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Abstract 8 

Understanding spatiotemporal dynamics and drivers of methane (CH4) fluxes from rapidly changing 9 

permafrost regions is critical for improving our understanding of such changes. Between May and 10 

August 2023 and 2024, we measured CH₄ using floating chambers in a small Arctic permafrost 11 

catchment on Disko Island, Greenland. Fluxes were derived from 707 chamber measurements using 12 

a semi-automated algorithm incorporating boosted regression trees and generalized additive 13 

models. Highest fluxes occurred in streams and along lakeshores associated with inlets. Diffusive 14 

fluxes dominated (~98% of observations), while only ~1% of chamber deployments exhibited non-15 

linear concentration increases indicative of ebullition, while the other ~1% were attributed to 16 

uptake. Median diffusive fluxes were 5.0 nmol m-2s-1, (-0.1 to 271.8), peaking at ice-break. Ebullition 17 

had a median of 939 nmol m-2s-1 (5.2 - 14,893), but did not impact overall fluxes. Model results 18 

suggest that thaw-season CH₄ fluxes were initially driven by meteorological conditions and 19 

catchment soil conditions, but shifted rapidly—within approximately one week after ice-off—to 20 

biogeochemical controls, including dissolved organic matter, oxygen saturation, and pH.     21 

1 Introduction 22 

Permafrost regions across the Arctic store substantial amounts of carbon. Climate warming 23 

is rapidly changing permafrost regions and consequently their carbon storage dynamics, creating a 24 

critical climate feedback mechanism (Schuur et al., 2015; Miner et al., 2022). At current warming 25 

rates, models project approximately 77% of shallow permafrost will be lost by 2100 (Fox-Kemper et 26 

al. 2021), suggesting large implications for the global carbon budget and how carbon emissions are 27 

distributed across permafrost landscapes. The underlying issue is that thawing permafrost can 28 

release previously frozen organic matter, delivering labile nutrients to soil microbes which accelerate 29 

the decomposition of soil organic carbon as a result of their metabolic processes (Schuur et al., 2015; 30 

Keskitalo et al., 2021; Olefeldt et al., 2021).  Subtle changes in microbial processes in soils can 31 

enhance positive feedback mechanisms which compounds atmospheric warming. Lateral movement 32 

of water through active layer soils is a critical pathway for CH4 emissions from surface waters (Street 33 

et al., 2016; Olid et al., 2021, 2022; Fazi et al., 2021). Hydrological and catchment system dynamics in 34 

particular play a critical role in distributing dissolved carbon throughout permafrost environments. 35 

Catchment systems, such as thermokarst lakes and wetlands, have been shown to be “hotspots” for 36 

CH4 release, where daily emission rates between 10 and 200 mg m-2d-1 have been reported (Walter 37 

Anthony et al., 2018; Elder et al., 2020). However, while localized high emissions have been 38 

reported, the overall contribution of Arctic and permafrost freshwater bodies to global methane 39 

budgets is fairly low at 2-6% when compared to other ecoregions such as the tropics at 64% 40 

(Bastviken et al., 2004; Saunois et al., 2025; Virkkala et al., 2024). Nonetheless, with such drastic 41 

change expected, well designed field studies exploring which processes are the most important for 42 
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governing CH4 emissions from permafrost regions, are critical data sources for validating climate 43 

models and simulations (Bartsch et al. 2025).    44 

Carbon dynamics in permafrost regions have been shown to be governed by interactions 45 

between soil, vegetation, hydrology, and atmospheric processes (Walter Anthony et al., 2012; 46 

Virkkala et al., 2024; Yuan et al., 2024; Kleber et al. 2025). Located on the central-west coast of 47 

Greenland, Qeqertarsuaq, also known as Disko Island, has become an important data point for 48 

understanding environmental interactions which govern Arctic tundra carbon dynamics. The island 49 

provides a natural laboratory for observing interactions between permafrost, vegetation, microbial 50 

activity and aquatic ecosystems (Humlum, 1998; Humlum et al., 1999; Callaghan et al., 2011; 51 

Christiansen et al., 2015; D’Imperio et al., 2017).  Previous work from the study area has suggested 52 

shifting hydrology, historic permafrost thaw, nutrient cycling, and microbial activity in the active and 53 

permafrost layers as possible drivers of CH4 fluxes from surface water bodies (Zastruzny et al., 2017; 54 

Kluge et al., 2021; Stevenson et al., 2021; Juncher Jørgensen et al., 2024). These studies highlight the 55 

interconnectedness of terrestrial and aquatic ecosystems, and the effect they may have on CH4 56 

fluxes from lakes and streams on Disko Island. There is yet to be an extensive study on CH4 fluxes 57 

from the island’s lakes and streams. However, it has been suggested that permafrost thaw and 58 

warming air temperatures may have an effect on greenhouse gas fluxes (Kluge et al., 2021; Juncher 59 

Jørgensen et al., 2024). Soil warming experiments and studies of increased snow cover in winter 60 

were shown to regulate carbon fluxes through accelerated carbon turnover (Ravn et al., 2020; Xu et 61 

al., 2021). Carbon fluxes are further controlled by plant uptake and through microbial activity 62 

regulating the availability of nutrients and subsequent CH4 production (Laanbroek, 2010; Liebner et 63 

al., 2011; D’Imperio et al., 2017). Sedimentary processes in lakes promote carbon storage, whereas 64 

methanotrophic and methanogenic microbial assemblages along an upland–wetland environmental 65 

gradient regulate CH₄ consumption and emission, respectively. Therefore, freshwater ecosystems 66 

play a critical role storing, producing, and emitting CH4 (Christiansen et al., 2015; Žárský et al., 2018; 67 

Stevenson et al., 2021).  68 

The hydrology of Disko Island is strongly influenced by past volcanic activity during the 69 

Paleocene epoch. With extensive basaltic lava flows characterizing the landscape, the islands terrain 70 

is formed by the Maligât and Vaigat Formations, which are comprised of highly permeable layers of 71 

basalt interbedded with fluvial and lacustrine sediments (Westergaard-Nielsen et al., 2020; Larsen & 72 

Larsen, 2022). The high permeability of these geologic formations enables substantial subsurface 73 

flow, subsequently forming perennial water features such as warm springs. In spring, the soils which 74 

make up the active layer allow for rapid infiltration of meltwater, which laterally distributes 75 

nutrients and organic matter throughout the island’s aquatic ecosystems (Westergaard-Nielsen et 76 

al., 2020). For example, during spring runoff meltwater and hillside topography was found to largely 77 

drive the distribution of nitrates from terrestrial to aquatic ecosystems (Zastruzny et al., 2017; 78 

