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1.1) Abstract

Tidal marshes offer multiple ecosystem services, but are some of the most threatened coastal
ecosystems worldwide. One of these valued services is their ability to sequester and store
large amounts of carbon. Bioturbating macrofauna are ecosystem engineers that can
influence the geomorphology and biogeochemistry of tidal marshes. Bioturbators can
influence accretion and erosion processes in tidal marshes by either stabilizing or
destabilizing sediment. Through this reworking of sediment, they can also influence the
amount of carbon that can be stored. The impact of bioturbation on tidal marshes depends
on a number of factors, such as; species composition, burrow morphology, diet, behaviour
and habitat type. This review assesses the current knowledge on the role benthic bioturbators
play in shaping sediment processes in tidal marshes and identifies key knowledge gaps for
future research. For example, the impact of individual benthic species on sediment dynamics
is mostly unknown. Bioturbation effects cannot be generalised, and predicting when-and
where-these-effects-will-be-most-prominent-impacts is challenging. Future studies should
investigate family and species--specific effects on sediment properties, such as erodibility or
texture, under controlled laboratory conditions and in the field. This should be compared
across different habitat types such as ecotones, mudflats, salt marshes and mangroves.
Furthermore, the role of consumers, as bioturbators, remains an understudied driver of the
carbon cycle because it is complex. In order to better predict how tidal marshes may persist
in the face of future climate change, such as sea level rise, it is important to understand the
role of bioturbators on sediment and carbon dynamics to enable better mitigation of global
change effects through conservation and restoration of tidal habitats.
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‘1.2) Introduction: Tidal ‘marsh Lsediment and carbon processes

Tidal marshes, such as salt marshes and mangroves, are vegetated coastal ecosystems that
are highly important in terms of their ecological value, because they exist between terrestrial,
estuarine and near—shore marine environments (Barbier, 2015). These coastal habitats offer
natural protection against storm surges and erosion (Perkins et al., 2015), in addition to other
essential services such as sediment retention, flood attenuation and nutrient processing (Bos
etal., 2007; Hatje et al., 2021). They provide important nursery areas for estuarine and marine
fishes and invertebrates (Sogard and Able, 1991; Barbier et al., 2011), and are also valuable
for tourism and food production (Hawkins et al., 2020; Lynch et al., 2023). Another important
ecosystem service provided by salt marshes and mangrove forests, is their ability to
sequester and store carbon (Macreadie et al., 2021). The carbon sequestered by these
coastal habitats is referred to as blue carbon (Nellemann and Corcoran, 2009; Mcleod et al.,
2011). Although seagrass beds are also classified as blue carbon habitats, they are primarily
a subtidal habitat and therefore not strictly part of tidal marshes in the context of this review.
The term ‘blue carbon’ was coined more than a decade ago [(Duarte De Paula Costa and
Macreadie, 2022)], with blue carbon research having increased over the last decade. This
growing interest allows for a better understanding of the global distribution of tidal marshes

and the factors that determine their persistence.

Salt marshes cover at least 41,700-54,900 km? of the globe (McOwen et al., 2017), mangrove
forests 150,000 km? (Spalding, 2010), and lunvegetated mudflats| approximately 127,921 km?
of the globe (Murray et al., 2019). The Northern Hemisphere has roughly double the ameunt
area of tidal marshes as the Southern Hemisphere, due to their longer coastline (He et al.,
2025). The long-term persistence of tidal marshes is driven by the interactions between
surface elevation, sea level, sediment accretion and primary production (Morris et al., 2002).
Surface elevation and sediment accretion is regulated by abiotic and biotic factors, which
includes suspended sediment supply, climate, geography and bioturbation (Ouyang et al.,
2022).

Coastal ecosystems are some of the most threatened systems worldwide with approximately
35 % of mangroves and 50 % of salt marshes being lost or degraded by anthropogenic
activities (Van Katwijk et al., 2016; Li et al., 2018). By means of satellite observations, looking
at changes in water presence, land loses, and gains can be estimated|. It is estimated that 28
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000 km? of land has been eroded in tidal marshes, which is double that of land gained
(Mentaschi et al., 2018). Some studies have revealed that accretion rates are insufficient for
tidal marshes to keep pace with sea level rise (e.g. Van Wijnen and Bakker, 2001), while
others have found that accretion rates are high enough to keep pace with moderate rises in
sea level (e.g. Morris et al., 2002). A dominant driver of coastal erosion is anthropogenic
influence, such as the clearing of mangrove forests, as well as natural disasters, such as
extreme storms (Mentaschi et al., 2018). Sea level rise and a changing climate is likely to
enhance coastal |erosion. While these ecosystems are increasingly threatened, the

vegetation within them is a key contributor to the ecosystem services they provide.

Plants capture carbon dioxide from the atmosphere which they store as organic carbon, but
through respiration, some of this carbon also gets released. The carbon budget of a vegetated
habitat is used to provide an indication as to whether it is a carbon ‘sink’ or a carbon ‘source’,
which is related to the accumulation and discharge of carbon (Sitch et al., 2015). Salt marshes
and mangroves are important carbon sinks, even though these habitats cover less than 2 %
of the area of the global ocean (Duarte, 2017). These blue carbon habitats store up to 70 %
of carbon, relative to the ocean carbon cycle (Macreadie et al., 2014). It is estimated that they
store up to 276 to 822 Tg of atmospheric carbon dioxide per year, worldwide (Spivak et al.,
2019). However, a loss or degradation of blue carbon habitats not only reduces the capacity
of these ecosystems to act as natural carbon sinks but if degraded and disturbed these
habitats directly release high amounts of carbon into the atmosphere as CO2 emissions
(Pendleton et al., 2012; Hatje et al., 2021). A loss of one hectare of any blue carbon
ecosystem is equal to losing 10-40 hectares of native forest, in terms of carbon emissions
(Macreadie et al., 2017). Blue carbon includes carbon that is stored in living biomass
(branches, leaves, stems), non-living biomass (dead wood, leaf litter), roots and soil (Mcleod
et al., 2011; Lovelock and Duarte, 2019a). When carbon is stored in this manner it is an
important ecosystem service as it is an essential component of the carbon cycle (Keller et al.,
2018). Blue carbon habitats, if conserved, are able to act as net carbon sinks (Spivak et al.,
2019).

