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Abstract. Wind speed and direction are crucial for environmental monitoring and meteorological research, yet current 

measurement techniques face challenges in obtaining high spatiotemporal-resolution wind data while maintaining operational 

flexibility and cost-effectiveness. This study presents a wind estimation method based on attitude changes of an unmanned 

aerial vehicle (UAV) through controlled wind wall experiments. The estimated wind parameters were compared with 5 

measurements from an onboard wind sensor. Results from meteorological tower validations and field campaigns demonstrate 

that both the attitude-based and sensor-based methods achieved good agreement with reference measurements during UAV 

hovering. However, sensor measurements showed significant errors at high vertical flight velocities, primarily due to increased 

UAV downwash, while the attitude-based method maintained accuracy during flights. Building on UAV attitude changes, a 

machine learning algorithm was further developed to estimate wind parameters with high accuracy, offering a practical solution 10 

for future field deployments. Successful application in coastal observations showcased that wind estimation based on UAV 

attitude dynamics provided important spatiotemporal wind data sets that could be used to investigate the fate and dispersion 

of air pollutants. This work presents a reliable, sensor-free algorithm that enables low-cost, high-resolution wind measurements 

across diverse operational scenarios. This advancement creates new opportunities at the intersection of environmental science 

and emerging low-altitude economy applications, which hold promise for urban air mobility safety assessment and microscale 15 

meteorology-enhanced environmental monitoring. 
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1. Introduction 20 

Wind speed and direction are among the most fundamental and critical observational elements in atmospheric and 

environmental sciences (Yang et al., 2017; Horton et al., 2014; Wang and Chen, 2016; Guo et al., 2016; Yang et al., 2016). 

Accurate measurement of these parameters is vital across fields such as environmental monitoring, weather forecasting, and 

urban planning (Curbelo and Rypina, 2023; Yang et al., 2025a; Salmabadi et al., 2020; Alizadeh et al., 2022; Tominaga and 

Shirzadi, 2021). Wind direction determines the transport trajectories of air pollutants, while wind speed affects their dispersion 25 

and dilution rates. For instance, real-time wind data coupled with atmospheric dispersion models can predict smoke plume 

trajectories from wildfires (Curbelo and Rypina, 2023) or the spread of toxic gases from industrial emissions (Yang et al., 

2025a), enabling authorities to issue timely health advisories and coordinate emergency responses. In regard to weather 

forecasting, wind directly influences the development and evolution of weather systems and serves as an essential parameter 

for numerical weather prediction models. For example, wind play a crucial role in the generation of sandstorms (Salmabadi et 30 

al., 2020; Alizadeh et al., 2022). Strong winds lift sand and dust particles from source areas, while wind direction determines 

the affected regions. In the context of urban planning and building design, wind patterns significantly influence thermal 

distribution within urban environments. Wind-driven cross-ventilation and street canyon airflow dynamics play crucial roles 

in regulating local microclimates and controlling air pollutant concentrations (Tominaga and Shirzadi, 2021). Strategic urban 

design incorporating prevailing wind direction and speed can optimize ventilation corridors and building layouts to enhance 35 

airflow, mitigate heat accumulation, and improve pollutant dispersion. 

High spatiotemporal-resolution wind measurement is challenging in environmental science. Traditionally, wind speed 

and direction can be measured by techniques such as cup and vane anemometers, laser doppler anemometers, ultrasonic 

anemometers, and remote sensing (such as satellite and radar). There are significant differences among these methods in terms 

of accuracy, cost, and environmental suitability. For example, mechanical anemometers (e.g., cup and vane types) are widely 40 

employed in meteorological and wind energy applications due to structural simplicity and cost-effectiveness, yet their 

performance is constrained by factors such as low-altitude measurement constraints, dynamic response lag due to inherent 

mechanical inertia and physical design, turbulence sensitivity, and reduced accuracy in low air-density environments (Pindado 

et al., 2014; Alfonso-Corcuera et al., 2022). Optical-based systems demonstrate micro-scale resolution and multi-directional 

capability yet require stringent deployment conditions due to high costs and light propagation sensitivity (Lee, 2003; Diasinos 45 

et al., 2013; Knöller et al., 2024). Ultrasonic anemometers achieve high precision through non-mechanical design and wide 

measurement range, though they are vulnerable to temperature and humidity variations and have multipath interference (Han 

et al., 2008; Richiardone et al., 2012; Gaeta Lopes et al., 2017; Shan et al., 2023). Remote sensing technologies such as satellite 

observations provide global coverage for large-scale circulation studies but suffer from fine spatiotemporal resolution 