Stevenson et al., 2021). Thus, pools of nutrients available during the growing season may vary 79 

dramatically from one year to the next. Lateral flow of snowmelt and permafrost thaw may influence 80 

CH4 fluxes due to changes in physio- and biogeochemical properties of the lakes, streams and rivers 81 

on the island (Liebner et al., 2011; Rautio et al., 2011; Walvoord & Kurylyk, 2016; Stevenson et al., 82 

2021). Although Disko Island has discontinuous permafrost (Christiansen et al., 2015; Kluge et al., 83 

2021), thawing can release trapped organic matter and nutrients into aquatic ecosystems, 84 

potentially affecting CH₄ fluxes by providing new substrates for microbial activity (Ravn et al., 2020; 85 

Stevenson et al., 2021; Westergaard-Nielsen et al., 2020; Xu et al., 2021). 86 

The distribution and drivers of aquatic CH4 emissions in permafrost regions remain poorly 87 

constrained, particularly across small lakes and streams which may arise as emission hotspots. 88 
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Previous studies on Disko Island have highlighted the potential importance of hydrology, permafrost 89 

thaw, and microbial processes for greenhouse gas fluxes, but comprehensive spatial and seasonal 90 

assessments of CH4 are lacking. In this study we address this gap by quantifying CH4 fluxes from 707 91 

floating chamber measurements across a permafrost-affected catchment (Sanningasup Tasia). Using 92 

boosted regression trees, we evaluate the partial effects of physiochemical water conditions, 93 

catchment soil conditions, and meteorology in regulating emissions from ice-break through the 94 

growing season. Our objective was to determine how spatial heterogeneity and seasonal dynamics 95 

shape CH4 emissions from Arctic freshwater ecosystems and to identify the key processes that 96 

control flux variability in permafrost catchments.  97 

2 Methods 98 

2.1 Study Site 99 

Lake Sanningasup Tasia in Greenlandic, or Moræne sø in Danish, is situated between 100 

moraines in the north and east and an outlet which drains into the Red River to the west (Figure 1). 101 

The lake is primarily fed by a large warm spring which enters the lake from the southeast, forming a 102 

wetland type ecosystem. The other inlets of the lake are primarily fed by seasonal snowmelt. The 103 

heterogeneity of the catchment provides an exemplary study site, allowing us to understand the 104 

mechanisms regulating CH4 emissions from a lake, streams, and wetland.  According to a 2018 report 105 

from the University of Copenhagen, the lake has a maximum depth of 4.5 m and is generally 106 

phosphorus limited with nitrogen concentrations being seasonally variable, where concentrations 107 

during ice cover are higher than during periods of no ice cover (Westergaard-Nielsen et al., 2020). 108 

We found water temperature of the lake to range between 1.1 and 13.9 ⁰C with a mean of 7.9 ⁰C. To 109 

our knowledge there has never been an extensive study on the greenhouse gas fluxes from the lake 110 

and surrounding water bodies.  111 

  112 
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 Figure 1. Map showing the 707 chamber measurements (blue and brown dots). Points in the south 115 

are concentrated around Lake Sanningasup Tasia and its connected streams. The blue circle indicates 116 

streams fed by snowmelt and the turquoise circle indicates the outlet of the lake. The red circle 117 

indicates the warm spring area which forms a wetland type ecosystem. Points inside the black circle 118 

north of the lake indicate measurements taken from the Red River and its stream tributaries. 119 

Orthomosaic background image © CNES (2024), Distribution Airbus DS, produced from Pléiades 1B 120 

satellite imagery. 121 

2.2 Data Collection 122 

We used closed floating chamber systems connected to an ABB/Los Gatos Research GLA131 123 

Series Micro portable Gas Analyzer in 2023, and to a LI-COR® LI-7810 Trace Gas Analyzer in 2024, 124 

with the goal of capturing the spatial and temporal variability of CH4 fluxes in the catchment area. In 125 

2023, we used a self-built cylindrical chamber made of semi-transparent plastic material with 126 

volumetric capacity of 0.016 m3 and a basal area of 0.096 m2. In 2024, we used a West Systems type 127 

C flux chamber made of stainless steel with a volumetric capacity of 0.013 m3 and a basal area of 128 

0.07 m2. Both chambers included a fan for mixing air and a temperature sensor. The semi-129 

transparent plastic chamber used a circular foam floater that was wrapped around the outside of 130 

the chamber, allowing 2cm of the chamber to be below the water surface, forming a 100% airtight 131 

seal. The West Systems chamber was inserted into a closed-cell foam floater, where the seal was 132 

created once the chamber was inserted into the floater. Despite differing chamber materials and 133 

flotation devices, median fluxes between 2023 and 2024 were identical at 5.0 nmol m-2s-1. However, 134 

to evaluate whether changes in chamber construction between years introduced systematic bias in 135 

CH₄ flux estimates, we fit a linear model using log-transformed flux as the response and chamber 136 

type, latitude, longitude, and Julian day as predictors. Chamber type was not a significant predictor 137 
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(p = 0.13), and QQ plots of log-transformed fluxes across years showed no consistent deviation 138 

across the flux distribution, except at lower emission rates (Figure S1). These findings suggest that 139 

differences in chamber construction did not substantively influence the calculated fluxes. Chamber 140 

measurements were conducted on the surface of the lake and surrounding water bodies at a spatial 141 

distance of 10 to 20 m with a closure time of 10 minutes. The chamber and gas analyzer were 142 

connected in a closed loop, and sample air was continuously pumped through the gas analyzer. CH4 143 

concentrations were measured with a frequency of 1 Hz. Each flux measurement was given a unique 144 

id based on its spatial location or water body type. For the lake, ids were given based on what 145 

shoreline we were measuring on. For example, if on the east shore, ids would be e1, e2, e3, … etc. 146 

The majority of flux measurements on the lake were conducted within 0.2 m from the shore. Open 147 

water measurements in the lake were made using a small boat and anchor system. CH4 148 

concentrations in streams were measured by starting at, or near the headwaters and then taking 149 

measurements progressively downstream with consideration to the changing terrestrial vegetation 150 

and stream dynamics (i.e., fast, slow, or eddie pool). In 2023, we measured isolated meltwater pools 151 

during the thaw to represent control conditions (water not yet connected to the lake or streams). In 152 

2024, to capture an even earlier baseline, we conducted chamber measurements on top of snow 153 

and lake ice prior to thaw onset, providing a true pre-thaw control period. Overall, we made 707 154 

chamber measurements, representing ~10-15 chamber placements taking place daily, around the 155 

lake and surrounding streams giving us an extensive view of the spatial and temporal variability of 156 