[There are three factors that determines the capture and storage of carbon in these habitats:
the ability to maintain particulate organic carbon, high productivity and the conversion of
carbon dioxide into plant biomass (Alongi, 2002). The sediment biogeochemistry then leads

to a slow decay of organic material (Kelleway et al., 2017c).

The storage of carbon in tidal marshes is influenced by environmental factors such as
differences in moisture, nutrients, sediment supply, salinity and acidity as this is important for
decomposition and primary productivity (Lovelock et al., 2007). Sediment depth, type and
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deposition is also linked to carbon storage ability (Kelleway et al., 2016b). Sediment grain
size has a strong influence on carbon storage because it influences the amount of organic
particles that can accumulate. The storage of carbon is greater in fine grained sediment
because of the lower oxygen exchange and porosity. Furthermore, these conditions decrease
sediment redox potential and the rates of remineralisation, thus enhancing carbon storage
(Kelleway et al.,

2016b). Fine grained sediment also allows for the preservation of more organic matter
because of their higher surface area, which reduces the oxygen in the sediment as it is
consumed by detritivores which in turn decreases the decomposition of organic matter (Dahl
et al., 2016). Coarse grained sediment (sandy sediment) is more permeable and has more
aeration, increasing remineralisation of carbon (Van Ardenne et al., 2018). Carbon stored in
salt marsh sediment is also influenced by the community composition of vegetation due to
the differences in leaf and root morphology of different plant species. In general, shrubby salt
marsh vegetation has low carbon stock (Saintilan et al., 2013). [The input of organic material
and the rate at which it decays is what ultimately determines the long term storage of carbon.
[Carbon storage has been shown to be higher in mature salt marshes compared to restored
or new salt marshes (Alongi, 2018). Marshes that experienced rapid relative sea level rise
during the late Holocene have higher concentrations of soil carbon compared to those that
were subject to long periods of sea level stability (Rogers et al., 2019). Carbon storage is also
higher in salt marshes which experience limited erosion and where mangrove encroachment
i limited (Alongi, 2018). |

For mangroves forests, latitude, productivity rates, the age of the forest, and elevation are
factors that have been linked to carbon stocks (Radabaugh et al., 2018). Mangroves are more
productive than salt marshes which results in salt marshes storing less carbon (Saintilan et
al., 2013). This has been attributed to lower redox potential, less anaerobic conditions and
higher tidal elevations of salt marshes which are not conducive to carbon storage (Schile et
al., 2017). Mangroves accumulate and store carbon over longer time periods (Lovelock and
Duarte, 2019). They also have a higher above and belowground biomass which enables them

to store more carbon (Donato et al., 2011). Mangroves-are-trees-and-therefore-have-a-greater

water velocity is decreased by their aerial roots and more carbon rich sediment is able to be
deposited, as well as plant matter which further promotes the formation of carbon rich
sediment (Horstman et al., 2015).

A significant proportion of the global tidal marsh carbon is found in the temperate Northern

Commented [A10]: This should be compared to oth
vegetation types.

Commented [A11]: Restoration is not mentioned
elsewhere, so this point could be removed.

Commented [A12]: Rather than comparing
higher/lower carbon stocks, this paragraph would be
more effective by distilling trends into a few broadly
supported statements.

Commented [A13]: Lower redox potential typically
indicates more anaerobic conditions

Commented [A14]: This study is of arid wetlands ar
caution should be taken in applying this broadly to bl
carbon ecosystems

Commented [A15]: This section starts to stray from
the subject of this review here; I'd suggest removing
this paragraph




138
139
140
141
142
143
144
145
146
147

148
149

150

151
152
153
154
155
156

157
158
159
160

162
163
164
165
166

Atlantic, which has 45 % of the world’s tidal marsh extent (Worthington et al., 2024). The U.S,
Canada and Russia are the top three countries with the highest predicted total sediment
organic carbon in their tidal marshes, because they have extensive marsh cover and high
carbon per unit area (Worthington et al., 2024). The global estimate of carbon in the top metre
of marsh sediment is 1.44 Pg C (Maxwell et al., 2024; Table 1). The average sediment organic
carbon per hectare is predicted to be about 83.1 Mg C ha in the 0-30 cm layer and 185.3
Mg C hat in the 30-100 cm layer (Maxwell et al., 2024). Globally, it is estimated that
mangroves store around 11.7 Pg C, with most of the carbon stocks being in the sediment
(Kauffman et al., 2020). The global sediment stock of tidal flats is estimated to be 0.9 Pg C
(Chen and Lee, 2022).

Table 1: Continent-level summary for tidal marsh area and sediment organic carbon
(SOQ).

