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Abstract

Understanding spatiotemporal dynamics and drivers of methane (CH,) fluxes from rapidly changing
permafrost regions is critical for improving our understanding of such changes. Between May and
August 2023 and 2024, we measured CH, using floating chambers in a small Arctic permafrost
catchment on Disko Island, Greenland. Fluxes were derived from 707 chamber measurements using
a semi-automated algorithm incorporating boosted regression trees and generalized additive
models. Highest fluxes occurred in streams and along lakeshores associated with inlets. Diffusive
fluxes dominated (~¥98% of observations), while only ~1% of chamber deployments exhibited non-
linear concentration increases indicative of ebullition, while the other ~1% were attributed to
uptake. Median diffusive fluxes were 5.0 nmol m?2s?, (-0.1 to 271.8), peaking at ice-break. Ebullition
had a median of 939 nmol m?2s (5.2 - 14,893), but did not impact overall fluxes. Model results
suggest that thaw-season CH, fluxes were initially driven by meteorological conditions and
catchment soil conditions, but shifted rapidly—within approximately one week after ice-off—to
biogeochemical controls, including dissolved organic matter, oxygen saturation, and pH.

1 Introduction

Permafrost regions across the Arctic store substantial amounts of carbon. Climate warming
is rapidly changing permafrost regions and consequently their carbon storage dynamics, creating a
critical climate feedback mechanism (Schuur et al., 2015; Miner et al., 2022). At current warming
rates, models project approximately 77% of shallow permafrost will be lost by 2100 (Fox-Kemper et
al. 2021), suggesting large implications for the global carbon budget and how carbon emissions are
distributed across permafrost landscapes. The underlying issue is that thawing permafrost can
release previously frozen organic matter, delivering labile nutrients to soil microbes which accelerate
the decomposition of soil organic carbon as a result of their metabolic processes (Schuur et al., 2015;
Keskitalo et al., 2021; Olefeldt et al., 2021). Subtle changes in microbial processes in soils can
enhance positive feedback mechanisms which compounds atmospheric warming. Lateral movement
of water through active layer soils is a critical pathway for CHs emissions from surface waters (Street
et al., 2016; Olid et al., 2021, 2022; Fazi et al., 2021). Hydrological and catchment system dynamics in
particular play a critical role in distributing dissolved carbon throughout permafrost environments.
Catchment systems, such as thermokarst lakes and wetlands, have been shown to be “hotspots” for
CH, release, where daily emission rates between 10 and 200 mg m2d™? have been reported (Walter
Anthony et al., 2018; Elder et al., 2020). However, while localized high emissions have been
reported, the overall contribution of Arctic and permafrost freshwater bodies to global methane
budgets is fairly low at 2-6% when compared to other ecoregions such as the tropics at 64%
(Bastviken et al., 2004; Saunois et al., 2025; Virkkala et al., 2024). Nonetheless, with such drastic
change expected, well designed field studies exploring which processes are the most important for
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governing CH4 emissions from permafrost regions, are critical data sources for validating climate
models and simulations (Bartsch et al. 2025).

Carbon dynamics in permafrost regions have been shown to be governed by interactions
between soil, vegetation, hydrology, and atmospheric processes (Walter Anthony et al., 2012;
Virkkala et al., 2024; Yuan et al., 2024; Kleber et al. 2025). Located on the central-west coast of
Greenland, Qeqgertarsuagq, also known as Disko Island, has become an important data point for
understanding environmental interactions which govern Arctic tundra carbon dynamics. The island
provides a natural laboratory for observing interactions between permafrost, vegetation, microbial
activity and aquatic ecosystems (Humlum, 1998; Humlum et al., 1999; Callaghan et al., 2011;
Christiansen et al., 2015; D’Imperio et al., 2017). Previous work from the study area has suggested
shifting hydrology, historic permafrost thaw, nutrient cycling, and microbial activity in the active and
permafrost layers as possible drivers of CH, fluxes from surface water bodies (Zastruzny et al., 2017;
Kluge et al., 2021; Stevenson et al., 2021; Juncher Jgrgensen et al., 2024). These studies highlight the
interconnectedness of terrestrial and aquatic ecosystems, and the effect they may have on CH,4
fluxes from lakes and streams on Disko Island. There is yet to be an extensive study on CH4 fluxes
from the island’s lakes and streams. However, it has been suggested that permafrost thaw and
warming air temperatures may have an effect on greenhouse gas fluxes (Kluge et al., 2021; Juncher
Jgrgensen et al., 2024). Soil warming experiments and studies of increased snow cover in winter
were shown to regulate carbon fluxes through accelerated carbon turnover (Ravn et al., 2020; Xu et
al., 2021). Carbon fluxes are further controlled by plant uptake and through microbial activity
regulating the availability of nutrients and subsequent CH4 production (Laanbroek, 2010; Liebner et
al., 2011; D’Imperio et al., 2017). Sedimentary processes in lakes promote carbon storage, whereas
methanotrophic and methanogenic microbial assemblages along an upland—wetland environmental
gradient regulate CH, consumption and emission, respectively. Therefore, freshwater ecosystems
play a critical role storing, producing, and emitting CHs (Christiansen et al., 2015; Zarsky et al., 2018;
Stevenson et al., 2021).

