

1 Reviews and syntheses: Bioturbation impacts on sediment
2 accretion and erosion in tidal marshes, with implications for
3 carbon burial and sequestration

4
5 Leigh-Ann Smit^{1,2*}, Janine B. Adams^{2,3}, Gavin M. Rishworth^{1,2}

6 ¹Department of Zoology, Nelson Mandela University, Gqeberha, South Africa

7 ²SARChI: Shallow Water Ecosystems, Institute for Coastal and Marine Research (CMR),

8 Nelson Mandela University, Gqeberha, South Africa

9 ³Department of Botany, Nelson Mandela University, Gqeberha, South Africa

10 *corresponding author: s217268250@mandela.ac.za

11

12 1.1) Abstract

13

14 Tidal marshes offer multiple ecosystem services, but are some of the most threatened coastal
15 ecosystems worldwide. One of these valued services is their ability to sequester and store
16 large amounts of carbon. Bioturbating macrofauna are ecosystem engineers that can
17 influence the geomorphology and biogeochemistry of tidal marshes. Bioturbators can
18 influence accretion and erosion processes in tidal marshes by either stabilizing or
19 destabilizing sediment. Through this reworking of sediment, they can also influence the
20 amount of carbon that can be stored. The impact of bioturbation on tidal marshes depends
21 on a number of factors, such as species composition, burrow morphology, diet, behaviour
22 and habitat type. This review assesses the current knowledge on the role benthic bioturbators
23 play in shaping sediment processes in tidal marshes and identifies key knowledge gaps for
24 future research. For example, the impact of individual benthic species on sediment dynamics
25 is mostly unknown. Bioturbation effects cannot be generalised and predicting when and
26 where these effects will be most prominent impacts is challenging. Future studies should
27 investigate family and species-specific effects on sediment properties, such as erodibility or
28 texture, under controlled laboratory conditions and in the field. This should be compared
29 across different habitat types such as ecotones, mudflats, salt marshes and mangroves.
30 Furthermore, the role of consumers, as bioturbators, remains an understudied driver of the
31 carbon cycle because it is complex. In order to better predict how tidal marshes may persist
32 in the face of future climate change, such as sea level rise, it is important to understand the
33 role of bioturbators on sediment and carbon dynamics to enable better mitigation of global
34 change effects through conservation and restoration of tidal habitats.

35 **Keywords:** blue carbon, benthic organisms, coastal ecosystems, ecosystem engineers,
36 sediment processes

37 1.2) Introduction: Tidal marsh sediment and carbon processes

38
39 Tidal marshes, such as salt marshes and mangroves, are vegetated coastal ecosystems that
40 are highly important in terms of their ecological value, because they exist between terrestrial,
41 estuarine and near-shore marine environments (Barbier, 2015). These coastal habitats offer
42 natural protection against storm surges and erosion (Perkins et al., 2015), in addition to other
43 essential services such as sediment retention, flood attenuation and nutrient processing (Bos
44 et al., 2007; Hatje et al., 2021). They provide important nursery areas for estuarine and marine
45 fishes and invertebrates (Sogard and Able, 1991; Barbier et al., 2011), and are also valuable
46 for tourism and food production (Hawkins et al., 2020; Lynch et al., 2023). Another important
47 ecosystem service provided by salt marshes and mangrove forests, is their ability to
48 sequester and store carbon (Macreadie et al., 2021). The carbon sequestered by these
49 coastal habitats is referred to as blue carbon (Nellemann and Corcoran, 2009; Mcleod et al.,
50 2011). Although seagrass beds are also classified as blue carbon habitats, they are primarily
51 a subtidal habitat and therefore not strictly part of tidal marshes in the context of this review.
52 The term 'blue carbon' was coined more than a decade ago (Duarte De Paula Costa and
53 Macreadie, 2022), with blue carbon research having increased over the last decade. This
54 growing interest allows for a better understanding of the global distribution of tidal marshes
55 and the factors that determine their persistence.

56 Salt marshes cover at least 41,700-54,900 km² of the globe (McOwen et al., 2017), mangrove
57 forests 150,000 km² (Spalding, 2010), and unvegetated mudflats approximately 127,921 km²
58 of the globe (Murray et al., 2019). The Northern Hemisphere has roughly double the amount
59 area of tidal marshes as the Southern Hemisphere, due to their longer coastline (He et al.,
60 2025). The long-term persistence of tidal marshes is driven by the interactions between
61 surface elevation, sea level, sediment accretion and primary production (Morris et al., 2002).
62 Surface elevation and sediment accretion is regulated by abiotic and biotic factors, which
63 includes suspended sediment supply, climate, geography and bioturbation (Ouyang et al.,
64 2022).

65 Coastal ecosystems are some of the most threatened systems worldwide with approximately
66 35 % of mangroves and 50 % of salt marshes being lost or degraded by anthropogenic
67 activities (Van Katwijk et al., 2016; Li et al., 2018). By means of satellite observations, looking
68 at changes in water presence, land loses, and gains can be estimated. It is estimated that 28

Commented [A1]: I suggest consistency between the terms tidal wetland, salt marsh, and mangrove

Commented [A2]: The introduction could be strengthened with some reworking. Currently, description of wetlands is long and needs to be tied to bioturbators. Additionally, some broad grouping of wetlands (macrotidal/microtidal, mineralogenic/organogenic, marsh platform/creeksbank) would help to later summarize impacts.

This section could be split into 1) sediment/geomorphology and 2) carbon processes for more organization

Commented [A3]: Mccloud et al. 2011 would be a more appropriate citation, or move this citation to the end of the sentence.

Commented [A4]: Are mudflats considered as a tidal marsh for this review? Above, only salt marshes and mangroves are listed.

Commented [A5]: Sentence structure here is awkward. Consider restructuring to place the important substance early. I.e. "Large-scale change in tidal wetland area can be estimated with remote sensing data."

69 000 km² of land has been eroded in tidal marshes, which is double that of land gained
70 (Mentaschi et al., 2018). Some studies have revealed that accretion rates are insufficient for
71 tidal marshes to keep pace with sea level rise (e.g. Van Wijnen and Bakker, 2001), while
72 others have found that accretion rates are high enough to keep pace with moderate rises in
73 sea level (e.g. Morris et al., 2002). A dominant driver of coastal erosion is anthropogenic
74 influence, such as the clearing of mangrove forests, as well as natural disasters, such as
75 extreme storms (Mentaschi et al., 2018). Sea level rise and a changing climate is likely to
76 enhance coastal erosion. While these ecosystems are increasingly threatened, the
77 vegetation within them is a key contributor to the ecosystem services they provide.

78 Plants capture carbon dioxide from the atmosphere which they store as organic carbon, but
79 through respiration, some of this carbon also gets released. The carbon budget of a vegetated
80 habitat is used to provide an indication as to whether it is a carbon 'sink' or a carbon 'source',
81 which is related to the accumulation and discharge of carbon (Sitch et al., 2015). Salt marshes
82 and mangroves are important carbon sinks, even though these habitats cover less than 2 %
83 of the area of the global ocean (Duarte, 2017). These blue carbon habitats store up to 70 %
84 of carbon, relative to the ocean carbon cycle (Macreadie et al., 2014). It is estimated that they
85 store up to 276 to 822 Tg of atmospheric carbon dioxide per year, worldwide (Spivak et al.,
86 2019). However, a loss or degradation of blue carbon habitats not only reduces the capacity
87 of these ecosystems to act as natural carbon sinks but if degraded and disturbed these
88 habitats directly release high amounts of carbon into the atmosphere as CO₂ emissions
89 (Pendleton et al., 2012; Hatje et al., 2021). A loss of one hectare of any blue carbon
90 ecosystem is equal to losing 10-40 hectares of native forest, in terms of carbon emissions
91 (Macreadie et al., 2017). Blue carbon includes carbon that is stored in living biomass
92 (branches, leaves, stems), non-living biomass (dead wood, leaf litter), roots and soil (Mcleod
93 et al., 2011; Lovelock and Duarte, 2019a). When carbon is stored in this manner it is an
94 important ecosystem service as it is an essential component of the carbon cycle (Keller et al.,
95 2018). Blue carbon habitats, if conserved, are able to act as net carbon sinks (Spivak et al.,
96 2019).

97 There are three factors that determines the capture and storage of carbon in these habitats:
98 the ability to maintain particulate organic carbon, high productivity and the conversion of
99 carbon dioxide into plant biomass (Alongi, 2002). The sediment biogeochemistry then leads
100 to a slow decay of organic material (Kelleway et al., 2017c).

101 The storage of carbon in tidal marshes is influenced by environmental factors such as
102 differences in moisture, nutrients, sediment supply, salinity and acidity as this is important for
103 decomposition and primary productivity (Lovelock et al., 2007). Sediment depth, type and

Commented [A6]: There are more recent and wider scale accretion studies, such as <https://doi.org/10.1007/s12237-014-9872-8>, <https://doi.org/10.1007/s12237-024-01332-z>, or <https://doi.org/10.1007/s12237-022-01141-2>

Commented [A7]: Citation needed – there can be complex interactions, for example high water level can reduce erosion during a storm

Commented [A8]: This paragraph is wordy and would be a candidate to cut back to shorten the introduction

Commented [A9]: This and the following paragraph could be combined for a more cohesive flow

104 deposition is also linked to carbon storage ability (Kelleway et al., 2016b). Sediment grain
105 size has a strong influence on carbon storage because it influences the amount of organic
106 particles that can accumulate. The storage of carbon is greater in fine grained sediment
107 because of the lower oxygen exchange and porosity. Furthermore, these conditions decrease
108 sediment redox potential and the rates of remineralisation, thus enhancing carbon storage
109 (Kelleway et al.,

