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1.1) Abstract  12 

  13 

Tidal marshes offer multiple ecosystem services, but are some of the most threatened coastal 14 

ecosystems worldwide. One of these valued services is their ability to sequester and store 15 

large amounts of carbon. Bioturbating macrofauna are ecosystem engineers that can 16 

influence the geomorphology and biogeochemistry of tidal marshes. Bioturbators can 17 

influence accretion and erosion processes in tidal marshes by either stabilizing or 18 

destabilizing sediment. Through this reworking of sediment, they can also influence the 19 

amount of carbon that can be stored. The impact of bioturbation on tidal marshes depends 20 

on a number of factors, such as, species composition, burrow morphology, diet, behaviour 21 

and habitat type. This review assesses the current knowledge on the role benthic bioturbators 22 

play in shaping sediment processes in tidal marshes and identifies key knowledge gaps for 23 

future research. For example, the impact of individual benthic species on sediment dynamics 24 

is mostly unknown. Bioturbation effects cannot be generalised, and predicting when and 25 

where these effects will be most prominent impacts is challenging. Future studies should 26 

investigate family and species- specific effects on sediment properties, such as erodibility or 27 

texture, under controlled laboratory conditions and in the field. This should be compared 28 

across different habitat types such as ecotones, mudflats, salt marshes and mangroves. 29 

Furthermore, the role of consumers, as bioturbators, remains an understudied driver of the 30 

carbon cycle because it is complex. In order to better predict how tidal marshes may persist 31 

in the face of future climate change, such as sea level rise, it is important to understand the 32 

role of bioturbators on sediment and carbon dynamics to enable better mitigation of global 33 

change effects through conservation and restoration of tidal habitats.  34 
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1.2) Introduction: Tidal marsh sediment and carbon processes  37 

  38 

Tidal marshes, such as salt marshes and mangroves, are vegetated coastal ecosystems that 39 

are highly important in terms of their ecological value, because they exist between terrestrial, 40 

estuarine and near–shore marine environments (Barbier, 2015). These coastal habitats offer 41 

natural protection against storm surges and erosion (Perkins et al., 2015), in addition to other 42 

essential services such as sediment retention, flood attenuation and nutrient processing (Bos 43 

et al., 2007; Hatje et al., 2021). They provide important nursery areas for estuarine and marine 44 

fishes and invertebrates (Sogard and Able, 1991; Barbier et al., 2011), and are also valuable 45 

for tourism and food production (Hawkins et al., 2020; Lynch et al., 2023). Another important 46 

ecosystem service provided by salt marshes and mangrove forests, is their ability to 47 

sequester and store carbon (Macreadie et al., 2021). The carbon sequestered by these 48 

coastal habitats is referred to as blue carbon (Nellemann and Corcoran, 2009; Mcleod et al., 49 

2011). Although seagrass beds are also classified as blue carbon habitats, they are primarily 50 

a subtidal habitat and therefore not strictly part of tidal marshes in the context of this review. 51 

The term ‘blue carbon’ was coined more than a decade ago (Duarte De Paula Costa and 52 

Macreadie, 2022), with blue carbon research having increased over the last decade. This 53 

growing interest allows for a better understanding of the global distribution of tidal marshes 54 

and the factors that determine their persistence.   55 

Salt marshes cover at least 41,700-54,900 km2 of the globe (McOwen et al., 2017), mangrove 56 

forests 150,000 km2 (Spalding, 2010), and unvegetated mudflats approximately 127,921 km2 57 

of the globe (Murray et al., 2019). The Northern Hemisphere has roughly double the amount 58 

area of tidal marshes as the Southern Hemisphere, due to their longer coastline (He et al., 59 

2025). The long–term persistence of tidal marshes is driven by the interactions between 60 

surface elevation, sea level, sediment accretion and primary production (Morris et al., 2002). 61 

Surface elevation and sediment accretion is regulated by abiotic and biotic factors, which 62 

includes suspended sediment supply, climate, geography and bioturbation (Ouyang et al., 63 

2022).  64 

Coastal ecosystems are some of the most threatened systems worldwide with approximately 65 

35 % of mangroves and 50 % of salt marshes being lost or degraded by anthropogenic 66 

activities (Van Katwijk et al., 2016; Li et al., 2018). By means of satellite observations, looking 67 

at changes in water presence, land loses, and gains can be estimated. It is estimated that 28 68 
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000 km2 of land has been eroded in tidal marshes, which is double that of land gained 69 

(Mentaschi et al., 2018). Some studies have revealed that accretion rates are insufficient for 70 

tidal marshes to keep pace with sea level rise (e.g. Van Wijnen and Bakker, 2001), while 71 

others have found that accretion rates are high enough to keep pace with moderate rises in 72 

sea level (e.g. Morris et al., 2002). A dominant driver of coastal erosion is anthropogenic 73 

influence, such as the clearing of mangrove forests, as well as natural disasters, such as 74 

extreme storms (Mentaschi et al., 2018). Sea level rise and a changing climate is likely to 75 

enhance coastal erosion. While these ecosystems are increasingly threatened, the 76 

vegetation within them is a key contributor to the ecosystem services they provide.  77 

Plants capture carbon dioxide from the atmosphere which they store as organic carbon, but 78 

through respiration, some of this carbon also gets released. The carbon budget of a vegetated 79 

habitat is used to provide an indication as to whether it is a carbon ‘sink’ or a carbon ‘source’, 80 

which is related to the accumulation and discharge of carbon (Sitch et al., 2015). Salt marshes 81 

and mangroves are important carbon sinks, even though these habitats cover less than 2 % 82 

of the area of the global ocean (Duarte, 2017). These blue carbon habitats store up to 70 % 83 

of carbon, relative to the ocean carbon cycle (Macreadie et al., 2014). It is estimated that they 84 

store up to 276 to 822 Tg of atmospheric carbon dioxide per year, worldwide (Spivak et al., 85 