The hydrology of Disko Island is strongly influenced by past volcanic activity during the
Paleocene epoch. With extensive basaltic lava flows characterizing the landscape, the islands terrain
is formed by the Maligat and Vaigat Formations, which are comprised of highly permeable layers of
basalt interbedded with fluvial and lacustrine sediments (Westergaard-Nielsen et al., 2020; Larsen &
Larsen, 2022). The high permeability of these geologic formations enables substantial subsurface
flow, subsequently forming perennial water features such as warm springs. In spring, the soils which
make up the active layer allow for rapid infiltration of meltwater, which laterally distributes
nutrients and organic matter throughout the island’s aquatic ecosystems (Westergaard-Nielsen et
al., 2020). For example, during spring runoff meltwater and hillside topography was found to largely
drive the distribution of nitrates from terrestrial to aquatic ecosystems (Zastruzny et al., 2017,
Stevenson et al., 2021). Thus, pools of nutrients available during the growing season may vary
dramatically from one year to the next. Lateral flow of snowmelt and permafrost thaw may influence
CH, fluxes due to changes in physio- and biogeochemical properties of the lakes, streams and rivers
on the island (Liebner et al., 2011; Rautio et al., 2011; Walvoord & Kurylyk, 2016; Stevenson et al.,
2021). Although Disko Island has discontinuous permafrost (Christiansen et al., 2015; Kluge et al.,
2021), thawing can release trapped organic matter and nutrients into aquatic ecosystems,
potentially affecting CH, fluxes by providing new substrates for microbial activity (Ravn et al., 2020;
Stevenson et al., 2021; Westergaard-Nielsen et al., 2020; Xu et al., 2021).

The distribution and drivers of aquatic CH4 emissions in permafrost regions remain poorly
constrained, particularly across small lakes and streams which may arise as emission hotspots.



89
90
91
92
93
94
95
96
97

98

99
100
101
102
103
104
105
106
107
108
109
110
111

112

Previous studies on Disko Island have highlighted the potential importance of hydrology, permafrost
thaw, and microbial processes for greenhouse gas fluxes, but comprehensive spatial and seasonal
assessments of CH,4 are lacking. In this study we address this gap by quantifying CH, fluxes from 707
floating chamber measurements across a permafrost-affected catchment (Sanningasup Tasia). Using
boosted regression trees, we evaluate the partial effects of physiochemical water conditions,
catchment soil conditions, and meteorology in regulating emissions from ice-break through the
growing season. Our objective was to determine how spatial heterogeneity and seasonal dynamics
shape CH4 emissions from Arctic freshwater ecosystems and to identify the key processes that
control flux variability in permafrost catchments.

2 Methods
2.1 Study Site

Lake Sanningasup Tasia in Greenlandic, or Moraene sg@ in Danish, is situated between
moraines in the north and east and an outlet which drains into the Red River to the west (Figure 1).
The lake is primarily fed by a large warm spring which enters the lake from the southeast, forming a
wetland type ecosystem. The other inlets of the lake are primarily fed by seasonal snowmelt. The
heterogeneity of the catchment provides an exemplary study site, allowing us to understand the
mechanisms regulating CH, emissions from a lake, streams, and wetland. According to a 2018 report
from the University of Copenhagen, the lake has a maximum depth of 4.5 m and is generally
phosphorus limited with nitrogen concentrations being seasonally variable, where concentrations
during ice cover are higher than during periods of no ice cover (Westergaard-Nielsen et al., 2020).
We found water temperature of the lake to range between 1.1 and 13.9 °C with a mean of 7.9 °C. To
our knowledge there has never been an extensive study on the greenhouse gas fluxes from the lake
and surrounding water bodies.
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Data collection spatial key

[ Disko Island

© Blaesadalen Research Area
Chamber placements 2023 [n = 354]

* Chamber placements 2024 [n = 353]
3 Metstation

Figure 1. Map showing the 707 chamber measurements (blue and brown dots). Points in the south
are concentrated around Lake Sanningasup Tasia and its connected streams. The blue circle indicates
streams fed by snowmelt and the turquoise circle indicates the outlet of the lake. The red circle
indicates the warm spring area which forms a wetland type ecosystem. Points inside the black circle
north of the lake indicate measurements taken from the Red River and its stream tributaries.
Orthomosaic background image © CNES (2024), Distribution Airbus DS, produced from Pléiades 1B
satellite imagery.

2.2 Data Collection

We used closed floating chamber systems connected to an ABB/Los Gatos Research GLA131
Series Micro portable Gas Analyzer in 2023, and to a LI-COR® LI-7810 Trace Gas Analyzer in 2024,
with the goal of capturing the spatial and temporal variability of CH4 fluxes in the catchment area. In
2023, we used a self-built cylindrical chamber made of semi-transparent plastic material with
volumetric capacity of 0.016 m*and a basal area of 0.096 m?. In 2024, we used a West Systems type
C flux chamber made of stainless steel with a volumetric capacity of 0.013 m3*and a basal area of
0.07 m?2. Both chambers included a fan for mixing air and a temperature sensor. The semi-
transparent plastic chamber used a circular foam floater that was wrapped around the outside of
the chamber, allowing 2cm of the chamber to be below the water surface, forming a 100% airtight
seal. The West Systems chamber was inserted into a closed-cell foam floater, where the seal was
created once the chamber was inserted into the floater. Despite differing chamber materials and
flotation devices, median fluxes between 2023 and 2024 were identical at 5.0 nmol m2s. However,
to evaluate whether changes in chamber construction between years introduced systematic bias in
CH, flux estimates, we fit a linear model using log-transformed flux as the response and chamber
type, latitude, longitude, and Julian day as predictors. Chamber type was not a significant predictor
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(p =0.13), and QQ plots of log-transformed fluxes across years showed no consistent deviation
across the flux distribution, except at lower emission rates (Figure S1). These findings suggest that
differences in chamber construction did not substantively influence the calculated fluxes. Chamber
measurements were conducted on the surface of the lake and surrounding water bodies at a spatial
distance of 10 to 20 m with a closure time of 10 minutes. The chamber and gas analyzer were
connected in a closed loop, and sample air was continuously pumped through the gas analyzer. CH,
concentrations were measured with a frequency of 1 Hz. Each flux measurement was given a unique
id based on its spatial location or water body type. For the lake, ids were given based on what
shoreline we were measuring on. For example, if on the east shore, ids would be €1, e2, €3, ... etc.
The majority of flux measurements on the lake were conducted within 0.2 m from the shore. Open
water measurements in the lake were made using a small boat and anchor system. CH,4
concentrations in streams were measured by starting at, or near the headwaters and then taking
measurements progressively downstream with consideration to the changing terrestrial vegetation
and stream dynamics (i.e., fast, slow, or eddie pool). In 2023, we measured isolated meltwater pools
during the thaw to represent control conditions (water not yet connected to the lake or streams). In
2024, to capture an even earlier baseline, we conducted chamber measurements on top of snow
and lake ice prior to thaw onset, providing a true pre-thaw control period. Overall, we made 707
chamber measurements, representing ~10-15 chamber placements taking place daily, around the
lake and surrounding streams giving us an extensive view of the spatial and temporal variability of
CH, fluxes in the study area. While floating chambers isolate the headspace from light wind
disturbance, increased surface turbulence may influence gas exchange in the open space of the
chamber (Vachon and Prairie 2013). Our approach captures diffusive exchange under mostly
calm-water conditions (i.e., wind speed up to ~4 ms), but we acknowledge that regional wind-
driven mixing may contribute to flux variability beyond individual chamber footprints. We
simultaneously measured water temperature using Truebner EC-100 RS-485 EC/Temperature
sensors in 2023 and a suite of water parameters were collected in 2024 using an AquaTroll 600
water sonde (see section: Decoding Methane Drivers). Meteorological data and soil characteristics
were collected from nearby meteorological stations maintained by Aarhus University which are part
of the Greenland Ecosystem Monitoring Database (Greenland Ecosystem Monitoring, 2025a-d) (see
section “Decoding Methane Drivers” for list of variables used).

