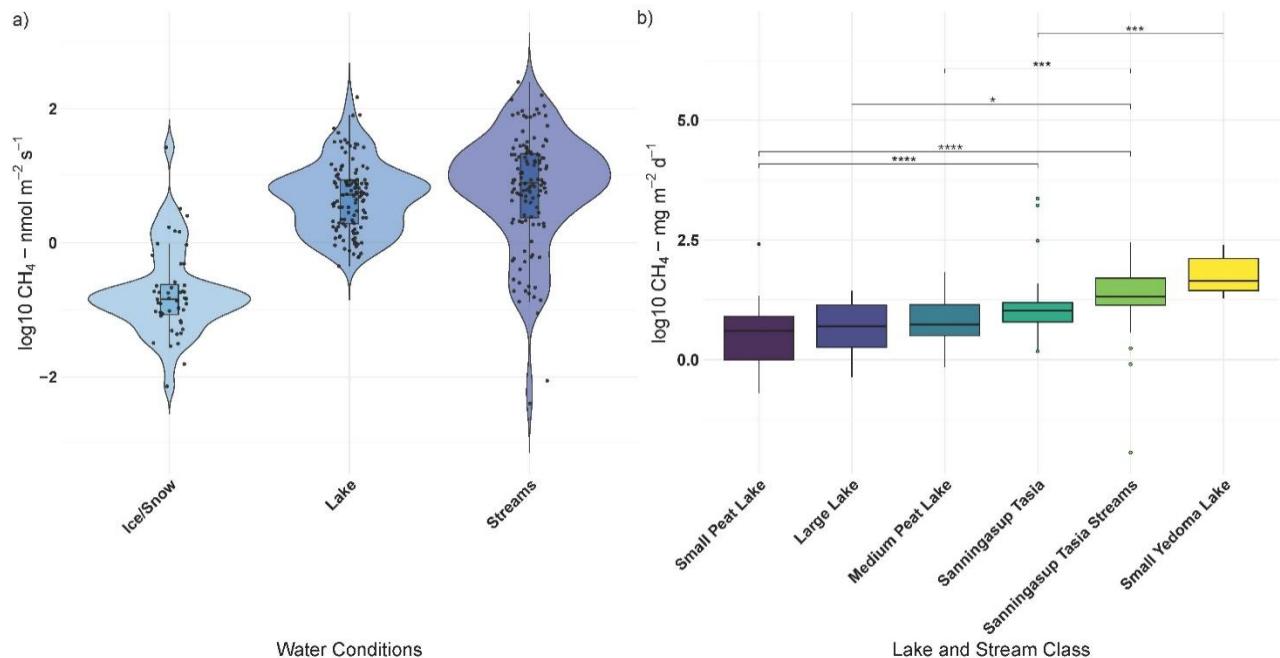

284 2.6 Decoding Methane Drivers

285 To determine important drivers and their partial effects on diffusive CH₄ fluxes, we trained
286 BRT with physicochemical water parameters, catchment soil temperatures, catchment soil moisture,
287 surface air temperatures, local meteorology, and Julian day (Figure 3). Considering we only collected
288 water temperature in 2023, we used flux data from 2024 for training the BRT. We have focused on
289 diffusive fluxes due to the unpredictability of fluxes when “ebullitive” processes were considered in
290 the models. The diffusive fluxes give us a detailed view of environmental controls shaping CH₄ fluxes
291 coming from the catchment. To characterize fluxes we assembled a comprehensive set of predictors
292 including; (a) aquatic variables measured *in-situ* with a water sonde at each chamber deployment
293 (e.g., Conductivity (µS/cm), pH, redox potential (mV), dissolved oxygen (mg/L), oxygen saturation
294 (%), water temperature (°C), and fluorescent dissolved organic matter (FDOM; RFU)) (Figure S7), (b)
295 catchment soil characteristics collected at nearby climate stations (e.g., soil volumetric water
296 content at 10 cm and soil temperature at 40 cm), and (c) meteorological variables collected from a
297 nearby climate station (e.g., Surface air temperature at 2 cm (°C), Air temperature (°C), relative
298 humidity (%), air pressure (mbar), precipitation (mm), PAR (µmol m⁻²s⁻¹), and mean wind speed (ms⁻¹)
299 and direction (°)). Lake water levels (mm) were included to characterize the effect of changing
300 hydrologic conditions and its influence on lake CH₄ fluxes. Although water depth was recorded
301 during chamber deployments using the AquaTroll 600, it was not included as a predictor in the BRT
302 models. In shallow Arctic lakes like Sanningasup Tasia (<4.5 m), CH₄ is primarily sediment-derived,
303 with deeper zones more likely to promote oxidation or dilution due to greater oxygen exposure
304 (Bogard et al., 2014; Bulínová et al., 2025; Emerson et al., 2021; Li et al., 2020). Shoreline fluxes
305 often dominate due to anoxic, vegetated sediments, while interior zones tend to suppress emissions
306 (Thompson et al., 2016; Kyzivat et al., 2022; Rasilo et al., 2015). We therefore prioritized
307 biogeochemical water column predictors—FDOM, dissolved oxygen saturation, and GPP—over
308 depth (Christiansen et al., 2015; Singleton et al., 2018), and explicitly captured depth gradients via
309 boat-based chamber deployments across the lake interior. Catchment soil characteristics were
310 included to capture the hydrogeological conditions surrounding the catchment. We used catchment
311 soil temperature at 40 cm to represent subsurface active-layer conditions that influence deeper
312 thermal dynamics, groundwater inflow, and delayed soil heat retention through the thaw
313 season. Soil volumetric water content (VWC) at 10 cm was included to gain an understanding if
314 dryer, or wetter catchment conditions effect surface water CH₄ fluxes, and to act as a substitute for
315 water level in the lake early in the season as these two share a Pearson’s correlation of $r = 0.93$.
316 Additionally, we used VWC at 10 cm depth because it was the most complete and continuous
317 dataset across the measurement depths, and highly correlated with VWC at 20 cm, 30 cm and 40
318 cm. To reduce multicollinearity amongst the predictors, we set up weighting for random feature
319 selection by calculating the average absolute Pearson correlations between predictors and assigning
320 weights inversely proportional to the correlations, resulting in higher weights given to predictors
321 with decreased collinearity and thus more likely to be included as a predictor.

322 Using the “gbm.step” algorithm from the R package “dismo” version 1.3.14 (Elith et al.,
323 2008; Hijmans et al. 2023), we iteratively attempted to fit 500 BRT with a subset of randomly
324 sampled two-week time series of flux calculations and 7 of the 21 weighted predictors. Each two
325 weeks must have at least 90 observations, or the date range is buffered on either end of the time
326 series to meet the minimum observation requirement. The algorithm uses 10-fold cross-validation to
327 minimize overfitting the models (Elith et al., 2008). If a randomly sampled two weeks did not meet

328 the minimum required observation of 90, the time series was buffered on both ends of the date
329 range to meet the minimum required observations. BRT were optimized using a grid search where
330 hyperparameters such as learning rate (0.001, 0.002, 0.003, 0.004, 0.005), tree complexity (1, 3, 5,
331 7), and bag fraction (0.30, 0.40, 0.50), were tuned for each model fit. While bag fraction values in the
332 range of 0.5–0.8 are more commonly used, a lower bag fraction increases stochasticity in tree
333 construction, which helps reduce overfitting—especially important for modeling noisy and highly
334 non-linear CH₄ flux data. This conservative approach favors identifying robust general patterns
335 rather than fitting noise or outliers. Variable monotonicity was handled dynamically for each subset
336 of predictors using Spearman's rank correlation. Monotonicity for categorical variables was set to
337 zero, while positive correlations were given a +1 and negative correlations were given a -1. The
338 model with the best composite score was selected for each iteration. The composite score was
339 calculated by adding together the standardized cross-validation error, standardized correlation
340 error, and the cross-validation correlation. The model was finally saved after checking for over fitting
341 by taking the difference between cross validated mean deviance and training mean deviance and
342 dividing the difference by training mean deviance. Because the inherently noisy nature of ecological
343 data, we allowed for 40% difference between cross validated predictions and training data. We
344 further calculated the percent deviance explained for each BRT model using the formula: % deviance
345 explained = 100 × ((null deviance – residual deviance) / null deviance), where the null deviance
346 represents the deviance of a model using only the mean response, and the residual deviance is from
347 the fitted BRT model. Each fitted model and its metadata were saved for further analysis. This
348 modelling structure ensures robustness against outliers and ensures data integrity through
349 dynamically handling monotonicity and applying overfitting constraints. Furthermore, the structure
350 ensures robust predictions of fluxes by accounting for multi-collinearity amongst predictors and flux
351 heterogeneity throughout the season.

352 To visualize the results of the models, we plotted partial dependence two ways. First, we
353 extracted partial dependence information for understanding model structure, i.e., those predictors
354 and interactions which were used to split trees and decrease cross validated prediction error. In
355 addition, we made isolated predictions for each environmental feature in the model by holding all
356 other predictors at their median to gain a more mechanistic understanding of which conditions
357 and/or processes are directly affecting CH₄ fluxes. The two ways of visualizing partial dependence
358 give us an ecological understanding of how integrated direct and indirect effects regulate fluxes from
359 the catchment, but also how individual variables and/or processes regulate fluxes from the water
360 surfaces, respectively. All visualizations were generated using the R package “ggplot2” version 3.5.0
361 (Wickham, 2016), and the package “DiagrammeR” version 1.0.11 for flowcharts (Iannone, 2024).