2019). However, a loss or degradation of blue carbon habitats not only reduces the capacity 86 

of these ecosystems to act as natural carbon sinks but if degraded and disturbed these 87 

habitats directly release high amounts of carbon into the atmosphere as CO2 emissions 88 

(Pendleton et al., 2012; Hatje et al., 2021). A loss of one hectare of any blue carbon 89 

ecosystem is equal to losing 10-40 hectares of native forest, in terms of carbon emissions 90 

(Macreadie et al., 2017).  Blue carbon includes carbon that is stored in living biomass 91 

(branches, leaves, stems), non–living biomass (dead wood, leaf litter), roots and soil (Mcleod 92 

et al., 2011; Lovelock and Duarte, 2019a). When carbon is stored in this manner it is an 93 

important ecosystem service as it is an essential component of the carbon cycle (Keller et al., 94 

2018). Blue carbon habitats, if conserved, are able to act as net carbon sinks (Spivak et al., 95 

2019).  96 

There are three factors that determines the capture and storage of carbon in these habitats: 97 

the ability to maintain particulate organic carbon, high productivity and the conversion of 98 

carbon dioxide into plant biomass (Alongi, 2002). The sediment biogeochemistry then leads 99 

to a slow decay of organic material (Kelleway et al., 2017c).  100 

The storage of carbon in tidal marshes is influenced by environmental factors such as 101 

differences in moisture, nutrients, sediment supply, salinity and acidity as this is important for 102 

decomposition and primary productivity (Lovelock et al., 2007). Sediment depth, type and 103 
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deposition is also linked to carbon storage ability (Kelleway et al., 2016b). Sediment grain 104 

size has a strong influence on carbon storage because it influences the amount of organic 105 

particles that can accumulate. The storage of carbon is greater in fine grained sediment 106 

because of the lower oxygen exchange and porosity. Furthermore, these conditions decrease 107 

sediment redox potential and the rates of remineralisation, thus enhancing carbon storage 108 

(Kelleway et al.,  109 

2016b). Fine grained sediment also allows for the preservation of more organic matter 110 

because of their higher surface area, which reduces the oxygen in the sediment as it is 111 

consumed by detritivores which in turn decreases the decomposition of organic matter (Dahl 112 

et al., 2016). Coarse grained sediment (sandy sediment) is more permeable and has more 113 

aeration, increasing remineralisation of carbon (Van Ardenne et al., 2018). Carbon stored in 114 

salt marsh sediment is also influenced by the community composition of vegetation due to 115 

the differences in leaf and root morphology of different plant species. In general, shrubby salt 116 

marsh vegetation has low carbon stock (Saintilan et al., 2013). The input of organic material 117 

and the rate at which it decays is what ultimately determines the long term storage of carbon. 118 

Carbon storage has been shown to be higher in mature salt marshes compared to restored 119 

or new salt marshes (Alongi, 2018). Marshes that experienced rapid relative sea level rise 120 

during the late Holocene have higher concentrations of soil carbon compared to those that 121 

were subject to long periods of sea level stability (Rogers et al., 2019). Carbon storage is also 122 

higher in salt marshes which experience limited erosion and where mangrove encroachment 123 

is limited (Alongi, 2018).   124 

For mangroves forests, latitude, productivity rates, the age of the forest, and elevation are 125 

factors that have been linked to carbon stocks (Radabaugh et al., 2018). Mangroves are more 126 

productive than salt marshes which results in salt marshes storing less carbon (Saintilan et 127 

al., 2013). This has been attributed to lower redox potential, less anaerobic conditions and 128 

higher tidal elevations of salt marshes which are not conducive to carbon storage (Schile et 129 

al., 2017). Mangroves accumulate and store carbon over longer time periods (Lovelock and 130 

Duarte, 2019). They also have a higher above and belowground biomass which enables them 131 

to store more carbon (Donato et al., 2011). Mangroves are trees and therefore have a greater 132 

biomass than salt marsh which are dominated by succulent herbs and grasses. Moreover, 133 

water velocity is decreased by their aerial roots and more carbon rich sediment is able to be 134 

deposited, as well as plant matter which further promotes the formation of carbon rich 135 

sediment (Horstman et al., 2015).   136 

A significant proportion of the global tidal marsh carbon is found in the temperate Northern  137 
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Atlantic, which has 45 % of the world’s tidal marsh extent (Worthington et al., 2024). The U.S, 138 

Canada and Russia are the top three countries with the highest predicted total sediment 139 

organic carbon in their tidal marshes, because they have extensive marsh cover and high 140 

carbon per unit area (Worthington et al., 2024). The global estimate of carbon in the top metre 141 

of marsh sediment is 1.44 Pg C (Maxwell et al., 2024; Table 1). The average sediment organic 142 

carbon per hectare is predicted to be about 83.1 Mg C ha-1 in the 0-30 cm layer and 185.3 143 

Mg C ha-1 in the 30-100 cm layer (Maxwell et al., 2024). Globally, it is estimated that 144 

mangroves store around 11.7 Pg C, with most of the carbon stocks being in the sediment 145 

(Kauffman et al., 2020). The global sediment stock of tidal flats is estimated to be 0.9 Pg C 146 

(Chen and Lee, 2022).  147 

Table 1: Continent–level summary for tidal marsh area and sediment organic carbon 148 
(SOC).   149 

Habitat  Region  Area (km2)  SOC (Mg ha-1) a  SOC (Pg C)  

Salt marsh    41,700-54,900 a    1.44a  

  Africa  2 241.37  1046.05     

  South America  4 537.76  710.53    

  North America  30 259.07  1045.54    

  Europe  11 054.68  1377.9    

  Asia  2 301.71  400.02    

  Oceania  2 378.58  172.86    

Mangrove    150,000b    11.7b  

Tidal flats    127,921c    0.9c  

  150 

 151 
a (Maxwell et al., 2024) 152 
b (Kauffman et al., 153 
2020) c (Chen and Lee, 154 
2022)  155 
  156 