2.3 Flux Algorithm & Ebullition Detection

In collaboration with ChatGPT 4.0, we wrote an interactive algorithm in R which leverages
General Additive Models (GAM) and Boosted Regression Trees (BRT) to robustly and flexibly
calculate CH, fluxes from individual floating chamber measurements (Figure 6). The flux calculation
procedure was applied identically to individual chamber time series for both 2023 and 2024, while
controlling for different the chamber constructions.
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Figure 2. CH4flux calculation workflow from concentration data using predictions from GAM and
BRT. Blue boxes represent the start and end of a single chamber measurement working through the
algorithms processes (grey boxes) and decision logic (gold boxes). Green boxes represent the storage
and combination of the results for further analysis.

Rather than fitting concentration data with linear, exponential, and/or polynomial models
(Kutzbach et al., 2007; Pedersen et al., 2010; Hoffmann et al., 2017), the algorithm fits GAM, which
are capable of modelling non-linear patterns without a-priori specification of the functional form of
the relationship between time and concentration. However, before fitting a GAM, the concentration
and accompanying data is checked and processed (Figure 2; “Data Checks and Preparation”) as
follows: The algorithm conducts a preliminary check for the required chamber parameters which
are; id, ordered times of measurement, air temperature (°C), volume, area, and air pressure. In
addition, air temperature is expected to be initially in Celsius, which is automatically converted to
Kelvin during the processing of concentration data in preceding steps. The data is then ordered
based on id and time to maintain correct chronological order of chamber measurements. CH, is then
converted from ppm to moles using Ideal Gas Law:

__ (CH4ppmXPXV)

CH4'moles - (RXT) (1)

where P is air pressure (Pa), V is chamber volume (m?3), R (8.314 J/ (mol x K) is the universal gas
constant, and T is air temperature inside the chamber (K). After preliminary data checks and initial
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processing of the concentration data, the concentration time series is then fit to a GAM (i.e.
gam(CH4 s ~ s(time, k = gam_knots)), where the smoothing parameter ‘K’ is a user defined
parameter named ‘gam_knots’ which has a default value of 5. The value of ‘k’ cannot exceed 3 times
the degrees of freedom for a given concentration time series, or the algorithm defaults to fitting a
linear model. The algorithm then checks the R? value of the fitted GAM to see if it meets the default
conditional value of 2 0.99, if so, it proceeds to calculate fluxes following these steps:

ACH% 0105 = [CH4(t2)_ CHy(t1) CHy(t3)— CHy(tz) CHy(tn)— CHy(tn-1) ] 2)

tr—ty ’ t3—t; T tn—tn—1

Where ACH4,,,¢s is the rate of change, calculated as the quotient of the predicted differences in
CH4 concentration between successive time points. Flux is then calculated between successive time
points by:

1 n—1ACH,

Fry = —— Xt —— (3)

Where mean flux of the chamber measurement is estimated by calculating flux at each
successive time step, where flux is determined by dividing ACH4,,,,;¢s by the basal area (A) of the
chamber, expressed in (m?2). A plot of the time series and model fit is generated and saved in the file
directory defined by the user by setting the parameter ‘save_directory’ (Figures S1-5). Because
fluxes were derived from high-frequency (1 Hz) concentration data fitted using a GAM with a strict
acceptance threshold of R? > 0.99, analytical uncertainty in the rate-of-change estimation is
negligible. Conventional uncertainty propagation (e.g., based on regression slope error or replicate
chambers) is not meaningful in this context because the GAM approach fits a smooth curve through
hundreds of data points per deployment, effectively minimizing noise and preventing poor-quality
fits from contributing to the final flux values. This ensures that the dominant source of variability in
the dataset reflects true environmental heterogeneity rather than analytical error. Furthermore,
because the chamber headspace was fully sealed and isolated from external turbulence, wind-
induced variability—which often motivates uncertainty corrections—is mechanically removed from
the flux calculation process. For these reasons, we report spatial variability (e.g., medians, ranges,
and interquartile spread) rather than analytical uncertainty, as it provides a more ecologically
relevant representation of flux variability across the catchment.

In the cases where the initial GAM fit does not meet the R?> 0.99 condition, the algorithm
can follow two pathways (Figure 2). Pathway (1) is a result of the algorithm having detected non-
linear concentration increases using BRT, while pathway (2) the algorithm has found the chamber
measurement has not met any of the conditional requirements for flux calculations, or more
generally stated, there was no measurable concentration increase detected automatically. Both
pathways are interactive as the user is prompted to confirm the classification of “ebullition” versus.
diffusive data sequences in pathway (1), while in pathway (2) the user confirms there is indeed no
concentration increase by reviewing the diagnostic plots (see Supplemental text and Figures S2-S6).
Once confirmed, the user initiates flux calculations by manually entering the time range of the
measurement that should be fitted (Figure 2). “Ebullition” in the context of the algorithm refers to a
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sudden, non-linear CH, increases identified by the algorithm, which likely includes ebullitive events,
but does not strictly infer all fluxes calculated this way were from bubbles entering the chamber.