Habitat Region Area (km?) SOC (Mg ha)2 | SOC (Pg C)
Salt marsh 41,700-54,9002 1.442
Africa 2241.37 1046.05
South America 4 537.76 710.53
North America 30 259.07 1045.54
Europe 11 054.68 1377.9
Asia 2301.71 400.02
Oceania 2 378.58 172.86
Mangrove 150,000 11.7°
Tidal flats 127,921¢ 0.9¢

a(Maxwell et al., 2024)
b (Kauffman et al.,
2020)¢(Chen and Lee,
2022)

Tidal marshes have gained interest for their recently recognised value of carbon storage,
leading to extensive research on carbon stocks and factors influencing carbon sequestration
and storage. Similarly, accretion and erosion dynamics of tidal marshes and the processes
driving these changes is well understood. However, the influence of animal interactions on
these processes is poorly understood, even though soil animals are key components of
aquatic environments (Adams et al., 2025). This review provides an overview of the current
knowledge on the influence of bioturbation on sediment accretion and erosion in tidal
marshes, including the impact of bioturbation on carbon sequestration. Table S1 in the
Supplementary material provides a summary of key bioturbation studies relating to accretion,
erosion, and carbon sequestration, emphasising their methodologies and main findings that
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are discussed in the following pages, while [Figure 2| shows where these studies were

conducted.

To quantify the extent of research conducted on sediment processes and carbon in tidal
marshes, a systematic literature search was performed in the web of science database using
key words related to tidal marshes, carbon storage/sequestration and sediment dynamics. |
This search yielded 544 publications between the years 1993 and 2025. While a fair amount
of research has been conducted on carbon stocks and sediment dynamics in tidal marshes,
there remains a gap in our understanding of the role of bioturbators and their interaction
processes on sediment dynamics. When key words relating to bioturbation were included,
only 64 publications were yielded. Thus, the influence of these interactions on carbon
sequestration and storage, and how this might be impacted in the face of climate change,

which is a pressing future concern, fis poorly understood compared to the overall science of
tidal marsh carbon and sediment processes. This review therefore aims to improve our

understanding of how bioturbators shape sediment dynamics and carbon cycling.

1.3) Bioturbation in coastal tidal marshes

below the surface sediment (Macreadie et al., 2017). Benthic invertebrates under the classes
Oligochaeta (worms), Gastropoda (snails), Polychaeta (polychaetes), Crustacea (crabs,
shrimp and malacostracans) and Bivalvia (cockles and mussels) are common bioturbators
found in tidal marshes (Van Der Wal and Herman, 2012). Some of the best studied groups
include crustaceans and molluscs (Booth et al., 2023). Bioturbators are significant
components of both terrestrial and aquatic ecosystems as they modify habitats, decompose
litter, and are-alse-consumers_organic material (Wang et al., 2010). Bioturbation jnvolves any
transport process performed by animals that affects sediment matrices, either directly or
indirectly (Kristensen et al., 2012), which includes burrow ventilation and particle reworking.
Darwin (1881) was the first to recognize the significance of animal bioturbation and its role in
influencing soil ecosystem processes. A dominant form of bioturbation in coastal wetlands
includes that of burrowing, with [burrow architecture being species specific (Min et al., 2023;
Fig. 1). One of the most diverse groups, with special adaptations for burrow construction is
Decapoda (Giraldes et al., 2017; Hajializadeh et al., 2022). Burrow construction and
maintenance, in addition to ingestion and defecation results in particle reworking and
biomixing. As a result, microorganisms and organic matter are displaced within the sediment
matrix, both laterally and vertically (Kristensen et al.,, 2012). Benthic organisms can
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significantly affect the composition of sediment, with destabilizing organisms generally
decreasing mud content, while stabilizing organisms kan increase mud content (Arlinghaus
et al., 2021). Animals that rework sediment particles can be categorized as upward
conveyors, downward conveyors, biodiffusors and regenerators depending on their feeding
type, behaviour and life style (Francgois et al., 2002). Collapsed burrows that are abandoned
and become filled in, can be considered as indirect bioturbation (Kristensen et al., 2012).
Ventilation happens when animals flush their burrows with water for feeding and respiration,
and can be open with two or more openings, or blind ended with one opening. This results in
the rapid transport of solutes from in the burrow to the overlying water (Kristensen, 2001).
[The activities associated with bioturbation can therefore influence the physical, chemical and
biological characteristics of tidal marshes (Min et al., 2023). |

Burrowing activities decreases sediment hardness, breaks up and transports sediment (Botto
and Iribarne, 2000), and increases the coarse particle density on the surface layers of the
sediment (Warren and Underwood, 1986). In addition, burrowing influences the chemistry of
the sediment, increases the oxygenation of the sediment and changes the pore water salinity
(Fanjul et al., 2007; Booth et al., 2023). —Fine grained sediment, as well as sediment
containing high concentrations of organic matter can be trapped by crab burrows, which
assists with organic matter decomposition and increases the availability of nutrients (Fanjul
et al., 2007). The rate of nutrient and sediment turnover is further accelerated by means of
excavation by crabs, which transports nutrients and sediment from deep layers to the surface
layers of the salt marsh (Fanjul et al., 2007). Belowground processes are therefore impacted
by burrowing crabs which in turn influences marsh plants and trees by promoting growth
(Botto et al., 2006; Ngo-Massou et al., 2018). The interaction between the environment, the
biology and the density of a bioturbator determines the extent of the bioturbation effect (Wang
etal., 2010; Xie et al., 2020; Pan et al., 2023), which varies over space and time. For example,
the presence or absence of vegetation plays a key role in shaping this impact. When
vegetation was present, the quantity and quality of excavated and deposited soils (in burrow
mimics) was influenced, and thus, so was the burrowing effect (Wang et al., 2010). Vegetation
can improve nutrient concentrations, but its roots can obstruct the vertical movement of
sediment.
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Figure 1: Examples of burrow openings of different crab species: Scylla serrata (A),
Neosarmaticum africanum (B), Cyclograpsus punctatus/Parasesarma catenatum (C
and D). The scale bar represents 10 cm in the foreground.