110 2016b). Fine grained sediment also allows for the preservation of more organic matter
111 because of their higher surface area, which reduces the oxygen in the sediment as it is
112 consumed by detritivores which in turn decreases the decomposition of organic matter (Dahl
113 et al., 2016). Coarse grained sediment (sandy sediment) is more permeable and has more
114 aeration, increasing remineralisation of carbon (Van Ardenne et al., 2018). Carbon stored in
115 salt marsh sediment is also influenced by the community composition of vegetation due to
116 the differences in leaf and root morphology of different plant species. In general, shrubby salt
117 marsh vegetation has low carbon stock (Saintilan et al., 2013). The input of organic material
118 and the rate at which it decays is what ultimately determines the long term storage of carbon.
119 Carbon storage has been shown to be higher in mature salt marshes compared to restored
120 or new salt marshes (Alongi, 2018). Marshes that experienced rapid relative sea level rise
121 during the late Holocene have higher concentrations of soil carbon compared to those that
122 were subject to long periods of sea level stability (Rogers et al., 2019). Carbon storage is also
123 higher in salt marshes which experience limited erosion and where mangrove encroachment
124 is limited (Alongi, 2018). |

125 For mangroves forests, latitude, productivity rates, the age of the forest, and elevation are
126 factors that have been linked to carbon stocks (Radabaugh et al., 2018). Mangroves are more
127 productive than salt marshes which results in salt marshes storing less carbon (Saintilan et
128 al., 2013). This has been attributed to lower redox potential, less anaerobic conditions and
129 higher tidal elevations of salt marshes which are not conducive to carbon storage (Schile et
130 al., 2017). Mangroves accumulate and store carbon over longer time periods (Lovelock and
131 Duarte, 2019). They also have a higher above and belowground biomass which enables them
132 to store more carbon (Donato et al., 2011). Mangroves are trees and therefore have a greater
133 biomass than salt marsh which are dominated by succulent herbs and grasses. Moreover,
134 water velocity is decreased by their aerial roots and more carbon rich sediment is able to be
135 deposited, as well as plant matter which further promotes the formation of carbon rich
136 sediment (Horstman et al., 2015).

137 A significant proportion of the global tidal marsh carbon is found in the temperate Northern

Commented [A10]: This should be compared to other vegetation types.

Commented [A11]: Restoration is not mentioned elsewhere, so this point could be removed.

Commented [A12]: Rather than comparing higher/lower carbon stocks, this paragraph would be more effective by distilling trends into a few broadly supported statements.

Commented [A13]: Lower redox potential typically indicates more anaerobic conditions

Commented [A14]: This study is of arid wetlands and caution should be taken in applying this broadly to broader carbon ecosystems

Commented [A15]: This section starts to stray from the subject of this review here; I'd suggest removing this paragraph

138 Atlantic, which has 45 % of the world's tidal marsh extent (Worthington et al., 2024). The U.S,
139 Canada and Russia are the top three countries with the highest predicted total sediment
140 organic carbon in their tidal marshes, because they have extensive marsh cover and high
141 carbon per unit area (Worthington et al., 2024). The global estimate of carbon in the top metre
142 of marsh sediment is 1.44 Pg C (Maxwell et al., 2024; Table 1). The average sediment organic
143 carbon per hectare is predicted to be about 83.1 Mg C ha⁻¹ in the 0-30 cm layer and 185.3
144 Mg C ha⁻¹ in the 30-100 cm layer (Maxwell et al., 2024). Globally, it is estimated that
145 mangroves store around 11.7 Pg C, with most of the carbon stocks being in the sediment
146 (Kauffman et al., 2020). The global sediment stock of tidal flats is estimated to be 0.9 Pg C
147 (Chen and Lee, 2022).

148 **Table 1: Continent-level summary for tidal marsh area and sediment organic carbon
149 (SOC).**

Habitat	Region	Area (km ²)	SOC (Mg ha ⁻¹) ^a	SOC (Pg C)
Salt marsh		41,700-54,900 ^a		1.44 ^a
	Africa	2 241.37	1046.05	
	South America	4 537.76	710.53	
	North America	30 259.07	1045.54	
	Europe	11 054.68	1377.9	
	Asia	2 301.71	400.02	
	Oceania	2 378.58	172.86	
Mangrove		150,000 ^b		11.7 ^b
Tidal flats		127,921 ^c		0.9 ^c

150

151 ^a (Maxwell et al., 2024)

152 ^b (Kauffman et al.,
153 2020)^c (Chen and Lee,
154 2022)

155

156 Tidal marshes have gained interest for their recently recognised value of carbon storage,
157 leading to extensive research on carbon stocks and factors influencing carbon sequestration
158 and storage. Similarly, accretion and erosion dynamics of tidal marshes and the processes
159 driving these changes is well understood. However, the influence of animal interactions on
160 these processes is poorly understood, even though soil animals are key components of
161 aquatic environments (Adams et al., 2025). This review provides an overview of the current
162 knowledge on the influence of bioturbation on sediment accretion and erosion in tidal
163 marshes, including the impact of bioturbation on carbon sequestration. Table S1 in the
164 Supplementary material provides a summary of key bioturbation studies relating to accretion,
165 erosion, and carbon sequestration, emphasising their methodologies and main findings that

167 are discussed in the following pages, while Figure 2 shows where these studies were
168 conducted.

169 To quantify the extent of research conducted on sediment processes and carbon in tidal
170 marshes, a systematic literature search was performed in the web of science database using
171 key words related to tidal marshes, carbon storage/sequestration and sediment dynamics.
172 This search yielded 544 publications between the years 1993 and 2025. While a fair amount
173 of research has been conducted on carbon stocks and sediment dynamics in tidal marshes,
174 there remains a gap in our understanding of the role of bioturbators and their interaction
175 processes on sediment dynamics. When key words relating to bioturbation were included,
176 only 64 publications were yielded. Thus, the influence of these interactions on carbon
177 sequestration and storage, and how this might be impacted in the face of climate change,
178 which is a pressing future concern, is poorly understood compared to the overall science of
179 tidal marsh carbon and sediment processes. This review therefore aims to improve our
180 understanding of how bioturbators shape sediment dynamics and carbon cycling.

181 1.3) Bioturbation in coastal tidal marshes

182 Bioturbation in tidal marshes is associated with a number of organisms, found above and
183 below the surface sediment (Macreadie et al., 2017). Benthic invertebrates under the classes
184 Oligochaeta (worms), Gastropoda (snails), Polychaeta (polychaetes), Crustacea (crabs,
185 shrimp and malacostracans) and Bivalvia (cockles and mussels) are common bioturbators
186 found in tidal marshes (Van Der Wal and Herman, 2012). Some of the best studied groups
187 include crustaceans and molluscs (Booth et al., 2023). Bioturbators are significant
188 components of both terrestrial and aquatic ecosystems as they modify habitats, decompose
189 litter, and are also consumers of organic material (Wang et al., 2010). Bioturbation involves any
190 transport process performed by animals that affects sediment matrices, either directly or
191 indirectly (Kristensen et al., 2012), which includes burrow ventilation and particle reworking.
192 Darwin (1881) was the first to recognize the significance of animal bioturbation and its role in
193 influencing soil ecosystem processes. A dominant form of bioturbation in coastal wetlands
194 includes that of burrowing, with burrow architecture being species specific (Min et al., 2023;
195 Fig. 1). One of the most diverse groups, with special adaptations for burrow construction is
196 Decapoda (Giraldez et al., 2017; Hajalizadeh et al., 2022). Burrow construction and
197 maintenance, in addition to ingestion and defecation results in particle reworking and
198 biomixing. As a result, microorganisms and organic matter are displaced within the sediment
199 matrix, both laterally and vertically (Kristensen et al., 2012). Benthic organisms can

Commented [A16]: Figure 2 and Table 2 are largely repetitive. Figure 2 takes up a lot of space without presenting much information, particularly since the diagram is not to scale. I suggest removing Figure 2.

Commented [A17]: Where are the key words or words related to these? Please provide exact search parameters.

Commented [A18]: Same comment as above.

Commented [A19]: Over 10% of papers with seemingly broad search terms included bioturbation. This itself/alone doesn't suggest to me that this is a poorly understood topic.

This point would be strengthened if made after the bioturbation section, where the diversity of bioturbators is explained.

Commented [A20]: This paragraph has too many topics. I suggest the opening paragraph in this section be dedicated to defining bioturbation and identifying and classifying bioturbators. Impacts of bioturbation can start in the next paragraph.

Commented [A21]: Vague; this could be strengthened by providing a count of studied bioturbators, or this sentence could be removed and the following sentence reformatting.

Commented [A22]: The definition of bioturbation should be at the start of the section.

Commented [A23]: Later in the text, burrow architecture becomes key context in differentiating impacts. Different architectures should be defined here.

201 significantly affect the composition of sediment, with destabilizing organisms generally
202 decreasing mud content, while stabilizing organisms can increase mud content (Arlinghaus
203 et al., 2021). Animals that rework sediment particles can be categorized as upward
204 conveyors, downward conveyors, biodiffusors and regenerators depending on their feeding
205 type, behaviour and life style (François et al., 2002). Collapsed burrows that are abandoned
206 and become filled in, can be considered as indirect bioturbation (Kristensen et al., 2012).
207 Ventilation happens when animals flush their burrows with water for feeding and respiration,
208 and can be open with two or more openings, or blind ended with one opening. This results in
209 the rapid transport of solutes from the burrow to the overlying water (Kristensen, 2001).
210 The activities associated with bioturbation can therefore influence the physical, chemical and
211 biological characteristics of tidal marshes (Min et al., 2023).

Commented [A24]: What are destabilizing and stabilizing organisms? Some description should be given to these categories.