2.4 Lake and Stream Metabolism

In 2024, we calculated the metabolic parameters net ecosystem production (NEP), gross
primary production (GPP), and ecosystem respiration (ER) of oxygen for the lake and streams using
dissolved oxygen (DO) collected at a one-minute frequency during chamber measurements (DO
sensor accuracy: = 0.1 mg L™; resolution 0.01 mg L™). Including metabolic parameters as predictors
in the BRT models gave us an understanding of the role microbial oxygen production plays in
regulating or not CH; emissions from water. DO saturation was adjusted using temperature-
dependent solubility constants (Garcia & Gordon, 1992). Oxygen flux at the air-water interface was
determined using wind derived gas exchange coefficients and adjusted for water temperature (Cole
& Caraco, 1998). NEP was calculated as the rate of change in DO concentration over each chamber
deployment, adjusted for air-water exchange (Hall & Madinger, 2018; Noss et al., 2018). GPP and ER
were partitioned from NEP by applying a threshold of 200 umol m~2 s™" photosynthetically active
radiation (PAR), which distinguishes intervals with effective photosynthesis from those with
negligible light-driven production, despite continuous daylight during Arctic summer. Aggregating
each chamber DO measurement into one-minute intervals, we calculated mean NEP, GPP, and ER for
each chamber placement (Winslow et al., 2016). While this methodology is sound for the lake, there
is some caveats in relation to stream metabolism. Because we are using a model which assumes
wind driven gas exchange for small streams, we likely underestimate gas exchange in parts of the
streams where turbulence from streambed roughness dominates. Nonetheless, the approach
captures broadly the metabolic trends in lake and stream metabolism observed in other Arctic and
Boreal waterbodies (Mulholland et al., 2001; Rocher-Ros et al., 2021; Ayala-Borda et al., 2024; Klaus
et al., 2022; Myrstener et al., 2021) and is useful for comparing fluxes across aquatic biomes.

2.5 Spatial Flux Evaluation

We uploaded as a spatial layer in QGIS version 3.40.1 (QGIS Development Team, 2025) an
orthomosaic image produced by Airbus satellite Pléiades 1B and the chamber placements as points
with their associated flux estimates. We spatially analyzed the CH, fluxes by creating bi-weekly
emission heatmaps using the Kernal Density Estimation (KDE) algorithm in QGIS. The use of KDE
allowed us to smooth across discrete chamber measurements, yielding an intuitive continuous
surface representation of CH, flux hotspots and their evolution through time (Figure 2). We set the
radius to between 30-35 meters to allow some connectivity between points which allows for a
smooth representation of any environmental gradients that might be captured. We used the default
method using a quartic kernel shape weighted by the flux calculated for each chamber placement.
While “ebullitive” fluxes were not considered in further statistical analysis (i.e., in the BRT), those
fluxes are depicted in the resulting heatmaps. Overall, using KDE allowed for an intuitive
interpretation of the seasonal and spatial development of flux hotspots in the research area.

We additionally compared daily CH, emissions from Sanningasup Tasia catchment relative to
other Arctic-Boreal Lake classes compiled in the Boreal-Arctic Wetland and Lake Dataset (Kuhn et al.
2021; Olefeldt et al., 2021). A Kruskal-Wallis test was performed to determine significant differences
(p < 0.05) in the log transformed daily fluxes from Sanningasup Tasia (n = 48) and its streams (n = 35)
relative to broader biome-scale fluxes from Small Peat Lakes (n = 50), Medium Peat Lakes (n = 36),
Large Lakes (n = 10), and Small Yedoma Lakes (n = 7). We then performed pairwise Wilcoxon rank-
sum tests with Benjamini-Hochberg adjustment for multiple comparisons to highlight specific
contrasts between Sanningasup Tasia catchment and the other lake classes. Conducting this
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provides an understanding of how Sanningasup Tasia catchment emissions compares to other Arctic
waterbody types.

2.6 Decoding Methane Drivers

To determine important drivers and their partial effects on diffusive CH4 fluxes, we trained
BRT with physicochemical water parameters, catchment soil temperatures, catchment soil moisture,
surface air temperatures, local meteorology, and Julian day (Figure 3). Considering we only collected
water temperature in 2023, we used flux data from 2024 for training the BRT. We have focused on
diffusive fluxes due to the unpredictability of fluxes when “ebullitive” processes were considered in
the models. The diffusive fluxes give us a detailed view of environmental controls shaping CH, fluxes
coming from the catchment. To characterize fluxes we assembled a comprehensive set of predictors
including; (a) aquatic variables measured in-situ with a water sonde at each chamber deployment
(e.g., Conductivity (uS/cm), pH, redox potential (mV), dissolved oxygen (mg/L), oxygen saturation
(%), water temperature (°C), and fluorescent dissolved organic matter (FDOM; RFU)) (Figure S7), (b)
catchment soil characteristics collected at nearby climate stations (e.g., soil volumetric water
content at 10 cm and soil temperature at 40 cm), and (c) meteorological variables collected from a
nearby climate station (e.g., Surface air temperature at 2 cm (°C), Air temperature (°C), relative
humidity (%), air pressure (mbar), precipitation (mm), PAR (umol m2s), and mean wind speed (ms™)
and direction (°)). Lake water levels (mm) were included to characterize the effect of changing
hydrologic conditions and its influence on lake CH4 fluxes. Although water depth was recorded
during chamber deployments using the AquaTroll 600, it was not included as a predictor in the BRT
models. In shallow Arctic lakes like Sanningasup Tasia (<4.5 m), CH,4 is primarily sediment-derived,
with deeper zones more likely to promote oxidation or dilution due to greater oxygen exposure
(Bogard et al., 2014; Bulinova et al., 2025; Emerson et al., 2021; Li et al., 2020). Shoreline fluxes
often dominate due to anoxic, vegetated sediments, while interior zones tend to suppress emissions
(Thompson et al., 2016; Kyzivat et al., 2022; Rasilo et al., 2015). We therefore prioritized
biogeochemical water column predictors—FDOM, dissolved oxygen saturation, and GPP—over
depth (Christiansen et al., 2015; Singleton et al., 2018), and explicitly captured depth gradients via
boat-based chamber deployments across the lake interior. Catchment soil characteristics were
included to capture the hydrogeological conditions surrounding the catchment. We used catchment
soil temperature at 40 cm to represent subsurface active-layer conditions that influence deeper
thermal dynamics, groundwater inflow, and delayed soil heat retention through the thaw
season. Soil volumetric water content (VWC) at 10 cm was included to gain an understanding if
dryer, or wetter catchment conditions effect surface water CH, fluxes, and to act as a substitute for
water level in the lake early in the season as these two share a Pearson’s correlation of r = 0.93.
Additionally, we used VWC at 10 cm depth because it was the most complete and continuous
dataset across the measurement depths, and highly correlated with VWC at 20 cm, 30 cm and 40
cm. To reduce multicollinearity amongst the predictors, we set up weighting for random feature
selection by calculating the average absolute Pearson correlations between predictors and assigning
weights inversely proportional to the correlations, resulting in higher weights given to predictors
with decreased collinearity and thus more likely to be included as a predictor.