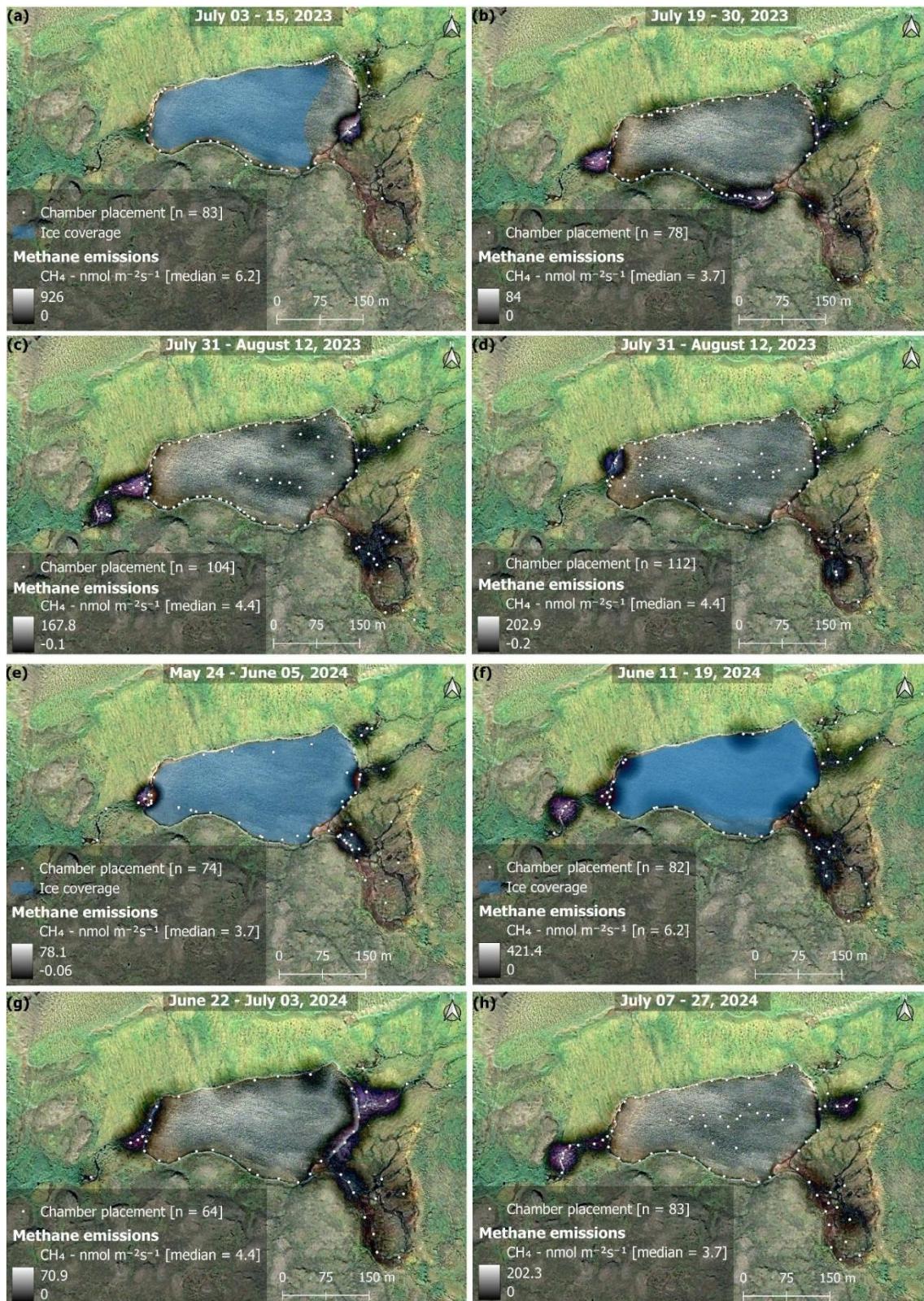

364 Figure 3. Workflow of the iterative randomized process for selecting the best BRT for predicting
 365 diffusive CH₄ fluxes using various environmental predictors. Blue boxes represent the start and end
 366 of a single iteration through an index of weighted predictors, time periods, and tuning grid (grey
 367 boxes). Yellow boxes represent the model selection logic, while the green box represents the storage
 368 of flux predictions and selected model details for the included predictors and two-week sub-sample
 369 of chamber measurements.

370 3 Results and Discussion

371 3.1 Overview

372 Methane fluxes from permafrost affected catchments are influenced by a complex interplay
 373 between climatological, hydrogeological, and biogeochemical processes. This study highlights the
 374 transient nature of CH₄ fluxes from a permafrost catchment in west central Greenland and the
 375 partial effects of physiochemical water conditions, local meteorology and catchment conditions
 376 (Figures 4-7). CH₄ emissions from the catchment were variable across water conditions, with streams
 377 exhibiting the highest emissions (Figure 4). In comparison to the global coverage of the Boreal-Arctic
 378 Wetland and Lake Dataset (Olefeldt et al., 2021), besides small peat lakes, daily fluxes from
 379 Sanningasup Tasia at 8.3 mg m⁻² d⁻¹ were mostly comparable to other permafrost waterbodies across
 380 the Arctic-Boreal region, which ranges between 3.8-5.4 mg m⁻² d⁻¹ (Figure 4). Highlighting the
 381 importance of emissions from small streams, Sanningasup Tasia streams showed significantly higher
 382 daily fluxes (18.2 mg m⁻² d⁻¹) than all inland water body classes, except Yedoma lakes (43.7 mg m⁻² d⁻¹). Our results indicate that CH₄ fluxes were seasonally variable and controls on fluxes shifted from
 383 hydroclimatic factors during colder periods to biogeochemical processes as the catchment warmed
 384 and increased in productivity (Figure 3-4 and Figure A1). The seasonal thaw of annual snow and ice
 385 accumulation in the two study years varied in timing and duration due to 2023 staying anomalously
 386 snowy until the beginning of July, where in 2024 the number of snow free days aligned with
 387 historical records. In 2023, our initial chamber measurements between July 03-15 captured peak
 388

389 median fluxes at $8.9 \text{ nmol m}^{-2} \text{s}^{-1}$ just as the ice began to break on the lake. In an effort to capture
 390 similar conditions in 2024, we used an index of historical snow free days on the island which led to
 391 us capturing median fluxes of $0.18 \text{ nmol m}^{-2} \text{s}^{-1}$ between May 24-June 05 atop ice and snow. Peak
 392 median fluxes of $8.1 \text{ nmol m}^{-2} \text{s}^{-1}$ in 2024, were comparable to 2023, but occurred a month earlier
 393 between June 11-19. As runoff water receded and the catchment warmed, growing season
 394 commenced in conjunction with steadily decreasing median fluxes between 3.9 and $4.5 \text{ nmol m}^{-2} \text{s}^{-1}$.
 395 This study further provides methods to disentangle important drivers and their partial effects on CH_4
 396 fluxes using BRT (Figure 3-4). In general, CH_4 fluxes were strongly dependent on discrete oxic-anoxic
 397 aquatic environments under the chamber (Figure 4 and Figure A1). This research emphasizes the
 398 importance of integrating field measurements with GIS-based spatial analysis to monitor CH_4 fluxes
 399 in permafrost catchments. It further drives home the importance of seasonal transition periods in
 400 predicting fluxes from Arctic waterbodies.



401
 402 Figure 4. Panel a) shows log transformed CH_4 fluxes across the different catchment water conditions
 403 during 2024 field season and b) compares log transformed daily CH_4 fluxes (y axis) between
 404 Sanningasup Tasia catchment and other permafrost waterbodies (Kuhn et al., 2021) across the
 405 Arctic-boreal region. Connecting brackets and stars show, for example, that Sanningasup Tasia had
 406 significantly ($p < 0.05$) higher daily emissions when compared to Small Peat Lakes, while daily
 407 emissions from Sanningasup Tasia Streams were significantly higher than all lake classes except
 408 Yedoma Lakes.