limitations (Feng et al., 2023; Hauser et al., 2023). 50 
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In recent years, unmanned aerial vehicles (UAVs) have demonstrated broad and diverse application potential in 

environmental science due to their unique advantages, such as low cost, flexible deployment, and the ability to obtain high-

resolution three-dimensional pollution datasets (Batista et al., 2019; Zhao et al., 2021; Ye et al., 2021; Asher et al., 2021; Ye 

et al., 2022; Achermann et al., 2024; Li et al., 2025). UAVs can typically be categorized by wing type into rotary-wing (copter), 

fixed-wing, and flapping-wing configurations. Copter-type UAVs are emerging as an efficient and reliable platform for wind 55 

field measurement and monitoring (Neumann and Bartholmai, 2015; González-Rocha et al., 2023), due to their capability to 

hover at specific altitudes and positions, allowing for high-resolution vertical profiling at fixed locations, an advantage over 

fixed-wing UAVs (Li et al., 2025). This study, therefore, focuses on copter-type UAVs unless otherwise mentioned. 

Current UAV-based wind estimation approaches mainly encompass three technical paradigms. The first approach 

involves direct measurement through onboard sensors such as anemometers. However, this method often faces challenges such 60 

as signal interference from rotor-induced turbulence and measurement inaccuracy during UAV tilt maneuvers (Liu et al., 2023; 

Yang et al., 2025b). The second approach utilizes mechanical model-based estimation, reconstructing wind fields through the 

analysis of UAV flight attitude (such as pitch and roll angles). Representative models include the dynamic particle model, 

kinematic particle model, and rigid body model (González-Rocha et al., 2019, 2023; Sikkel et al., 2016). While these methods 

provide accurate wind estimates, they are computationally expensive and usually confront inherent difficulties in precisely 65 

modeling UAV-wind field interactions under complex atmospheric conditions. The third paradigm employs data-driven 

analysis by established relationships between wind characteristics and UAV flight attitude (Neumann and Bartholmai, 2015; 

Brosy et al., 2017; Palomaki et al., 2017). Compared to the other two approaches, this method offers several advantages. For 

instance, it eliminates the need for additional onboard sensors, thereby reducing payload weight and lowering power 

consumption, simplifying system integration, and further enhancing both flight endurance and maneuverability. However, 70 

lacking a physical mechanical representation, it relies on pre-flight training data from controlled wind tests and real-world 

measurements (e.g., calibration against a reference instrument). 

Overall, from the perspectives of system integration simplicity, cost-effectiveness, and environmental adaptability, UAV 

attitude-based wind estimation methods demonstrate strong potential in modern unmanned systems. While previous studies 

have explored these methods, critical factors affecting estimation accuracy, including payload characteristics (size and 75 

positioning), rotor-induced aerodynamic effects, and wind direction relative to UAV orientation (especially for asymmetric 

UAV configurations), remain understudied. These parameters significantly impact UAV attitude dynamics and subsequent 

wind estimation reliability. In addition, existing studies predominantly focus on wind estimation during UAV hovering or 

horizontal flight, paying insufficient attention to vertical wind variability. This gap is particularly significant for research on 

air pollutant dispersion and boundary layer dynamics. Furthermore, the lack of comparative validation under real-world 80 

meteorological conditions constrains the practical deployment of literature results. To address these challenges, this study 

combines laboratory wind wall experiments with field campaigns (Figures 1A-1C), aiming to systematically investigate how 
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the aforementioned factors affect UAV attitude-based wind estimation, as well as to explore the feasibility of using this 

approach for real-world vertical wind profiling. The results aim to enhance the accuracy, robustness, and operational relevance 

of UAV-based wind sensing for atmospheric research and environmental monitoring. 85 

 

2. Methods 

2.1 UAV platform 

A quadcopter UAV (DJI M300 RTK) was used for the wind wall experiments and field wind measurements. The UAV 

has dimensions of 810 × 670 × 430 mm (L × W × H) when unfolded. The weight of the UAV is 6.3 kg with batteries. The 90 

maximum flight weight of the payload is 2.7 kg, and the maximum flight time is 55 min. The maximum ascent and descent 

speeds of the UAV reach 6 m/s and 5 m/s, respectively. The hovering accuracy ranges from 0.1 to 0.5 m, and the maximum 

tolerable wind speed is 12 m/s. The UAV is equipped with an inertial measurement unit and a GPS positioning system, which 

can output the attitude information required for the experiments. 