Using the “gbm.step” algorithm from the R package “dismo” version 1.3.14 (Elith et al.,
2008; Hijmans et al. 2023), we iteratively attempted to fit 500 BRT with a subset of randomly
sampled two-week time series of flux calculations and 7 of the 21 weighted predictors. Each two
weeks must have at least 90 observations, or the date range is buffered on either end of the time
series to meet the minimum observation requirement. The algorithm uses 10-fold cross-validation to
minimize overfitting the models (Elith et al., 2008). If a randomly sampled two weeks did not meet
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the minimum required observation of 90, the time series was buffered on both ends of the date
range to meet the minimum required observations. BRT were optimized using a grid search where
hyperparameters such as learning rate (0.001, 0.002, 0.003, 0.004, 0.005), tree complexity (1, 3, 5,
7), and bag fraction (0.30, 0.40, 0.50), were tuned for each model fit. While bag fraction values in the
range of 0.5-0.8 are more commonly used, a lower bag fraction increases stochasticity in tree
construction, which helps reduce overfitting—especially important for modeling noisy and highly
non-linear CH, flux data. This conservative approach favors identifying robust general patterns
rather than fitting noise or outliers. Variable monotonicity was handled dynamically for each subset
of predictors using Spearman’s rank correlation. Monotonicity for categorical variables was set to
zero, while positive correlations were given a +1 and negative correlations were given a -1. The
model with the best composite score was selected for each iteration. The composite score was
calculated by adding together the standardized cross-validation error, standardized correlation
error, and the cross-validation correlation. The model was finally saved after checking for over fitting
by taking the difference between cross validated mean deviance and training mean deviance and
dividing the difference by training mean deviance. Because the inherently noisy nature of ecological
data, we allowed for 40% difference between cross validated predictions and training data. We
further calculated the percent deviance explained for each BRT model using the formula: % deviance
explained = 100 x ((null deviance - residual deviance) / null deviance), where the null deviance
represents the deviance of a model using only the mean response, and the residual deviance is from
the fitted BRT model. Each fitted model and its metadata were saved for further analysis. This
modelling structure ensures robustness against outliers and ensures data integrity through
dynamically handling monotonicity and applying overfitting constraints. Furthermore, the structure
ensures robust predictions of fluxes by accounting for multi-collinearity amongst predictors and flux
heterogeneity throughout the season.

To visualize the results of the models, we plotted partial dependence two ways. First, we
extracted partial dependence information for understanding model structure, i.e., those predictors
and interactions which were used to split trees and decrease cross validated prediction error. In
addition, we made isolated predictions for each environmental feature in the model by holding all
other predictors at their median to gain a more mechanistic understanding of which conditions
and/or processes are directly affecting CH, fluxes. The two ways of visualizing partial dependence
give us an ecological understanding of how integrated direct and indirect effects regulate fluxes from
the catchment, but also how individual variables and/or processes regulate fluxes from the water
surfaces, respectively. All visualizations were generated using the R package “ggplot2” version 3.5.0
(Wickham, 2016), and the package “DiagrammeR” version 1.0.11 for flowcharts (lannone, 2024).
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Figure 3. Workflow of the iterative randomized process for selecting the best BRT for predicting
diffusive CH,4 fluxes using various environmental predictors. Blue boxes represent the start and end
of a single iteration through an index of weighted predictors, time periods, and tuning grid (grey
boxes). Yellow boxes represent the model selection logic, while the green box represents the storage
of flux predictions and selected model details for the included predictors and two-week sub-sample
of chamber measurements.