1.4) Impacts of bioturbation on sediment processes

Bioturbation influences a number of sediment processes such as accretion, erosion,
sediment transport and deposition, which are outlined below and summarised in Table 2
and Table S1.

These processes are visually represented in [Figure 3 and further explained in Table 3.

1.4.1) Accretion

'Sedimentation is a key processes shaping tidal marshes, improving water clarity and quality

which helps [submerged plants access sunlight (Nahlik and Mitsch, 2008). The sequestration

of carbon is also enhanced by sedimentation (Bernal and Mitsch, 2013) because the active
burial of carbon limits its exposure to oxygen thus, limiting oxidation (McCarty et al., 2009).
Salt marshes and mangroves persist when sediment carried by tides is deposited in
vegetation (Saintilan et al., 2022). This builds elevation and promotes the growth of plants
which increases belowground organic matter, resulting in elevation gain, slower water
movement and allows for more suspended sediment to settle (Kirwan and Guntenspergen,
2012). Plant shoots promote the deposition of sediment while plant roots bind and stabilize
the sediment and can help prevent erosion (Buffington et al., 2020). Accretion therefore
involves sedimentation, root growth, and development of peat (Krauss et al., 2014;
MacKenzie et al., 2024)

Benthic organisms are able to facilitate sediment transport and sedimentation patterns over

lextended periods and across surrounding areas| (Arlinghaus et al., 2021). Their biological

activity impacts sediment structure in terrestrial, marine, and intertidal zones, either stabilizing

or destabilizing these environments. Some organisms enhance sediment cohesion by
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producing an organic coating in the burrow walls from extracellular polymeric substances
(EPS), mainly mucus (Watling, 1991). Sesarma reticulatum (a crab occurring in northern
hemisphere temperate salt marshes) for example does this (Kristensen, 2008). These
biostabilization processes can therefore influence the strength of sediment in intertidal zones.
In a similar fashion |microphytobenthic organisms form biofilms which can also improve the
stabilization of sediment (Decho, 2000).

Burrowing animals affect important ecosystem functions, while influencing the structure and
function of plant communities, with these effects varying in direction and magnitude regionally
(Vanni, 2002). Changes in the burrowing activities could have important consequences for
the functioning of salt marshes and mangroves. Low to moderate levels of bioturbation can
be beneficial to primary productivity (Kristensen et al., 2008). For example, burrowing by
fiddler crabs has been seen to benefit the growth of Spartina alterniflora by increasing soil
drainage, enhancing decomposition of plant debris and improving soil redox potential
(Bertness, 1985). Burrows can increase the surface area of the marsh allowing for the
exchange of oxygen from tidal water and the atmosphere which can increase the uptake of
nitrogen increasing plant productivity (Bradley and Morris, 1990; Sharbaugh et al., 2025)

Recent studies have highlighted the importance of bioturbation in determining changes in
surface elevation (Bennion et al., 2024). The accretion or erosion of sediment is partially
related to the burrowing and feeding activities of the species (Morelle et al., 2024). For
example, it was found that crab_species, which differ in diet and burrow morphology, had a
larger influence on sediment than crab density superfamily—whetheritwas-an-Ocypodeidea

apsoidea;-had-the-biggestinfluence-on-sedimentas-opposed-to-crab-density-(Rinehart
which-isrelated-to-their burrow-morphology-and-diet-(Table S1, Fig. 3). The

composition of crabs has the potential to influence ecosystems differently (Agusto et al.,

2021). In mangroves, changes in surface elevation is-are strongly influenced by species
composition of the vegetation and was positively influenced by the frequency of bioturbation.
[In salt marshes, however, bioturbation had no significant effect on changes in surface
elevation/because they had lower levels of bioturbation compared to the mangroves (Bennion
et al., 2024) (Table S1, Fig. 3).

Excavated sediment through bioturbation activities, along with sediment from eroding areas
of the marsh, can contribute material for accretion on the surrounding marsh platform, helping
to increase marsh elevation (Wilson and Allison, 2008). Mussels, for example Geukensia
demissa, can also contribute to vertical accretion in salt marshes, as they harvest sediment
through their filtration activities, thus contributing to the sediment budget (Crotty et al. 2023)
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(Table S1, Fig. 3). They also deposit faeces which is nutrient rich, indirectly increasing
vegetation biomass, improving soil shear strength (resistance to erosion) and stability. These
interactions therefore play an important role in promoting elevation gain and improving marsh

resilience.
1.4.2) Erosion

Due to coastal wetlands being situated at low elevation at the land sea interface, they are
susceptible to submergence and lateral erosion driven by wave activity, storm surges and
increased sea levels (Leonardi et al., 2018). The morphology and long--term persistence of
tidal marshes is influenced by erosion. Erosion rates are determined-influenced by vegetation,
which affects sediment deposition rates and biological activity (Mudd et al., 2010; Cahoon,
2024). Benthic organisms, specifically bioturbators, play a crucial role in influencing erosion
processes through their activities. Bioturbators can affect sediment roughness and alter its

characteristics, thereby influencing the erodibility of sediment (Dairain et al., 2020).

et-al—2018)-By reworking the sediment, bioturbators repack the sediment that was once
compact, which changes the texture and granulometry, causing larger aggregates of grains
to form (Grabowski et al., 2011). For example, Scrobicularia plana (a clam commonly found
in temperate European salt marshes) caused the sediment to become coarser and changed
the bed topography—which-showed-aloss-byresulting in erosion (Morelle et al., 2024) (Table
S1, Fig. 3). Fine grained sediment such as clay and silt are more susceptible to the effects of
benthos (Arlinghaus et al., 2021). There are however still uncertainties with regards to the
role that benthic organisms play in sediment dynamics (Dairain et al. 2020; Farron et al.
2020). For example, the influence of S. reticulatum bioturbation on the erodibility of sediment
has not yet been quantified as it is difficult to measure the processes in the field (Farron et
al., 2020). Thus, few studies have explored the connection between sediment stability and
burrow building bioturbators (Needham et al., 2013).