 95 

2.2 Wind measurement and estimation 

UAV-based wind speed and direction estimation was examined at Southern University of Science and Technology in 

Shenzhen, China, specifically within the Laboratory for Air Vehicle and Gust Simulation facility (Figure 1A). The laboratory 

features a specialized wind wall system capable of producing stable, controllable airflow conditions. The system can simulate 

wind shear and gust spectra corresponding to wind speeds up to 15 m/s in controlled environments. During the wind wall 100 

experiments, twelve wind speed levels were used by increasing the system power in 5% increments from 1 m/s to 10 m/s 

(specific wind speeds of 1.4 m/s, 2.2 m/s, 3.0 m/s, 3.8 m/s, 4.5 m/s, 5.3 m/s, 6.1 m/s, 6.9 m/s, 7.7 m/s, 8.5 m/s, 9.2 m/s, and 

10.0 m/s). Prior to testing, the wind wall output was calibrated using a high-accuracy reference anemometer to ensure 

measurement reliability. 

Three different UAV payload configurations were implemented to simulate real-world operational conditions, including 105 

a default setup with only the wind sensor (Mo), a configuration with additional payload (around 1.5 kg) on the front-top of the 

UAV (Mo+f), and a configuration with additional payload in the central-top (Mo+m) (Figure 1D). In order to assess the effects 

of wind direction relative to the UAV heading on attitude response and wind estimation, six wind directions were explored, 

including 0°, 45°, 90°, 180°, 225°, and 270°, as illustrated in Figure 1E. Throughout the experiments, the UAV maintained a 

stable hover with a flight duration exceeding 1 min for each combination of wind speed and direction. A set of relationships 110 

between wind components and UAV pitch and roll angles was obtained. 
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a. Wind estimation based on UAV attitude dynamics (method 1)  

UAV tilts in the presence of wind during flights. The inclination angle (𝛹) of the UAV, as shown in Figure 2, can be 

calculated using the following equations(Neumann and Bartholmai, 2015):  

𝑒! = %
0

𝑐𝑜𝑠	𝜙
𝑠𝑖𝑛	𝜙

.,					𝑒" = %
𝑐𝑜𝑠	𝜃
0

−𝑠𝑖𝑛	𝜃
.         (1) 115 

𝛹 = 𝑐𝑜𝑠#$ 2%
&⃗ !"	)*⃗#×*⃗$,
|%&⃗ !"|	.*⃗#×*⃗$.

3          (2) 

where	𝑒!	and 𝑒" are the vector representations of the roll angle (𝜙, Figure 2A) and the pitch angle (𝜃, Figure 2B), respectively; 

and 𝑛4⃗ /0(= (0, 0, 1)) is the unit normal vector in the XY-plane parallel to the ground. The relationship between wind speed 

and UAV inclination angle can therefore be modeled using the controlled wind speed input from the wind wall system and the 

corresponding changes in aircraft attitude. 120 

For wind direction estimation, the angle (λ) between the observation direction of the UAV (−𝑛4⃗ 01 = (-1, 0, 0)) and the 

projection of 𝑒! × 𝑒" on the XY-plane was first determined using Equations 3 (Figure 2C). Equation 4 resolved the position 

of 𝑒! × 𝑒"  relative to the observation direction, and the UAV flight direction (𝐷234) was then calculated based on 𝜆 and 

compass heading δ (Equation 5, Figure 2D). When hovering, the wind direction (𝐷56%7 ) equals the opposite horizontal 

direction of UAV flight (Equation 6). When the UAV moves in the XY-plane, wind direction can be derived from the triangular 125 

relationship between wind direction, UAV flight direction, and GPS-based ground trajectory (Neumann and Bartholmai, 2015). 

𝐷8*9:;6<*, representing wind direction relative to UAV compass orientation, can also be obtained using Equation 7, which was 

set to 0°, 45°, 90°, 180°, 225°, and 270° during the wind wall experiments, as illustrated previously. 

𝜆 = 𝑐𝑜𝑠#$ :
#%&⃗ "%	)*⃗#×*⃗$,!"
|#%&⃗ "%|	=)*⃗#×*⃗$,!"=

;          (3) 

𝑃 =

⎩
⎨

⎧ 𝑙𝑒𝑓𝑡,							𝑛4⃗ /1	C𝑒! × 𝑒"D/0 < 0

𝑟𝑖𝑔ℎ𝑡,					𝑛4⃗ /1	C𝑒! × 𝑒"D/0 > 0

𝑜𝑡ℎ𝑒𝑟𝑠,			𝑛4⃗ /1	C𝑒! × 𝑒"D/0 = 0
	 	(𝑃:	position	of	𝑒! × 𝑒"	relative	to	the	observation	direction) (4) 130 

𝐷234 = [360° − 𝜆 + 𝛿,						𝑖𝑓	𝑃 < 0
𝜆 + 𝛿,																𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          (5) 