3 Results and Discussion

3.1 Overview

Methane fluxes from permafrost affected catchments are influenced by a complex interplay
between climatological, hydrogeological, and biogeochemical processes. This study highlights the
transient nature of CH,fluxes from a permafrost catchment in west central Greenland and the
partial effects of physiochemical water conditions, local meteorology and catchment conditions
(Figures 4-7). CH4 emissions from the catchment were variable across water conditions, with streams
exhibiting the highest emissions (Figure 4). In comparison to the global coverage of the Boreal-Arctic
Wetland and Lake Dataset (Olefeldt et al., 2021), besides small peat lakes, daily fluxes from
Sanningasup Tasia at 8.3 mg m2 d! were mostly comparable to other permafrost waterbodies across
the Arctic-Boreal region, which ranges between 3.8-5.4 mg m2 d! (Figure 4). Highlighting the
importance of emissions from small streams, Sanningasup Tasia streams showed significantly higher
daily fluxes (18.2 mg m2 d?) than all inland water body classes, except Yedoma lakes (43.7 mgm2d-
1). Our results indicate that CH, fluxes were seasonally variable and controls on fluxes shifted from
hydroclimatic factors during colder periods to biogeochemical processes as the catchment warmed
and increased in productivity (Figure 3-4 and Figure Al). The seasonal thaw of annual snow and ice
accumulation in the two study years varied in timing and duration due to 2023 staying anomalously
snowy until the beginning of July, where in 2024 the number of snow free days aligned with
historical records. In 2023, our initial chamber measurements between July 03-15 captured peak
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median fluxes at 8.9 nmol m2s? just as the ice began to break on the lake. In an effort to capture
similar conditions in 2024, we used an index of historical snow free days on the island which led to
us capturing median fluxes of 0.18 nmol m2s! between May 24-June 05 atop ice and snow. Peak
median fluxes of 8.1 nmol m2sin 2024, were comparable to 2023, but occurred a month earlier
between June 11-19. As runoff water receded and the catchment warmed, growing season
commenced in conjunction with steadily decreasing median fluxes between 3.9 and 4.5 nmol m2s™,
This study further provides methods to disentangle important drivers and their partial effects on CH,
fluxes using BRT (Figure 3-4). In general, CH,4 fluxes were strongly dependent on discrete oxic-anoxic
aquatic environments under the chamber (Figure 4 and Figure Al). This research emphasizes the
importance of integrating field measurements with GIS-based spatial analysis to monitor CH, fluxes
in permafrost catchments. It further drives home the importance of seasonal transition periods in
predicting fluxes from Arctic waterbodies.
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Figure 4. Panel a) shows log transformed CH, fluxes across the different catchment water conditions
during 2024 field season and b) compares log transformed daily CH, fluxes (y axis) between
Sanningasup Tasia catchment and other permafrost waterbodies (Kuhn et al., 2021) across the
Arctic-boreal region. Connecting brackets and stars show, for example, that Sanningasup Tasia had
significantly (p < 0.05) higher daily emissions when compared to Small Peat Lakes, while daily
emissions from Sanningasup Tasia Streams were significantly higher than all lake classes except
Yedoma Lakes.

3.2 Spatial and Temporal Evolution of Methane Fluxes

In both 2023 and 2024, spatial and temporal evolution of fluxes occurred somewhat
heterogeneously in the catchment, but generally “hotspots” occurred in the streams and where they
enter the lake (Figure 5 a-b, e-f). Despite different time periods of the thaw, fluxes in the catchment
in both years followed a similar trajectory, with peak fluxes occurring post thaw and decreasing
through the growing season. In 2023, snow persisted anomalously late into the summer season, and
soil temperatures were the coldest recorded in a 6-year record (Figure S8). We found that local
climate and catchment soil characteristics were at times, (i.e., during the thaw season and towards
the peak of growing season) more important than water temperature in predicting 2023 fluxes,
suggesting catchment contributions to surface waters plays an indirect role in CH,4 fluxes (Figure S9).
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419  While water temperature was found to be relatively important in both years, catchment CHa fluxes in
420 2024 suggest the system is more driven by variability in dissolved organic matter and microbial
421 production of oxygen (Figure 4-7 and Figure Al).
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423 Figure 5. Maps showing the bi-weekly spatial evolution of CH4emissions during 2023 (a-d) and 2024
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areas of high emissions, while darker, or no color represent areas of lower, or no emissions (see
color bars in map legends). Areas outside of the water were not measured and are artifacts from the
KDE mapping algorithm. Each white point on the map represents the placement of the floating
chamber. Orthomosaic background image © CNES (2024), Distribution Airbus DS, produced from
Pléiades 1B satellite imagery.

The main inlet to the lake is a warm spring with median temperatures of 7.4 °C and tended
to be a persistent location throughout the season for increased CH, fluxes. The warm spring area in
the southeast is a complex area where a perennial spring bubbles out of the ground forming a
perennial tributary to the lake. However, the spring seeps out along the base of the hillslope to the
east, subsequently forming a peat fen environment (Figure 5). The eastern most inlets are fed by
meltwater flowing through the vadose zone, but also served as a persistent location for increased
CHj4 fluxes. Fluxes from inlet streams followed along an upland-wetland environmental gradient,
where fluxes at the headwaters of streams were generally close to 0, or slightly taking up CH4, but
steadily increased as steeper upland slopes gave way to more gradual water saturated slopes and
pooling sediments. This is consistent with previous work on the island showing CH, fluxes association
with soil microbial assemblages shifting from methanotrophic to methanogenic along an upland-
wetland gradient, respectively(Christiansen et al., 2015). Additionally, the catchment serves as
micro-topography previously described as an area of snowmelt retention, and subsequently an area
of nutrient and/or dissolved organic matter pooling (Westergaard-Nielsen et al., 2020), which has an
impact on CH, fluxes throughout the season (Figure 7). While high fluxes were recorded along the
shore and in the open water of the lake, fluxes tended to be patchy and decreased moving away
from the inlet streams (Figure 5 and Figure S10). However, as soon as the lake water flowed to the
outlet, fluxes increased substantially. As the summer season progressed, CH, fluxes declined across
most of the catchment, becoming largely confined to the warm spring inlet and the eastern inlet
streams (Figure 5). Field observations of late-season fluxes in 2024, found decreased fluxes were
associated with submerged filamentous green algae in stream channels, while assemblages of iron-
oxidizing bacteria on the stream banks were associated with increased fluxes, (Figure A2). The
spatial and temporal evolution of fluxes was driven by seasonally shifting environmental conditions.