CH4 fluxes in the study area. While floating chambers isolate the headspace from light wind 157 

disturbance, increased surface turbulence may influence gas exchange in the open space of the 158 

chamber (Vachon and Prairie 2013). Our approach captures diffusive exchange under mostly 159 

calm-water conditions (i.e., wind speed up to ~4 ms-1), but we acknowledge that regional wind-160 

driven mixing may contribute to flux variability beyond individual chamber footprints. We 161 

simultaneously measured water temperature using Truebner EC-100 RS-485 EC/Temperature 162 

sensors in 2023 and a suite of water parameters were collected in 2024 using an AquaTroll 600 163 

water sonde (see section: Decoding Methane Drivers). Meteorological data and soil characteristics 164 

were collected from nearby meteorological stations maintained by Aarhus University which are part 165 

of the Greenland Ecosystem Monitoring Database (Greenland Ecosystem Monitoring, 2025a-d) (see 166 

section “Decoding Methane Drivers” for list of variables used).  167 

2.3 Flux Algorithm & Ebullition Detection 168 

In collaboration with ChatGPT 4.0, we wrote an interactive algorithm in R which leverages 169 

General Additive Models (GAM) and Boosted Regression Trees (BRT) to robustly and flexibly 170 

calculate CH4 fluxes from individual floating chamber measurements (Figure 6). The flux calculation 171 

procedure was applied identically to individual chamber time series for both 2023 and 2024, while 172 

controlling for different the chamber constructions. 173 
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Figure 2. CH4 flux calculation workflow from concentration data using predictions from GAM and 176 

BRT. Blue boxes represent the start and end of a single chamber measurement working through the 177 

algorithms processes (grey boxes) and decision logic (gold boxes). Green boxes represent the storage 178 

and combination of the results for further analysis.    179 

Rather than fitting concentration data with linear, exponential, and/or polynomial models 180 

(Kutzbach et al., 2007; Pedersen et al., 2010; Hoffmann et al., 2017), the algorithm fits GAM, which 181 

are capable of modelling non-linear patterns without a-priori specification of the functional form of 182 

the relationship between time and concentration. However, before fitting a GAM, the concentration 183 

and accompanying data is checked and processed (Figure 2; “Data Checks and Preparation”) as 184 

follows: The algorithm conducts a preliminary check for the required chamber parameters which 185 

are; id, ordered times of measurement, air temperature (°C), volume, area, and air pressure. In 186 

addition, air temperature is expected to be initially in Celsius, which is automatically converted to 187 

Kelvin during the processing of concentration data in preceding steps. The data is then ordered 188 

based on id and time to maintain correct chronological order of chamber measurements. CH4 is then 189 

converted from ppm to moles using Ideal Gas Law: 190 

 191 

𝐶𝐻4𝑚𝑜𝑙𝑒𝑠 =
(𝐶𝐻4𝑝𝑝𝑚×𝑃×𝑉)

(R×T)
 (1) 192 

 193 

where P is air pressure (Pa), V is chamber volume (m3), R (8.314 J/ (mol × K) is the universal gas 194 

constant, and T is air temperature inside the chamber (K). After preliminary data checks and initial 195 
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processing of the concentration data, the concentration time series is then fit to a GAM (i.e. 196 

gam(CH4moles ~ s(time, k = gam_knots)), where the smoothing parameter ‘k’ is a user defined 197 

parameter named ‘gam_knots’ which has a default value of 5. The value of ‘k’ cannot exceed 3 times 198 

the degrees of freedom for a given concentration time series, or the algorithm defaults to fitting a 199 

linear model. The algorithm then checks the R2 value of the fitted GAM to see if it meets the default 200 

conditional value of ≥ 0.99, if so, it proceeds to calculate fluxes following these steps: 201 

 202 

∆𝐶𝐻4𝑚𝑜𝑙𝑒𝑠 = [
𝐶𝐻4(𝑡2)− 𝐶𝐻4(𝑡1)

𝑡2−𝑡1
,

𝐶𝐻4(𝑡3)− 𝐶𝐻4(𝑡2)

𝑡3−𝑡2
, … 

𝐶𝐻4(𝑡𝑛)− 𝐶𝐻4(𝑡𝑛−1)

𝑡𝑛−𝑡𝑛−1
 ] (2) 203 

 204 

Where ∆𝐶𝐻4𝑚𝑜𝑙𝑒𝑠 is the rate of change, calculated as the quotient of the predicted differences in 205 

CH4 concentration between successive time points. Flux is then calculated between successive time 206 

points by: 207 

 208 

𝐹̅𝐹𝑙𝑢𝑥 =  
1

𝑛−1
∑

∆𝐶𝐻4

𝐴 
𝑛−1
𝑖=1   (3) 209 

 210 

Where mean flux of the chamber measurement is estimated by calculating flux at each 211 

successive time step, where flux is determined by dividing ∆𝐶𝐻4𝑚𝑜𝑙𝑒𝑠 by the basal area (A) of the 212 

chamber, expressed in (m2).  A plot of the time series and model fit is generated and saved in the file 213 

directory defined by the user by setting the parameter ‘save_directory’ (Figures S1-5). Because 214 

fluxes were derived from high-frequency (1 Hz) concentration data fitted using a GAM with a strict 215 

acceptance threshold of R² ≥ 0.99, analytical uncertainty in the rate-of-change estimation is 216 

negligible. Conventional uncertainty propagation (e.g., based on regression slope error or replicate 217 

chambers) is not meaningful in this context because the GAM approach fits a smooth curve through 218 

hundreds of data points per deployment, effectively minimizing noise and preventing poor-quality 219 

fits from contributing to the final flux values. This ensures that the dominant source of variability in 220 

the dataset reflects true environmental heterogeneity rather than analytical error. Furthermore, 221 

because the chamber headspace was fully sealed and isolated from external turbulence, wind-222 

induced variability—which often motivates uncertainty corrections—is mechanically removed from 223 

the flux calculation process. For these reasons, we report spatial variability (e.g., medians, ranges, 224 

and interquartile spread) rather than analytical uncertainty, as it provides a more ecologically 225 

relevant representation of flux variability across the catchment. 226 

In the cases where the initial GAM fit does not meet the R2 ≥ 0.99 condition, the algorithm 227 

can follow two pathways (Figure 2). Pathway (1) is a result of the algorithm having detected non-228 

linear concentration increases using BRT, while pathway (2) the algorithm has found the chamber 229 

measurement has not met any of the conditional requirements for flux calculations, or more 230 

generally stated, there was no measurable concentration increase detected automatically. Both 231 

pathways are interactive as the user is prompted to confirm the classification of “ebullition” versus. 232 

diffusive data sequences in pathway (1), while in pathway (2) the user confirms there is indeed no 233 

concentration increase by reviewing the diagnostic plots (see Supplemental text and Figures S2-S6). 234 