212 Burrowing activities decreases sediment hardness, breaks up and transports sediment (Botto
213 and Iribarne, 2000), and increases the coarse particle density on the surface layers of the
214 sediment (Warren and Underwood, 1986). In addition, burrowing influences the chemistry of
215 the sediment, increases the oxygenation of the sediment and changes the pore water salinity
216 (Fanjul et al., 2007; Booth et al., 2023). Fine grained sediment, as well as sediment
217 containing high concentrations of organic matter can be trapped by crab burrows, which
218 assists with organic matter decomposition and increases the availability of nutrients (Fanjul
219 et al., 2007). The rate of nutrient and sediment turnover is further accelerated by means of
220 excavation by crabs, which transports nutrients and sediment from deep layers to the surface
221 layers of the salt marsh (Fanjul et al., 2007). Belowground processes are therefore impacted
222 by burrowing crabs which in turn influences marsh plants and trees by promoting growth
223 (Botto et al., 2006; Ngo-Massou et al., 2018). The interaction between the environment, the
224 biology and the density of a bioturbator determines the extent of the bioturbation effect (Wang
225 et al., 2010; Xie et al., 2020; Pan et al., 2023), which varies over space and time. For example,
226 the presence or absence of vegetation plays a key role in shaping this impact. When
227 vegetation was present, the quantity and quality of excavated and deposited soils (in burrow
228 mimics) was influenced, and thus, so was the burrowing effect (Wang et al., 2010). Vegetation
229 can improve nutrient concentrations, but its roots can obstruct the vertical movement of
230 sediment.

Commented [A25]: The outline of this sentence can help organize the following paragraphs. Physical, chemical, and biological impacts should each be described separately throughout each of the following sections

Commented [A26]: This paragraph starts to get specific, and most of these points could be worked in the following sections, where this level of detail is warranted.

231

232 **Figure 1: Examples of burrow openings of different crab species: *Scylla serrata* (A),**

233 *Neosarmaticum africanum* (B), *Cyclograpus punctatus/Parasesarma catenatum* (C

234 and D). The scale bar represents 10 cm in the foreground.

235

236 1.4) Impacts of bioturbation on sediment processes

237

238 Bioturbation influences a number of sediment processes such as accretion, erosion,

239 sediment transport and deposition, which are outlined below and summarised in Table 2

240 and Table S1.

241 These processes are visually represented in Figure 3 and further explained in Table 3.

242 1.4.1) Accretion

243 Sedimentation is a key process shaping tidal marshes, improving water clarity and quality

244 which helps submerged plants access sunlight (Nahlik and Mitsch, 2008). The sequestration

245 of carbon is also enhanced by sedimentation (Bernal and Mitsch, 2013) because the active

246 burial of carbon limits its exposure to oxygen thus, limiting oxidation (McCarty et al., 2009).

247 Salt marshes and mangroves persist when sediment carried by tides is deposited in

248 vegetation (Saintilan et al., 2022). This builds elevation and promotes the growth of plants

249 which increases belowground organic matter, resulting in elevation gain, slower water

250 movement and allows for more suspended sediment to settle (Kirwan and Guntenspergen,

251 2012). Plant shoots promote the deposition of sediment while plant roots bind and stabilize

252 the sediment and can help prevent erosion (Buffington et al., 2020). Accretion therefore

253 involves sedimentation, root growth, and development of peat (Krauss et al., 2014;

254 MacKenzie et al., 2024)

255 Benthic organisms are able to facilitate sediment transport and sedimentation patterns over

256 extended periods and across surrounding areas (Arlinghaus et al., 2021). Their biological

257 activity impacts sediment structure in terrestrial, marine, and intertidal zones, either stabilizing

258 or destabilizing these environments. Some organisms enhance sediment cohesion by

Commented [A27]: Figure 3 has strong potential, and would benefit from stronger text support and some figure reorganization.

Stronger text support: Currently, the text is organized using impacts of bioturbation, while Figure 3 is organized by types of bioturbation and mechanisms that drive the impacts. This makes the figure difficult to follow along with through the text. Organizing the figure in the same structure as the text would improve legibility.

Figure reorganization: the lower diagram doesn't line up with visual representations in the upper diagram, and this makes the figure difficult to follow. There are also some elements that are small/difficult to read in print. Also, the box for bioturbation impact #5 is blue, while the rest are grey – I don't see an explanation for this in the caption.

Commented [A28]: This is the opening paragraph of the section on bioturbation, yet doesn't mention bioturbation. This information should be moved, perhaps to a 'Tidal wetland geomorphology' section in the introduction.

Commented [A29]: This is more of a focus for submerged vegetation such as seagrasses, which are not considered in this review. Regular inundation dramatically reduces salt marsh photosynthetic capacity
<https://aqupubs.onlinelibrary.wiley.com/doi/full/10.1002/2022JG007161>

Commented [A30]: vague

259 producing an organic coating in the burrow walls from extracellular polymeric substances
260 (EPS), mainly mucus (Watling, 1991). *Sesarma reticulatum* (a crab occurring in northern
261 hemisphere temperate salt marshes) for example does this (Kristensen, 2008). These
262 biostabilization processes can therefore influence the strength of sediment in intertidal zones.
263 In a similar fashion microphytobenthic organisms form biofilms which can also improve the
264 stabilization of sediment (Decho, 2000).

Commented [A31]: Are these bioturbators?

265 Burrowing animals affect important ecosystem functions, while influencing the structure and
266 function of plant communities, with these effects varying in direction and magnitude regionally
267 (Vanni, 2002). Changes in the burrowing activities could have important consequences for
268 the functioning of salt marshes and mangroves. Low to moderate levels of bioturbation can
269 be beneficial to primary productivity (Kristensen et al., 2008). For example, burrowing by
270 fiddler crabs has been seen to benefit the growth of *Spartina alterniflora* by increasing soil
271 drainage, enhancing decomposition of plant debris and improving soil redox potential
272 (Bertness, 1985). Burrows can increase the surface area of the marsh allowing for the
273 exchange of oxygen from tidal water and the atmosphere which can increase the uptake of
274 nitrogen increasing plant productivity (Bradley and Morris, 1990; Sharbaugh et al., 2025)

Commented [A32]: This doesn't quite fit in the accretion section. Perhaps this is a better fit in the carbon sequestration, or in a soil chemistry section

275 Recent studies have highlighted the importance of bioturbation in determining changes in
276 surface elevation (Bennion et al., 2024). The accretion or erosion of sediment is partially
277 related to the burrowing and feeding activities of the species (Morelle et al., 2024). For
278 example, it was found that crab species, which differ in diet and burrow morphology, had a
279 larger influence on sediment than crab density superfamily, whether it was an Ocypodoidea
280 or Grapsoidae, had the biggest influence on sediment, as opposed to crab density (Rinehart
281 et al., 2024), which is related to their burrow morphology and diet (Table S1, Fig. 3). The
282 composition of crabs has the potential to influence ecosystems differently (Agusto et al.,
283 2021). In mangroves, changes in surface elevation is-are strongly influenced by species
284 composition of the vegetation and was positively influenced by the frequency of bioturbation.
285 In salt marshes, however, bioturbation had no significant effect on changes in surface
286 elevation because they had lower levels of bioturbation compared to the mangroves (Bennion
287 et al., 2024) (Table S1, Fig. 3).

Commented [A33]: Slightly repetitive in this placement – this could be moved earlier.

288 Excavated sediment through bioturbation activities, along with sediment from eroding areas
289 of the marsh, can contribute material for accretion on the surrounding marsh platform, helping
290 to increase marsh elevation (Wilson and Allison, 2008). Mussels, for example *Geukensia*
291 *demissa*, can also contribute to vertical accretion in salt marshes, as they harvest sediment
292 through their filtration activities, thus contributing to the sediment budget (Crotty et al. 2023)

Commented [A34]: This statement doesn't match the table and seems to be specific to this study – if so, this should be clarified.

293 (Table S1, Fig. 3). They also deposit faeces which is nutrient rich, indirectly increasing
294 vegetation biomass, improving soil shear strength (resistance to erosion) and stability. These
295 interactions therefore play an important role in promoting elevation gain and improving marsh
296 resilience.

297 **1.4.2) Erosion**
298

299 Due to coastal wetlands being situated at low elevation at the land sea interface, they are
300 susceptible to submergence and lateral erosion driven by wave activity, storm surges and
301 increased sea levels (Leonardi et al., 2018). The morphology and long-term persistence of
302 tidal marshes is influenced by erosion. Erosion rates are determined-influenced by vegetation,
303 which affects sediment deposition rates and biological activity (Mudd et al., 2010; Cahoon,
304 2024). Benthic organisms, specifically bioturbators, play a crucial role in influencing erosion
305 processes through their activities. Bioturbators can affect sediment roughness and alter its
306 characteristics, thereby influencing the erodibility of sediment (Dairain et al., 2020).
307 Bioturbators can have both direct and indirect effects on the erosion of tidal marshes. These
308 positive and negative impacts are expected to vary over time, as macrofaunal bioturbation is
309 temperature-dependent and tends to be more pronounced during warmer months (Cozzoli
310 et al., 2018). By reworking the sediment, bioturbators repack the sediment that was once
311 compact, which changes the texture and granulometry, causing larger aggregates of grains
312 to form (Grabowski et al., 2011). For example, *Scrobicularia plana* (a clam commonly found
313 in temperate European salt marshes) caused the sediment to become coarser and changed
314 the bed topography, which showed a loss by resulting in erosion (Morelle et al., 2024) (Table
315 S1, Fig. 3). Fine grained sediment such as clay and silt are more susceptible to the effects of
316 benthos (Arlinghaus et al., 2021). There are however still uncertainties with regards to the
317 role that benthic organisms play in sediment dynamics (Dairain et al. 2020; Farron et al.
318 2020). For example, the influence of *S. reticulatum* bioturbation on the erodibility of sediment
319 has not yet been quantified as it is difficult to measure the processes in the field (Farron et
320 al., 2020). Thus, few studies have explored the connection between sediment stability and
321 burrow building bioturbators (Needham et al., 2013).

322 Burrowing activities weaken mud and clay banks in tidal marshes, making them more
323 susceptible to erosion through wave action. Dairain et al. (2020) observed that *Cerastoderma*
324 *edule* (common cockle, native to salt marshes in Europe and northwestern Africa) promotes
325 erosion of the surface sediment by increasing the roughness of the sediment, and this is due
326 to their sediment reworking activities (Table S1, Fig. 3). The same was true for the lugworm,
327 *Arenicola marina* (common in mudflats and salt marshes in Europe), which increased the

Commented [A35]: Is this always true? Earlier it was written that burrowers can enhance sediment cohesion

328 permeability and roughness of the sediment (Montserrat et al., 2011) (Table S1, Fig. 3).
329 *Sesarma reticulatum* contributes to changing erosion patterns by facilitating greater erosion
330 (Farron et al., 2020), which is likely driving the headward expansion of straight, low-order
331 tidal creeks in salt marshes within the Georgia Bight (Vu et al., 2017).