𝐷56%7 = 𝐷234 + 180°          (6) 

𝐷8*9:;6<* = 𝛿 − 𝐷56%7 = [𝜆 − 180°,								𝑖𝑓	𝑃 < 0
180 − 𝜆,						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       (7) 
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b. Wind estimation based on onboard wind sensor (method 2) 

Wind speed and direction data were also obtained directly from a compact and lightweight ultrasonic anemometer (LI-135 

550 TriSonica Mini, LI-COR) mounted on the UAV airframe. The anemometer determines wind parameters by measuring 

ultrasonic pulse transit time differences along three orthogonal axes. The accuracy of the anemometer is ± 0.2 m/s for speeds 

between 0 and 10 m/s, and ± 2 % for speeds from 10 m/s to 30 m/s. The wind direction measurement range is 0 to 360°, with 

a manufacturer-specified sensor accuracy of ± 1°. Data were recorded at 1 Hz by an onboard datalogger during the experiments. 

Prior to field deployment, the sensor underwent extensive laboratory calibration in the wind wall facility to characterize 140 

its performance across the expected operational range. Calibration procedures systematically tested wind speeds from 1 to 10 

m/s under three payload configurations (baseline, front-loaded, and center-loaded), while also evaluating directional response 

at six headings relative to the UAV (Figures 1D and 1E). This process generated detailed correction curves that accounted for 

rotor interference and airframe effects. The resulting calibration framework ensured reliable wind data collection during 

subsequent field operations. 145 

c. Wind estimation using a machine learning algorithm (method 3) 

A random forest model was developed to enable efficient wind estimation. The simulations utilized the 

RandomForestRegressor from a Python package (sci-kit learn). The number of decision trees was set to 100 to ensure ensemble 

diversity. Maximum tree depth was not restricted to capture complex data patterns. An 80:20 training-test data split and 10-

fold cross-validation were applied. The random seed was fixed at 42 to guarantee the reproducibility of the results. 150 

Model training and validation employed a dataset collected during a summer field campaign at Xichong in Shenzhen, 

China (Figure 1C). This is a coastal site usually selected for atmosphere-land-ocean interactions. The dataset contained 

measurements from 20 days (during August 21 to September 14, 2022) with 6 hovering flights conducted each day, specifically 

2 flights each during morning, afternoon, and evening periods. All flights were performed over the sea surface at distances 

exceeding 100 m from land. Model inputs included UAV attitude parameters (pitch, roll, and compass heading), while targets 155 

were derived from calibrated onboard ultrasonic anemometer measurements (method 2), with performance benchmarks 

established through comparison with attitude-based wind estimation (method 1). Performance of the random forest estimation 

was evaluated using the correlation coefficient (R2) and root mean squared error (RMSE). 

 

2.3 UAV wind estimation validation 160 

Validation of UAV wind estimation was conducted at the Shiyan Meteorological Gradient Observation Tower in 

Shenzhen, China (Figure 1B). The tower features 13 external platforms for conventional meteorological measurements. 

Meteorological measurement platforms are distributed across levels at 10 m, 20 m, 40 m, 50 m, 80 m, 100 m, 150 m, 160 m, 

200 m, 250 m, 300 m, 320 m, and 350 m above local ground, providing multi-level wind speed and direction data. Due to 
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flight restrictions in the area where the maximum permissible height was 120 m, flight experiments were conducted within 165 

100 m. Both hovering and vertical flight profiles were performed. The hovering experiment employed the default payload 

configuration (Mo) for approximately 10 min. Vertical flight experiments tested two payload configurations (Mo and Mo+f) at 

two flight speeds (0.5 m/s and 2.0 m/s), with each configuration completing two round-trip cycles. UAV flights were conducted 

at least 20 m away from the tower to avoid the disturbance of UAV-induced air flows to the tower measurements. 

 170 

3. Results and Discussion 

3.1 UAV-based wind estimation 

a. Estimation based on UAV attitude dynamics (method 1) 

The relationship between UAV inclination angle and wind speed was modelled for different loading conditions (𝑀) and 

relative wind directions (𝜂), as presented in Figure 3. Several fitting algorithms were evaluated, including power, logarithmic 175 

power, polynomial, and exponential functions. Among these, the power function demonstrated the best fit to the experimental 

data, which is expressed as: 

𝑉56%7,?,@ = 𝑎?,@𝛹A',)          (8) 

where 𝑎?,@ and 𝑏?,@ are fitting coefficients obtained from the wind wall experiments. Overall, the fittings effectively captured 

the relationship between UAV inclination angle and wind speed (R2 > 0.85, Table S1).  180 