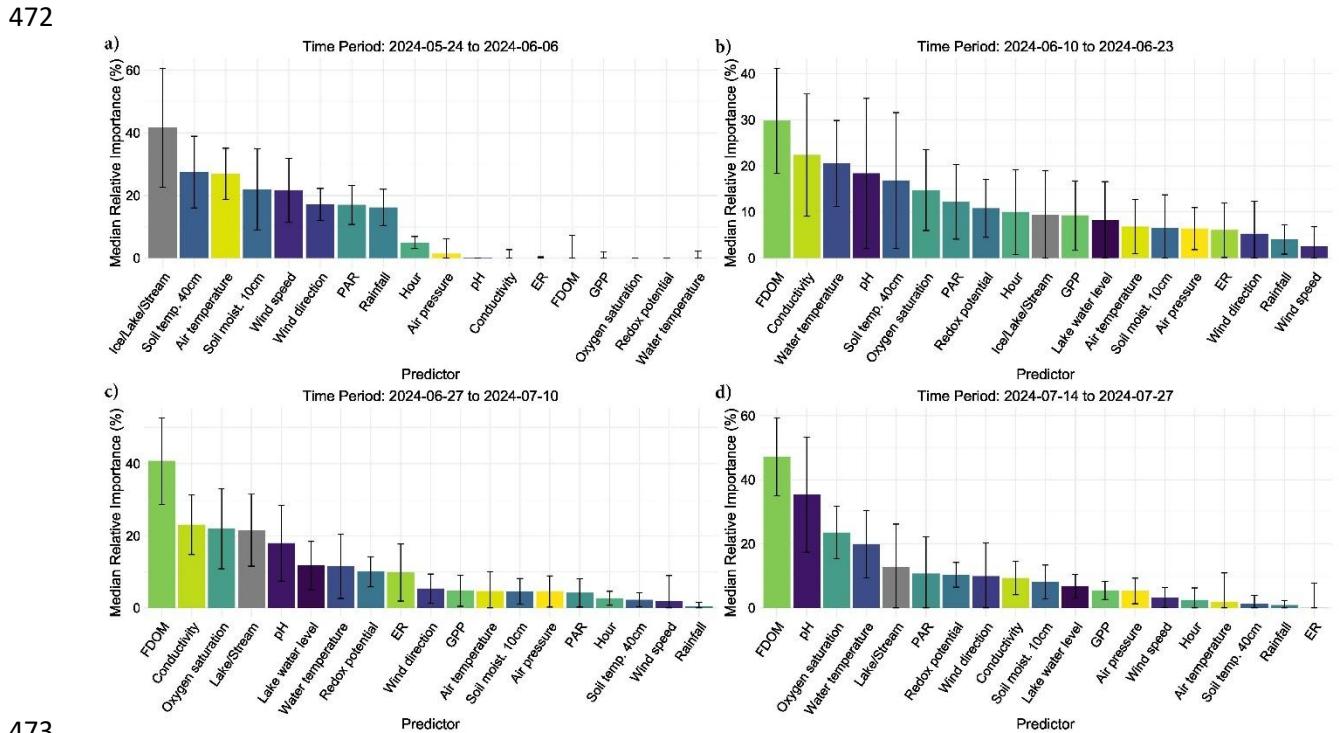
409 3.2 Spatial and Temporal Evolution of Methane Fluxes

410 In both 2023 and 2024, spatial and temporal evolution of fluxes occurred somewhat
 411 heterogeneously in the catchment, but generally “hotspots” occurred in the streams and where they
 412 enter the lake (Figure 5 a-b, e-f). Despite different time periods of the thaw, fluxes in the catchment
 413 in both years followed a similar trajectory, with peak fluxes occurring post thaw and decreasing
 414 through the growing season. In 2023, snow persisted anomalously late into the summer season, and
 415 soil temperatures were the coldest recorded in a 6-year record (Figure S8). We found that local
 416 climate and catchment soil characteristics were at times, (i.e., during the thaw season and towards
 417 the peak of growing season) more important than water temperature in predicting 2023 fluxes,
 418 suggesting catchment contributions to surface waters plays an indirect role in CH_4 fluxes (Figure S9).

419 While water temperature was found to be relatively important in both years, catchment CH₄ fluxes in
 420 2024 suggest the system is more driven by variability in dissolved organic matter and microbial
 421 production of oxygen (Figure 4-7 and Figure A1).

422

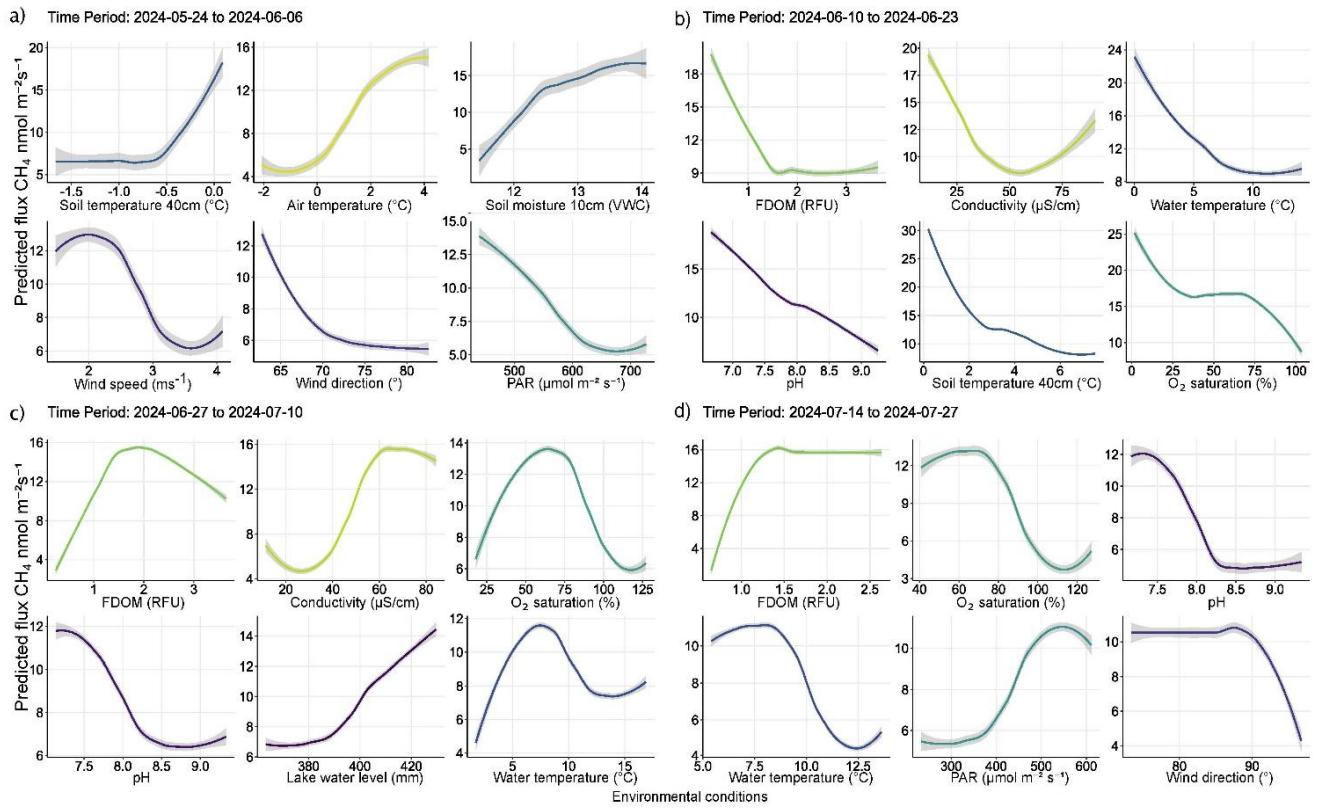
423 Figure 5. Maps showing the bi-weekly spatial evolution of CH₄ emissions during 2023 (a-d) and 2024
 424 (e-h). The time period covered in each map is given at the top of each map. Whiter colors represent


425 areas of high emissions, while darker, or no color represent areas of lower, or no emissions (see
426 color bars in map legends). Areas outside of the water were not measured and are artifacts from the
427 KDE mapping algorithm. Each white point on the map represents the placement of the floating
428 chamber. Orthomosaic background image © CNES (2024), Distribution Airbus DS, produced from
429 Pléiades 1B satellite imagery.

430 The main inlet to the lake is a warm spring with median temperatures of 7.4 °C and tended
431 to be a persistent location throughout the season for increased CH₄ fluxes. The warm spring area in
432 the southeast is a complex area where a perennial spring bubbles out of the ground forming a
433 perennial tributary to the lake. However, the spring seeps out along the base of the hillslope to the
434 east, subsequently forming a peat fen environment (Figure 5). The eastern most inlets are fed by
435 meltwater flowing through the vadose zone, but also served as a persistent location for increased
436 CH₄ fluxes. Fluxes from inlet streams followed along an upland-wetland environmental gradient,
437 where fluxes at the headwaters of streams were generally close to 0, or slightly taking up CH₄, but
438 steadily increased as steeper upland slopes gave way to more gradual water saturated slopes and
439 pooling sediments. This is consistent with previous work on the island showing CH₄ fluxes association
440 with soil microbial assemblages shifting from methanotrophic to methanogenic along an upland-
441 wetland gradient, respectively(Christiansen et al., 2015). Additionally, the catchment serves as
442 micro-topography previously described as an area of snowmelt retention, and subsequently an area
443 of nutrient and/or dissolved organic matter pooling (Westergaard-Nielsen et al., 2020), which has an
444 impact on CH₄ fluxes throughout the season (Figure 7). While high fluxes were recorded along the
445 shore and in the open water of the lake, fluxes tended to be patchy and decreased moving away
446 from the inlet streams (Figure 5 and Figure S10). However, as soon as the lake water flowed to the
447 outlet, fluxes increased substantially. As the summer season progressed, CH₄ fluxes declined across
448 most of the catchment, becoming largely confined to the warm spring inlet and the eastern inlet
449 streams (Figure 5). Field observations of late-season fluxes in 2024, found decreased fluxes were
450 associated with submerged filamentous green algae in stream channels, while assemblages of iron-
451 oxidizing bacteria on the stream banks were associated with increased fluxes, (Figure A2). The
452 spatial and temporal evolution of fluxes was driven by seasonally shifting environmental conditions.