Tidal marshes have gained interest for their recently recognised value of carbon storage, 157 

leading to extensive research on carbon stocks and factors influencing carbon sequestration 158 

and storage. Similarly, accretion and erosion dynamics of tidal marshes and the processes 159 

driving these changes is well understood. However, the influence of animal interactions on 160 

these processes is poorly understood, even though soil animals are key components of 161 

aquatic environments (Adams et al., 2025). This review provides an overview of the current 162 

knowledge on the influence of bioturbation on sediment accretion and erosion in tidal 163 

marshes, including the impact of bioturbation on carbon sequestration. Table S1 in the 164 

Supplementary material provides a summary of key bioturbation studies relating to accretion, 165 

erosion, and carbon sequestration, emphasising their methodologies and main findings that 166 



 

are discussed in the following pages, while Figure 2 shows where these studies were 167 

conducted.  168 

To quantify the extent of research conducted on sediment processes and carbon in tidal 169 

marshes, a systematic literature search was performed in the web of science database using 170 

key words related to tidal marshes, carbon storage/sequestration and sediment dynamics. 171 

This search yielded 544 publications between the years 1993 and 2025. While a fair amount 172 

of research has been conducted on carbon stocks and sediment dynamics in tidal marshes, 173 

there remains a gap in our understanding of the role of bioturbators and their interaction 174 

processes on sediment dynamics. When key words relating to bioturbation were included, 175 

only 64 publications were yielded. Thus, the influence of these interactions on carbon 176 

sequestration and storage, and how this might be impacted in the face of climate change, 177 

which is a pressing future concern, is poorly understood compared to the overall science of 178 

tidal marsh carbon and sediment processes. This review therefore aims to improve our 179 

understanding of how bioturbators shape sediment dynamics and carbon cycling.    180 

1.3) Bioturbation in coastal tidal marshes  181 

  182 

Bioturbation in tidal marshes is associated with a number of organisms, found above and 183 

below the surface sediment (Macreadie et al., 2017). Benthic invertebrates under the classes 184 

Oligochaeta (worms), Gastropoda (snails), Polychaeta (polychaetes), Crustacea (crabs, 185 

shrimp and malacostracans) and Bivalvia (cockles and mussels) are common bioturbators 186 

found in tidal marshes (Van Der Wal and Herman, 2012). Some of the best studied groups 187 

include crustaceans and molluscs (Booth et al., 2023). Bioturbators are significant 188 

components of both terrestrial and aquatic ecosystems as they modify habitats, decompose 189 

litter, and are also consumers organic material (Wang et al., 2010). Bioturbation involves any 190 

transport process performed by animals that affects sediment matrices, either directly or 191 

indirectly (Kristensen et al., 2012), which includes burrow ventilation and particle reworking. 192 

Darwin (1881) was the first to recognize the significance of animal bioturbation and its role in 193 

influencing soil ecosystem processes. A dominant form of bioturbation in coastal wetlands 194 

includes that of burrowing, with burrow architecture being species specific (Min et al., 2023; 195 

Fig. 1). One of the most diverse groups, with special adaptations for burrow construction is 196 

Decapoda (Giraldes et al., 2017; Hajializadeh et al., 2022). Burrow construction and 197 

maintenance, in addition to ingestion and defecation results in particle reworking and 198 

biomixing. As a result, microorganisms and organic matter are displaced within the sediment 199 

matrix, both laterally and vertically (Kristensen et al., 2012). Benthic organisms can 200 
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significantly affect the composition of sediment, with destabilizing organisms generally 201 

decreasing mud content, while stabilizing organisms can increase mud content (Arlinghaus 202 

et al., 2021). Animals that rework sediment particles can be categorized as upward 203 

conveyors, downward conveyors, biodiffusors and regenerators depending on their feeding 204 

type, behaviour and life style (François et al., 2002). Collapsed burrows that are abandoned 205 

and become filled in, can be considered as indirect bioturbation (Kristensen et al., 2012). 206 

Ventilation happens when animals flush their burrows with water for feeding and respiration, 207 

and can be open with two or more openings, or blind ended with one opening. This results in 208 

the rapid transport of solutes from in the burrow to the overlying water (Kristensen, 2001). 209 

The activities associated with bioturbation can therefore influence the physical, chemical and 210 

biological characteristics of tidal marshes (Min et al., 2023).  211 

Burrowing activities decreases sediment hardness, breaks up and transports sediment (Botto 212 

and Iribarne, 2000), and increases the coarse particle density on the surface layers of the 213 

sediment (Warren and Underwood, 1986). In addition, burrowing influences the chemistry of 214 

the sediment, increases the oxygenation of the sediment and changes the pore water salinity 215 

(Fanjul et al., 2007; Booth et al., 2023).  Fine grained sediment, as well as sediment 216 

containing high concentrations of organic matter can be trapped by crab burrows, which 217 

assists with organic matter decomposition and increases the availability of nutrients (Fanjul 218 

et al., 2007). The rate of nutrient and sediment turnover is further accelerated by means of 219 

excavation by crabs, which transports nutrients and sediment from deep layers to the surface 220 

layers of the salt marsh (Fanjul et al., 2007). Belowground processes are therefore impacted 221 

by burrowing crabs which in turn influences marsh plants and trees by promoting growth 222 