3.3 Boosted Regression Tree Results

Out of 500 iterations, 321 BRT were fit, and showed good alignment and consistently
performed well in cross-validation, with a correlation median of 0.40 between observed and
predicted values, and a median deviance standard error of 131. Between 8.4% and 62.4% with a
median of 27.3% of the CH, flux variability was explained by the various models and included
environmental conditions, suggesting a substantial proportion of CH,4 fluxes were explained by the
environmental conditions included. The calculated root mean squared error (RMSE), which reflects
the average magnitude in prediction error of the BRT, ranged between 6.5 to 28 nmol m2s?, with a
median of 13.7 nmol m~s™. The summary statistics reflect models that performed reliably and with
fairly good accuracy in predicting diffusive CH,4 fluxes from the catchment in 2024. The models
predicted shifting relative importance (Figure 6) and partial effects of the various environmental
conditions throughout the season (Figure 7). The magnitude of CH, fluxes predicted by the BRT
models were strongly influenced by localized biogeochemical conditions within the water column
based on whether the flux was originating from the lake, stream, or if it was influenced by ice or
snow (Figure 4-7, and Figure Ala-d). Visualizing partial dependence of predictors important for
model structure, revealed integrated ecological effects between local meteorology, catchment
conditions and physiochemical water conditions (Figure 7). However, isolated direct marginal effects
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of the various environmental conditions suggest fluxes from water surfaces are directly regulated via
biochemical processes associated with GPP and ER of oxygen (Figure Alb-d).
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Figure 6. The figure illustrates the relative importance of environmental conditions predicting
diffusive CH,4 fluxes using bar-plots and standard error bars. Each predictor variable is on the x-axis,
while its percent importance for its inclusion in a fitted BRT is given on the y-axis where the standard
error bars represent variability in importance based on presence or absence in a given model. Each
bar color represents a distinct environmental condition.

3.3.1 Spring Thaw Phase: Peak Fluxes Driven by Hydrological and Climatic Controls

The spring thaw phase marks a shift in catchment conditions, where a frozen landscape gives
way to thaw season and hydro-connectivity between land and water is strong (Figure 5c-d, g-h). In
the spring thaw phase, initial peak fluxes of CH, were primarily dependent on increasing rainfall,
changing wind conditions, warming air and soil temperatures, and increased soil moisture content,
while low dissolved organic matter (i.e., FDOM) indicated increased fluxes (Figure 6a-b and 7a-b).
Soil moisture was found to have a Pearson’s r = 0.93 with lake water levels, suggesting the lake levels
are strongly connected to snowmelt and groundwater hydrology (Figure S11). The distribution of
nutrients on the island has been shown to be linked to snowmelt and hill slope topography
(Westergaard-Nielsen et al., 2020), which is likely playing a role during the early part of the season,
but especially later in the year as DOM, a proxy for nutrients, becomes the primary limiting factor in
predicting higher fluxes (Figure 7b-c) (Olid et al., 2021, 2022). The processes driving CHs fluxes from
water surfaces is likely two-fold.
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Figure 7. Partial dependency plots illustrating the indirect and direct marginal effects of various
environmental conditions predicting diffusive CH,4 fluxes. Each panel displays the effect of a
numerical predictor used during model training to predict CH,4 fluxes. Although some predictors may
not have been directly involved in regulating fluxes from water surfaces, their evaluation reveals the
relationship between water column conditions and catchment processes regulating CH4 fluxes. The
figures are ordered by importance in each time period and the colors correspond to those seen in
Figure 6. The colored lines represent the result of a fitted general additive model (y ~ s(x)) and thus
a smooth representation across the 321 fitted BRT models. The grey shaded area around the line
represents +SE (0.02 - 0.2). Each predictor and its numerical range are given on the x-axis, while
predicted fluxes are given on the y-axis.

As snowfall turned to rain, the thawing of soils accelerated and water content in the active
layer increased, potentially driving peak emissions via the lateral mobilization of dissolved CH,
toward surface waters (Figure 7a-b) (Walter Anthony et al., 2012; Neumann et al., 2019; Olid et al.,
2022). However, as the thaw progressed, contributions to fluxes from catchment soils decreased as
the upper layers began to dry and lake water levels reached their maximum (Figure 7b-c). DOM
serves as a critical substrate for both CH4 production and oxidation, particularly in permafrost-
influenced regions where thawing can release large amounts of particulate matter (Keskitalo et al.,
2021; Bouranis et al. 2025). Anaerobic conditions in water saturated soils and low oxygenated
waters may have further driven fluxes during the thaw period as methanogenic microbial
communities rapidly consumed incoming labile organic compounds (Neumann et al., 2019;
Stevenson et al., 2021). However, as the thaw progressed, the lake briefly shifted to net-autotrophy
(Figure S6), marking an important shift from hydroclimatic controls on fluxes, to a patchwork of
biochemical transport pathways and barriers (Figure 7 b-d and Figure Alb-d). During this transition,
increased GPP and the resulting oxygen saturation in the lake and streams enhance methanotrophic
activity, thereby promoting methane oxidation and reducing net CH4 emissions (Figure 7b—c and
Figure Alb-c). The central role of oxygen availability and active methanotroph communities in

75 100 12, 300 80 90
Water temperature (°C) PAR (umol m2*s7) Wind direction (°)



519
520
521
522
523
524
525
526
527
528
529
530

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545

546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

regulating methane fluxes during Arctic thaw has been demonstrated in both tundra landscapes and
permafrost mires (Christiansen et al., 2015; Graef et al., 2011; Singleton et al., 2018). As oxygen
production increases, greater amounts of oxygen become available to support methanotrophic
activity in the water column. Methanotrophic activity is likely represented in the observed reduction
of CH,4 fluxes during periods of decreased ER (i.e., when oxygen consumption is elevated, Figure Alc),
as higher oxygen availability enhances aerobic methane oxidation (Figure 7c). However, the streams
remain net heterotrophic despite increasing GPP and ER during this time period, therefore providing
a more suitable environment for CH, production and flux (Figure S6). Thus, the lake and streams
reflect distinct ecosystems for the production and flux of CHa, where the lake being an overall
methane source, has a greater tendency to oxidize CH,4 following the thaw, while the streams follow
along a low-to-high flux gradient as the slope flattens and soils become saturated (Westergaard-
Nielsen et al., 2020; Stevenson et al., 2021).