Burrowing activities weaken mud and clay banks in tidal marshes, making them more
susceptible to erosion through wave action. Dairain et al. (2020) observed that Cerastoderma
edule (common cockle, native to salt marshes in Europe and northwestern Africa) promotes
erosion of the surface sediment by increasing the roughness of the sediment, and this is due
to their sediment reworking activities (Table S1, Fig. 3). The same was true for the lugworm,
Arenicola marina (common in mudflats and salt marshes in Europe), which increased the
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permeability and roughness of the sediment (Montserrat et al., 2011) (Table S1, Fig. 3).
Sesarma reticulatum contributes to changing erosion patterns by facilitating greater erosion
(Farron et al., 2020), which is likely driving the headward expansion of straight, low—order

tidal creeks in salt marshes within the Georgia Bight (Vu et al., 2017).

In addition to sediment disturbance, bioturbators can impact sediment cohesion and
erodibility. When the density of infauna were experimentally reduced in the Humber estuary
(UK), there was a 300 % increase in sediment stability on the intertidal mudflats (De Deckere
etal.,, 2001) (Table S1, Fig. 3). Invertebrates, such as crabs, can influence sediment stability
by consuming microphytobenthic organisms (Booth et al., 2023) which can indirectly promote
the destabilization of sediment (Daborn et al., 1993). Crabs can also contribute to sediment
destabilization by causing vegetation loss (Smit et al., 2024). Burrowing by Sesarma
reticulatum caused the upper 10-15 cm of the marsh to become oxidized which caused
enhanced degradation of belowground biomass of S. alterniflora (Wilson et al., 2012) (Table
S1, Fig. 3). This process reduces the shear strength of the sediment, increasing the erosion
potential which facilitates creek extension. Compared to the surrounding marsh platform, the
heads of newly formed creeks have lower topography, lack vegetation, and are densely
populated with both burrowing and herbivorous crabs. Over time these creek heads extend
further into the marsh platform as the creek migrates, which causes dieback of vegetated
areas and a loss of elevation of up to 50 cm (Day et al., 2011; Wilson et al., 2012). Similarly,
Chasmagnathus granulatus (a crab inhabiting the salt marshes of South America), through
their burrowing activities, have also been shown to increase the growth rate of tidal creeks,
causing larger creeks to form, which can promote salt marsh erosion (Escapa et al., 2008)
(Table S1, Fig. 3). In addition to their large scale effects on creek formation and vegetation
loss, crabs can also affect sediment structure at finer scales, through the formation of
burrows.

Crab burrows, particularly those of species that do not plug their burrows during inundation,
may function as passive sediment traps (Grabowski et al., 2011; Escapa et al., 2008).
However, water filled burrows often lead to a reduced bulk shear strength and density, and
reduced erosion thresholds, which in areas that are heavily burrowed would increase the
mass of sediment eroded (Grabowski et al., 2011). Sediment trapping rate is dependent on
burrow architecture, density and possibly bed roughness (Escapa et al., 2008), therefore,
different species of burrowing crabs have different effects on the erosion and transport of
sediment (Min et al., 2023, Fig. 1).
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‘1.4.3) Sediment transport and deposition

Sediment transport is often considered to be only a physical process, as a result of sediment
beds responding to hydrodynamic forces in coastal habitats (Le Hir et al., 2007). However,
biological components are also able to influence sediment transport processes. The
interaction between organisms and the sediment is complex and generally context specific,
due to factors such as hydrodynamics, sediment composition or species--specific behaviours
(Needham et al., 2013). The influence of individual species on sediment dynamics are
therefore poorly understood. This makes it difficult to predict the overall impact of organisms
on sediment transport. While erosion and deposition are primarily driven by hydrodynamics,
benthic organisms influence the extent of these processes on a spatial and seasonal scale.
Studies have shown that benthos can cause change of the same order of magnitude as
hydrodynamic processes (Arlinghaus et al., 2021).

Crab burrow morphology is related to biological (e.g. sex or size; Sen and Homechaudhuri,
2016) and environmental (e.g. vegetation or sediment composition; Penha-Lopes et al.,
2009) factors, with morphology influencing their effectiveness in trapping sediment and
organic matter. Intertidal decapods construct funnel shaped burrows which aids in the
trapping of organic matter and sediment (Botto et al., 2006). Funnel shaped burrows with low
aspect ratios trapped a greater percentage of organic matter while tubular shaped burrows
with a higher aspect ratio trapped a greater amount of sediment (Botto et al., 2006) (Table
S1, Fig. 3). Gutiérrez et al. (2006) and Wang et al. (2010) deployed burrow mimics and found
that less material by weight was collected in the mimics than was excavated by crabs,
indicating a net export of sediment material (Table S1, Fig. 3). Excavation allows for buried
material to be brought to the surface, increasing the amount of sediment available for export
by tidal flushing. The quantity of sediment and organic matter available for transport is
therefore a balance between material deposited into crab burrows and material excavated
from them.