332 In addition to sediment disturbance, bioturbators can impact sediment cohesion and
333 erodibility. When the density of infauna were experimentally reduced in the Humber estuary
334 (UK), there was a 300 % increase in sediment stability on the intertidal mudflats (De Deckere
335 et al., 2001) (Table S1, Fig. 3). Invertebrates, such as crabs, can influence sediment stability
336 by consuming microphytobenthic organisms (Booth et al., 2023) which can indirectly promote
337 the destabilization of sediment (Daborn et al., 1993). Crabs can also contribute to sediment
338 destabilization by causing vegetation loss (Smit et al., 2024). Burrowing by *Sesarma*
339 *reticulatum* caused the upper 10-15 cm of the marsh to become oxidized which caused
340 enhanced degradation of belowground biomass of *S. alterniflora* (Wilson et al., 2012) (Table
341 S1, Fig. 3). This process reduces the shear strength of the sediment, increasing the erosion
342 potential which facilitates creek extension. Compared to the surrounding marsh platform, the
343 heads of newly formed creeks have lower topography, lack vegetation, and are densely
344 populated with both burrowing and herbivorous crabs. Over time these creek heads extend
345 further into the marsh platform as the creek migrates, which causes dieback of vegetated
346 areas and a loss of elevation of up to 50 cm (Day et al., 2011; Wilson et al., 2012). Similarly,
347 *Chasmagnathus granulatus* (a crab inhabiting the salt marshes of South America), through
348 their burrowing activities, have also been shown to increase the growth rate of tidal creeks,
349 causing larger creeks to form, which can promote salt marsh erosion (Escapa et al., 2008)
350 (Table S1, Fig. 3). In addition to their large scale effects on creek formation and vegetation
351 loss, crabs can also affect sediment structure at finer scales, through the formation of
352 burrows.

353 Crab burrows, particularly those of species that do not plug their burrows during inundation,^a
354 may function as passive sediment traps (Grabowski et al., 2011; Escapa et al., 2008).
355 However, water filled burrows often lead to a reduced bulk shear strength and density, and
356 reduced erosion thresholds, which in areas that are heavily burrowed would increase the
357 mass of sediment eroded (Grabowski et al., 2011). Sediment trapping rate is dependent on
358 burrow architecture, density and possibly bed roughness (Escapa et al., 2008), therefore,
359 different species of burrowing crabs have different effects on the erosion and transport of
360 sediment (Min et al., 2023, Fig. 1).

361 1.4.3) Sediment transport and deposition

362

363 Sediment transport is often considered to be only a physical process, as a result of sediment
364 beds responding to hydrodynamic forces in coastal habitats (Le Hir et al., 2007). However,
365 biological components are also able to influence sediment transport processes. The
366 interaction between organisms and the sediment is complex and generally context specific,
367 due to factors such as hydrodynamics, sediment composition or species-specific behaviours
368 (Needham et al., 2013). The influence of individual species on sediment dynamics are
369 therefore poorly understood. This makes it difficult to predict the overall impact of organisms
370 on sediment transport. While erosion and deposition are primarily driven by hydrodynamics,
371 benthic organisms influence the extent of these processes on a spatial and seasonal scale.
372 Studies have shown that benthos can cause change of the same order of magnitude as
373 hydrodynamic processes (Arlinghaus et al., 2021).

374 Crab burrow morphology is related to biological (e.g. sex or size; Sen and Homechaudhuri,
375 2016) and environmental (e.g. vegetation or sediment composition; Penha-Lopes et al.,
376 2009) factors, with morphology influencing their effectiveness in trapping sediment and
377 organic matter. Intertidal decapods construct funnel shaped burrows which aids in the
378 trapping of organic matter and sediment (Botto et al., 2006). Funnel shaped burrows with low
379 aspect ratios trapped a greater percentage of organic matter while tubular shaped burrows
380 with a higher aspect ratio trapped a greater amount of sediment (Botto et al., 2006) (Table
381 S1, Fig. 3). Gutiérrez et al. (2006) and Wang et al. (2010) deployed burrow mimics and found
382 that less material by weight was collected in the mimics than was excavated by crabs,
383 indicating a net export of sediment material (Table S1, Fig. 3). Excavation allows for buried
384 material to be brought to the surface, increasing the amount of sediment available for export
385 by tidal flushing. The quantity of sediment and organic matter available for transport is
386 therefore a balance between material deposited into crab burrows and material excavated
387 from them.

388 Crabs create sediment mounds when they move sediment from their burrow to the surface.
389 During flooding and ebbing tide, this fresh mound sediment is transported. It remains a
390 challenge to predict when burrowing engineers will have a significant effect on their
391 environment (Coggan et al., 2018). However, the engineering effect is anticipated to intensify
392 as crab population densities increase (Rinehart et al., 2024). For example, burrowing crabs
393 are often found to have site specific effects on ecosystems (Beheshti et al., 2021), such as
394 promoting sediment trapping in one area of the marsh, but enhancing sediment removal in
395 other areas (Escapa et al., 2008). Crabs were found to promote the trapping of sediment in

Commented [A36]: This is somewhat repetitive with sediment accretion and erosion above

396 open mudflats and intertidal salt marsh where current speeds are low, whereas in the salt
397 marsh edge, they were increasing sediment removal (Escapa et al., 2008) (Table S1, Fig. 3).
398 This was due to funnel shaped burrows being more frequent in the low intertidal zones as
399 well as the assistance of plants in trapping sediment. In habitats with weak flow, burrowing
400 animals are expected to promote sediment trapping, whereas in high flow energy habitats,
401 burrowing activity is anticipated to increase sediment removal rates, determined by the
402 strength of the current. In addition to crabs, Thalassinidea which are shrimp-like organisms,
403 commonly referred to as mud or sandprawns in South Africa, also influence sediment
404 transport and deposition. These burrowing species similarly create mounds by expelling
405 sediment from their burrows (Pillay and Branch, 2011). The transport of sediment by
406 thalassinideans is greater than that achieved by diffusion processes or abiotic burial (Grigg,
407 2003). The sediment expelled from callianassid burrows is easily eroded at low current
408 speeds because it is unconsolidated, making it more prone to resuspension and redeposition
409 in adjacent areas (Pillay et al., 2007). *Kraussilichirus kraussi* (sandprawn characteristic of
410 temporarily closed estuaries in South Africa) consumes organic matter around its burrow,
411 thus is an effective mover of sediment (Pillay and Branch, 2011). Burrowing organisms are
412 therefore key drivers of sediment transport and redistribution in tidal marshes.

413 1.5) Impact of bioturbation on carbon burial and sequestration

414

415 Consumers can influence the carbon cycle directly and indirectly. For instance, small
416 bioturbating grazers change sediment properties and remove plant biomass. While they are
417 known to have an effect, they remain an understudied driver of carbon cycling (Guimond et
418 al., 2020; Ren et al., 2022). It was estimated by Montague (1982) that *Uca pugnax* (a species
419 of fiddler crab native to salt marshes along the coast of North America) excavated an amount
420 of carbon that is equal to 20 % of what *S. alterniflora* produces belowground annually, in
421 Sapelo Island, [Georgia, U.S.](#) (Table S1, Fig. 3). The amount of carbon collected in burrows
422 was lower than that made available for tidal flushing by excavation (Montague, 1982). The
423 concentration of labile and total carbon at the marsh surface is expected to decrease with
424 crab activities because of the lower carbon content in the sediment that is excavated in
425 relation to that deposited into the burrow (Gutiérrez et al., 2006). Burrowing organisms, such
426 as crabs, can influence the carbon balance of tidal marshes by releasing carbon that would
427 otherwise remain stored deeply in the sediment. Wittyngham et al. (2024) showed that small
428 grazers cause a decrease in carbon stocks with *S. reticulatum* accounting for a loss in carbon
429 stocks of 40-70 % (Table S1, Fig. 3). In Cape Cod where marsh die off and erosion occurred
430 due to overgrazing by *S. reticulatum*, an estimate of 248.6 ± 4.8 gigagrams of belowground

Commented [A37]: Paragraph should have a more descriptive topic sentence

431 carbon was released (Coverdale et al., 2014) (Table S1, Fig. 3). A correlation exists between
432 crab burrows and carbon content, with higher densities of crab burrows associated with
433 decreased carbon in the topsoil (Carpenter et al., 2023). The highest carbon content was
434 found in salt marsh with minimal burrowing by crabs.

435 Complex burrow networks can have an effect on soil carbon stocks. A study conducted in
436 Kenya found that mangrove forests that had a greater abundance of sesarmid crabs, had
437 higher soil carbon stocks (Andreetta et al., 2014) (Table S1, Fig. 3). Crabs can also directly
438 transfer carbon to sediments through the transportation of faeces, algae, leaf litter, and
439 exuviae into their burrows (Alongi, 2002). This vertical transport of carbon was demonstrated
440 through radiocarbon dating of sediment cores. Modern carbon was found to depths of 115
441 cm (Andreetta et al., 2014), which means that crabs are supplying new organic matter to
442 deeper sediments. It is possible that the diversity of macrofauna in these ecosystems could
443 be an important driver of carbon dynamics (MacKenzie et al., 2021). Macrofaunal diversity
444 means a variety of sediment reworking activities, through bioturbation and bio-irrigation,
445 which in turn can exert control on sedimentary biogeochemical cycling, such as carbon
446 cycling (Meysman et al., 2006). On the other hand, crabs can also decrease carbon stocks
447 because their burrows increase sediment surface area, aiding organic matter decay as more
448 sediment becomes oxic, which leads to carbon loss via tidal flushing (Klaassen et al., 2025).