Once confirmed, the user initiates flux calculations by manually entering the time range of the 235 

measurement that should be fitted (Figure 2). “Ebullition” in the context of the algorithm refers to a 236 
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sudden, non-linear CH₄ increases identified by the algorithm, which likely includes ebullitive events, 237 

but does not strictly infer all fluxes calculated this way were from bubbles entering the chamber. 238 

2.4 Lake and Stream Metabolism 239 

 In 2024, we calculated the metabolic parameters net ecosystem production (NEP), gross 240 

primary production (GPP), and ecosystem respiration (ER) of oxygen for the lake and streams using 241 

dissolved oxygen (DO) collected at a one-minute frequency during chamber measurements (DO 242 

sensor accuracy: ± 0.1 mg L⁻¹; resolution 0.01 mg L⁻¹). Including metabolic parameters as predictors 243 

in the BRT models gave us an understanding of the role microbial oxygen production plays in 244 

regulating or not CH4 emissions from water.  DO saturation was adjusted using temperature-245 

dependent solubility constants (Garcia & Gordon, 1992). Oxygen flux at the air-water interface was 246 

determined using wind derived gas exchange coefficients and adjusted for water temperature (Cole 247 

& Caraco, 1998). NEP was calculated as the rate of change in DO concentration over each chamber 248 

deployment, adjusted for air-water exchange (Hall & Madinger, 2018; Noss et al., 2018). GPP and ER 249 

were partitioned from NEP by applying a threshold of 200 µmol m⁻² s⁻¹ photosynthetically active 250 

radiation (PAR), which distinguishes intervals with effective photosynthesis from those with 251 

negligible light-driven production, despite continuous daylight during Arctic summer. Aggregating 252 

each chamber DO measurement into one-minute intervals, we calculated mean NEP, GPP, and ER for 253 

each chamber placement (Winslow et al., 2016). While this methodology is sound for the lake, there 254 

is some caveats in relation to stream metabolism. Because we are using a model which assumes 255 

wind driven gas exchange for small streams, we likely underestimate gas exchange in parts of the 256 

streams where turbulence from streambed roughness dominates. Nonetheless, the approach 257 

captures broadly the metabolic trends in lake and stream metabolism observed in other Arctic and 258 

Boreal waterbodies (Mulholland et al., 2001; Rocher-Ros et al., 2021; Ayala-Borda et al., 2024; Klaus 259 

et al., 2022; Myrstener et al., 2021) and is useful for comparing fluxes across aquatic biomes.  260 

2.5 Spatial Flux Evaluation 261 

We uploaded as a spatial layer in QGIS version 3.40.1 (QGIS Development Team, 2025) an 262 

orthomosaic image produced by Airbus satellite Pléiades 1B and the chamber placements as points 263 

with their associated flux estimates. We spatially analyzed the CH4 fluxes by creating bi-weekly 264 

emission heatmaps using the Kernal Density Estimation (KDE) algorithm in QGIS. The use of KDE 265 

allowed us to smooth across discrete chamber measurements, yielding an intuitive continuous 266 

surface representation of CH4 flux hotspots and their evolution through time (Figure 2). We set the 267 

radius to between 30-35 meters to allow some connectivity between points which allows for a 268 

smooth representation of any environmental gradients that might be captured. We used the default 269 

method using a quartic kernel shape weighted by the flux calculated for each chamber placement. 270 

While “ebullitive” fluxes were not considered in further statistical analysis (i.e., in the BRT), those 271 

fluxes are depicted in the resulting heatmaps. Overall, using KDE allowed for an intuitive 272 

interpretation of the seasonal and spatial development of flux hotspots in the research area.  273 

We additionally compared daily CH4 emissions from Sanningasup Tasia catchment relative to 274 

other Arctic-Boreal Lake classes compiled in the Boreal-Arctic Wetland and Lake Dataset (Kuhn et al. 275 

2021; Olefeldt et al., 2021). A Kruskal-Wallis test was performed to determine significant differences 276 

(p < 0.05) in the log transformed daily fluxes from Sanningasup Tasia (n = 48) and its streams (n = 35) 277 

relative to broader biome-scale fluxes from Small Peat Lakes (n = 50), Medium Peat Lakes (n = 36), 278 

Large Lakes (n = 10), and Small Yedoma Lakes (n = 7). We then performed pairwise Wilcoxon rank-279 

sum tests with Benjamini-Hochberg adjustment for multiple comparisons to highlight specific 280 

contrasts between Sanningasup Tasia catchment and the other lake classes. Conducting this 281 
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provides an understanding of how Sanningasup Tasia catchment emissions compares to other Arctic 282 

waterbody types.   283 

2.6 Decoding Methane Drivers 284 

To determine important drivers and their partial effects on diffusive CH4 fluxes, we trained 285 

BRT with physicochemical water parameters, catchment soil temperatures, catchment soil moisture, 286 

surface air temperatures, local meteorology, and Julian day (Figure 3).  Considering we only collected 287 

water temperature in 2023, we used flux data from 2024 for training the BRT. We have focused on 288 

diffusive fluxes due to the unpredictability of fluxes when “ebullitive” processes were considered in 289 

the models. The diffusive fluxes give us a detailed view of environmental controls shaping CH4 fluxes 290 

coming from the catchment. To characterize fluxes we assembled a comprehensive set of predictors 291 

including; (a) aquatic variables measured in-situ with a water sonde at each chamber deployment 292 

(e.g., Conductivity (µS/cm), pH, redox potential (mV), dissolved oxygen (mg/L), oxygen saturation 293 

(%), water temperature (°C), and fluorescent dissolved organic matter (FDOM; RFU)) (Figure S7), (b) 294 

catchment soil characteristics collected at nearby climate stations (e.g., soil volumetric water 295 

content at 10 cm and soil temperature at 40 cm), and (c) meteorological variables collected from a 296 

nearby climate station (e.g., Surface air temperature at 2 cm (°C), Air temperature (°C), relative 297 

humidity (%), air pressure (mbar), precipitation (mm), PAR (µmol m-2s-1), and mean wind speed (ms-1) 298 

and direction (°)). Lake water levels (mm) were included to characterize the effect of changing 299 

hydrologic conditions and its influence on lake CH4 fluxes. Although water depth was recorded 300 

during chamber deployments using the AquaTroll 600, it was not included as a predictor in the BRT 301 

models. In shallow Arctic lakes like Sanningasup Tasia (<4.5 m), CH₄ is primarily sediment-derived, 302 

with deeper zones more likely to promote oxidation or dilution due to greater oxygen exposure 303 