(Botto et al., 2006; Ngo-Massou et al., 2018). The interaction between the environment, the 223 

biology and the density of a bioturbator determines the extent of the bioturbation effect (Wang 224 

et al., 2010; Xie et al., 2020; Pan et al., 2023), which varies over space and time. For example, 225 

the presence or absence of vegetation plays a key role in shaping this impact. When 226 

vegetation was present, the quantity and quality of excavated and deposited soils (in burrow 227 

mimics) was influenced, and thus, so was the burrowing effect (Wang et al., 2010). Vegetation 228 

can improve nutrient concentrations, but its roots can obstruct the vertical movement of 229 

sediment.    230 
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 231 

Figure 1: Examples of burrow openings of different crab species: Scylla serrata (A), 232 
Neosarmaticum africanum (B), Cyclograpsus punctatus/Parasesarma catenatum (C 233 
and D). The scale bar represents 10 cm in the foreground.  234 

  235 

1.4) Impacts of bioturbation on sediment processes  236 

  237 

Bioturbation influences a number of sediment processes such as accretion, erosion, 238 

sediment transport and deposition, which are outlined below and summarised in Table 2 239 

and Table S1.  240 

These processes are visually represented in Figure 3 and further explained in Table 3.  241 

1.4.1) Accretion  242 

Sedimentation is a key processes shaping tidal marshes, improving water clarity and quality 243 

which helps submerged plants access sunlight (Nahlik and Mitsch, 2008). The sequestration 244 

of carbon is also enhanced by sedimentation (Bernal and Mitsch, 2013) because the active 245 

burial of carbon limits its exposure to oxygen thus, limiting oxidation (McCarty et al., 2009). 246 

Salt marshes and mangroves persist when sediment carried by tides is deposited in 247 

vegetation (Saintilan et al., 2022). This builds elevation and promotes the growth of plants 248 

which increases belowground organic matter, resulting in elevation gain, slower water 249 

movement and allows for more suspended sediment to settle (Kirwan and Guntenspergen, 250 

2012). Plant shoots promote the deposition of sediment while plant roots bind and stabilize 251 

the sediment and can help prevent erosion (Buffington et al., 2020). Accretion therefore 252 

involves sedimentation, root growth, and development of peat (Krauss et al., 2014; 253 

MacKenzie et al., 2024)  254 

Benthic organisms are able to facilitate sediment transport and sedimentation patterns over 255 

extended periods and across surrounding areas (Arlinghaus et al., 2021). Their biological 256 

activity impacts sediment structure in terrestrial, marine, and intertidal zones, either stabilizing 257 

or destabilizing these environments. Some organisms enhance sediment cohesion by 258 
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producing an organic coating in the burrow walls from extracellular polymeric substances 259 

(EPS), mainly mucus (Watling, 1991). Sesarma reticulatum (a crab occurring in northern 260 

hemisphere temperate salt marshes) for example does this (Kristensen, 2008). These 261 

biostabilization processes can therefore influence the strength of sediment in intertidal zones. 262 

In a similar fashion microphytobenthic organisms form biofilms which can also improve the 263 

stabilization of sediment (Decho, 2000).   264 

Burrowing animals affect important ecosystem functions, while influencing the structure and 265 

function of plant communities, with these effects varying in direction and magnitude regionally 266 

(Vanni, 2002). Changes in the burrowing activities could have important consequences for 267 

the functioning of salt marshes and mangroves. Low to moderate levels of bioturbation can 268 

be beneficial to primary productivity (Kristensen et al., 2008). For example, burrowing by 269 

fiddler crabs has been seen to benefit the growth of Spartina alterniflora by increasing soil 270 

drainage, enhancing decomposition of plant debris and improving soil redox potential 271 

(Bertness, 1985). Burrows can increase the surface area of the marsh allowing for the 272 

exchange of oxygen from tidal water and the atmosphere which can increase the uptake of 273 

nitrogen increasing plant productivity (Bradley and Morris, 1990; Sharbaugh et al., 2025)   274 

Recent studies have highlighted the importance of bioturbation in determining changes in 275 

surface elevation (Bennion et al., 2024). The accretion or erosion of sediment is partially 276 

related to the burrowing and feeding activities of the species (Morelle et al., 2024). For 277 

example, it was found that crab species, which differ in diet and burrow morphology, had a 278 

larger influence on sediment than crab density superfamily, whether it was an Ocypodoidea 279 

or Grapsoidea, had the biggest influence on sediment, as opposed to crab density (Rinehart 280 

et al., 2024), which is related to their burrow morphology and diet (Table S1, Fig. 3). The 281 

composition of crabs has the potential to influence ecosystems differently (Agusto et al., 282 

2021). In mangroves, changes in surface elevation is are strongly influenced by species 283 

composition of the vegetation and was positively influenced by the frequency of bioturbation. 284 

In salt marshes, however, bioturbation had no significant effect on changes in surface 285 

elevation because they had lower levels of bioturbation compared to the mangroves (Bennion 286 

et al., 2024) (Table S1, Fig. 3).   287 

Excavated sediment through bioturbation activities, along with sediment from eroding areas 288 

of the marsh, can contribute material for accretion on the surrounding marsh platform, helping 289 

to increase marsh elevation (Wilson and Allison, 2008).  Mussels, for example Geukensia 290 

demissa, can also contribute to vertical accretion in salt marshes, as they harvest sediment 291 

through their filtration activities, thus contributing to the sediment budget (Crotty et al. 2023) 292 
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(Table S1, Fig. 3). They also deposit faeces which is nutrient rich, indirectly increasing 293 

vegetation biomass, improving soil shear strength (resistance to erosion) and stability. These 294 

interactions therefore play an important role in promoting elevation gain and improving marsh 295 

resilience.  296 

1.4.2) Erosion  297 

  298 

Due to coastal wetlands being situated at low elevation at the land sea interface, they are 299 

susceptible to submergence and lateral erosion driven by wave activity, storm surges and 300 

increased sea levels (Leonardi et al., 2018).  The morphology and long- term persistence of 301 

tidal marshes is influenced by erosion. Erosion rates are determined influenced by vegetation, 302 

which affects sediment deposition rates and biological activity (Mudd et al., 2010; Cahoon, 303 