As shown in Figure 3, the relationship between UAV inclination angle and wind speed varies significantly with relative 

wind direction. At identical wind speeds, inclination angles remained smaller for headwind to crosswind conditions (0°–90°) 

than for tailwind to rear crosswind scenarios (180°–270°). This behavior can be attributed to the advanced flight control system 

of the UAV used in this study. Under headwind conditions, the flight controller proactively compensates for wind disturbances 

by precisely adjusting front rotor power, inducing a slight forward tilt. This active posture control leverages aerodynamic drag 185 

components to enhance stability, thereby minimizing attitude fluctuations (Ding and Wang, 2018; Otsuka et al., 2018; Lei and 

Lin, 2019; Jung, 2024). Conversely, during tailwind conditions, turbulent flow enveloping the airframe introduces control 

latency, forcing the system to apply larger attitude corrections to maintain position, ultimately amplifying the observed 

inclination (Ding and Wang, 2018; Otsuka et al., 2018; Lei and Lin, 2019; Jung, 2024). Adding extra payload generally reduces 

how sensitive the UAV inclination is to wind, leading to smaller observed inclination angles (Figures 3B and 3C versus Figures 190 

3A), with effects varying slightly depending on payload placement on the UAV.  

The above findings differ from observations by Neumann and Bartholmai (2015), who reported that payload and wind 

direction had minimal effects on UAV attitude. This discrepancy likely stems from differences in UAV platforms, including 
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variations in design and flight control architectures. The implication is that UAV attitude-based wind estimation requires 

specific algorithms tailored to the characteristics of each UAV platform. 195 

Conventionally, without establishing the above relationships, wind speed can be estimated via force balance analysis 

based on the flight attitude of the UAV (Figure 2E), as follows: 

𝑉56%7 = i BC*
D	3+,-	E*

           (9) 

𝐹7 = 𝑚𝑔	𝑡𝑎𝑛𝛹           (10) 

where 𝐹7 is the drag force, 𝜌 is the air density, 𝐴234 is the projected surface area of the UAV (perpendicular to wind direction), 200 

𝐶7 is the drag coefficient, 𝑚 is the total mass of the entire UAV system, and 𝑔 is the gravitational acceleration.  

To obtained 𝑉56%7, these equations contain two additional unknowns (𝐴234 and 𝐶7) that must be resolved. While 𝐴234 

can typically be determined using projected area measurement tools in software such as AutoCAD, 𝐶7 remains difficult to 

estimate, making wind speed estimation through the force balance method challenging. Here, through the wind wall 

experiments, the drag coefficient 𝐶7  can be experimentally determined. An example is shown in Figure S1. During the 205 

experiments with relative wind direction (𝐷8*9:;6<*) of 180°, the projected surface area of the UAV varied between 880 and 

1120 cm2 at UAV inclination within 11° over the course of the flight tests. As wind speed increased from 1 m/s to 10 m/s, the 

inclination angle grew from 1° to 11°, while 𝐶7 decreased from 2.75 to 0.20. For wind speed exceeded 5 m/s (corresponding 

to inclination angles greater than 6°), 𝐶7 stabilized at around 0.20 ± 0.05. These experimentally derived values can therefore 

be applied in future studies for rough wind speed estimation using the force balance method for the specific UAV model (DJI 210 

300 RTK) used in this study. 

b. Estimation based on onboard wind sensor (method 2) 

The wind sensor was also calibrated during wind wall experiments. Across varying payload configurations and wind 

directions, linear relationships were consistently observed between sensor-measured wind speeds and the reference wind 

speeds generated by the wind wall (Figure 4). The coefficients of these linear fits are provided in Table S2. 215 

As shown in Figure 4, sensor measurements exhibited deviations of 30%, 15%, and 30% for the default, front payload, 

and central payload configurations, respectively. The front payload configuration notably improved measurement accuracy by 

reducing flight vibrations and enhancing stability (Figure 4B versus Figures 4A and 4C), consistent with the UAV flight control 

system behavior described in Section 3.1a. In addition, the asymmetric sensor placement on the right front of the UAV (viewed 

when facing the UAV, Figure 1E) led to maximum accuracy degradation at 225° (rear direction relative to the UAV centerline) 220 

and secondary effects at 45° (head direction relative to the centerline). 

Over the course of the experiments, the sensor registered non-zero wind speed readings even when the actual external 

wind speed was 0 m/s. This phenomenon can be attributed to the rotor-induced airflow interference. During testing under 
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various payload configurations and wind directions, UAV rotors generated apparent wind speeds ranging from 0.1 to 1.5 m/s 

(Figure 4). Similarly, the rotor interference effects on sensor measurements were most pronounced when wind approached 225 

from the right rear (225°) and head (45°) directions relative to the UAV centerline, likely due to uneven payload distribution. 