(Bogard et al., 2014; Bulínová et al., 2025; Emerson et al., 2021; Li et al., 2020). Shoreline fluxes 304 

often dominate due to anoxic, vegetated sediments, while interior zones tend to suppress emissions 305 

(Thompson et al., 2016; Kyzivat et al., 2022; Rasilo et al., 2015). We therefore prioritized 306 

biogeochemical water column predictors—FDOM, dissolved oxygen saturation, and GPP—over 307 

depth (Christiansen et al., 2015; Singleton et al., 2018), and explicitly captured depth gradients via 308 

boat-based chamber deployments across the lake interior. Catchment soil characteristics were 309 

included to capture the hydrogeological conditions surrounding the catchment. We used catchment 310 

soil temperature at 40 cm to represent subsurface active-layer conditions that influence deeper 311 

thermal dynamics, groundwater inflow, and delayed soil heat retention through the thaw 312 

season. Soil volumetric water content (VWC) at 10 cm was included to gain an understanding if 313 

dryer, or wetter catchment conditions effect surface water CH4 fluxes, and to act as a substitute for 314 

water level in the lake early in the season as these two share a Pearson’s correlation of r = 0.93. 315 

Additionally, we used VWC at 10 cm depth because it was the most complete and continuous 316 

dataset across the measurement depths, and highly correlated with VWC at 20 cm, 30 cm and 40 317 

cm. To reduce multicollinearity amongst the predictors, we set up weighting for random feature 318 

selection by calculating the average absolute Pearson correlations between predictors and assigning 319 

weights inversely proportional to the correlations, resulting in higher weights given to predictors 320 

with decreased collinearity and thus more likely to be included as a predictor.    321 

 Using the “gbm.step” algorithm from the R package “dismo” version 1.3.14 (Elith et al., 322 

2008; Hijmans et al. 2023), we iteratively attempted to fit 500 BRT with a subset of randomly 323 

sampled two-week time series of flux calculations and 7 of the 21 weighted predictors. Each two 324 

weeks must have at least 90 observations, or the date range is buffered on either end of the time 325 

series to meet the minimum observation requirement. The algorithm uses 10-fold cross-validation to 326 

minimize overfitting the models (Elith et al., 2008). If a randomly sampled two weeks did not meet 327 
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the minimum required observation of 90, the time series was buffered on both ends of the date 328 

range to meet the minimum required observations. BRT were optimized using a grid search where 329 

hyperparameters such as learning rate (0.001, 0.002, 0.003, 0.004, 0.005), tree complexity (1, 3, 5, 330 

7), and bag fraction (0.30, 0.40, 0.50), were tuned for each model fit. While bag fraction values in the 331 

range of 0.5–0.8 are more commonly used, a lower bag fraction increases stochasticity in tree 332 

construction, which helps reduce overfitting—especially important for modeling noisy and highly 333 

non-linear CH₄ flux data. This conservative approach favors identifying robust general patterns 334 

rather than fitting noise or outliers. Variable monotonicity was handled dynamically for each subset 335 

of predictors using Spearman’s rank correlation. Monotonicity for categorical variables was set to 336 

zero, while positive correlations were given a +1 and negative correlations were given a -1. The 337 

model with the best composite score was selected for each iteration. The composite score was 338 

calculated by adding together the standardized cross-validation error, standardized correlation 339 

error, and the cross-validation correlation. The model was finally saved after checking for over fitting 340 

by taking the difference between cross validated mean deviance and training mean deviance and 341 

dividing the difference by training mean deviance. Because the inherently noisy nature of ecological 342 

data, we allowed for 40% difference between cross validated predictions and training data. We 343 

further calculated the percent deviance explained for each BRT model using the formula: % deviance 344 

explained = 100 × ((null deviance − residual deviance) / null deviance), where the null deviance 345 

represents the deviance of a model using only the mean response, and the residual deviance is from 346 

the fitted BRT model. Each fitted model and its metadata were saved for further analysis. This 347 

modelling structure ensures robustness against outliers and ensures data integrity through 348 

dynamically handling monotonicity and applying overfitting constraints. Furthermore, the structure 349 

ensures robust predictions of fluxes by accounting for multi-collinearity amongst predictors and flux 350 

heterogeneity throughout the season.    351 

To visualize the results of the models, we plotted partial dependence two ways. First, we 352 

extracted partial dependence information for understanding model structure, i.e., those predictors 353 

and interactions which were used to split trees and decrease cross validated prediction error. In 354 

addition, we made isolated predictions for each environmental feature in the model by holding all 355 

other predictors at their median to gain a more mechanistic understanding of which conditions 356 

and/or processes are directly affecting CH4 fluxes. The two ways of visualizing partial dependence 357 

give us an ecological understanding of how integrated direct and indirect effects regulate fluxes from 358 

the catchment, but also how individual variables and/or processes regulate fluxes from the water 359 

surfaces, respectively. All visualizations were generated using the R package “ggplot2” version 3.5.0 360 

(Wickham, 2016), and the package “DiagrammeR” version 1.0.11 for flowcharts (Iannone, 2024).  361 
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  362 

 363 

Figure 3. Workflow of the iterative randomized process for selecting the best BRT for predicting 364 

diffusive CH4 fluxes using various environmental predictors. Blue boxes represent the start and end 365 

of a single iteration through an index of weighted predictors, time periods, and tuning grid (grey 366 

boxes). Yellow boxes represent the model selection logic, while the green box represents the storage 367 

of flux predictions and selected model details for the included predictors and two-week sub-sample 368 

of chamber measurements.  369 

3 Results and Discussion 370 

3.1 Overview 371 

Methane fluxes from permafrost affected catchments are influenced by a complex interplay 372 

between climatological, hydrogeological, and biogeochemical processes. This study highlights the 373 

transient nature of CH4 fluxes from a permafrost catchment in west central Greenland and the 374 

partial effects of physiochemical water conditions, local meteorology and catchment conditions 375 

(Figures 4-7). CH4 emissions from the catchment were variable across water conditions, with streams 376 

exhibiting the highest emissions (Figure 4). In comparison to the global coverage of the Boreal-Arctic 377 

Wetland and Lake Dataset (Olefeldt et al., 2021), besides small peat lakes, daily fluxes from 378 