2024). Benthic organisms, specifically bioturbators, play a crucial role in influencing erosion 304 

processes through their activities. Bioturbators can affect sediment roughness and alter its 305 

characteristics, thereby influencing the erodibility of sediment (Dairain et al., 2020). 306 

Bioturbators can have both direct and indirect effects on the erosion of tidal marshes. These 307 

positive and negative impacts are expected to vary over time, as macrofaunal bioturbation is 308 

temperature–dependent and tends to be more pronounced during warmer months (Cozzoli 309 

et al., 2018). By reworking the sediment, bioturbators repack the sediment that was once 310 

compact, which changes the texture and granulometry, causing larger aggregates of grains 311 

to form (Grabowski et al., 2011). For example, Scrobicularia plana (a clam commonly found 312 

in temperate European salt marshes) caused the sediment to become coarser and changed 313 

the bed topography, which showed a loss byresulting in erosion (Morelle et al., 2024) (Table 314 

S1, Fig. 3). Fine grained sediment such as clay and silt are more susceptible to the effects of 315 

benthos (Arlinghaus et al., 2021). There are however still uncertainties with regards to the 316 

role that benthic organisms play in sediment dynamics (Dairain et al. 2020; Farron et al. 317 

2020). For example, the influence of S. reticulatum bioturbation on the erodibility of sediment 318 

has not yet been quantified as it is difficult to measure the processes in the field (Farron et 319 

al., 2020). Thus, few studies have explored the connection between sediment stability and 320 

burrow building bioturbators (Needham et al., 2013).  321 

Burrowing activities weaken mud and clay banks in tidal marshes, making them more 322 

susceptible to erosion through wave action. Dairain et al. (2020) observed that Cerastoderma 323 

edule (common cockle, native to salt marshes in Europe and northwestern Africa) promotes 324 

erosion of the surface sediment by increasing the roughness of the sediment, and this is due 325 

to their sediment reworking activities (Table S1, Fig. 3). The same was true for the lugworm, 326 

Arenicola marina (common in mudflats and salt marshes in Europe), which increased the 327 
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permeability and roughness of the sediment (Montserrat et al., 2011) (Table S1, Fig. 3). 328 

Sesarma reticulatum contributes to changing erosion patterns by facilitating greater erosion 329 

(Farron et al., 2020), which is likely driving the headward expansion of straight, low–order 330 

tidal creeks in salt marshes within the Georgia Bight (Vu et al., 2017).  331 

In addition to sediment disturbance, bioturbators can impact sediment cohesion and 332 

erodibility. When the density of infauna were experimentally reduced in the Humber estuary 333 

(UK), there was a 300 % increase in sediment stability on the intertidal mudflats (De Deckere 334 

et al., 2001) (Table S1, Fig. 3). Invertebrates, such as crabs, can influence sediment stability 335 

by consuming microphytobenthic organisms (Booth et al., 2023) which can indirectly promote 336 

the destabilization of sediment (Daborn et al., 1993). Crabs can also contribute to sediment 337 

destabilization by causing vegetation loss (Smit et al., 2024). Burrowing by Sesarma 338 

reticulatum caused the upper 10-15 cm of the marsh to become oxidized which caused 339 

enhanced degradation of belowground biomass of S. alterniflora (Wilson et al., 2012) (Table 340 

S1, Fig. 3). This process reduces the shear strength of the sediment, increasing the erosion 341 

potential which facilitates creek extension. Compared to the surrounding marsh platform, the 342 

heads of newly formed creeks have lower topography, lack vegetation, and are densely 343 

populated with both burrowing and herbivorous crabs. Over time these creek heads extend 344 

further into the marsh platform as the creek migrates, which causes dieback of vegetated 345 

areas and a loss of elevation of up to 50 cm (Day et al., 2011; Wilson et al., 2012). Similarly, 346 

Chasmagnathus granulatus (a crab inhabiting the salt marshes of South America), through 347 

their burrowing activities, have also been shown to increase the growth rate of tidal creeks, 348 

causing larger creeks to form, which can promote salt marsh erosion (Escapa et al., 2008) 349 

(Table S1, Fig. 3). In addition to their large scale effects on creek formation and vegetation 350 

loss, crabs can also affect sediment structure at finer scales, through the formation of 351 

burrows.  352 

Crab burrows, particularly those of species that do not plug their burrows during inundation, 353 

may function as passive sediment traps (Grabowski et al., 2011; Escapa et al., 2008). 354 

However, water filled burrows often lead to a reduced bulk shear strength and density, and 355 

reduced erosion thresholds, which in areas that are heavily burrowed would increase the 356 

mass of sediment eroded (Grabowski et al., 2011). Sediment trapping rate is dependent on 357 

burrow architecture, density and possibly bed roughness (Escapa et al., 2008), therefore, 358 

different species of burrowing crabs have different effects on the erosion and transport of 359 

sediment (Min et al., 2023, Fig. 1).   360 



 

1.4.3) Sediment transport and deposition  361 

  362 

Sediment transport is often considered to be only a physical process, as a result of sediment 363 

beds responding to hydrodynamic forces in coastal habitats (Le Hir et al., 2007). However, 364 

biological components are also able to influence sediment transport processes. The 365 

interaction between organisms and the sediment is complex and generally context specific, 366 

due to factors such as hydrodynamics, sediment composition or species- specific behaviours 367 

(Needham et al., 2013). The influence of individual species on sediment dynamics are 368 

therefore poorly understood. This makes it difficult to predict the overall impact of organisms 369 

on sediment transport. While erosion and deposition are primarily driven by hydrodynamics, 370 

benthic organisms influence the extent of these processes on a spatial and seasonal scale. 371 

Studies have shown that benthos can cause change of the same order of magnitude as 372 

hydrodynamic processes (Arlinghaus et al., 2021).  373 

Crab burrow morphology is related to biological (e.g. sex or size; Sen and Homechaudhuri, 374 