453 3.3 Boosted Regression Tree Results

454 Out of 500 iterations, 321 BRT were fit, and showed good alignment and consistently
455 performed well in cross-validation, with a correlation median of 0.40 between observed and
456 predicted values, and a median deviance standard error of 131. Between 8.4% and 62.4% with a
457 median of 27.3% of the CH₄ flux variability was explained by the various models and included
458 environmental conditions, suggesting a substantial proportion of CH₄ fluxes were explained by the
459 environmental conditions included. The calculated root mean squared error (RMSE), which reflects
460 the average magnitude in prediction error of the BRT, ranged between 6.5 to 28 nmol m⁻²s⁻¹, with a
461 median of 13.7 nmol m⁻²s⁻¹. The summary statistics reflect models that performed reliably and with
462 fairly good accuracy in predicting diffusive CH₄ fluxes from the catchment in 2024. The models
463 predicted shifting relative importance (Figure 6) and partial effects of the various environmental
464 conditions throughout the season (Figure 7). The magnitude of CH₄ fluxes predicted by the BRT
465 models were strongly influenced by localized biogeochemical conditions within the water column
466 based on whether the flux was originating from the lake, stream, or if it was influenced by ice or
467 snow (Figure 4-7, and Figure A1a-d). Visualizing partial dependence of predictors important for
468 model structure, revealed integrated ecological effects between local meteorology, catchment
469 conditions and physiochemical water conditions (Figure 7). However, isolated direct marginal effects


470 of the various environmental conditions suggest fluxes from water surfaces are directly regulated via
 471 biochemical processes associated with GPP and ER of oxygen (Figure A1b-d).

473
 474 Figure 6. The figure illustrates the relative importance of environmental conditions predicting
 475 diffusive CH_4 fluxes using bar-plots and standard error bars. Each predictor variable is on the x-axis,
 476 while its percent importance for its inclusion in a fitted BRT is given on the y-axis where the standard
 477 error bars represent variability in importance based on presence or absence in a given model. Each
 478 bar color represents a distinct environmental condition.

479 3.3.1 Spring Thaw Phase: Peak Fluxes Driven by Hydrological and Climatic Controls

480 The spring thaw phase marks a shift in catchment conditions, where a frozen landscape gives
 481 way to thaw season and hydro-connectivity between land and water is strong (Figure 5c-d, g-h). In
 482 the spring thaw phase, initial peak fluxes of CH_4 were primarily dependent on increasing rainfall,
 483 changing wind conditions, warming air and soil temperatures, and increased soil moisture content,
 484 while low dissolved organic matter (i.e., FDOM) indicated increased fluxes (Figure 6a-b and 7a-b).
 485 Soil moisture was found to have a Pearson's $r = 0.93$ with lake water levels, suggesting the lake levels
 486 are strongly connected to snowmelt and groundwater hydrology (Figure S11). The distribution of
 487 nutrients on the island has been shown to be linked to snowmelt and hill slope topography
 488 (Westergaard-Nielsen et al., 2020), which is likely playing a role during the early part of the season,
 489 but especially later in the year as DOM, a proxy for nutrients, becomes the primary limiting factor in
 490 predicting higher fluxes (Figure 7b-c) (Olid et al., 2021, 2022). The processes driving CH_4 fluxes from
 491 water surfaces is likely two-fold.

492

493 Figure 7. Partial dependency plots illustrating the indirect and direct marginal effects of various
 494 environmental conditions predicting diffusive CH₄ fluxes. Each panel displays the effect of a
 495 numerical predictor used during model training to predict CH₄ fluxes. Although some predictors may
 496 not have been directly involved in regulating fluxes from water surfaces, their evaluation reveals the
 497 relationship between water column conditions and catchment processes regulating CH₄ fluxes. The
 498 figures are ordered by importance in each time period and the colors correspond to those seen in
 499 Figure 6. The colored lines represent the result of a fitted general additive model ($y \sim s(x)$) and thus
 500 a smooth representation across the 321 fitted BRT models. The grey shaded area around the line
 501 represents $\pm SE$ (0.02 - 0.2). Each predictor and its numerical range are given on the x-axis, while
 502 predicted fluxes are given on the y-axis.

503 As snowfall turned to rain, the thawing of soils accelerated and water content in the active
 504 layer increased, potentially driving peak emissions via the lateral mobilization of dissolved CH₄
 505 toward surface waters (Figure 7a-b) (Walter Anthony et al., 2012; Neumann et al., 2019; Olid et al.,
 506 2022). However, as the thaw progressed, contributions to fluxes from catchment soils decreased as
 507 the upper layers began to dry and lake water levels reached their maximum (Figure 7b-c). DOM
 508 serves as a critical substrate for both CH₄ production and oxidation, particularly in permafrost-
 509 influenced regions where thawing can release large amounts of particulate matter (Keskitalo et al.,
 510 2021; Bouranis et al. 2025). Anaerobic conditions in water saturated soils and low oxygenated
 511 waters may have further driven fluxes during the thaw period as methanogenic microbial
 512 communities rapidly consumed incoming labile organic compounds (Neumann et al., 2019;
 513 Stevenson et al., 2021). However, as the thaw progressed, the lake briefly shifted to net-autotrophy
 514 (Figure S6), marking an important shift from hydroclimatic controls on fluxes, to a patchwork of
 515 biochemical transport pathways and barriers (Figure 7 b-d and Figure A1b-d). During this transition,
 516 increased GPP and the resulting oxygen saturation in the lake and streams enhance methanotrophic
 517 activity, thereby promoting methane oxidation and reducing net CH₄ emissions (Figure 7b-c and
 518 Figure A1b-c). The central role of oxygen availability and active methanotroph communities in

519 regulating methane fluxes during Arctic thaw has been demonstrated in both tundra landscapes and
520 permafrost mires (Christiansen et al., 2015; Graef et al., 2011; Singleton et al., 2018). As oxygen
521 production increases, greater amounts of oxygen become available to support methanotrophic
522 activity in the water column. Methanotrophic activity is likely represented in the observed reduction
523 of CH₄ fluxes during periods of decreased ER (i.e., when oxygen consumption is elevated, Figure A1c),
524 as higher oxygen availability enhances aerobic methane oxidation (Figure 7c). However, the streams
525 remain net heterotrophic despite increasing GPP and ER during this time period, therefore providing
526 a more suitable environment for CH₄ production and flux (Figure S6). Thus, the lake and streams
527 reflect distinct ecosystems for the production and flux of CH₄, where the lake being an overall
528 methane source, has a greater tendency to oxidize CH₄ following the thaw, while the streams follow
529 along a low-to-high flux gradient as the slope flattens and soils become saturated (Westergaard-
530 Nielsen et al., 2020; Stevenson et al., 2021).

531 3.3.2 Growing Season: Oxic-Anoxic Transport Pathways and Barriers

532 Early in the growing season the lake and streams enter into a transition phase, where peak
533 fluxes become increasingly dependent on biochemical pathways related to DOM availability,
534 conductivity, oxygen saturation and pH (Figure 7c). DOM is the limiting factor late in the season
535 where higher fluxes are increasingly dependent on water column conditions with greater levels of
536 DOM (Figure 6c-d and 7c-d). CH₄ fluxes during this time period were strongly associated with
537 indicators of microbial activity forming oxic-anoxic transport barriers, or pathways, respectively. For
538 example, microbial activity in anoxic sediments maybe producing CH₄, but whether it is diffused to
539 the atmosphere is directly affected by the micro-conditions of the water column (e.g., DOM,
540 conductivity, pH, and/or GPP/oxygen saturation), either forming an oxidative barrier, or an anoxic
541 pathway (Figure 7c-d and Figure A1). For example, groundwater transport of CH₄ from anoxic
542 sediments to oxygen-rich streams may result in water with high concentrations of both. While some
543 of the CH₄ is likely oxidized during transport, it can be that both are respiration at turbulent sections of
544 the stream, which were the highest fluxes observed from the streams and during this phase of the
545 season (Street et al., 2016; Neumann et al., 2019; Olid et al., 2022; Kleber et al. 2025).

546 Fluxes are further affected by water conditions either favoring methanogenic, or
547 methanotrophic activity (Conrad, 2007; Cunada et al., 2021; Emerson et al., 2021). pH levels near
548 neutral likely indicate water conditions favorable to methanogenesis at the sediment-water
549 interface, while increasing alkalinity may reduce methanogenic and/or favor increased
550 methanotrophic activity as growing season progresses (Figure 7c-d). For example, during growing
551 season micro-pH and oxygen saturation conditions in the lake and streams are influenced by the
552 ever-increasing presence of macrophytes, mosses and plankton, which tend to drive pH and oxygen
553 levels higher (Liebner et al., 2011; Cunada et al., 2021). Here we show that increasing pH and oxygen
554 saturation, as a result of primary production, create an aerobic environment that favors
555 methanotrophic activity, thereby driving CH₄ emissions down through the growing season (Figure
556 7c-d, Figure A1). Declines in oxygen saturation driven by microbial respiration can create anoxic
557 conditions that enable CH₄ emissions from sediment to surface waters (Conrad, 2007; Michel et al.,
558 2010; Street et al., 2016; Cheng et al. 2024). Such a mechanism likely explains the formation of flux
559 hotspots associated with decomposing iron-oxidizing bacterial mats along stream banks (Figure A2)
560 (Wallenius et al., 2021; Cheng et al. 2024). In the case of the bacterial mats, we observed fluxes
561 were highest in the streams where bacterial assemblages had become exposed to the atmosphere
562 and were decomposing in stagnant water (Figure A2), which may suggest that the decomposition of
563 the bacteria was releasing dissolved organic substrates in a low-oxygen environment already primed
564 for methanogenic activity (Wallenius et al., 2021; Cheng et al. 2024). This idea is supported late in

565 the season when increased CH₄ emissions become dependent on niche environments where
566 moderate levels of dissolved organic matter (FDOM) and low oxygenated water predict higher fluxes
567 (Figure 7d and Figure A1d). However, submerged bacterial mats along with filamentous green algae
568 the presence of macrophytes and/or mosses in the lake and streams, were associated with lower
569 fluxes, suggesting they form oxidative barriers for CH₄ fluxes from the sediment when submerged
570 (Figure 7d and Figure A1d) (Heilman & Carlton, 2001; Laanbroek, 2010; Liebner et al., 2011; Esposito
571 et al., 2023). The submerged, or not status of bacterial assemblages' points to an interesting
572 feedback mechanism between CH₄ fluxes and dropping water levels creating variability in emission
573 pathways. Similar processes have been shown in relation to submerged brown mosses in Arctic
574 tundra ecosystems have been shown to promote CH₄ oxidation and thus decrease CH₄ emissions
575 from sediments (Žárský et al., 2018). Overall, these results highlight the broader importance of fine-
576 scale biogeochemical dynamics shaping CH₄ fluxes from a permafrost catchment and provide an
577 important data point in an uncertain region of the world.