Sanningasup Tasia at 8.3 mg m-2 d-1 were mostly comparable to other permafrost waterbodies across 379 

the Arctic-Boreal region, which ranges between 3.8-5.4 mg m-2 d-1 (Figure 4). Highlighting the 380 

importance of emissions from small streams, Sanningasup Tasia streams showed significantly higher 381 

daily fluxes (18.2 mg m-2 d-1) than all inland water body classes, except Yedoma lakes (43.7 mg m-2 d-382 
1). Our results indicate that CH4 fluxes were seasonally variable and controls on fluxes shifted from 383 

hydroclimatic factors during colder periods to biogeochemical processes as the catchment warmed 384 

and increased in productivity (Figure 3-4 and Figure A1). The seasonal thaw of annual snow and ice 385 

accumulation in the two study years varied in timing and duration due to 2023 staying anomalously 386 

snowy until the beginning of July, where in 2024 the number of snow free days aligned with 387 

historical records. In 2023, our initial chamber measurements between July 03-15 captured peak 388 
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median fluxes at 8.9 nmol m-2s-1 just as the ice began to break on the lake. In an effort to capture 389 

similar conditions in 2024, we used an index of historical snow free days on the island which led to 390 

us capturing median fluxes of 0.18 nmol m-2s-1 between May 24-June 05 atop ice and snow. Peak 391 

median fluxes of 8.1 nmol m-2s-1 in 2024, were comparable to 2023, but occurred a month earlier 392 

between June 11-19. As runoff water receded and the catchment warmed, growing season 393 

commenced in conjunction with steadily decreasing median fluxes between 3.9 and 4.5 nmol m-2s-1. 394 

This study further provides methods to disentangle important drivers and their partial effects on CH4 395 

fluxes using BRT (Figure 3-4). In general, CH4 fluxes were strongly dependent on discrete oxic-anoxic 396 

aquatic environments under the chamber (Figure 4 and Figure A1). This research emphasizes the 397 

importance of integrating field measurements with GIS-based spatial analysis to monitor CH4 fluxes 398 

in permafrost catchments. It further drives home the importance of seasonal transition periods in 399 

predicting fluxes from Arctic waterbodies. 400 

 401 

Figure 4.  Panel a) shows log transformed CH4 fluxes across the different catchment water conditions 402 

during 2024 field season and b) compares log transformed daily CH4 fluxes (y axis) between 403 

Sanningasup Tasia catchment and other permafrost waterbodies (Kuhn et al., 2021) across the 404 

Arctic-boreal region. Connecting brackets and stars show, for example, that Sanningasup Tasia had 405 

significantly (p < 0.05) higher daily emissions when compared to Small Peat Lakes, while daily 406 

emissions from Sanningasup Tasia Streams were significantly higher than all lake classes except 407 

Yedoma Lakes.  408 

3.2 Spatial and Temporal Evolution of Methane Fluxes 409 

In both 2023 and 2024, spatial and temporal evolution of fluxes occurred somewhat 410 

heterogeneously in the catchment, but generally “hotspots” occurred in the streams and where they 411 

enter the lake (Figure 5 a-b, e-f). Despite different time periods of the thaw, fluxes in the catchment 412 

in both years followed a similar trajectory, with peak fluxes occurring post thaw and decreasing 413 

through the growing season. In 2023, snow persisted anomalously late into the summer season, and 414 

soil temperatures were the coldest recorded in a 6-year record (Figure S8). We found that local 415 

climate and catchment soil characteristics were at times, (i.e., during the thaw season and towards 416 

the peak of growing season) more important than water temperature in predicting 2023 fluxes, 417 

suggesting catchment contributions to surface waters plays an indirect role in CH4 fluxes (Figure S9). 418 
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While water temperature was found to be relatively important in both years, catchment CH4 fluxes in 419 

2024 suggest the system is more driven by variability in dissolved organic matter and microbial 420 

production of oxygen (Figure 4-7 and Figure A1).  421 

 422 

Figure 5. Maps showing the bi-weekly spatial evolution of CH4 emissions during 2023 (a-d) and 2024 423 

(e-h). The time period covered in each map is given at the top of each map. Whiter colors represent 424 
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areas of high emissions, while darker, or no color represent areas of lower, or no emissions (see 425 

color bars in map legends). Areas outside of the water were not measured and are artifacts from the 426 

KDE mapping algorithm. Each white point on the map represents the placement of the floating 427 

chamber. Orthomosaic background image © CNES (2024), Distribution Airbus DS, produced from 428 

Pléiades 1B satellite imagery. 429 

The main inlet to the lake is a warm spring with median temperatures of 7.4 °C and tended 430 

to be a persistent location throughout the season for increased CH4 fluxes. The warm spring area in 431 

the southeast is a complex area where a perennial spring bubbles out of the ground forming a 432 

perennial tributary to the lake. However, the spring seeps out along the base of the hillslope to the 433 

east, subsequently forming a peat fen environment (Figure 5). The eastern most inlets are fed by 434 

meltwater flowing through the vadose zone, but also served as a persistent location for increased 435 

CH4 fluxes. Fluxes from inlet streams followed along an upland-wetland environmental gradient, 436 

where fluxes at the headwaters of streams were generally close to 0, or slightly taking up CH4, but 437 

steadily increased as steeper upland slopes gave way to more gradual water saturated slopes and 438 

pooling sediments. This is consistent with previous work on the island showing CH4 fluxes association 439 

with soil microbial assemblages shifting from methanotrophic to methanogenic along an upland-440 

wetland gradient, respectively(Christiansen et al., 2015). Additionally, the catchment serves as 441 

micro-topography previously described as an area of snowmelt retention, and subsequently an area 442 

of nutrient and/or dissolved organic matter pooling  (Westergaard-Nielsen et al., 2020), which has an 443 

impact on CH4 fluxes throughout the season (Figure 7). While high fluxes were recorded along the 444 

shore and in the open water of the lake, fluxes tended to be patchy and decreased moving away 445 

from the inlet streams (Figure 5 and Figure S10). However, as soon as the lake water flowed to the 446 

outlet, fluxes increased substantially. As the summer season progressed, CH₄ fluxes declined across 447 

most of the catchment, becoming largely confined to the warm spring inlet and the eastern inlet 448 

streams (Figure 5). Field observations of late-season fluxes in 2024, found decreased fluxes were 449 

associated with submerged filamentous green algae in stream channels, while assemblages of iron-450 

oxidizing bacteria on the stream banks were associated with increased fluxes, (Figure A2). The 451 

spatial and temporal evolution of fluxes was driven by seasonally shifting environmental conditions. 452 