The implication of these findings is that the sensor cannot be used for field measurements without calibration, and 

calibration may vary significantly with UAV model used, sensor placement, payload distribution and mass, and relative wind 

direction during operation. 

 230 

3.2 Validation of UAV-based wind estimation against tower measurements 

Results of hovering flight experiments conducted at the meteorological observation tower are presented in Figure 5. Wind 

speeds obtained from method 1 (based on UAV attitude) and method 2 (sensor-based) were generally consistent with each 

other (Figure 5A). Both methods also closely matched the reference wind speed and direction recorded by the tower-mounted 

anemometers (Figures 5B and 4C). The RMSE between the two measurement methods and the anemometer readings was less 235 

than 0.7 m/s (for wind speed) and 20° (for wind direction), confirming the accuracy and reliability of UAV-based wind 

estimation under real-world atmospheric conditions. 

However, the situation changes during vertical flight operations. In this study, vertical flights were conducted at speeds 

of 0.5 m/s and 2 m/s. As shown in Figure 6, wind speeds calculated using method 1 still exhibit strong agreement with 

meteorological tower measurements, regardless of whether the UAV ascends or descends at 0.5 m/s (Figure 6A-I) or 2.0 m/s 240 

(Figure 6B-I). For the sensor-based method (method 2), the measurements matched the tower data at the lower vertical speed 

of 0.5 m/s (Figure 6A-II). However, when the vertical speed increased to 2.0 m/s, significant deviations became apparent 

(Figure 6B-II). These discrepancies are likely caused by increased rotor-induced turbulence during high-speed vertical flight, 

which degrades sensor measurement accuracy. Notably, the addition of payload had no effect on the wind estimation accuracy 

when using method 1 (Figures 6B-I and 6D-I), while it amplified the impact of rotor-induced airflow disturbances on sensor 245 

measurements (Figures 6B-II and 6D-II). Similar findings were observed for wind direction estimations (Figure S2). 

These comprehensive analyses demonstrate that the attitude-derived method (method 1) robustly estimates wind variables. 

For the sensor-based method (method 2), results indicate that with proper calibration, sensors can achieve accuracy comparable 

to commercial meteorological instruments during UAV hovering operations. However, the sensor-based method shows 

limitations for vertical profiling applications due to its significant susceptibility to rotor-induced airflow disturbances. These 250 

systematic errors were consistently observed across all test configurations. Nevertheless, the successful validation of the 

attitude-based method substantially enhances the potential for UAV applications in atmospheric research, offering distinct 

advantages for measurements in locations inaccessible to conventional tower-based systems and in scenarios requiring rapid 

deployment of mobile platforms. 
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3.3 Field wind measurements 255 

Field flight experiments were further conducted at a coastal site in Shenzhen, China, to evaluate the performance of 

methods 1 and 2 for wind estimation. For analytical simplicity, only UAV hovering data was utilized in this comparative 

analysis. 

As shown in Figures 7A and S3, strong agreement was observed between the two methods, with median differences of 

approximately 0.1 m/s for wind speed and less than 10° for wind direction, confirming the reliability of the UAV attitude-260 

based approach. To enhance the wind estimation methodology, we further implemented a machine learning framework 

(method 3) using UAV attitude parameters as inputs and the corrected wind sensor measurements as training outputs. The 

model achieved excellent predictive performance with R2 values exceeding 0.90 for both training and test datasets (Figures 7B 

and Figure S4). When applied to independent datasets from the meteorological tower flight experiments (Section 3.3), the 

estimates maintained good agreement with tower measurements (Figure S5). This consistency across different validation 265 

approaches confirms the robustness of the UAV attitude-based methodology and its potential for practical applications in wind 

measurement. 

Wind profile estimation offers critical insights into atmospheric pollutant transport and dispersion dynamics. Using the 

field campaign data as an example, we constructed diurnal vertical wind profiles by analyzing UAV attitude variations during 

flight operations. During the field campaign, we also collected vertical pollutant concentration profiles using a pre-calibrated 270 

sensor package (Sniffer V2, Soarability Pte. Ltd.), with cross-validation against reference instruments at a ground station 

located 50 m from the flight site. 