2016) and environmental (e.g. vegetation or sediment composition; Penha-Lopes et al., 375 

2009) factors, with morphology influencing their effectiveness in trapping sediment and 376 

organic matter. Intertidal decapods construct funnel shaped burrows which aids in the 377 

trapping of organic matter and sediment (Botto et al., 2006). Funnel shaped burrows with low 378 

aspect ratios trapped a greater percentage of organic matter while tubular shaped burrows 379 

with a higher aspect ratio trapped a greater amount of sediment (Botto et al., 2006) (Table 380 

S1, Fig. 3). Gutiérrez et al. (2006) and Wang et al. (2010) deployed burrow mimics and found 381 

that less material by weight was collected in the mimics than was excavated by crabs, 382 

indicating a net export of sediment material (Table S1, Fig. 3). Excavation allows for buried 383 

material to be brought to the surface, increasing the amount of sediment available for export 384 

by tidal flushing. The quantity of sediment and organic matter available for transport is 385 

therefore a balance between material deposited into crab burrows and material excavated 386 

from them.  387 

Crabs create sediment mounds when they move sediment from their burrow to the surface. 388 

During flooding and ebbing tide, this fresh mound sediment is transported. It remains a 389 

challenge to predict when burrowing engineers will have a significant effect on their 390 

environment (Coggan et al., 2018). However, the engineering effect is anticipated to intensify 391 

as crab population densities increase (Rinehart et al., 2024). For example, burrowing crabs 392 

are often found to have site specific effects on ecosystems (Beheshti et al., 2021), such as 393 

promoting sediment trapping in one area of the marsh, but enhancing sediment removal in 394 

other areas (Escapa et al., 2008). Crabs were found to promote the trapping of sediment in 395 
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open mudflats and intertidal salt marsh where current speeds are low, whereas in the salt 396 

marsh edge, they were increasing sediment removal (Escapa et al., 2008) (Table S1, Fig. 3). 397 

This was due to funnel shaped burrows being more frequent in the low intertidal zones as 398 

well as the assistance of plants in trapping sediment. In habitats with weak flow, burrowing 399 

animals are expected to promote sediment trapping, whereas in high flow energy habitats, 400 

burrowing activity is anticipated to increase sediment removal rates, determined by the 401 

strength of the current. In addition to crabs, Thalassinidea which are shrimp–like organisms, 402 

commonly referred to as mud or sandprawns in South Africa, also influence sediment 403 

transport and deposition. These burrowing species similarly create mounds by expelling 404 

sediment from their burrows (Pillay and Branch, 2011). The transport of sediment by 405 

thalassinideans is greater than that achieved by diffusion processes or abiotic burial (Grigg, 406 

2003). The sediment expelled from callianassid burrows is easily eroded at low current 407 

speeds because it is unconsolidated, making it more prone to resuspension and redeposition 408 

in adjacent areas (Pillay et al., 2007). Kraussillichirus kraussi (sandprawn characteristic of 409 

temporarily closed estuaries in South Africa) consumes organic matter around its burrow, 410 

thus is an effective mover of sediment (Pillay and Branch, 2011). Burrowing organisms are 411 

therefore key drivers of sediment transport and redistribution in tidal marshes.  412 

1.5) Impact of bioturbation on carbon burial and sequestration   413 

  414 

Consumers can influence the carbon cycle directly and indirectly. For instance, small 415 

bioturbating grazers change sediment properties and remove plant biomass. While they are 416 

known to have an effect, they remain an understudied driver of carbon cycling (Guimond et 417 

al., 2020; Ren et al., 2022). It was estimated by Montague (1982) that Uca pugnax (a species 418 

of fiddler crab native to salt marshes along the coast of North America) excavated an amount 419 

of carbon that is equal to 20 % of what S. alterniflora produces belowground annually, in 420 

Sapelo Island, Georgia, U.S. (Table S1, Fig. 3). The amount of carbon collected in burrows 421 

was lower than that made available for tidal flushing by excavation (Montague, 1982). The 422 

concentration of labile and total carbon at the marsh surface is expected to decrease with 423 

crab activities because of the lower carbon content in the sediment that is excavated in 424 

relation to that deposited into the burrow (Gutiérrez et al., 2006). Burrowing organisms, such 425 

as crabs, can influence the carbon balance of tidal marshes by releasing carbon that would 426 

otherwise remain stored deeply in the sediment. Wittyngham et al. (2024) showed that small 427 

grazers cause a decrease in carbon stocks with S. reticulatum accounting for a loss in carbon 428 

stocks of 40-70 % (Table S1, Fig. 3). In Cape Cod where marsh die off and erosion occurred 429 

due to overgrazing by S. reticulatum, an estimate of 248.6 ± 4.8 gigagrams of belowground 430 
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carbon was released (Coverdale et al., 2014) (Table S1, Fig. 3). A correlation exists between 431 

crab burrows and carbon content, with higher densities of crab burrows associated with 432 

decreased carbon in the topsoil (Carpenter et al., 2023). The highest carbon content was 433 

found in salt marsh with minimal burrowing by crabs.   434 

Complex burrow networks can have an effect on soil carbon stocks. A study conducted in 435 

Kenya found that mangrove forests that had a greater abundance of sesarmid crabs, had 436 

higher soil carbon stocks (Andreetta et al., 2014) (Table S1, Fig. 3). Crabs can also directly 437 

transfer carbon to sediments through the transportation of faeces, algae, leaf litter, and 438 

exuviae into their burrows (Alongi, 2002). This vertical transport of carbon was demonstrated 439 

through radiocarbon dating of sediment cores. Modern carbon was found to depths of 115 440 

cm (Andreetta et al., 2014), which means that crabs are supplying new organic matter to 441 

deeper sediments. It is possible that the diversity of macrofauna in these ecosystems could 442 

be an important driver of carbon dynamics (MacKenzie et al., 2021). Macrofaunal diversity 443 

means a variety of sediment reworking activities, through bioturbation and bio-irrigation, 444 

which in turn can exert control on sedimentary biogeochemical cycling, such as carbon 445 

cycling (Meysman et al., 2006). On the other hand, crabs can also decrease carbon stocks 446 

because their burrows increase sediment surface area, aiding organic matter decay as more 447 

sediment becomes oxic, which leads to carbon loss via tidal flushing (Klaassen et al., 2025).  448 