3.3 Boosted Regression Tree Results 453 

 Out of 500 iterations, 321 BRT were fit, and showed good alignment and consistently 454 

performed well in cross-validation, with a correlation median of 0.40 between observed and 455 

predicted values, and a median deviance standard error of 131. Between 8.4% and 62.4% with a 456 

median of 27.3% of the CH4 flux variability was explained by the various models and included 457 

environmental conditions, suggesting a substantial proportion of CH4 fluxes were explained by the 458 

environmental conditions included. The calculated root mean squared error (RMSE), which reflects 459 

the average magnitude in prediction error of the BRT, ranged between 6.5 to 28 nmol m-2s-1, with a 460 

median of 13.7 nmol m-2s-1. The summary statistics reflect models that performed reliably and with 461 

fairly good accuracy in predicting diffusive CH4 fluxes from the catchment in 2024. The models 462 

predicted shifting relative importance (Figure 6) and partial effects of the various environmental 463 

conditions throughout the season (Figure 7). The magnitude of CH4 fluxes predicted by the BRT 464 

models were strongly influenced by localized biogeochemical conditions within the water column 465 

based on whether the flux was originating from the lake, stream, or if it was influenced by ice or 466 

snow (Figure 4-7, and Figure A1a-d). Visualizing partial dependence of predictors important for 467 

model structure, revealed integrated ecological effects between local meteorology, catchment 468 

conditions and physiochemical water conditions (Figure 7). However, isolated direct marginal effects 469 
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of the various environmental conditions suggest fluxes from water surfaces are directly regulated via 470 

biochemical processes associated with GPP and ER of oxygen (Figure A1b-d).   471 

 472 

 473 

Figure 6. The figure illustrates the relative importance of environmental conditions predicting 474 

diffusive CH4 fluxes using bar-plots and standard error bars. Each predictor variable is on the x-axis, 475 

while its percent importance for its inclusion in a fitted BRT is given on the y-axis where the standard 476 

error bars represent variability in importance based on presence or absence in a given model. Each 477 

bar color represents a distinct environmental condition.    478 

3.3.1 Spring Thaw Phase: Peak Fluxes Driven by Hydrological and Climatic Controls 479 

The spring thaw phase marks a shift in catchment conditions, where a frozen landscape gives 480 

way to thaw season and hydro-connectivity between land and water is strong (Figure 5c-d, g-h). In 481 

the spring thaw phase, initial peak fluxes of CH4 were primarily dependent on increasing rainfall, 482 

changing wind conditions, warming air and soil temperatures, and increased soil moisture content, 483 

while low dissolved organic matter (i.e., FDOM) indicated increased fluxes (Figure 6a-b and 7a-b). 484 

Soil moisture was found to have a Pearson’s r = 0.93 with lake water levels, suggesting the lake levels 485 

are strongly connected to snowmelt and groundwater hydrology (Figure S11). The distribution of 486 

nutrients on the island has been shown to be linked to snowmelt and hill slope topography 487 

(Westergaard-Nielsen et al., 2020), which is likely playing a role during the early part of the season, 488 

but especially later in the year as DOM, a proxy for nutrients, becomes the primary limiting factor in 489 

predicting higher fluxes (Figure 7b-c) (Olid et al., 2021, 2022). The processes driving CH4 fluxes from 490 

water surfaces is likely two-fold.  491 
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  492 

Figure 7. Partial dependency plots illustrating the indirect and direct marginal effects of various 493 

environmental conditions predicting diffusive CH4 fluxes. Each panel displays the effect of a 494 

numerical predictor used during model training to predict CH₄ fluxes. Although some predictors may 495 

not have been directly involved in regulating fluxes from water surfaces, their evaluation reveals the 496 

relationship between water column conditions and catchment processes regulating CH₄ fluxes. The 497 

figures are ordered by importance in each time period and the colors correspond to those seen in 498 

Figure 6. The colored lines represent the result of a fitted general additive model (y ∼ s(x)) and thus 499 

a smooth representation across the 321 fitted BRT models. The grey shaded area around the line 500 

represents ±SE (0.02 - 0.2). Each predictor and its numerical range are given on the x-axis, while 501 

predicted fluxes are given on the y-axis.  502 

As snowfall turned to rain, the thawing of soils accelerated and water content in the active 503 

layer increased, potentially driving peak emissions via the lateral mobilization of dissolved CH4 504 

toward surface waters (Figure 7a-b) (Walter Anthony et al., 2012; Neumann et al., 2019; Olid et al., 505 

2022).  However, as the thaw progressed, contributions to fluxes from catchment soils decreased as 506 

the upper layers began to dry and lake water levels reached their maximum (Figure 7b-c). DOM 507 

serves as a critical substrate for both CH4 production and oxidation, particularly in permafrost-508 

influenced regions where thawing can release large amounts of particulate matter (Keskitalo et al., 509 

2021; Bouranis et al. 2025). Anaerobic conditions in water saturated soils and low oxygenated 510 

waters may have further driven fluxes during the thaw period as methanogenic microbial 511 

communities rapidly consumed incoming labile organic compounds (Neumann et al., 2019; 512 

Stevenson et al., 2021). However, as the thaw progressed, the lake briefly shifted to net-autotrophy 513 

(Figure S6), marking an important shift from hydroclimatic controls on fluxes, to a patchwork of 514 

biochemical transport pathways and barriers (Figure 7 b-d and Figure A1b-d). During this transition, 515 

increased GPP and the resulting oxygen saturation in the lake and streams enhance methanotrophic 516 

activity, thereby promoting methane oxidation and reducing net CH₄ emissions (Figure 7b–c and 517 

Figure A1b-c). The central role of oxygen availability and active methanotroph communities in 518 



17 
 

regulating methane fluxes during Arctic thaw has been demonstrated in both tundra landscapes and 519 

permafrost mires (Christiansen et al., 2015; Graef et al., 2011; Singleton et al., 2018). As oxygen 520 

production increases, greater amounts of oxygen become available to support methanotrophic 521 

activity in the water column. Methanotrophic activity is likely represented in the observed reduction 522 

of CH4 fluxes during periods of decreased ER (i.e., when oxygen consumption is elevated, Figure A1c), 523 

as higher oxygen availability enhances aerobic methane oxidation (Figure 7c). However, the streams 524 

remain net heterotrophic despite increasing GPP and ER during this time period, therefore providing 525 

a more suitable environment for CH4 production and flux (Figure S6). Thus, the lake and streams 526 

reflect distinct ecosystems for the production and flux of CH4, where the lake being an overall 527 

methane source, has a greater tendency to oxidize CH4 following the thaw, while the streams follow 528 

along a low-to-high flux gradient as the slope flattens and soils become saturated (Westergaard-529 

Nielsen et al., 2020; Stevenson et al., 2021). 530 

3.3.2 Growing Season: Oxic-Anoxic Transport Pathways and Barriers 531 

Early in the growing season the lake and streams enter into a transition phase, where peak 532 

fluxes become increasingly dependent on biochemical pathways related to DOM availability, 533 

conductivity, oxygen saturation and pH (Figure 7c). DOM is the limiting factor late in the season 534 

where higher fluxes are increasingly dependent on water column conditions with greater levels of 535 