Crabs create sediment mounds when they move sediment from their burrow to the surface.
During flooding and ebbing tide, this fresh mound sediment is transported. It remains a
challenge to predict when burrowing engineers will have a significant effect on their
environment (Coggan et al., 2018). However, the engineering effect is anticipated to intensify
as crab population densities increase (Rinehart et al., 2024). For example, burrowing crabs
are often found to have site specific effects on ecosystems (Beheshti et al., 2021), such as
promoting sediment trapping in one area of the marsh, but enhancing sediment removal in

other areas (Escapa et al., 2008). Crabs were found to promote the trapping of sediment in
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open mudflats and intertidal salt marsh where current speeds are low, whereas in the salt
marsh edge, they were increasing sediment removal (Escapa et al., 2008) (Table S1, Fig. 3).
This was due to funnel shaped burrows being more frequent in the low intertidal zones as
well as the assistance of plants in trapping sediment. In habitats with weak flow, burrowing
animals are expected to promote sediment trapping, whereas in high flow energy habitats,
burrowing activity is anticipated to increase sediment removal rates, determined by the
strength of the current. In addition to crabs, Thalassinidea which are shrimp-like organisms,
commonly referred to as mud or sandprawns in South Africa, also influence sediment
transport and deposition. These burrowing species similarly create mounds by expelling
sediment from their burrows (Pillay and Branch, 2011). The transport of sediment by
thalassinideans is greater than that achieved by diffusion processes or abiotic burial (Grigg,
2003). The sediment expelled from callianassid burrows is easily eroded at low current
speeds because it is unconsolidated, making it more prone to resuspension and redeposition
in adjacent areas (Pillay et al., 2007). Kraussillichirus kraussi (sandprawn characteristic of
temporarily closed estuaries in South Africa) consumes organic matter around its burrow,
thus is an effective mover of sediment (Pillay and Branch, 2011). Burrowing organisms are
therefore key drivers of sediment transport and redistribution in tidal marshes.

1.5) Impact of bioturbation on carbon burial and sequestration

(Consumers can influence the carbon cycle directly and indirectly.| For instance, small
bioturbating grazers change sediment properties and remove plant biomass. While they are
known to have an effect, they remain an understudied driver of carbon cycling (Guimond et
al., 2020; Ren et al., 2022). It was estimated by Montague (1982) that Uca pugnax (a species
of fiddler crab native to salt marshes along the coast of North America) excavated an amount
of carbon that is equal to 20 % of what S. alterniflora produces belowground annually, in
Sapelo Island, Georgia, U.S. (Table S1, Fig. 3). The amount of carbon collected in burrows
was lower than that made available for tidal flushing by excavation (Montague, 1982). The
concentration of labile and total carbon at the marsh surface is expected to decrease with
crab activities because of the lower carbon content in the sediment that is excavated in
relation to that deposited into the burrow (Gutiérrez et al., 2006). Burrowing organisms, such
as crabs, can influence the carbon balance of tidal marshes by releasing carbon that would
otherwise remain stored deeply in the sediment. Wittyngham et al. (2024) showed that small
grazers cause a decrease in carbon stocks with S. reticulatum accounting for a loss in carbon
stocks of 40-70 % (Table S1, Fig. 3). In Cape Cod where marsh die off and erosion occurred

due to overgrazing by S. reticulatum, an estimate of 248.6 + 4.8 gigagrams of belowground
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carbon was released (Coverdale et al., 2014) (Table S1, Fig. 3). A correlation exists between
crab burrows and carbon content, with higher densities of crab burrows associated with
decreased carbon in the topsoil (Carpenter et al., 2023). The highest carbon content was

found in salt marsh with minimal burrowing by crabs.

Complex burrow networks can have an effect on soil carbon stocks. A study conducted in
Kenya found that mangrove forests that had a greater abundance of sesarmid crabs, had
higher soil carbon stocks (Andreetta et al., 2014) (Table S1, Fig. 3). Crabs can also directly
transfer carbon to sediments through the transportation of faeces, algae, leaf litter, and
exuviae into their burrows (Alongi, 2002). This vertical transport of carbon was demonstrated
through radiocarbon dating of sediment cores. Modern carbon was found to depths of 115
cm (Andreetta et al., 2014), which means that crabs are supplying new organic matter to
deeper sediments/ It is possible that the diversity of macrofauna in these ecosystems could
be an important driver of carbon dynamics (MacKenzie et al., 2021). Macrofaunal diversity
means a variety of sediment reworking activities, through bioturbation and bio-irrigation,
which in turn can exert control on sedimentary biogeochemical cycling, such as carbon
cycling (Meysman et al., 2006). On the other hand, crabs can also decrease carbon stocks
because their burrows increase sediment surface area, aiding organic matter decay as more

sediment becomes oxic, which leads to carbon loss via tidal flushing (Klaassen et al., 2025).

The effects of bioturbation on carbon cycling is—are context specific. For instance,
Macrophthalmus japonicas, a salt marsh crab species from East Asia, increased the
mineralization of sediment organic matter (SOM), stimulating the release of organic carbon,
thus slowing the accumulation of organic carbon within sediment surface layers (Nie et al.,
2021) (Table S1, Fig. 3). Similarly, bioturbation by S. reticulatum led to the remineralization
of belowground organic matter by increasing the permeability and aeration of the sediment,
leading to the degradation of organic material (Wilson et al., 2012). Crabs decreased SOM
and carbon content in vegetated habitats and increased SOM and carbon in unvegetated
habitats (Rinehart et al., 2024). Crab bioturbation has been shown to improve benthic
metabolism and exchange of dissolved organic matter from the sediment to the water column
(Fanjul et al., 2015) (Table S1, Fig. 3). It was also found that the distribution, quality and
bioavailability of sedimentary organic matter is influenced by bioturbation. Furthermore,
efficient remineralisation of detritus occurs at bioturbated sediment and is exported as COz
and DOC to the water column. Bioturbation, by crabs, therefore improves the amount of labile
organic carbon of bioturbated sediments and alters the pathway of carbon export to coastal