The effects of bioturbation on carbon cycling is are context specific. For instance, 449 

Macrophthalmus japonicas, a salt marsh crab species from East Asia, increased the 450 

mineralization of sediment organic matter (SOM), stimulating the release of organic carbon, 451 

thus slowing the accumulation of organic carbon within sediment surface layers (Nie et al., 452 

2021) (Table S1, Fig. 3). Similarly, bioturbation by S. reticulatum led to the remineralization 453 

of belowground organic matter by increasing the permeability and aeration of the sediment, 454 

leading to the degradation of organic material (Wilson et al., 2012). Crabs decreased SOM 455 

and carbon content in vegetated habitats and increased SOM and carbon in unvegetated 456 

habitats (Rinehart et al., 2024). Crab bioturbation has been shown to improve benthic 457 

metabolism and exchange of dissolved organic matter from the sediment to the water column 458 

(Fanjul et al., 2015) (Table S1, Fig. 3). It was also found that the distribution, quality and 459 

bioavailability of sedimentary organic matter is influenced by bioturbation. Furthermore, 460 

efficient remineralisation of detritus occurs at bioturbated sediment and is exported as CO2 461 

and DOC to the water column. Bioturbation, by crabs, therefore improves the amount of labile 462 

organic carbon of bioturbated sediments and alters the pathway of carbon export to coastal 463 

waters (Fanjul et al., 2015).   464 
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While bioturbation can contribute to carbon loss, some bioturbating organsims can promote 465 

carbon storage. Burrows of Upogebia major (mudshrimp found in salt marshes in East Asia) 466 

and other thalassinideans have been found to trap organic matter (Kinoshita et al., 2008), 467 

which can increase the storage of carbon. Moreover, it was found that grazing by livestock 468 

had a neutral to positive effect on carbon sequestration (Graversen et al., 2022) (Table S1, 469 

Fig. 3). Crab burrowing was found to increase the turnover of nitrogen and carbon, with 470 

excavated soil having higher inorganic carbon concentration compared to soil deposited into 471 

burrows (Wang et al., 2010). This indicates that excavation activities accelerates the 472 

mineralization of organic matter from organic to inorganic carbon (Wang et al., 2010). Such 473 

changes to organic matter availability and benthic metabolism by bioturbation have the 474 

potential to decrease the storage capacity of carbon (Gutiérrez et al., 2006). Under 475 

accelerated sea level rise, consumers’ impact on the carbon cycle, through carbon 476 

consumption and marsh stability, is expected to intensify as a result of the accelerated 477 

migration rates of consumer fronts, which are clusters of consumers bordering a specific 478 

resource (Wittyngham et al., 2024).    479 

1.6) Global change impacts on tidal marsh bioturbation  480 

   481 

Blue carbon ecosystems are threatened by climate change, particularly sea level rise 482 

(Borchert et al., 2018; MacKenzie et al., 2024), as well as increasing temperatures and 483 

alterations in precipitation regimes (Arias-Ortiz et al., 2018; Adams et al., 2025). Coastal 484 

geomorphology, sedimentation patterns, geographic locality and regional oceanographic 485 

properties cause tidal marshes to become susceptible to these threats (Mcleod et al., 2010). 486 

The resilience of salt marshes and mangroves to sea level rise is determined by physical 487 

drivers, such as unrestricted landward migration or increase in surface elevation (Schuerch 488 

et al., 2018; Lovelock and Reef, 2020) as well as biological drivers such as diversity 489 

productivity (Branoff, 2020; He et al., 2025). The extent of development along the coast and 490 

the local topography controls the area available for these ecosystems to migrate landward, 491 

however, the rate of sedimentation controls the ability of salt marshes and mangroves to 492 

resist the rise in sea levels via the gain in relative surface elevation. The ability for sediment 493 

to be retained in the intertidal region is dependent on local coastal dynamics and drainage 494 

basin geology (Adams et al. 2019). Furthermore, the structure of a wetland ecosystem affects 495 

its resistance to a disturbance as well as recovery from a disturbance, therefore, local 496 

geomorphology contributes substantially towards the resilience of these systems (Phillips, 497 

2018). Mangrove and salt marsh responses to sea level rise is thus not uniform across 498 
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different regions and even between sites within the same mangrove or salt marsh habitat 499 

(Passeri et al., 2015; Adams et al., 2025).  500 

Mangroves are specifically vulnerable to changes in temperature and precipitation regimes, 501 

because the distribution range globally is linked to sea surface temperature. Mangrove 502 

occurrence is limited to regions that are tropical or subtropical, and this by the winter 20 °C 503 

sea surface isotherm (Tomlinson 1999; Hamilton and Casey, 2016). With rising temperatures 504 

comes an expansion of mangroves polewards, to higher latitudes. Expansion of mangroves 505 

leads to a loss of salt marsh habitats which results in ecological shifts as well as changes in 506 

the provisioning of ecosystem services, for example carbon storage (Kelleway et al., 2017a). 507 

Furthermore, mangroves that are found at range limits are also commonly smaller and shrub– 508 

like (Morrisey et al., 2010), which influences their capacity to store and sequester carbon 509 

(Raw et al., 2021). With rising sea levels, salt marshes are expected to migrate landwards 510 