449 The effects of bioturbation on carbon cycling ~~is-are~~ context specific. For instance,
450 *Macrophthalmus japonicas*, a salt marsh crab species from East Asia, increased the
451 mineralization of sediment organic matter (SOM), stimulating the release of organic carbon,
452 thus slowing the accumulation of organic carbon within sediment surface layers (Nie et al.,
453 2021) (Table S1, Fig. 3). Similarly, bioturbation by *S. reticulatum* led to the remineralization
454 of belowground organic matter by increasing the permeability and aeration of the sediment,
455 leading to the degradation of organic material (Wilson et al., 2012). Crabs decreased SOM
456 and carbon content in vegetated habitats and increased SOM and carbon in unvegetated
457 habitats (Rinehart et al., 2024). Crab bioturbation has been shown to improve benthic
458 metabolism and exchange of dissolved organic matter from the sediment to the water column
459 (Fanjul et al., 2015) (Table S1, Fig. 3). It was also found that the distribution, quality and
460 bioavailability of sedimentary organic matter is influenced by bioturbation. Furthermore,
461 efficient remineralisation of detritus occurs at bioturbated sediment and is exported as CO₂
462 and DOC to the water column. Bioturbation, by crabs, therefore improves the amount of labile
463 organic carbon of bioturbated sediments and alters the pathway of carbon export to coastal
464 waters (Fanjul et al., 2015).

Commented [A38]: Could this also aerate and increase decomposition of previously stable C?

465 While bioturbation can contribute to carbon loss, some bioturbating organisms can promote
466 carbon storage. Burrows of *Upogebia major* (mudshrimp found in salt marshes in East Asia)
467 and other thalassinideans have been found to trap organic matter (Kinoshita et al., 2008),
468 which can increase the storage of carbon. Moreover, it was found that grazing by livestock
469 had a neutral to positive effect on carbon sequestration (Graversen et al., 2022) (Table S1,
470 Fig. 3). Crab burrowing was found to increase the turnover of nitrogen and carbon, with
471 excavated soil having higher inorganic carbon concentration compared to soil deposited into
472 burrows (Wang et al., 2010). This indicates that excavation activities accelerates the
473 mineralization of organic matter from organic to inorganic carbon (Wang et al., 2010). Such
474 changes to organic matter availability and benthic metabolism by bioturbation have the
475 potential to decrease the storage capacity of carbon (Gutiérrez et al., 2006). Under
476 accelerated sea level rise, consumers' impact on the carbon cycle, through carbon
477 consumption and marsh stability, is expected to intensify as a result of the accelerated
478 migration rates of consumer fronts, which are clusters of consumers bordering a specific
479 resource (Wittyngham et al., 2024).

480 1.6) Global change impacts on tidal marsh bioturbation

481

482 Blue carbon ecosystems are threatened by climate change, particularly sea level rise
483 (Borchert et al., 2018; MacKenzie et al., 2024), as well as increasing temperatures and
484 alterations in precipitation regimes (Arias-Ortiz et al., 2018; Adams et al., 2025). Coastal
485 geomorphology, sedimentation patterns, geographic locality and regional oceanographic
486 properties cause tidal marshes to become susceptible to these threats (Mcleod et al., 2010).
487 The resilience of salt marshes and mangroves to sea level rise is determined by physical
488 drivers, such as unrestricted landward migration or increase in surface elevation (Schuerch
489 et al., 2018; Lovelock and Reef, 2020) as well as biological drivers such as diversity
490 productivity (Branoff, 2020; He et al., 2025). The extent of development along the coast and
491 the local topography controls the area available for these ecosystems to migrate landward,
492 however, the rate of sedimentation controls the ability of salt marshes and mangroves to
493 resist the rise in sea levels via the gain in relative surface elevation. The ability for sediment
494 to be retained in the intertidal region is dependent on local coastal dynamics and drainage
495 basin geology (Adams et al. 2019). Furthermore, the structure of a wetland ecosystem affects
496 its resistance to a disturbance as well as recovery from a disturbance, therefore, local
497 geomorphology contributes substantially towards the resilience of these systems (Phillips,
498 2018). Mangrove and salt marsh responses to sea level rise is thus not uniform across

Commented [A39]: This can also be from biological drivers

Commented [A40]: Repetitive with above

499 different regions and even between sites within the same mangrove or salt marsh habitat
500 (Passeri et al., 2015; Adams et al., 2025).

501 Mangroves are specifically vulnerable to changes in temperature and precipitation regimes,
502 because the distribution range globally is linked to [sea surface temperature](#). Mangrove
503 occurrence is limited to regions that are tropical or subtropical, and this by the winter 20 °C
504 [sea surface](#) isotherm (Tomlinson 1999; Hamilton and Casey, 2016). With rising temperatures
505 comes an expansion of mangroves polewards, to higher latitudes. Expansion of mangroves
506 leads to a loss of salt marsh habitats which results in ecological shifts as well as changes in
507 the provisioning of ecosystem services, for example carbon storage (Kelleway et al., 2017a).
508 Furthermore, mangroves that are found at range limits are also commonly smaller and shrub-
509 like (Morrisey et al., 2010), which influences their capacity to store and sequester carbon
510 (Raw et al., 2021). With rising sea levels, salt marshes are expected to migrate landwards
511 (Enwright et al., 2016). If the rate of sea level rise surpasses that of surface elevation gain it
512 will cause a shift in habitat with lower intertidal regions becoming subtidal and upper intertidal
513 species will encroach the terrestrial boundary (Fagherazzi et al., 2019). In salt marshes, as
514 sea level and consequently tidal prism begins to increase, it is expected that tidal creeks will
515 develop, which has been observed in Bahamas (Kirwan and Guntenspergen, 2012).

Commented [A41]: Winter freeze occurrence

516 Regions that are more flooded (e.g. seaward areas) generally have smaller, shallower burrow
517 networks compared to those in drier regions (Egawa et al., 2021). Crab activity is highest in
518 summer and lowest in winter (Egawa et al., 2021), because of this seasonal change in
519 behaviour, it could further complicate the influence of crabs on carbon budgets (Guimond et
520 al., 2020) as regional historical temperatures change lined to behavioural phenology.
521 Changes in water levels and temperature, major components of climate change, can
522 influence the distribution of crabs and the extent of bioturbation (Wilson et al., 2022).
523 Increased flooding can suppress these activities, thus leading to redox conditions becoming
524 more anoxic in tidal marshes (Pan et al., 2023). On the other hand, faunal activities can
525 interact with climate stressors. For example, cordgrass (*Spartina* [A](#)*lterniflora*) loss and
526 erosion have been caused by combined effects of sea level rise and *S. reticulatum* density
527 increases in US Atlantic salt marshes (Crotty et al., 2020; Morrison et al., 2024).

Commented [A42]: This reference is missing

528 Crabs create burrow structures in the form of tunnels and chimneys which can potentially
529 provide material available for erosion. Flow velocities of 60 cm/s or higher are required to
530 erode these structures, which can be reached at tidal creek heads under typical conditions
531 (Farron et al., 2020) (Table S1, Fig. 3). These velocities are also likely during high flow events
532 such as storms, which are expected to increase in frequency and intensity due to climate
533 change (Zhang and Colle, 2018; Raw et al., 2023). Rainfall events, in contrast, do not erode

534 marsh substrate that is consolidated but rather mobilize recently deposited, unconsolidated
535 sediment (Voulgaris and Meyers, 2004). In areas that are heavily burrowed, this would
536 include sediment deposited in the past few tidal cycles, in addition to burrow structures and
537 pellets. This means that storms associated with climate change will have major effects on
538 erosion patterns, especially in regions that are heavily burrowed, which can lead to
539 morphological changes (Farron et al., 2020). Increases in drainage density is necessary to
540 manage the expanding tidal prism and effectively drain the marsh surface to prevent
541 waterlogging. Crab activity at tidal creeks may help alleviate the effects of accelerating sea
542 level rise on the marsh platform (Farron et al., 2020). In a regime of increasing sea level rise,
543 the presence of burrowing organisms, such as crabs, may possibly increase marsh
544 sustainability, by forming creeks or extending existing creeks, and enhancing erosion.
545 Overpopulation of crabs, through changes in predation pressure, however can cause loss of
546 marsh area and increase vulnerability to erosion, negatively impacting the marsh.

Commented [A43]: Abrupt shift in topic

547 1.7) Synthesis and way forward

548
549 A positive sediment budget is important for the accretion and resilience of tidal marshes, as
550 it promotes marsh elevation and enhances carbon storage by actively burying carbon.
551 Bioturbation activities on the other hand can either stabilize or destabilise sediment, influence
552 sediment transport and ultimately influence marsh elevation. These two processes can
553 therefore be viewed as being interconnected rather than being independent of one another.
554 The reworking of sediment by some organisms increases surface roughness and decreases
555 sediment cohesion, leading to erosion and in some cases creek formation. While the
556 stabilization of sediment is possible through burrows of other species, functioning as passive
557 sediment traps, which in turn can promote accretion. Apart from sediment properties being
558 affected by bioturbation activities, carbon cycling is also influenced by these activities.
559 Activities such as burrowing and feeding can lead to a loss of carbon through increased
560 mineralization of organic matter, or through erosion. However, bioturbators can also promote
561 the burial of carbon by trapping sediment, and transporting organic matter such as faeces
562 and leaf litter into their burrows.

563 This review has highlighted a number of knowledge gaps, specifically the lack of
564 understanding of the influence that bioturbators and their interactions have on sediment
565 processes and their role in carbon cycling. This is despite increasing recognition that
566 biological components have an influence on the functioning of tidal marshes. Sediment-
567 organism interactions are often context specific and complex, and our understanding of

568 species specific impacts are limited. It is challenging to predict how bioturbators might
569 influence their environment as the impact of individual species on sediment dynamics varies,
570 therefore, bioturbation effects cannot be generalized. For example, the effects of crabs from
571 the family Ocypodidae versus crabs from the family Sesarmidae will have different effects on
572 sediment because of burrow morphology, diet and behaviour, all of which influence
573 bioturbation effects. Moreover, these families are often found co-occurring in the same habitat
574 making it important to understand their individual as well as combined impacts on sediment
575 processes. Such studies could be done under experimental conditions and in situ, and should
576 be extended across different habitat types as sediment characteristics and vegetation also
577 have an influence on bioturbation impacts.