Representative vertical profiles of both wind and pollutant measurements are displayed in Figure 8, which reveals the 

crucial influence of wind profiles on pollutant distribution patterns. For instance, persistently low wind speeds were observed 

throughout the day of August 23, indicating stable atmospheric conditions which were conducive to pollution accumulation. 275 

Pollutant concentrations in this day exhibited typical diurnal variations, gradually increasing from morning, peaking in the 

afternoon due to photochemical activity, and decreasing at night with reduced emissions and photochemical processes. In 

contrast, September 7 featured strong winds that enhanced pollutant dispersion, resulting in consistently low pollution levels.  

The September 14 case demonstrated a complex vertical wind structure, with speeds decreasing from morning to 

nighttime minima while increasing with height. Pollutant concentrations varied significantly with wind direction changes. 280 

Notably, at 19:00, a 180° wind shift transported polluted air masses from the south, sharply increasing observed concentrations. 

Surface cooling and calm winds at night created stable stratification, trapping pollutants near the surface and producing distinct 

vertical gradients. The nocturnal boundary layer height (150-200 m), identifiable from wind and pollutant profiles (Guimarães 

et al., 2019, 2020; Ye et al., 2021), showed reduced pollutant concentrations at the residual layer due to enhanced wind speed 

and dispersion. A subsequent wind shift to 360° brought back cleaner northern air, reducing both surface concentrations and 285 
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vertical gradients. These observations underscore the importance of vertical wind profiling enabled by UAV-attitude-based 

estimation, for understanding atmospheric transport mechanisms and pollution dynamics. 

 

4. Atmospheric Implications 

This study develops a UAV wind estimation method based on attitude changes. Validation through wind wall and field 290 

experiments demonstrated the reliable performance of the attitude-based approach. Key findings indicate that payload 

variations significantly affect attitude responses, with distinct patterns observed across different wind directions, underscoring 

the importance of comprehensive training data to improve model accuracy. We further developed a supervised learning 

framework to extract wind parameters directly from UAV attitude data. The machine learning model achieved accurate 

predictions of both wind speed and direction while maintaining practicality for field deployment. Compared to the attitude-295 

based approach, the results revealed significant rotor-induced interference when using onboard sensors for wind measurement, 

particularly during vertical maneuvers. This highlights the need for pre-deployment calibration and bias corrections for sensor 

measurements. Collectively, these results demonstrate the strong potential for precise, sensor-free wind field estimation using 

UAV attitude data. 

The UAV attitude-based wind estimation method, while promising, presents several limitations that require future 300 

consideration. First, this approach requires establishing accurate relationships between UAV inclination angles and wind speed, 

which may vary across different UAV models. For example, the DJI 300 RTK used in this study exhibited substantial payload 

and relative wind direction effects, a phenomenon not observed by Neumann and Bartholmai (2015) with a different UAV 

platform. Thus, UAV-specific relationships must be developed before field deployment for future studies. Additionally, this 

study identified greater uncertainty in the attitude-based wind speed estimates below 2 m/s under headwind conditions (e.g., 305 

45° to 90°, Figure 3, likely owing to the advanced UAV flight control system described in Section 3.1). To address this 

challenge, future research could explore hybrid approaches integrating attitude-derived estimates with measurements from pre-

calibrated onboard sensors, thereby enhancing accuracy in low-wind-speed regimes. Finally, creating a comprehensive 

database linking UAV attitude data to wind measurements across diverse flight conditions (e.g., hovering, horizontal, and 

vertical flight at varying speeds) would be highly valuable. Such a dataset would enable the training of advanced AI models, 310 

accelerating the development of reliable, attitude-based wind field prediction methods. Although literature has reported using 

machine learning to train wind observation data, these efforts have typically been constrained by the availability of single flight 

tests or very limited datasets (Zhu et al., 2025), which fail to capture the full variability of UAV responses under diverse 

operating conditions. In practice, UAV attitude and rotor dynamics are strongly modulated by wind direction, flight mode, and 

payload configuration, leading to highly nonlinear and platform-specific responses, as demonstrated in this study. Expanding 315 

datasets and integrating physical knowledge of UAV aerodynamics into data-driven models will therefore be essential for 

building more robust and transferable AI-based wind sensing frameworks. 
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With the global development of the low-altitude economy (Huang et al., 2024; Saadé et al., 2025; Tan et al., 2025; Zhou, 