578 4 Conclusion

579 This research provides a temporally resolved catchment scale CH₄ flux analysis across
580 different waterbody types and conditions—lake, streams, and ice/snow-covered surfaces—
581 subsequently describing important biogeochemical and climatic controls on emissions. Often lost in
582 temporally coarse assessments is a detailed understanding of seasonal transitions in processes
583 related to CH₄ fluxes and environmental control mechanisms. Leveraging BRT to fit hundreds of
584 randomized models and visualizing the direct, and indirect controls on CH₄ fluxes reveals variability
585 in how, for example, DOM and/or water temperature affect fluxes differently as the Arctic summer
586 progresses. We presented an approach which captures ecosystem-scale effects, but furthermore
587 describes isolated mechanistic effects related to, for example, GPP, revealing that primary
588 productivity plays a critical role in regulating CH₄ emissions from permafrost affected waterbodies.
589 This work contributes to understanding carbon feedback mechanisms in a region where process-
590 level knowledge is needed to scale global models simulating CH₄ emissions from permafrost affected
591 waterbodies.

592 Code Availability

593 R code for calculating methane fluxes can be found here: <https://github.com/mthayne527/fluxCH4>.

594 Data Availability

595 Meteorological can be accessed here: <https://doi.org/10.17897/FEGK-0632>, and soil data here:
596 <https://doi.org/10.17897/6G78-P793>, <https://doi.org/10.17897/9N7Z-GA63>, and can be
597 accessed via the Greenland Ecosystem Monitoring website: <https://data.g-e-m.dk/datasets?theme=climate>. BAWLD circum-Arctic waterbody dataset can be found here: DOI:
598 10.5194/essd-13-5151-2021. Water chemistry and chamber data can be requested from Torsten
599 Sachs at Helmholtz Centre for Geosciences in Potsdam, Germany (GFZ).

601 Author contributions

602 MWT collected, compiled and analyzed data, and wrote the manuscript. KK collected,
603 compiled, and analyzed data, and contributed writing parts of the manuscript. CW provided
604 methodological guidance and feedback, and contributed to writing parts of the methodology. AK
605 provided comments, feedback, and guidance on interpreting results, and contributed to writing

606 various parts of the manuscript. TS collected data, provided comments, feedback, and guidance on
607 interpreting results, and contributed to writing the manuscript.

608 Competing interests

609 The authors declare that they have no conflict of interest.

610 Acknowledgments

611 This research is part of the MOMENT project which is funded by the Federal Ministry of
612 Research, Technology and Space (BMFTR) under grant number 03F0931E. We acknowledge the
613 community of Qeqertarsuaq, Greenland for allowing us to research their land and water. We
614 acknowledge the help received from all of the partners part of the MOMENT project, with a specific
615 acknowledgment for Selina Undeutsch and Prof. Dr. Lars Kutzbach from the University of Hamburg.
616 We acknowledge Dr. Evan Wilcox for collecting water level from the lake during the 2024 field
617 season. We would acknowledge the University of Copenhagen and the Arctic Station team for
618 providing an environment for conducting this research. We acknowledge the work of the Greenland
619 Ecosystem Monitoring network and specifically Charlotte Sigsgaard for her help in getting
620 meteorological and soil data. ChatGPT models 4.1 and 5 were used to edit parts of the manuscript.

621 References

622 Ayala-Borda, P., Bogard, M. J., Grosbois, G., Preskienis, V., Culp, J. M., Power, M., &
623 Rautio, M. (2024). Dominance of net autotrophy in arid landscape low relief polar lakes,
624 Nunavut, Canada. *Global Change Biology*, 30(2), e17193. DOI: 10.1111/gcb.17193

625

626 Bastviken, D., Cole, J., Pace, M., & Tranvik, L. (2004). Methane emissions from lakes:
627 Dependence of lake characteristics, two regional assessments, and a global estimate. *Global
628 Biogeochemical Cycles*, 18(4). <https://doi.org/10.1029/2004GB002238>

629

630 Bastviken, D., Cole, J. J., Pace, M. L., & van de-Bogert, M. C. (2008). Fates of methane from
631 different lake habitats: Connecting whole-lake budgets and CH₄ emissions. *Journal of
632 Geophysical Research: Biogeosciences*, 113(2). <https://doi.org/10.1029/2007JG000608>

633 Bartsch, A., Gay, B. A., Schüttemeyer, D., et al. (2025). Advancing the Arctic Methane
634 Permafrost Challenge (AMPAC) with future satellite missions. *IEEE Journal of Selected
635 Topics in Applied Earth Observations and Remote Sensing*, 15, 1234–1245. DOI:
636 10.1109/JSTARS.2025.3538897

637 Bogard, M. J., del Giorgio, P. A., Boutet, L., Chaves, M. C. G., Prairie, Y. T., Merante, A., &
638 Derry, A. M. (2014). Oxic water column methanogenesis as a major component of aquatic
639 CH₄ fluxes. *Nature Communications*, 5. <https://doi.org/10.1038/ncomms6350>

640 Bouranis, J. A., McGivern, B. B., Makke, G., et al. (2025). Metabolic redox coupling controls
641 methane production in permafrost-affected peatlands through organic matter
642 quality-dependent energy allocation. *Global Change Biology*, 31(8), e70390.
643 <https://doi.org/10.1111/gcb.70390>

644 Bulínová, M., Schomacker, A., Kjellman, S. E., Gudasz, C., Olid, C., Rydberg, J., Panieri, G.,
645 et al. (2025). Increased ecosystem productivity boosts methane production in Arctic lake

646 sediments. *Journal of Geophysical Research: Biogeosciences*, 130(7), e2024JG008508.
647 <https://doi.org/10.1029/2024JG008508>

648 Emerson, J. B., Varner, R. K., Wik, M., Parks, D. H., Neumann, R. B., Johnson, J. E.,
649 Singleton, C. M., Woodcroft, B. J., Tollerson, R., Owusu-Dommey, A., Binder, M., Freitas,
650 N. L., Crill, P. M., Saleska, S. R., Tyson, G. W., & Rich, V. I. (2021). Diverse sediment
651 microbiota shape methane emission temperature sensitivity in Arctic lakes. *Nature
652 Communications*, 12(1). <https://doi.org/10.1038/s41467-021-25983-9>

653

654 Callaghan, T. v., Christensen, T. R., & Jantze, E. J. (2011). Plant and vegetation dynamics on
655 Disko island, west Greenland: Snapshots separated by over 40 years. In *Ambio* (Vol. 40, Issue
656 6). <https://doi.org/10.1007/s13280-011-0169-x>

657 Cheng, S., Meng, F., Wang, Y., Zhang, J., & Zhang, L. (2024). The potential linkage between
658 sediment oxygen demand and microbes and its contribution to the dissolved oxygen depletion
659 in the Gan River. *Frontiers in Microbiology*, 15, 1413447.
660 <https://doi.org/10.3389/fmicb.2024.1413447>

661 Christiansen, H. H. (1999). Active layer monitoring in two Greenlandic permafrost areas:
662 Zackenberg and Disko Island. *Geografisk Tidsskrift*, 99.