578 Sediment–species interactions also have an influence on carbon cycling in tidal marshes, yet
579 consumers are an understudied driver of these processes. There is a need to quantify carbon
580 stocks, sequestration and greenhouse gas fluxes and to investigate how these processes
581 respond to bioturbation activities. Studies comparing regions with varying intensities of
582 bioturbation are important for a better understanding of the contribution of bioturbators to
583 carbon dynamics in tidal marshes. It is clear that there is no real consensus as to whether
584 bioturbation has a positive or negative influence on sediment dynamics and carbon cycling
585 (Table 2 and S1). By advancing our understanding, management and restoration efforts could
586 be improved, and better predict the resilience of tidal marshes under future climate change
587 pressures.

588 **1.8) Author contributions**

589

590 Conceptualization: GMR, JBA; writing original draft preparation: LS; writing review and
591 editing:

592 GMR, JBA, LS; supervision: GMR, JBA; funding acquisition: GMR, JBA.

593 **1.9) Conflict of interest**

594

595 The authors declare that they have no conflict of interest.

596 **1.10) Acknowledgements**

597

598 This research was funded by the National Research Foundation (NRF) of South Africa
599 through the support of the DSI/NRF Research Chair in Shallow Water Ecosystems (UID
600 84375). The NRF are also thanked for providing a scholarship to LS. All opinions expressed

601 are those of the authors and not necessarily also those of the funders. Thank you to the Blue
602 Carbon
603 Working Group for thought-provoking discussions that inspired this review.

Figure 2: Global distribution of studies conducted in tidal marshes investigating the influence of bioturbation on sediment dynamics and carbon cycling. The size of each dot indicates the number of studies conducted in each country. Yellow dots represent studies focused on sediment dynamics, while blue dots represent studies focused on carbon cycling. Argentina and United States of America are the leading countries in terms of the number of studies conducted. Details on each study can be found in Table 2 and Table S1. Diagram is not to scale. Graphics were sourced from and created using the software Canva Pro

Table 2: Overview of the influence and directions | effects of bioturbation on sediment and carbon dynamics across tidal habitats and continents. Adapted from Table S1.

Continent	Habitat type	Sediment/Carbon focused	Directional effect	Effect	Reference
	Laboratory	Sediment	Negative	Erosion	Dairain et al., 2020
	Mudflat	Sediment	Negative	Decrease sediment stability	De Deckere et al., 2001
	Mudflat	Sediment	Negative	Decrease sediment stability	Montserrat et al., 2011
	Mudflat	Sediment	Both negative & positive (species dependent)	One species caused erosion, one species caused accretion	Morello et al., 2024
Europe	Salt marsh	Carbon	Neutral to Positive	Neutral to positive effect on carbon sequestration	Graversen et al., 2022
	Salt marsh	Sediment	Negative	Change biogeochemistry of sediment	Wilson et al., 2012
	Laboratory	Sediment	Negative	Increase sediment roughness, decrease shear strength=erosion	Farron et al., 2020
	Salt marsh	Sediment	Positive	Accretion	Crotty et al., 2023
	Salt marsh	Carbon	Negative	Hinders accretion, loss of carbon sequestration	Coverdale et al., 2014
North America	Salt marsh	Carbon	Negative	Decrease carbon stocks	Wittingham et al., 2024
	Salt marsh	Carbon	Negative	Decrease carbon stocks	Montague, 1982
	Salt marsh & Mudflat	Sediment	Both negative & positive (species dependent)	One species caused sediment trapping=accretion, one species caused erosion	Escapa et al., 2008
	Mudflat	Carbon	Positive	Increase carbon sequestration	Botto et al., 2006
South America	Salt marsh	Carbon	Negative	Decrease carbon stocks	Gutiérrez et al., 2006
	Salt marsh	Carbon	Negative	Decrease carbon stocks	Famul et al., 2015
Oceania	Mangrove & Salt marsh	Sediment	Neutral to positive	Increase surface elevation in mangroves, no influence in salt marsh	Bernion et al., 2024
Asia	Salt marsh	Carbon	Negative	Promote movement of carbon, can decrease long term storage of carbon	Wang et al., 2010
	Estuary	Carbon	Negative	Decrease carbon stocks	Nie et al., 2021
Africa	Mangrove	Carbon	Positive	Increase carbon storage	Arribalzaga et al., 2014

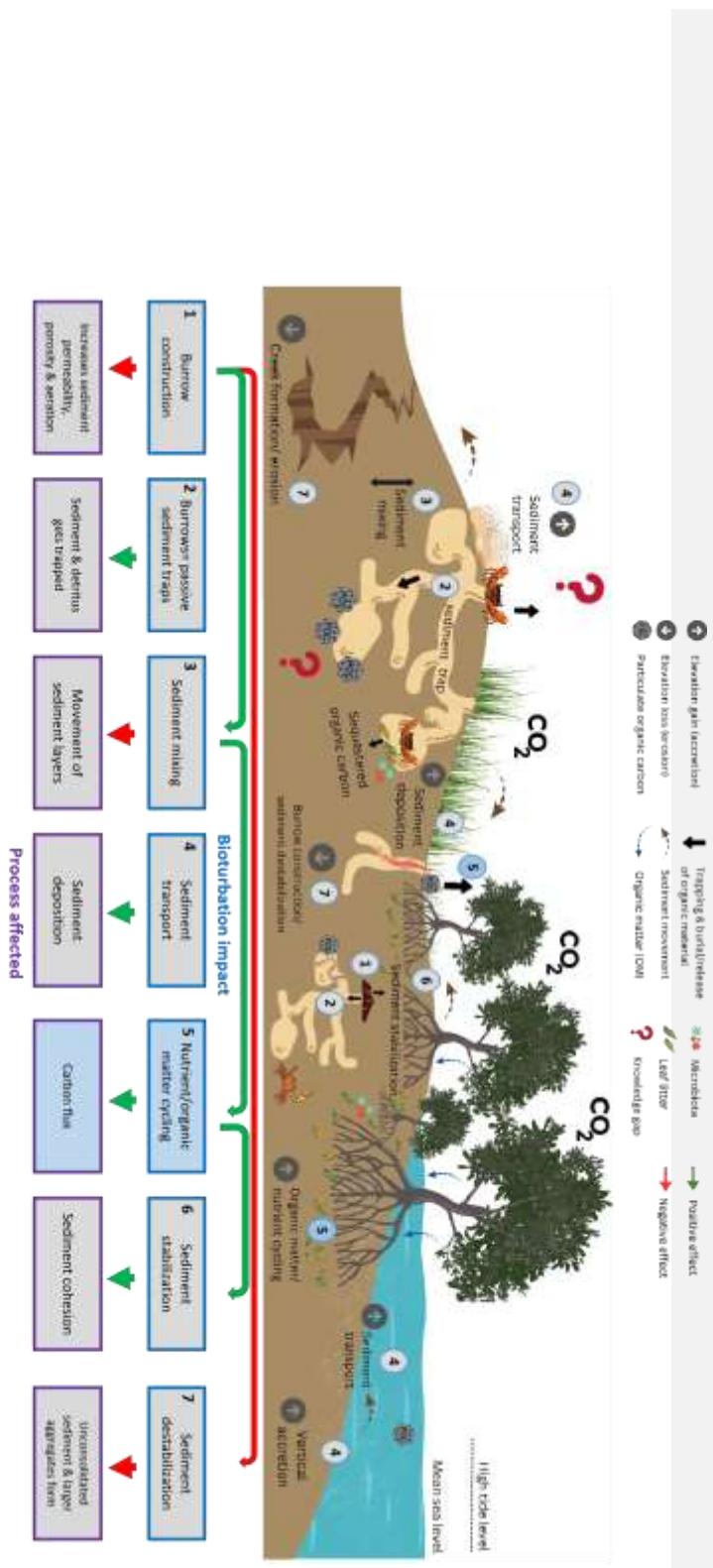


Figure 3: Conceptual diagram illustrating the processes influenced by bioturbators, specifically their impact on sediment dynamics and carbon cycling, and how they are linked. The knowledge gaps, indicated by question marks, relate to the role of benthic organisms in sediment dynamics, species specific effects, as well as the influence of bioturbators on the carbon cycle. The flow diagram indicates the graphics in terms of the bioturbation impacts and which processes are affected within the marsh, with green arrows indicating a positive effect and red indicating a negative effect. Diagram is not to scale. Graphics were sourced from and created using the software Canva Pro.

Table 3 Bioturbation impacts on sedimentation and carbon sequestration. Negative effects are italicised, while positive effects are indicated in bold. This table corresponds to the network diagram in Figure 3.

Bioturbation impact	Process	Effect on sedimentation	Effect on carbon sequestration
Sediment mixing	Movement of sediment layers	Effects sediment structure- can lead to erosion ^a	Excavate stored carbon ^b
Burrow construction	Increase sediment permeability, porosity & aeration	Reduces sediment stability- can lead to erosion ^c	Increases organic matter decomposition- decreases carbon sequestration ^d
Passive sediment trap (burrows)	Sediment and detritus gets trapped in and around burrow	Increases sediment deposition and overall concentration of sediment organic matter ^e	Increases burial of organic rich sediment enhancing carbon storage ^f
Sediment destabilization	Sediment becomes unconsolidated & larger aggregates are formed	<i>Increases sediment erosion</i>	Decreases organic matter burial- decreases carbon sequestration ^g
Sediment transport	Sediment deposition	Causes particles to be resuspended and transported ^h - can contribute to accretion	If resuspended particles are trapped, it can increase carbon burial ⁱ
Sediment stabilization	Some bioturbators promote sediment cohesion	Increases sediment strength and retention ^j - can contribute to accretion	Sediment retention enhances carbon burial because active burial limits oxidation ^k
Nutrient/organic matter cycling	Organic matter transported to deeper layers	Influences plant growth ^l which increases sediment trapping and stability- can contribute to accretion	Enhanced carbon storage ^m - decomposition is slowed down

- ^a Dairain et al., 2020
- ^b Gutierrez et al. 2006
- ^c Grabowski et al. 2011
- ^d Nie et al., 2021
- ^e Botto and Iribarne 2000
- ^f Andreetta et al., 2014
- ^g Coverdale et al., 2014
- ^h Pillay et al., 2007
- ⁱ Kristensen 2008
- ^j McCarty et al., 2009
- ^k Botto et al., 2006

1.11) References

Adams, J. B., Buttner, D., Hawkes, S., Human, L. R. D., Machite, A., Mfikili, A. N., Ndhlovu, A., Smit, L.-A., Rajkaran, A., Riddin, T., Rishworth, G. M., Van Deventer, H., Van Niekerk, L., Von Der Heyden, S., Whitfield, E. C., and Raw, J. L.: Blue Carbon at the

southern tip of Africa: current knowledge and future perspectives for dynamic estuarine environments, *Estuarine, Coastal and Shelf Science*, 322, 109360, <https://doi.org/10.1016/j.ecss.2025.109360>, 2025.