DOM (Figure 6c-d and 7c-d). CH4 fluxes during this time period were strongly associated with 536 

indicators of microbial activity forming oxic-anoxic transport barriers, or pathways, respectively. For 537 

example, microbial activity in anoxic sediments maybe producing CH4, but whether it is diffused to 538 

the atmosphere is directly affected by the micro-conditions of the water column (e.g., DOM, 539 

conductivity, pH, and/or GPP/oxygen saturation), either forming an oxidative barrier, or an anoxic 540 

pathway (Figure 7c-d and Figure A1). For example, groundwater transport of CH4 from anoxic 541 

sediments to oxygen-rich streams may result in water with high concentrations of both. While some 542 

of the CH4 is likely oxidized during transport, it can be that both are respired at turbulent sections of 543 

the stream, which were the highest fluxes observed from the streams and during this phase of the 544 

season (Street et al., 2016; Neumann et al., 2019; Olid et al., 2022; Kleber et al. 2025).  545 

Fluxes are further affected by water conditions either favoring methanogenic, or 546 

methanotrophic activity (Conrad, 2007; Cunada et al., 2021; Emerson et al., 2021). pH levels near 547 

neutral likely indicate water conditions favorable to methanogenesis at the sediment-water 548 

interface, while increasing alkalinity may reduce methanogenic and/or favor increased 549 

methanotrophic activity as growing season progresses (Figure 7c-d). For example, during growing 550 

season micro-pH and oxygen saturation conditions in the lake and streams are influenced by the 551 

ever-increasing presence of macrophytes, mosses and plankton, which tend to drive pH and oxygen 552 

levels higher (Liebner et al., 2011; Cunada et al., 2021). Here we show that increasing pH and oxygen 553 

saturation, as a result of primary production, create an aerobic environment that favors 554 

methanotrophic activity, thereby driving CH₄ emissions down through the growing season (Figure 555 

7c-d, Figure A1). Declines in oxygen saturation driven by microbial respiration can create anoxic 556 

conditions that enableCH4 emissions from sediment to surface waters (Conrad, 2007; Michel et al., 557 

2010; Street et al., 2016; Cheng et al. 2024).  Such a mechanism likely explains the formation of flux 558 

hotspots associated with decomposing iron-oxidizing bacterial mats along stream banks (Figure A2) 559 

(Wallenius et al., 2021; Cheng et al. 2024).  In the case of the bacterial mats, we observed fluxes 560 

were highest in the streams where bacterial assemblages had become exposed to the atmosphere 561 

and were decomposing in stagnant water (Figure A2), which may suggest that the decomposition of 562 

the bacteria was releasing dissolved organic substrates in a low-oxygen environment already primed 563 

for methanogenic activity (Wallenius et al., 2021; Cheng et al. 2024). This idea is supported late in 564 
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the season when increased CH4 emissions become dependent on niche environments where 565 

moderate levels of dissolved organic matter (FDOM) and low oxygenated water predict higher fluxes 566 

(Figure 7d and Figure A1d). However, submerged bacterial mats along with filamentous green algae 567 

the presence of macrophytes and/or mosses in the lake and streams, were associated with lower 568 

fluxes, suggesting they form oxidative barriers for CH4 fluxes from the sediment when submerged 569 

(Figure 7d and Figure A1d) (Heilman & Carlton, 2001; Laanbroek, 2010; Liebner et al., 2011; Esposito 570 

et al., 2023). The submerged, or not status of bacterial assemblages’ points to an interesting 571 

feedback mechanism between CH4 fluxes and dropping water levels creating variability in emission 572 

pathways.  Similar processes have been shown in relation to submerged brown mosses in Arctic 573 

tundra ecosystems have been shown to promote CH4 oxidation and thus decrease CH4 emissions 574 

from sediments (Žárský et al., 2018). Overall, these results highlight the broader importance of fine-575 

scale biogeochemical dynamics shaping CH4 fluxes from a permafrost catchment and provide an 576 

important data point in an uncertain region of the world.  577 

4 Conclusion   578 

This research provides a temporally resolved catchment scale CH4 flux analysis across 579 

different waterbody types and conditions—lake, streams, and ice/snow-covered surfaces—580 

subsequently describing important biogeochemical and climatic controls on emissions. Often lost in 581 

temporally coarse assessments is a detailed understanding of seasonal transitions in processes 582 

related to CH4 fluxes and environmental control mechanisms. Leveraging BRT to fit hundreds of 583 

randomized models and visualizing the direct, and indirect controls on CH4 fluxes reveals variability 584 

in how, for example, DOM and/or water temperature affect fluxes differently as the Arctic summer 585 

progresses. We presented an approach which captures ecosystem-scale effects, but furthermore 586 

describes isolated mechanistic effects related to, for example, GPP, revealing that primary 587 

productivity plays a critical role in regulating CH4 emissions from permafrost affected waterbodies. 588 

This work contributes to understanding carbon feedback mechanisms in a region where process-589 

level knowledge is needed to scale global models simulating CH4 emissions from permafrost affected 590 

waterbodies.  591 
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Appendix A 950 

 951 

Figure A1. Partial dependency plots illustrating predicted marginal effects of meteorological, and 952 

biochemical water conditions predicting diffusive CH4 fluxes. Each figure represents the direct 953 

marginal effect on CH4 fluxes when all other predictors are held at their median, therefore giving a 954 

more mechanistic understanding of those conditions and processes regulating fluxes from water 955 

surfaces. The figures are ordered by importance in each time period and colors correspond to those 956 

seen in Figure 6 of the main text. The colored lines represent the result of a fitted general additive 957 

model (y ∼ s(x)) and thus a smooth representation across the 321 fitted BRT models. Each predictor 958 

and its numerical range are given on the x-axis, while predicted fluxes are given on the y-axis. 959 
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 962 

 963 

 964 

 965 

 966 

 967 

 968 

 969 

Figure A2. Illustrates the various microbial forms encountered and found to influence CH4 fluxes 970 

from the catchment area. In the photo on the far left we can see gas film on the water surface which 971 

was associated with submerged iron-oxidizing microbial assemblages, i.e. similar to what is shown in 972 

the middle photo, however exposed to the atmosphere in lower water levels. The photo on the right 973 

shows a brown alga which formed in the warm spring area southeast of the lake. In all cases, 974 

increased fluxes were generally encountered when measuring atop the middle and right microbial 975 

assemblages.   976 
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