waters (Fanjul et al., 2015).
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While bioturbation can contribute to carbon loss, some bioturbating organsims can promote
carbon storage. Burrows of Upogebia major (mudshrimp found in salt marshes in East Asia)
and other thalassinideans have been found to trap organic matter (Kinoshita et al., 2008),
which can increase the storage of carbon. Moreover, it was found that grazing by livestock
had a neutral to positive effect on carbon sequestration (Graversen et al., 2022) (Table S1,
Fig. 3). Crab burrowing was found to increase the turnover of nitrogen and carbon, with
excavated soil having higher inorganic carbon concentration compared to soil deposited into
burrows (Wang et al., 2010). This indicates that excavation activities accelerates the
mineralization of organic matter from organic to inorganic carbon (Wang et al., 2010). Such
changes to organic matter availability and benthic metabolism by bioturbation have the
potential to decrease the storage capacity of carbon (Gutiérrez et al., 2006). Under
accelerated sea level rise, consumers’ impact on the carbon cycle, through carbon
consumption and marsh stability, is expected to intensify as a result of the accelerated
migration rates of consumer fronts, which are clusters of consumers bordering a specific
resource (Wittyngham et al., 2024).

1.6) Global change impacts on tidal marsh bioturbation

Blue carbon ecosystems are threatened by climate change, particularly sea level rise
(Borchert et al., 2018; MacKenzie et al., 2024), as well as increasing temperatures and
alterations in precipitation regimes (Arias-Ortiz et al., 2018; Adams et al., 2025). Coastal
geomorphology, sedimentation patterns, geographic locality and regional oceanographic
properties cause tidal marshes to become susceptible to these threats (Mcleod et al., 2010).
The resilience of salt marshes and mangroves to sea level rise is determined by physical
drivers, such as unrestricted landward migration lor increase in surface elevation [Schuerch
et al.,, 2018; Lovelock and Reef, 2020) as well as biological drivers such as diversity
productivity (Branoff, 2020; He et al., 2025). [The extent of development along the coast and
the local topography controls the area available for these ecosystems to migrate landward,
however, the rate of sedimentation controls the ability of salt marshes and mangroves to
resist the rise in sea levels via the gain in relative surface elevation. The ability for sediment
to be retained in the intertidal region is dependent on local coastal dynamics and drainage
basin geology (Adams et al. 2019). Furthermore, the structure of a wetland ecosystem affects
its resistance to a disturbance as well as recovery from a disturbance, therefore, local
geomorphology contributes substantially towards the resilience of these systems (Phillips,

2018). Mangrove and salt marsh responses to sea level rise is thus not uniform across
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different regions and even between sites within the same mangrove or salt marsh habitat
(Passeri et al., 2015; Adams et al., 2025).

Mangroves are specifically vulnerable to changes in temperature and precipitation regimes,
because the distribution range globally is linked to |sea surface temperature. Mangrove
occurrence is limited to regions that are tropical or subtropical, and this by the winter 20 °C
sea surface isotherm (Tomlinson 1999; Hamilton and Casey, 2016). With rising temperatures
comes an expansion of mangroves polewards, to higher latitudes. Expansion of mangroves
leads to a loss of salt marsh habitats which results in ecological shifts as well as changes in
the provisioning of ecosystem services, for example carbon storage (Kelleway et al., 2017a).
Furthermore, mangroves that are found at range limits are also commonly smaller and shrub—
like (Morrisey et al., 2010), which influences their capacity to store and sequester carbon
(Raw et al., 2021). With rising sea levels, salt marshes are expected to migrate landwards
(Enwright et al., 2016). If the rate of sea level rise surpasses that of surface elevation gain it
will cause a shift in habitat with lower intertidal regions becoming subtidal and upper intertidal
species will encroach the terrestrial boundary (Fagherazzi et al., 2019). In salt marshes, as
sea level and consequently tidal prism begins to increase, it is expected that tidal creeks will

develop, which has been observed in Bahamas (Kirwan and Guntenspergen, 2012).

Regions that are more flooded (e.g. seaward areas) generally have smaller, shallower burrow
networks compared to those in drier regions (Egawa et al., 2021). Crab activity is highest in
summer and lowest in winter (Egawa et al., 2021), because of this seasonal change in
behaviour, it could further complicate the influence of crabs on carbon budgets (Guimond et
al., 2020) as regional historical temperatures change lined to behavioural phenology.
Changes in water levels and temperature, major components of climate change, can
influence the distribution of crabs and the extent of bioturbation (Wilson et al., 2022).
Increased flooding can suppress these activities, thus leading to redox conditions becoming
more anoxic in tidal marshes (Pan et al., 2023). On the other hand, faunal activities can
interact with climate stressors. For example, cordgrass (Spartina Aalterniflora) loss and
erosion have been caused by combined effects of sea level rise and S. reticulatum density

increases in US Atlantic salt marshes (Crotty et al., 2020; Morrison et al., 2024).