Agusto, L. E., Fratini, S., Jimenez, P. J., Quadros, A., and Cannicci, S.: Structural characteristics of crab burrows in Hong Kong mangrove forests and their role in ecosystem engineering, *Estuarine, Coastal and Shelf Science*, 248, 106973, <https://doi.org/10.1016/j.ecss.2020.106973>, 2021.

Alongi, D. M.: Present state and future of the world's mangrove forests, *Environmental Conservation*, 29, 331–349, <https://doi.org/10.1017/S0376892902000231>, 2002.

Alongi, D. M.: *Blue Carbon: Coastal Sequestration for Climate Change Mitigation*, Springer, Cham, 1 pp., 2018.

Andreetta, A., Fusi, M., Cameldi, I., Cimò, F., Carnicelli, S., and Cannicci, S.: Mangrove carbon sink. Do burrowing crabs contribute to sediment carbon storage? Evidence from a Kenyan mangrove system, *Journal of Sea Research*, 85, 524–533, <https://doi.org/10.1016/j.seares.2013.08.010>, 2014.

Arias-Ortiz, A., Serrano, O., Masqué, P., Lavery, P. S., Mueller, U., Kendrick, G. A., Rozaimi, M., Esteban, A., Fourqorean, J. W., Marbà, N., Mateo, M. A., Murray, K., Rule, M. J., and Duarte, C. M.: A marine heatwave drives massive losses from the world's largest seagrass carbon stocks, *Nature Climate Change*, 8, 338–344, <https://doi.org/10.1038/s41558-018-0096-y>, 2018.

Arlinghaus, P., Zhang, W., Wrede, A., Schrum, C., and Neumann, A.: Impact of benthos on morphodynamics from a modeling perspective, *Earth-Science Reviews*, 221, 103803, <https://doi.org/10.1016/j.earscirev.2021.103803>, 2021.

Barbier, E. B.: Valuing the storm protection service of estuarine and coastal ecosystems, *Ecosystem Services*, 11, 32–38, <https://doi.org/10.1016/j.ecoser.2014.06.010>, 2015.

Beheshti, K. M., Wasson, K., Angelini, C., Silliman, B. R., and Hughes, B. B.: Long term study reveals top down effect of crabs on a California salt marsh, *Ecosphere*, 12, e03703, <https://doi.org/10.1002/ecs2.3703>, 2021.

Bennion, V., Dwyer, J. M., Twomey, A. J., and Lovelock, C. E.: Decadal Trends in Surface Elevation and Tree Growth in Coastal Wetlands of Moreton Bay, Queensland, Australia, *Estuaries and Coasts*, 47, 1955–1971, <https://doi.org/10.1007/s12237-02401325-y>, 2024.

Bernal, B. and Mitsch, W. J.: Carbon Sequestration in Two Created Riverine Wetlands in the Midwestern United States, *Journal of Environmental Quality*, 42, 1236–1244, <https://doi.org/10.2134/jeq2012.0229>, 2013.

Bertness, M. D.: Fiddler Crab Regulation of *Spartina alterniflora* Production on a New England Salt Marsh, *Ecology*, 66, 1042–1055, <https://doi.org/10.2307/1940564>, 1985.

Booth, J. M., Fusi, M., Marasco, R., and Daffonchio, D.: The microbial landscape in bioturbated mangrove sediment: A resource for promoting nature based solutions for mangroves, *Microbial Biotechnology*, 16, 1584–1602, <https://doi.org/10.1111/17517915.14273>, 2023.

Borchert, S. M., Osland, M. J., Enwright, N. M., and Griffith, K. T.: Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze, *Journal of Applied Ecology*, 55, 2876–2887, <https://doi.org/10.1111/13652664.13169>, 2018.

Bos, A. R., Bouma, T. J., De Kort, G. L. J., and Van Katwijk, M. M.: Ecosystem engineering by annual intertidal seagrass beds: Sediment accretion and modification, *Estuarine, Coastal and Shelf Science*, 74, 344–348, <https://doi.org/10.1016/j.ecss.2007.04.006>, 2007.

Botto, F. and Iribarne, O.: Contrasting Effects of Two Burrowing Crabs (*Chasmagnathus granulata* and *Uca uruguayensis*) on Sediment Composition and Transport in Estuarine Environments, *Estuarine, Coastal and Shelf Science*, 51, 141–151, <https://doi.org/10.1006/ecss.2000.0642>, 2000.

Botto, F., Iribarne, O., Gutierrez, J., Bava, J., Gagliardini, A., and Valiela, I.: Ecological importance of passive deposition of organic matter into burrows of the SW Atlantic crab *Chasmagnathus granulatus*, *Marine Ecology Progress Series*, 312, 201–210, <https://doi.org/10.3354/meps312201>, 2006.

Bradley, P. M. and Morris, J. T.: Influence of Oxygen and Sulfide Concentration on Nitrogen Uptake Kinetics in *Spartina Alterniflora*, *Ecology*, 71, 282–287, <https://doi.org/10.2307/1940267>, 1990.

Branoff, B. L.: Mangrove Disturbance and Response Following the 2017 Hurricane Season in Puerto Rico, *Estuaries and Coasts*, 43, 1248–1262, <https://doi.org/10.1007/s12237-019-00585-3>, 2020.

Buffington, K. J., Janousek, C. N., Thorne, K. M., and Dugger, B. D.: Spatiotemporal Patterns of Mineral and Organic Matter Deposition Across Two San Francisco BayDelta Tidal Marshes, *Wetlands*, 40, 1395–1407, <https://doi.org/10.1007/s13157-01901259-3>, 2020.

Cahoon, D. R.: Measuring and Interpreting the Surface and Shallow Subsurface Process Influences on Coastal Wetland Elevation: A Review, *Estuaries and Coasts*, 47, 1708–1734, <https://doi.org/10.1007/s12237-024-01332-z>, 2024.

Carpenter, S., Evans, C., Pittman, S. J., Antonopoulou, M., Bejarano, I., Das, H. S., Möller, M., Peel, K., Samara, F., Stamoulis, K. A., and Mateos-Molina, D.: Multi-habitat carbon stock assessments to inform nature-based solutions for coastal seascapes in arid regions, *Frontiers in Marine Science*, 10, 1239904, <https://doi.org/10.3389/fmars.2023.1239904>, 2023.

Chen, Z. L. and Lee, S. Y.: Tidal Flats as a Significant Carbon Reservoir in Global Coastal Ecosystems, *Frontiers in Marine Science*, 9, 900896, <https://doi.org/10.3389/fmars.2022.900896>, 2022.

Coggan, N. V., Hayward, M. W., and Gibb, H.: A global database and “state of the field” review of research into ecosystem engineering by land animals, *Journal of Animal Ecology*, 87, 974–994, <https://doi.org/10.1111/1365-2656.12819>, 2018.

Coverdale, T. C., Brisson, C. P., Young, E. W., Yin, S. F., Donnelly, J. P., and Bertness, M. D.: Indirect Human Impacts Reverse Centuries of Carbon Sequestration and Salt Marsh Accretion, *PLoS ONE*, 9, e93296, <https://doi.org/10.1371/journal.pone.0093296>, 2014.

Cozzoli, F., Bouma, T. J., Ottolander, P., Lluch, M. S., Ysebaert, T., and Herman, P. M. J.: The combined influence of body size and density on cohesive sediment resuspension by bioturbators, *Scientific Reports*, 8, 3831, <https://doi.org/10.1038/s41598-018-22190-3>, 2018.

Crotty, S. M., Ortals, C., Pettengill, T. M., Shi, L., Olabarrieta, M., Joyce, M. A., Altieri, A. H., Morrison, E., Bianchi, T. S., and Craft, C.: Sea-level rise and the emergence of a keystone grazer alter the geomorphic evolution and ecology of southeast US salt

marshes, *Proceedings of the National Academy of Sciences*, 117, 17891–17902, 2020.

Crotty, S. M., Pinton, D., Canestrelli, A., Fischman, H. S., Ortals, C., Dahl, N. R., Williams, S., Bouma, T. J., and Angelini, C.: Faunal engineering stimulates landscape-scale accretion in southeastern US salt marshes, *Nature Communications*, 14, 881, <https://doi.org/10.1038/s41467-023-36444-w>, 2023.

Daborn, G., Amos, C., Brylinsky, M., Cristian, H., Drapeau, G., Faas, R., Grant, J., Long, B., Paterson, D., Perillo, G., and Piccolo, M.: An ecological cascade effect: migratory birds affect stability of intertidal sediments, *Limnology and Oceanography*, 38, 225–231, 1993.

Dahl, M., Deyanova, D., Lyimo, L. D., Näslund, J., Samuelsson, G. S., Mtolera, M. S. P., Björk, M., and Gullström, M.: Effects of shading and simulated grazing on carbon sequestration in a tropical seagrass meadow, *Journal of Ecology*, 104, 654–664, <https://doi.org/10.1111/1365-2745.12564>, 2016.