3.3.2 Growing Season: Oxic-Anoxic Transport Pathways and Barriers

Early in the growing season the lake and streams enter into a transition phase, where peak
fluxes become increasingly dependent on biochemical pathways related to DOM availability,
conductivity, oxygen saturation and pH (Figure 7c). DOM is the limiting factor late in the season
where higher fluxes are increasingly dependent on water column conditions with greater levels of
DOM (Figure 6¢-d and 7c-d). CH,4 fluxes during this time period were strongly associated with
indicators of microbial activity forming oxic-anoxic transport barriers, or pathways, respectively. For
example, microbial activity in anoxic sediments maybe producing CH,, but whether it is diffused to
the atmosphere is directly affected by the micro-conditions of the water column (e.g., DOM,
conductivity, pH, and/or GPP/oxygen saturation), either forming an oxidative barrier, or an anoxic
pathway (Figure 7c-d and Figure Al). For example, groundwater transport of CH4 from anoxic
sediments to oxygen-rich streams may result in water with high concentrations of both. While some
of the CH4is likely oxidized during transport, it can be that both are respired at turbulent sections of
the stream, which were the highest fluxes observed from the streams and during this phase of the
season (Street et al., 2016; Neumann et al., 2019; Olid et al., 2022; Kleber et al. 2025).

Fluxes are further affected by water conditions either favoring methanogenic, or
methanotrophic activity (Conrad, 2007; Cunada et al., 2021; Emerson et al., 2021). pH levels near
neutral likely indicate water conditions favorable to methanogenesis at the sediment-water
interface, while increasing alkalinity may reduce methanogenic and/or favor increased
methanotrophic activity as growing season progresses (Figure 7c-d). For example, during growing
season micro-pH and oxygen saturation conditions in the lake and streams are influenced by the
ever-increasing presence of macrophytes, mosses and plankton, which tend to drive pH and oxygen
levels higher (Liebner et al., 2011; Cunada et al., 2021). Here we show that increasing pH and oxygen
saturation, as a result of primary production, create an aerobic environment that favors
methanotrophic activity, thereby driving CH, emissions down through the growing season (Figure
7c-d, Figure Al). Declines in oxygen saturation driven by microbial respiration can create anoxic
conditions that enableCH, emissions from sediment to surface waters (Conrad, 2007; Michel et al.,
2010; Street et al., 2016; Cheng et al. 2024). Such a mechanism likely explains the formation of flux
hotspots associated with decomposing iron-oxidizing bacterial mats along stream banks (Figure A2)
(Wallenius et al., 2021; Cheng et al. 2024). In the case of the bacterial mats, we observed fluxes
were highest in the streams where bacterial assemblages had become exposed to the atmosphere
and were decomposing in stagnant water (Figure A2), which may suggest that the decomposition of
the bacteria was releasing dissolved organic substrates in a low-oxygen environment already primed
for methanogenic activity (Wallenius et al., 2021; Cheng et al. 2024). This idea is supported late in
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the season when increased CH4 emissions become dependent on niche environments where
moderate levels of dissolved organic matter (FDOM) and low oxygenated water predict higher fluxes
(Figure 7d and Figure Ald). However, submerged bacterial mats along with filamentous green algae
the presence of macrophytes and/or mosses in the lake and streams, were associated with lower
fluxes, suggesting they form oxidative barriers for CH, fluxes from the sediment when submerged
(Figure 7d and Figure Ald) (Heilman & Carlton, 2001; Laanbroek, 2010; Liebner et al., 2011; Esposito
et al., 2023). The submerged, or not status of bacterial assemblages’ points to an interesting
feedback mechanism between CHa fluxes and dropping water levels creating variability in emission
pathways. Similar processes have been shown in relation to submerged brown mosses in Arctic
tundra ecosystems have been shown to promote CH,4 oxidation and thus decrease CH4 emissions
from sediments (Zarsky et al., 2018). Overall, these results highlight the broader importance of fine-
scale biogeochemical dynamics shaping CH, fluxes from a permafrost catchment and provide an
important data point in an uncertain region of the world.

4 Conclusion

This research provides a temporally resolved catchment scale CH4 flux analysis across
different waterbody types and conditions—lake, streams, and ice/snow-covered surfaces—
subsequently describing important biogeochemical and climatic controls on emissions. Often lost in
temporally coarse assessments is a detailed understanding of seasonal transitions in processes
related to CH, fluxes and environmental control mechanisms. Leveraging BRT to fit hundreds of
randomized models and visualizing the direct, and indirect controls on CH,4 fluxes reveals variability
in how, for example, DOM and/or water temperature affect fluxes differently as the Arctic summer
progresses. We presented an approach which captures ecosystem-scale effects, but furthermore
describes isolated mechanistic effects related to, for example, GPP, revealing that primary
productivity plays a critical role in regulating CH, emissions from permafrost affected waterbodies.
This work contributes to understanding carbon feedback mechanisms in a region where process-
level knowledge is needed to scale global models simulating CH, emissions from permafrost affected
waterbodies.
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Appendix A

a) Time Period: 2024-05-24 to 2024-06-06 b) Time Period: 2024-06-10 to 2024-06-23
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Figure Al. Partial dependency plots illustrating predicted marginal effects of meteorological, and
biochemical water conditions predicting diffusive CH,4 fluxes. Each figure represents the direct
marginal effect on CH, fluxes when all other predictors are held at their median, therefore giving a
more mechanistic understanding of those conditions and processes regulating fluxes from water
surfaces. The figures are ordered by importance in each time period and colors correspond to those
seen in Figure 6 of the main text. The colored lines represent the result of a fitted general additive
model (y ~ s(x)) and thus a smooth representation across the 321 fitted BRT models. Each predictor
and its numerical range are given on the x-axis, while predicted fluxes are given on the y-axis.
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Figure A2. lllustrates the various microbial forms encountered and found to influence CH, fluxes
from the catchment area. In the photo on the far left we can see gas film on the water surface which
was associated with submerged iron-oxidizing microbial assemblages, i.e. similar to what is shown in
the middle photo, however exposed to the atmosphere in lower water levels. The photo on the right
shows a brown alga which formed in the warm spring area southeast of the lake. In all cases,
increased fluxes were generally encountered when measuring atop the middle and right microbial
assemblages.
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