663

664 Christiansen, J. R., Romero, A. J. B., Jørgensen, N. O. G., Glaring, M. A., Jørgensen, C. J.,
665 Berg, L. K., & Elberling, B. (2015). Methane fluxes and the functional groups of
666 methanotrophs and methanogens in a young Arctic landscape on Disko Island, West
667 Greenland. *Biogeochemistry*, 122(1). <https://doi.org/10.1007/s10533-014-0026-7>

668

669 Cole, J. J., & Caraco, N. F. (1998). Atmospheric exchange of carbon dioxide in a low-wind
670 oligotrophic lake measured by the addition of SF6. *Limnology and Oceanography*, 43(4).
671 <https://doi.org/10.4319/lo.1998.43.4.0647>

672 Conrad, R. (2007). Microbial Ecology of Methanogens and Methanotrophs. In *Advances in
673 Agronomy* (Vol. 96). [https://doi.org/10.1016/S0065-2113\(07\)96005-8](https://doi.org/10.1016/S0065-2113(07)96005-8)

674 Cunada, C. L., Lesack, L. F. W., Tank, S. E., & Hesslein, R. H. (2021). Methane flux
675 dynamics among CO₂-absorbing and thermokarst lakes of a great Arctic delta.
676 *Biogeochemistry*, 156(1), 25–39. <https://doi.org/10.1007/s10533-021-00853-0>

677

678 D'Imperio, L., Nielsen, C. S., Westergaard-Nielsen, A., Michelsen, A., & Elberling, B.
679 (2017). Methane oxidation in contrasting soil types: responses to experimental warming with
680 implication for landscape-integrated CH₄ budget. *Global Change Biology*, 23(2).
681 <https://doi.org/10.1111/gcb.13400>

682

683 Elder, C. D., Thompson, D. R., Thorpe, A. K., Hanke, P., Walter Anthony, K. M., & Miller,
684 C. E. (2020). Airborne Mapping Reveals Emergent Power Law of Arctic Methane Emissions.
685 *Geophysical Research Letters*, 47(3). <https://doi.org/10.1029/2019GL085707>

686

687 Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working guide to boosted regression trees.
688 In *Journal of Animal Ecology* (Vol. 77, Issue 4). <https://doi.org/10.1111/j.1365-2656.2008.01390.x>

689

690 Emerson, J. B., Varner, R. K., Wik, M., Parks, D. H., Neumann, R. B., Johnson, J. E.,
691 Singleton, C. M., Woodcroft, B. J., Tollerson, R., Owusu-Domme, A., Binder, M., Freitas,
692 N. L., Crill, P. M., Saleska, S. R., Tyson, G. W., & Rich, V. I. (2021). Diverse sediment
693 microbiota shape methane emission temperature sensitivity in Arctic lakes. *Nature
694 Communications*, 12(1). <https://doi.org/10.1038/s41467-021-25983-9>

695

696 Esposito, C., Nijman, T. P. A., Veraart, A. J., Audet, J., Levi, E. E., Lauridsen, T. L., &
697 Davidson, T. A. (2023). Activity and abundance of methane-oxidizing bacteria on plants in
698 experimental lakes subjected to different nutrient and warming treatments. *Aquatic Botany*,
699 185. <https://doi.org/10.1016/j.aquabot.2022.103610>

700

701 Fazi, S., Amalfitano, S., Venturi, S., Pacini, N., Vazquez, E., Olaka, L. A., Tassi, F.,
702 Crognale, S., Herzsprung, P., Lechtenfeld, O. J., Cabassi, J., Capecchiacci, F., Rossetti, S.,
703 Yakimov, M. M., Vaselli, O., Harper, D. M., & Butturini, A. (2021). High concentrations of
704 dissolved biogenic methane associated with cyanobacterial blooms in East African lake
705 surface water. *Communications Biology*, 4(1). <https://doi.org/10.1038/s42003-021-02365-x>

706 Fox-Kemper, B., Hewitt, H. T., Xiao, C., et al. (2021). Chapter 9: Ocean, cryosphere and sea
707 level change. In: Climate Change 2021: The Physical Science Basis. *Contribution of Working
708 Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change*.
709 Cambridge University Press, 1211–1362. <https://doi.org/10.1017/9781009157896.011>

710 Garcia, H. E., & Gordon, L. I. (1992). Oxygen solubility in seawater: Better fitting equations.
711 In *Limnology and Oceanography* (Vol. 37, Issue 6).
712 <https://doi.org/10.4319/lo.1992.37.6.1307>

713

714 Graef, C., Hestnes, A. G., Svenning, M. M., & Frenzel, P. (2011). The active methanotrophic
715 community in a wetland from the High Arctic. *Environmental Microbiology Reports*, 3(4).
716 <https://doi.org/10.1111/j.1758-2229.2010.00237.x>

717

718 Hall, R. O., & Madinger, H. L. (2018). Use of argon to measure gas exchange in turbulent
719 mountain streams. *Biogeosciences*, 15(10). <https://doi.org/10.5194/bg-15-3085-2018>

720 Heilman, M. A., & Carlton, R. G. (2001). Methane oxidation associated with submersed
721 vascular macrophytes and its impact on plant diffusive methane flux. *Biogeochemistry*, 52(2),
722 207-224. DOI: 10.1023/A:1006427712846

723 Hijmans RJ, Phillips S, Leathwick J, Elith J (2023). dismo: Species Distribution Modeling. R
724 package version 1.3-14. DOI: 10.32614/CRAN.package.dismo

725 Hoffmann, M., Schulz-Hanke, M., Garcia Alba, J., Jurisch, N., Hagemann, U., Sachs, T.,
726 Sommer, M., & Augustin, J. (2017). A simple calculation algorithm to separate high-
727 resolution CH₄ flux measurements into ebullition- and diffusion-derived components.
728 *Atmospheric Measurement Techniques*, 10(1). <https://doi.org/10.5194/amt-10-109-2017>

729

730 Humlum, O. (1998). Active layer thermal regime 1991-1996 at Qeqertarsuaq, Disko Island,
731 Central West Greenland. *Arctic and Alpine Research*, 30(3). <https://doi.org/10.2307/1551977>

732

733 Humlum, O., Hansen, B. U., & Nielsen, N. (1999). Meteorological observations 1998 at the
734 arctic station, Qeqertarsuaq (69°15'N), Central West Greenland. *Geografisk Tidsskrift*, 99.
735 <https://doi.org/10.1080/00167223.1999.10649428>

736 Iannone R, Roy O (2024). *DiagrammeR: Graph/Network Visualization*. R package version
737 1.0.11. DOI: 10.32614/CRAN.package.DiagrammeR

738 Juncher Jørgensen, C., Schlaikjær Mariager, T., & Riis Christiansen, J. (2024). Spatial
739 variation of net methane uptake in Arctic and subarctic drylands of Canada and Greenland.
740 *Geoderma*, 443. <https://doi.org/10.1016/j.geoderma.2024.116815>

741 Klaus, M., Verheijen, H. A., Karlsson, J., & Seekell, D. A. (2022). Depth and basin shape
742 constrain ecosystem metabolism in lakes dominated by benthic primary producers.
743 *Limnology and Oceanography*, 67(12), 2763–2778. <https://doi.org/10.1002/lno.12236>

744 Keskitalo, K. H., Bröder, L., Shakil, S., Zolkos, S., Tank, S. E., van Dongen, B. E., Tesi, T.,
745 Haghipour, N., Eglinton, T. I., Kokelj, S. v., & Vonk, J. E. (2021). Downstream Evolution of
746 Particulate Organic Matter Composition From Permafrost Thaw Slumps. *Frontiers in Earth
747 Science*, 9. <https://doi.org/10.3389/feart.2021.642675>

748 Kleber, G. E., Magerl, L., Turchyn, A. V., Schloemer, S., Trimmer, M., Zhu, Y., & Hodson,
749 A. (2025). Proglacial methane emissions driven by meltwater and groundwater flushing in a
750 high-Arctic glacial catchment. *Biogeosciences*, 22(3), 659-674. <https://doi.org/10.5194/bg-22-659-2025>

751 Kluge, M., Wauthy, M., Clemmensen, K. E., Wurzbacher, C., Hawkes, J. A., Einarsson, K.,
752 Rautio, M., Stenlid, J., & Peura, S. (2021). Declining fungal diversity in Arctic freshwaters
753 along a permafrost thaw gradient. *Global Change Biology*, 27(22).
754 <https://doi.org/10.1111/gcb.15852>

755 Korrensalo, A., Alekseychik, P., Mammarella, I., et al. (2024). High-resolution spatial
756 patterns and drivers of terrestrial ecosystem greenhouse gas fluxes in sub-Arctic Finland.
757 *Biogeosciences*, 21, 335–352. <https://doi.org/10.5194/bg-21-335-2024>

758 Kuhn, M. A., Varner, R. K., Bastviken, D., Crill, P., MacIntyre, S., Turetsky, M., Walter
759 Anthony, K., McGuire, A. D., and Olefeldt, D. (2021). BAWLD-CH4: a comprehensive
760 dataset of methane fluxes from boreal and arctic ecosystems, *Earth System Science Data*, 13,
761 5151–5189. DOI: 10.5194/essd-13-5151-2021

762 Kutzbach, L., Schneider, J., Sachs, T., Giebels, M., Nykänen, H., Shurpali, N. J.,
763 Martikainen, P. J., Alm, J., & Wilmking, M. (2007). CO₂ flux determination by closed-
764 chamber methods can be seriously biased by inappropriate application of linear regression.
765 *Biogeosciences*, 4(6). <https://doi.org/10.5194/bg-4-1005-2007>

766 Kyzivat, E. D., Smith, L. C., Garcia-Tigreros, F., Huang, C., Wang, C., Langhorst, T., et al.
767 (2022). The importance of lake emergent aquatic vegetation for estimating Arctic–Boreal
768 methane emissions. *Journal of Geophysical Research: Biogeosciences*, 127(6),
769 e2021JG006635. <https://doi.org/10.1029/2021JG006635>

770

771

772

773

774

775

776

777

778 Laanbroek, H. J. (2010). Methane emission from natural wetlands: Interplay between
779 emergent macrophytes and soil microbial processes. A mini-review. In *Annals of Botany*
780 105(1). <https://doi.org/10.1093/aob/mcp201>

781

782 Larsen, J. G., & Larsen, L. M. (2022). Lithostratigraphy, geology and geochemistry of the
783 Tertiary volcanic rocks on Svartenhuk Halvø and adjoining areas, West Greenland. *GEUS*
784 *Bulletin*, 50. <https://doi.org/10.34194/geusb.v50.8295>