Crabs create burrow structures in the form of tunnels and chimneys which can potentially
provide material available for erosion. Flow velocities of 60 cm/s or higher are required to
erode these structures, which can be reached at tidal creek heads under typical conditions
(Farron et al., 2020) (Table S1, Fig. 3). These velocities are also likely during high flow events
such as storms, which are expected to increase in frequency and intensity due to climate
change (Zhang and Colle, 2018; Raw et al., 2023). Rainfall events, in contrast, do not erode
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marsh substrate that is consolidated but rather mobilize recently deposited, unconsolidated
sediment (Voulgaris and Meyers, 2004). In areas that are heavily burrowed, this would
include sediment deposited in the past few tidal cycles, in addition to burrow structures and
pellets. This means that storms associated with climate change will have major effects on
erosion patterns, especially in regions that are heavily burrowed, which can lead to
morphological changes (Farron et al., 2020). Increases in drainage density is necessary to
manage the expanding tidal prism and effectively drain the marsh surface to prevent
waterlogging| Crab activity at tidal creeks may help alleviate the effects of accelerating sea
level rise on the marsh platform (Farron et al., 2020). In a regime of increasing sea level rise,
the presence of burrowing organisms, such as crabs, may possibly increase marsh
sustainability, by forming creeks or extending existing creeks, and enhancing erosion.
Overpopulation of crabs, through changes in predation pressure, however can cause loss of

marsh area and increase vulnerability to erosion, negatively impacting the marsh.

1.7) Synthesis and way forward

A positive sediment budget is important for the accretion and resilience of tidal marshes, as
it promotes marsh elevation and enhances carbon storage by actively burying carbon.
Bioturbation activities on the other hand can either stabilize or destabilise sediment, influence
sediment transport and ultimately influence marsh elevation. These two processes can
therefore be viewed as being interconnected rather than being independent of one another.
The reworking of sediment by some organisms increases surface roughness and decreases
sediment cohesion, leading to erosion and in some cases creek formation. While the
stabilization of sediment is possible through burrows of other species, functioning as passive
sediment traps, which in turn can promote accretion. Apart from sediment properties being
affected by bioturbation activities, carbon cycling is also influenced by these activities.
Activities such as burrowing and feeding can lead to a loss of carbon through increased
mineralization of organic matter, or through erosion. However, bioturbators can also promote
the burial of carbon by trapping sediment, and transporting organic matter such as faeces

and leaf litter into their burrows.

This review has highlighted a number of knowledge gaps, specifically the lack of
understanding of the influence that bioturbators and their interactions have on sediment
processes and their role in carbon cycling. This is despite increasing recognition that
biological components have an influence on the functioning of tidal marshes. Sediment—

organism interactions are often context specific and complex, and our understanding of
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species specific impacts are limited. It is challenging to predict how bioturbators might
influence their environment as the impact of individual species on sediment dynamics varies,
therefore, bioturbation effects cannot be generalized. For example, the effects of crabs from
the family Ocypodidae versus crabs from the family Sesarmidae will have different effects on
sediment because of burrow morphology, diet and behaviour, all of which influence
bioturbation effects. Moreover, these families are often found co-occurring in the same habitat
making it important to understand their individual as well as combined impacts on sediment
processes. Such studies could be done under experimental conditions and in situ, and should
be extended across different habitat types as sediment characteristics and vegetation also

have an influence on bioturbation impacts.

Sediment—species interactions also have an influence on carbon cycling in tidal marshes, yet
consumers are an understudied driver of these processes. There is a need to quantify carbon
stocks, sequestration and greenhouse gas fluxes and to investigate how these processes
respond to bioturbation activities. Studies comparing regions with varying intensities of
bioturbation are important for a better understanding of the contribution of bioturbators to
carbon dynamics in tidal marshes. It is clear that there is no real consensus as to whether
bioturbation has a positive or negative influence on sediment dynamics and carbon cycling
(Table 2 and S1). By advancing our understanding, management and restoration efforts could
be improved, and better predict the resilience of tidal marshes under future climate change

pressures.
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Legend

Figure 2: Global distribution of studies conducted in tidal marshes investigating the influence of bioturbation on sediment dynamics and
carbon cycling. The size of each dot indicates the number of studies conducted in each country. Yellow dots represent studies focused on
sediment dynamics, while blue dots represent studies focused on carbon cycling. Argentina and United States of America are the leading
countries in terms of the number of studies conducted. Details on each study can be found in Table 2 and Table S1. Diagram is not to scale.
Graphics were sourced from andcreated using the software Canva Pra



Table 2: Overview of the influence and directiona | effects of bioturbation on sediment and carbon dynamics across tidal

habitats and continents. Adapted from Table S1.

Rafaranco
Cantinant Hahétat type SedimantiCarbon | Dirsctional effect Effact
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udilat S iment Hegaiive Decrease sediment stability Mormtsaral ef al., 2001
Sediment Balh regalive & posfive (species One species caused eroalon, ang Maorele el al., 2024
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Carban Hewlral i positive effect on carbon Gravarsen el al., 2022
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P Increase sediment roughness, decrease Famon et al., 2020
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Figure 3: Conceptual diagram illustrating the processes influenced by bioturbators, specifically their impact on sediment dynamics and
carbon cycling, and how they are linked. The knowledge gaps, indicated by question marks, relate to the role of benthic organisms in sediment
dynamics, species specific effects, as well as the influence of bioturbators on the carbon cycle. The flow diagram indicates the graphics in
terms of the bioturbation impacts and which processes are affected within the marsh, with green arrows indicating a positive effect and red
indicating a negative effect. Diagram is not to scale. Graphics were sourced from and created using the software Canva Pro.



Table 3 Bioturbation impacts on sedimentation and carbon sequestration. Negative effects are italicised, while positive effects are
indicated in bold. This table corresponds tothe network diagram in Figure 3.

Bioturbation impact Process Effect on sedimentation Effect on carbon sequestration
Huroyw constniction Increase sadment permaahibty, m.ﬁﬂtﬁﬂhg_._q.ﬂ‘m%. can iead o IPCrRaSEs OIganic matiar
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