2025), UAV attitude-based wind estimation has become an essential enabling technology. The sensor-free approach presented 

in this study utilizes inherent flight dynamics to generate reliable wind field data, providing advantages for low-altitude 320 

operations where conventional measurement methods encounter limitations. Due to its operational simplicity and cost-

effectiveness, this technique proves particularly valuable for widespread implementation across crucial low-altitude economic 

sectors such as urban air mobility systems for flight safety assurance. For example, the method presented in this study integrates 

easily with existing UAV operations, positioning it as a fundamental innovation for low-altitude economic activities that rely 

on real-time three-dimensional wind field data. 325 

In environmental applications, UAV platforms offer distinct advantages by providing precise, flexible, and efficient wind 

field measurements with high spatiotemporal resolution. This technological progress transforms environmental monitoring 

approaches by enabling vertical wind profiling, which significantly improves the analysis of atmospheric pollutant transport 

patterns. These enhancements allow more accurate pollution source identification and support the development of targeted 

mitigation strategies, particularly in urban environments where building configurations and street-level airflow interactions 330 

critically influence local air quality. The three-dimensional wind data obtained from UAV measurements can inform urban 

planning decisions by characterizing how architectural geometries modulate near-surface ventilation efficiency. Furthermore, 

the measurement capabilities provide critical data for validating high-resolution weather and climate models, especially for 

simulating complex urban canopy effects on microscale wind circulation patterns that govern heat dissipation. 

Beyond urban research, UAV-based wind estimation opens new opportunities for field studies in natural ecosystems and 335 

remote regions. For example, reliable vertical wind profiles can substantially improve the quantification of forest canopy–

atmosphere exchange processes, including the dispersion of biogenic volatile organic compounds and greenhouse gases (Jiang 

et al., 2024; Ye et al., 2021). Similarly, accurate wind field characterization over coastal and marine environments enhances 

the interpretation of air–sea exchange fluxes, sea-breeze circulation, and the long-range transport of marine aerosols (Zhao et 

al., 2021). For atmospheric chemistry studies, UAV-derived wind fields provide essential inputs for constraining dispersion 340 

models and for interpreting aircraft or ground-based observations, particularly in regions where conventional meteorological 

measurements are sparse or absent (Ye et al., 2022). 

Through these varied applications, UAV-based wind measurement technology is emerging as an innovative tool that 

connects the low-altitude economy with environmental science. By delivering spatiotemporally resolved wind data in complex 

terrains and under diverse atmospheric conditions, the approach not only advances intelligent environmental risk management 345 

but also supports sustainable development initiatives and climate adaptation strategies on regional to global scales.
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Table S2 Fitting coefficients for wind sensor calibrations. 

Figure S1 Relationship between input wind speed and UAV parameters. 

Figure S2 Comparison between UAV-based wind direction estimates and reference measurements from the meteorological 

observation tower. 

Figure S3 UAV-based wind direction estimation for the field observation campaign. 

Figure S4 Performance of wind estimation using machine learning algorithms. 

Figure S5 Comparison between machine-learning-based wind speed estimates and reference measurements from the 

meteorological observation tower. 
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Figure 1  UAV flights conducted in a wind wall laboratory (A), at a meteorological observation tower (B), and at a coastal 

site (C). Schematic diagrams of UAV payload configuration (D) and UAV flights under different relative wind 

directions. 
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Figure 2 Schematic diagrams of UAV attitude coordinates (A-D) and force balance analysis (E). 
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Figure 3  Relationship between UAV inclination angle and wind speed under varying payload (A: default, B: additional 

front-top payload, C: additional central-top payload) and wind direction (0°, 45°, 90°, 180°, 225°, and 270°) 

conditions. The payload configurations and relative wind directions are illustrated in Figure 2. The relationships 

are characterized by power function fits, with coefficients for each flight scenario provided in Table S1. 
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Figure 4  Relationship between input wind speed and sensor-measured wind speed under varying payload (A: default, B: 

additional front-top payload, C: additional central-top payload) and wind direction (0°, 45°, 90°, 180°, 225°, and 

270°) conditions. Both measurements and fitted curves are shown for 90° relative wind direction scenarios, while 

only fitted curves are presented for other directions. Corresponding fitting parameters are provided in Table S2.  
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Figure 5  Comparison between UAV-based wind speed estimates (from methods 1 and 2) and reference measurements from 

the meteorological observation tower during hovering flight operations.  
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Figure 6  Comparison between UAV-based wind speed estimates and reference measurements from the meteorological 

observation tower during vertical flight operations: ascending and descending at 0.5 m/s (A) and 2 m/s (B) with 

default payload, and at 0.5 m/s (C) and 2 m/s (D) with additional front-top payload. Gray shaded areas indicate 

hovering periods.  
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Figure 7 UAV-based wind speed estimation and deviation analysis comparing methods 1 versus 2 (A-I, A-II) and methods 

2 versus 3 (B-I, B-II) from the field observation campaign. 
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Figure 8 2-D contour plots of the vertical profiles of wind speed, wind direction, O3 and CO concentrations measured on 

August 23, September 7, and September 14 of 2022, respectively. 
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