785

786 Liebner, S., Zeyer, J., Wagner, D., Schubert, C., Pfeiffer, E. M., & Knoblauch, C. (2011).
787 Methane oxidation associated with submerged brown mosses reduces methane emissions
788 from Siberian polygonal tundra. *Journal of Ecology*, 99(4). <https://doi.org/10.1111/j.1365-2745.2011.01823.x>

790 Li, M., Peng, C., Zhu, Q., Zhou, X., Yang, G., Song, X., & Zhang, K. (2020). The significant
791 contribution of lake depth in regulating global lake diffusive methane emissions. *Water*
792 *Research*, 172, 115465. <https://doi.org/10.1016/j.watres.2020.115465>

793 Michel, G., Tonon, T., Scornet, D., Cock, J. M., & Kloareg, B. (2010). Central and storage
794 carbon metabolism of the brown alga *Ectocarpus siliculosus*: Insights into the origin and
795 evolution of storage carbohydrates in Eukaryotes. *New Phytologist*, 188(1).
796 <https://doi.org/10.1111/j.1469-8137.2010.03345.x>

797

798 Miner, K. R., Turetsky, M. R., Malina, E., Bartsch, A., Tamminen, J., McGuire, A. D., Fix,
799 A., Sweeney, C., Elder, C. D., & Miller, C. E. (2022). Permafrost carbon emissions in a
800 changing Arctic. In *Nature Reviews Earth and Environment* (Vol. 3, Issue 1).
801 <https://doi.org/10.1038/s43017-021-00230-3>

802

803

804 Mulholland, P. J., Fellows, C. S., Tank, J. L., Grimm, N. B., Webster, J. R., Hamilton, S. K.,
805 Martí, E., Ashkenas, L., Bowden, W. B., Dodds, W. K., McDowell, W. H., Paul, M. J., &
806 Peterson, B. J. (2001). Inter-biome comparison of factors controlling stream metabolism.
807 *Freshwater Biology*, 46(11). <https://doi.org/10.1046/j.1365-2427.2001.00773.x>

808

809 Myrstener, M., Sponseller, R. A., Bergström, A. K., & Giesler, R. (2021). Organic carbon
810 availability regulates aquatic metabolism in a boreal stream network across land-use settings.
811 *Freshwater Biology*, 66(10), 1899–1911. <https://doi.org/10.1111/fwb.13793>

812

813 Neumann, R. B., Moorberg, C. J., Lundquist, J. D., Turner, J. C., Waldrop, M. P., McFarland,
814 J. W., Eus Kirchen, E. S., Edgar, C. W., & Turetsky, M. R. (2019). Warming Effects of Spring
815 Rainfall Increase Methane Emissions From Thawing Permafrost. *Geophysical Research*
816 *Letters*, 46(3). <https://doi.org/10.1029/2018GL081274>

817

818 Noss, C., Bodmer, P., Koca, K., & Lorke, A. (2018). Flow and Turbulence driven Water
819 Surface Roughness and Gas Exchange Velocity in Streams. *E3S Web of Conferences*, 40.
820 <https://doi.org/10.1051/e3sconf/20184005018>

821

822 Olefeldt, D., Hovemyr, M., Kuhn, M. A., Bastviken, D., Bohn, T. J., Connolly, J., Crill, P.,
823 Eus Kirchen, E. S., Finkelstein, S. A., Genet, H., Grosse, G., Harris, L. I., Heffernan, L.,
824 Helbig, M., Hugelius, G., Hutchins, R., Juutinen, S., Lara, M. J., Malhotra, A., ... Watts, J. D.

825 (2021). The boreal-arctic wetland and lake dataset (BAWLD). *Earth System Science Data*,
826 13(11). <https://doi.org/10.5194/essd-13-5127-2021>

827

828 Olid, C., Zannella, A., & Lau, D. C. P. (2021). The Role of Methane Transport From the
829 Active Layer in Sustaining Methane Emissions and Food Chains in Subarctic Ponds. *Journal*
830 *of Geophysical Research: Biogeosciences*, 126(3). <https://doi.org/10.1029/2020JG005810>

831

832 Olid, C., Rodellas, V., Rocher-Ros, G., Garcia-Orellana, J., Diego-Feliu, M., Alorda-
833 Kleinglass, A., Bastviken, D., & Karlsson, J. (2022). Groundwater discharge as a driver of
834 methane emissions from Arctic lakes. *Nature Communications*, 13(1).
835 <https://doi.org/10.1038/s41467-022-31219-1>

836

837 Pedersen, A. R., Petersen, S. O., & Schelde, K. (2010). A comprehensive approach to soil-
838 atmosphere trace-gas flux estimation with static chambers. *European Journal of Soil Science*,
839 61(6). <https://doi.org/10.1111/j.1365-2389.2010.01291.x>

840

841 QGIS Development Team: QGIS Geographic Information System, Open Source Geospatial
842 Foundation Project, available at: <https://qgis.org>

843

844 Rasilo, T., Prairie, Y. T., & del Giorgio, P. A. (2015). Large-scale patterns in summer
845 diffusive CH₄ fluxes across boreal lakes, and contribution to diffusive carbon emissions.
846 *Global Change Biology*, 21(3), 1124–1139. <https://doi.org/10.1111/gcb.12741>

847

848 Rautio, M., Dufresne, F., Laurion, I., Bonilla, S., Vincent, W. F., & Christoffersen, K. S.
849 (2011). Shallow freshwater ecosystems of the circumpolar Arctic. *Ecoscience*, 18(3).
850 <https://doi.org/10.2980/18-3-3463>

851 Ravn, N. R., Elberling, B., & Michelsen, A. (2020). Arctic soil carbon turnover controlled by
852 experimental snow addition, summer warming and shrub removal. *Soil Biology and*
853 *Biochemistry*, 142. <https://doi.org/10.1016/j.soilbio.2019.107698>

854 Rocher-Ros, G., Sponseller, R. A., Bergström, A.-K., Myrstener, M., & Giesler, R. (2020).
855 Stream metabolism controls diel patterns and evasion of CO₂ in Arctic streams. *Global*
856 *Change Biology*, 26(3), 1400–1413. DOI: 10.1111/gcb.14895

857 Saunois, M., Martinez, A., Poulter, B., Zhang, Z., Raymond, P. A., Regnier, P., Canadell, J.
858 G., Jackson, R. B., Patra, P. K., Bousquet, P., Ciais, P., Dlugokencky, E. J., Lan, X., Allen,
859 G. H., Bastviken, D., Beerling, D. J., Belikov, D. A., Blake, D. R., Castaldi, S., Crippa, M.,
860 Deemer, B. R., Dennison, F., Etiope, G., Gedney, N., Höglund-Isaksson, L., Holgerson, M.
861 A., Hopcroft, P. O., Hugelius, G., Ito, A., Jain, A. K., Janardanan, R., Johnson, M. S.,
862 Kleinen, T., Krummel, P. B., Lauerwald, R., Li, T., Liu, X., McDonald, K. C., Melton, J. R.,
863 Mühle, J., Müller, J., Murguia-Flores, F., Niwa, Y., Noce, S., Pan, S., Parker, R. J., Peng, C.,
864 Ramonet, M., Riley, W. J., Rocher-Ros, G., Rosentreter, J. A., Sasakawa, M., Segers, A.,
865 Smith, S. J., Stanley, E. H., Thanwerdas, J., Tian, H., Tsuruta, A., Tubiello, F. N., Weber, T.
866 S., van der Werf, G. R., Worthy, D. E. J., Xi, Y., Yoshida, Y., Zhang, W., Zheng, B., Zhu, Q.,
867 Zhu, Q., and Zhuang, Q.: Global Methane Budget 2000–2020, *Earth Syst. Sci. Data*, 17,
868 1873–1958, <https://doi.org/10.5194/essd-17-1873-2025, 2025>.

869

870 Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J.,
871 Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt, D.,
872 Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., & Vonk, J. E. (2015).

873 Climate change and the permafrost carbon feedback. In *Nature* (Vol. 520, Issue 7546).
874 <https://doi.org/10.1038/nature14338>

875

876 Singleton, C. M., McCalley, C. K., Woodcroft, B. J., Boyd, J. A., Evans, P. N., Hodgkins, S.
877 B., Chanton, J. P., Frolking, S., Crill, P. M., Saleska, S. R., Rich, V. I., & Tyson, G. W.
878 (2018). Methanotrophy across a natural permafrost thaw environment. *ISME Journal*, 12(10).
879 <https://doi.org/10.1038/s41396-018-0065-5>

880

881 Street, L. E., Dean, J. F., Billett, M. F., Baxter, R., Dinsmore, K. J., Lessels, J. S., Subke, J.
882 A., Tetzlaff, D., & Wookey, P. A. (2016). Redox dynamics in the active layer of an Arctic
883 headwater catchment; examining the potential for transfer of dissolved methane from soils to
884 stream water. *Journal of Geophysical Research: Biogeosciences*, 121(11).
885 <https://doi.org/10.1002/2016JG003387>

886

887 Stevenson, M. A., McGowan, S., Pearson, E. J., Swann, G. E. A., Leng, M. J., Jones, V. J.,
888 Bailey, J. J., Huang, X., & Whiteford, E. (2021). Anthropocene climate warming enhances
889 autochthonous carbon cycling in an upland Arctic lake, Disko Island, West Greenland.
890 *Biogeosciences*, 18(8). <https://doi.org/10.5194/bg-18-2465-2021>