(Enwright et al., 2016). If the rate of sea level rise surpasses that of surface elevation gain it 511 

will cause a shift in habitat with lower intertidal regions becoming subtidal and upper intertidal 512 

species will encroach the terrestrial boundary (Fagherazzi et al., 2019). In salt marshes, as 513 

sea level and consequently tidal prism begins to increase, it is expected that tidal creeks will 514 

develop, which has been observed in Bahamas (Kirwan and Guntenspergen, 2012).   515 

Regions that are more flooded (e.g. seaward areas) generally have smaller, shallower burrow 516 

networks compared to those in drier regions (Egawa et al., 2021). Crab activity is highest in 517 

summer and lowest in winter (Egawa et al., 2021), because of this seasonal change in 518 

behaviour, it could further complicate the influence of crabs on carbon budgets (Guimond et 519 

al., 2020) as regional historical temperatures change lined to behavioural phenology. 520 

Changes in water levels and temperature, major components of climate change, can 521 

influence the distribution of crabs and the extent of bioturbation (Wilson et al., 2022). 522 

Increased flooding can suppress these activities, thus leading to redox conditions becoming 523 

more anoxic in tidal marshes (Pan et al., 2023). On the other hand, faunal activities can 524 

interact with climate stressors. For example, cordgrass (Spartina Aalterniflora) loss and 525 

erosion have been caused by combined effects of sea level rise and S. reticulatum density 526 

increases in US Atlantic salt marshes (Crotty et al., 2020; Morrison et al., 2024).  527 

Crabs create burrow structures in the form of tunnels and chimneys which can potentially 528 

provide material available for erosion. Flow velocities of 60 cm/s or higher are required to 529 

erode these structures, which can be reached at tidal creek heads under typical conditions 530 

(Farron et al., 2020) (Table S1, Fig. 3). These velocities are also likely during high flow events 531 

such as storms, which are expected to increase in frequency and intensity due to climate 532 

change (Zhang and Colle, 2018; Raw et al., 2023). Rainfall events, in contrast, do not erode 533 
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marsh substrate that is consolidated but rather mobilize recently deposited, unconsolidated 534 

sediment (Voulgaris and Meyers, 2004). In areas that are heavily burrowed, this would 535 

include sediment deposited in the past few tidal cycles, in addition to burrow structures and 536 

pellets. This means that storms associated with climate change will have major effects on 537 

erosion patterns, especially in regions that are heavily burrowed, which can lead to 538 

morphological changes (Farron et al., 2020). Increases in drainage density is necessary to 539 

manage the expanding tidal prism and effectively drain the marsh surface to prevent 540 

waterlogging. Crab activity at tidal creeks may help alleviate the effects of accelerating sea 541 

level rise on the marsh platform (Farron et al., 2020). In a regime of increasing sea level rise, 542 

the presence of burrowing organisms, such as crabs, may possibly increase marsh 543 

sustainability, by forming creeks or extending existing creeks, and enhancing erosion. 544 

Overpopulation of crabs, through changes in predation pressure, however can cause loss of 545 

marsh area and increase vulnerability to erosion, negatively impacting the marsh.  546 

1.7) Synthesis and way forward  547 

  548 

A positive sediment budget is important for the accretion and resilience of tidal marshes, as 549 

it promotes marsh elevation and enhances carbon storage by actively burying carbon. 550 

Bioturbation activities on the other hand can either stabilize or destabilise sediment, influence 551 

sediment transport and ultimately influence marsh elevation. These two processes can 552 

therefore be viewed as being interconnected rather than being independent of one another. 553 

The reworking of sediment by some organisms increases surface roughness and decreases 554 

sediment cohesion, leading to erosion and in some cases creek formation. While the 555 

stabilization of sediment is possible through burrows of other species, functioning as passive 556 

sediment traps, which in turn can promote accretion. Apart from sediment properties being 557 

affected by bioturbation activities, carbon cycling is also influenced by these activities. 558 

Activities such as burrowing and feeding can lead to a loss of carbon through increased 559 

mineralization of organic matter, or through erosion. However, bioturbators can also promote 560 

the burial of carbon by trapping sediment, and transporting organic matter such as faeces 561 

and leaf litter into their burrows.   562 

This review has highlighted a number of knowledge gaps, specifically the lack of 563 

understanding of the influence that bioturbators and their interactions have on sediment 564 

processes and their role in carbon cycling. This is despite increasing recognition that 565 

biological components have an influence on the functioning of tidal marshes. Sediment–566 

organism interactions are often context specific and complex, and our understanding of 567 
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species specific impacts are limited. It is challenging to predict how bioturbators might 568 

influence their environment as the impact of individual species on sediment dynamics varies, 569 

therefore, bioturbation effects cannot be generalized. For example, the effects of crabs from 570 

the family Ocypodidae versus crabs from the family Sesarmidae will have different effects on 571 

sediment because of burrow morphology, diet and behaviour, all of which influence 572 

bioturbation effects. Moreover, these families are often found co-occurring in the same habitat 573 

making it important to understand their individual as well as combined impacts on sediment 574 

processes. Such studies could be done under experimental conditions and in situ, and should 575 

be extended across different habitat types as sediment characteristics and vegetation also 576 

have an influence on bioturbation impacts.   577 

Sediment–species interactions also have an influence on carbon cycling in tidal marshes, yet 578 

consumers are an understudied driver of these processes. There is a need to quantify carbon 579 

stocks, sequestration and greenhouse gas fluxes and to investigate how these processes 580 

respond to bioturbation activities. Studies comparing regions with varying intensities of 581 

bioturbation are important for a better understanding of the contribution of bioturbators to 582 

carbon dynamics in tidal marshes. It is clear that there is no real consensus as to whether 583 

bioturbation has a positive or negative influence on sediment dynamics and carbon cycling 584 

(Table 2 and S1). By advancing our understanding, management and restoration efforts could 585 

be improved, and better predict the resilience of tidal marshes under future climate change 586 

pressures.  587 
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