891

892 Thompson, H. A., White, J. R., Pratt, L. M., & Sauer, P. E. (2016). Spatial variation in flux,
893 $\delta^{13}\text{C}$ and $\delta^2\text{H}$ of methane in a small Arctic lake with fringing wetland in western Greenland.
894 *Biogeochemistry*, 131(1–2), 17–33. <https://doi.org/10.1007/s10533-016-0261-1>

895

896 Vachon, D., & Prairie, Y. T. (2013). The ecosystem size and shape dependence of gas
897 transfer velocity versus wind speed relationships in lakes. *Canadian Journal of Fisheries and
898 Aquatic Sciences*, 70(12), 1757–1764. <https://doi.org/10.1139/cjfas-2013-0241>

899

900 Virkkala, A. M., Niittynen, P., Kemppinen, J., Marushchak, M. E., Voigt, C., Hensgens, G.,
901 Kerttula, J., Happonen, K., Tyystjärvi, V., Biasi, C., Hultman, J., Rinne, J., & Luoto, M.
902 (2024). High-resolution spatial patterns and drivers of terrestrial ecosystem carbon dioxide,
903 methane, and nitrous oxide fluxes in the tundra. *Biogeosciences*, 21(2).
904 <https://doi.org/10.5194/bg-21-335-2024>

905

906 Walter Anthony, K. M., Anthony, P., Grosse, G., & Chanton, J. (2012). Geologic methane
907 seeps along boundaries of Arctic permafrost thaw and melting glaciers. *Nature Geoscience*,
908 5(6). <https://doi.org/10.1038/ngeo1480>

909

910 Walter Anthony, K., Schneider von Deimling, T., Nitze, I., Frolking, S., Emond, A., Daanen,
911 R., Anthony, P., Lindgren, P., Jones, B., & Grosse, G. (2018). 21st-century modeled
912 permafrost carbon emissions accelerated by abrupt thaw beneath lakes. *Nature
913 Communications*, 9(1). <https://doi.org/10.1038/s41467-018-05738-9>

914

915 Walvoord, M. A., & Kurylyk, B. L. (2016). Hydrologic Impacts of Thawing Permafrost—A
916 Review. *Vadose Zone Journal*, 15(6). <https://doi.org/10.2136/vzj2016.01.0010>

917

918 Wallenius, A. J., Dalcin Martins, P., Slomp, C. P., & Jetten, M. S. M. (2021). Anthropogenic
919 and Environmental Constraints on the Microbial Methane Cycle in Coastal Sediments. In
920 *Frontiers in Microbiology* (Vol. 12). <https://doi.org/10.3389/fmicb.2021.631621>

921

922 Westergaard-Nielsen, A., Balstr m, T., Treier, U. A., Normand, S., & Elberling, B. (2020).
923 Estimating meltwater retention and associated nitrate redistribution during snowmelt in an
924 Arctic tundra landscape. *Environmental Research Letters*, 15(3).
925 <https://doi.org/10.1088/1748-9326/ab57b1>

926 Winslow, L. A., Zwart, J. A., Batt, R. D., Dugan, H. A., Woolway, R. I., Corman, J. R.,
927 Hanson, P. C., & Read, J. S. (2016). LakeMetabolizer: an R package for estimating lake
928 metabolism from free-water oxygen using diverse statistical models. *Inland Waters*, 6(4).
929 <https://doi.org/10.1080/IW-6.4.883>

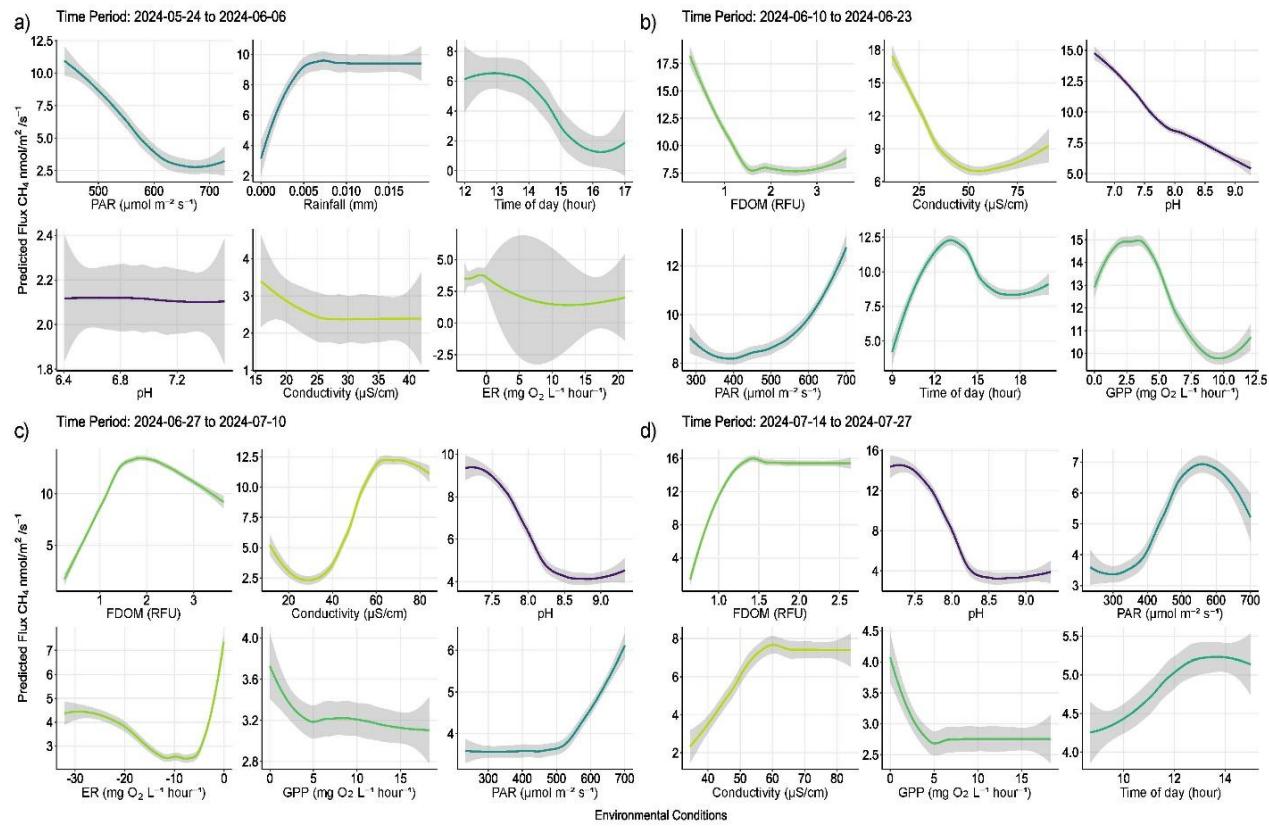
930 H. Wickham. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York, 2016.
931 DOI: 10.1007/978-3-319-24277-4

932 Xu, W., Lambæk, A., Holm, S. S., Furbo-Halken, A., Elberling, B., & Ambus, P. L. (2021).
933 Effects of experimental fire in combination with climate warming on greenhouse gas fluxes
934 in Arctic tundra soils. *Science of the Total Environment*, 795.
935 <https://doi.org/10.1016/j.scitotenv.2021.148847>

936

937 Yuan, K., Li, F., McNicol, G., Chen, M., Hoyt, A., Knox, S., Riley, W. J., Jackson, R., &
938 Zhu, Q. (2024). Boreal–Arctic wetland methane emissions modulated by warming and
939 vegetation activity. *Nature Climate Change*, 14(3). <https://doi.org/10.1038/s41558-024-01933-3>

940


941 Žárský, J. D., Kohler, T. J., Yde, J. C., Falteisek, L., Lamarche-Gagnon, G., Hawkings, J. R.,
942 Hatton, J. E., & Stibal, M. (2018). Prokaryotic assemblages in suspended and subglacial
943 sediments within a glacierized catchment on Qeqertarsuaq (Disko Island), west Greenland.
944 *FEMS Microbiology Ecology*, 94(7). <https://doi.org/10.1093/femsec/fiy100>

945

946 Zastruzny, S. F., Elberling, B., Nielsen, L., & Jensen, K. H. (2017). Water flow in the active
947 layer along an arctic slope—An investigation based on a field campaign and model
948 simulations. *The Cryosphere Discussions*, 1-32.

949

950 **Appendix A**

951

952 Figure A1. Partial dependency plots illustrating predicted marginal effects of meteorological, and
 953 biochemical water conditions predicting diffusive CH₄ fluxes. Each figure represents the direct
 954 marginal effect on CH₄ fluxes when all other predictors are held at their median, therefore giving a
 955 more mechanistic understanding of those conditions and processes regulating fluxes from water
 956 surfaces. The figures are ordered by importance in each time period and colors correspond to those
 957 seen in Figure 6 of the main text. The colored lines represent the result of a fitted general additive
 958 model ($y \sim s(x)$) and thus a smooth representation across the 321 fitted BRT models. Each predictor
 959 and its numerical range are given on the x-axis, while predicted fluxes are given on the y-axis.

960

970 Figure A2. Illustrates the various microbial forms encountered and found to influence CH₄ fluxes
971 from the catchment area. In the photo on the far left we can see gas film on the water surface which
972 was associated with submerged iron-oxidizing microbial assemblages, i.e. similar to what is shown in
973 the middle photo, however exposed to the atmosphere in lower water levels. The photo on the right
974 shows a brown alga which formed in the warm spring area southeast of the lake. In all cases,
975 increased fluxes were generally encountered when measuring atop the middle and right microbial
976 assemblages.

977