Dairain, A., Maire, O., Meynard, G., Richard, A., Rodolfo-Damiano, T., and Orvain, F.: Sediment stability: can we disentangle the effect of bioturbating species on sediment erodibility from their impact on sediment roughness? *Marine Environmental Research*, 162, 105147, <https://doi.org/10.1016/j.marenres.2020.105147>, 2020.

Darwin, C.: in: *The formation of vegetable mould through the action of worms with observation of their habits*, vol. 16, John Murray, London, 1881.

Day, J. W., Kemp, G. P., Reed, D. J., Cahoon, D. R., Boumans, R. M., Suhayda, J. M., and Gambrell, R.: Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sealevel rise, *Ecological Engineering*, 37, 229–240, <https://doi.org/10.1016/j.ecoleng.2010.11.021>, 2011.

De Deckere, E. M. G. T., Tolhurst, T. J., and De Brouwer, J. F. C.: Destabilization of Cohesive Intertidal Sediments by Infauna, *Estuarine, Coastal and Shelf Science*, 53, 665–669, <https://doi.org/10.1006/ecss.2001.0811>, 2001.

Decho, A. W.: Microbial biofilms in intertidal systems: an overview, *Continental Shelf Research*, 20, 1257–1273, [https://doi.org/10.1016/S0278-4343\(00\)00022-4](https://doi.org/10.1016/S0278-4343(00)00022-4), 2000.

Donato, D. C., Kauffman, J. B., Murdiyarno, D., Kurnianto, S., Stidham, M., and Kanninen, M.: Mangroves among the most carbon-rich forests in the tropics, *Nature Geoscience*, 4, 293–297, <https://doi.org/10.1038/ngeo1123>, 2011.

Duarte, C. M.: Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget, *Biogeosciences*, 14, 301–310, <https://doi.org/10.5194/bg-14-301-2017>, 2017.

Duarte De Paula Costa, M. and Macreadie, P. I.: The Evolution of Blue Carbon Science, *Wetlands*, 42, 109, <https://doi.org/10.1007/s13157-022-01628-5>, 2022.

Egawa, R., Sharma, S., Nadaoka, K., and MacKenzie, R. A.: Burrow dynamics of crabs in subtropical estuarine mangrove forest, *Estuarine, Coastal and Shelf Science*, 252, 107244, <https://doi.org/10.1016/j.ecss.2021.107244>, 2021.

Enwright, N. M., Griffith, K. T., and Osland, M. J.: Barriers to and opportunities for landward migration of coastal wetlands with sea level rise, *Frontiers in Ecology & the Environment*, 14, 307–316, <https://doi.org/10.1002/fee.1282>, 2016.

Escapa, M., Perillo, G. M. E., and Iribarne, O.: Sediment dynamics modulated by burrowing crab activities in contrasting SW Atlantic intertidal habitats, *Estuarine, Coastal and Shelf Science*, 80, 365–373, <https://doi.org/10.1016/j.ecss.2008.08.020>, 2008.

Fagherazzi, S., Anisfeld, S. C., Blum, L. K., Long, E. V., Feagin, R. A., Fernandes, A., Kearney, W. S., and Williams, K.: Sea Level Rise and the Dynamics of the MarshUpland Boundary, *Front. Environ. Sci.*, 7, 25, <https://doi.org/10.3389/fenvs.2019.00025>, 2019.

Fanjul, E., Grela, M., and Iribarne, O.: Effects of the dominant SW Atlantic intertidal burrowing crab *Chasmagnathus granulatus* on sediment chemistry and nutrient distribution, *Marine Ecology Progress Series*, 341, 177–190, <https://doi.org/10.3354/meps341177>, 2007.

Fanjul, E., Escapa, M., Montemayor, D., Addino, M., Alvarez, M. F., Grela, M. A., and Iribarne, O.: Effect of crab bioturbation on organic matter processing in South West Atlantic intertidal sediments, *Journal of Sea Research*, 95, 206–216, <https://doi.org/10.1016/j.seares.2014.05.005>, 2015.

Farron, S. J., Hughes, Z. J., FitzGerald, D. M., and Strom, K. B.: The impacts of bioturbation by common marsh crabs on sediment erodibility: A laboratory flume investigation, *Estuarine, Coastal and Shelf Science*, 238, 106710, <https://doi.org/10.1016/j.ecss.2020.106710>, 2020.

Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D., McGlathery, K. J., and Serrano, O.: Seagrass ecosystems as a globally significant carbon stock, *Nature Geoscience*, 5, 505–509, <https://doi.org/10.1038/ngeo1477>, 2012.

François, F., Gerino, M., Stora, G., Durbec, J.-P., and Poggiale, J.-C.: Functional approach to sediment reworking by gallery-forming macrobenthic organisms: modeling and application with the polychaete *Nereis diversicolor*, *Marine Ecology Progress Series*, 229, 127–136, 2002.

Giraldes, B. W., Al-Maslamani, I., and Smyth, D.: A new species of leucosiid crab (Decapoda: Brachyura: Leucosiidae) from the Arabian Gulf, *Zootaxa*, 4250, <https://doi.org/10.11646/zootaxa.4250.4.9>, 2017.

Grabowski, R. C., Droppo, I. G., and Wharton, G.: Erodibility of cohesive sediment: The importance of sediment properties, *Earth-Science Reviews*, 105, 101–120, <https://doi.org/10.1016/j.earscirev.2011.01.008>, 2011.

Graversen, A. E. L., Banta, G. T., Masque, P., and Krause Jensen, D.: Carbon sequestration is not inhibited by livestock grazing in Danish salt marshes, *Limnology & Oceanography*, 67, <https://doi.org/10.1002/limo.12011>, 2022.

Grigg, N. J.: Benthic bulldozers and pumps: laboratory and modelling studies of bioturbation and bioirrigation, 2003.

Guimond, J. A., Seyfferth, A. L., Moffett, K. B., and Michael, H. A.: A physicalbiogeochemical mechanism for negative feedback between marsh crabs and carbon storage, *Environmental Research Letters*, 15, 034024, <https://doi.org/10.1088/17489326/ab60e2>, 2020.

Gutiérrez, J. L., Jones, C. G., Groffman, P. M., Findlay, S. E. G., Iribarne, O. O., Ribeiro, P. D., and Bruschetti, C. M.: The Contribution of Crab Burrow Excavation to Carbon Availability in Surficial Salt-marsh Sediments, *Ecosystems*, 9, 647–658, <https://doi.org/10.1007/s10021-006-0135-9>, 2006.

Hajializadeh, P., Safaie, M., Naderloo, R., and Shojaei, M. G.: Spatial and Temporal Distribution of Brachyuran Crabs in Mangroves of the Persian Gulf, *Wetlands*, 42, 99, <https://doi.org/10.1007/s13157-022-01623-w>, 2022.

Hamilton, S. E. and Casey, D.: Creation of a high spatio temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC 21), *Global Ecology and Biogeography*, 25, 729–738, <https://doi.org/10.1111/geb.12449>, 2016.

Hatje, V., Masqué, P., Patire, V. F., Dórea, A., and Barros, F.: Blue carbon stocks, accumulation rates, and associated spatial variability in Brazilian mangroves, *Limnology & Oceanography*, 66, 321–334, <https://doi.org/10.1002/limo.11607>, 2021.

Hawkins, S. J., Allcock, A. L., Bates, A. E., Evans, A. J., Firth, L. B., McQuaid, C. D., Russell, B. D., Smith, I. P., Swearer, S. E., and Todd, P. A. (Eds.): *Oceanography and Marine Biology: An Annual Review*, Volume 58, Taylor & Francis, Erscheinungsort nicht ermittelbar, 1 pp., 2020.

He, Q., Li, Z., Daleo, P., Lefcheck, J. S., Thomsen, M. S., Adams, J. B., and Bouma, T. J.: Coastal wetland resilience through local, regional and global conservation, *Nature Reviews Biodiversity*, 1, 50–67, 2025.

Holdredge, C., Bertness, M., Herrmann, N., and Gedan, K.: Fiddler crab control of cordgrass primary production in sandy sediments, *Marine Ecology Progress Series*, 399, 253– 259, <https://doi.org/10.3354/meps08331>, 2010.

Horstman, E. M., Dohmen-Janssen, C. M., Bouma, T. J., and Hulscher, S. J. M. H.: Tidalscale flow routing and sedimentation in mangrove forests: Combining field data and numerical modelling, *Geomorphology*, 228, 244–262, <https://doi.org/10.1016/j.geomorph.2014.08.011>, 2015.

Kauffman, J. B., Adame, M. F., Arifanti, V. B., Schile Beers, L. M., Bernardino, A. F., Bhomia, R. K., Donato, D. C., Feller, I. C., Ferreira, T. O., and Jesus Garcia, M. del C.: Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients, *Ecological monographs*, 90, e01405, 2020.

Keller, D. P., Lenton, A., Littleton, E. W., Oschlies, A., Scott, V., and Vaughan, N. E.: The Effects of Carbon Dioxide Removal on the Carbon Cycle, *Current Climate Change Reports*, 4, 250–265, <https://doi.org/10.1007/s40641-018-0104-3>, 2018.

Kelleway, J. J., Saintilan, N., Macreadie, P. I., Skilbeck, C. G., Zawadzki, A., and Ralph, P. J.: Seventy years of continuous encroachment substantially increases 'blue carbon' capacity as mangroves replace intertidal salt marshes, *Global Change Biology*, 22, 1097–1109, <https://doi.org/10.1111/gcb.13158>, 2016.

Kelleway, J. J., Cavanaugh, K., Rogers, K., Feller, I. C., Ens, E., Doughty, C., and Saintilan, N.: Review of the ecosystem service implications of mangrove encroachment into salt marshes, *Global Change Biology*, 23, 3967–3983, <https://doi.org/10.1111/gcb.13727>, 2017a.

Kelleway, J. J., Saintilan, N., Macreadie, P. I., Baldock, J. A., and Ralph, P. J.: Sediment and carbon deposition vary among vegetation assemblages in a coastal salt marsh, *Biogeosciences*, 14, 3763–3779, <https://doi.org/10.5194/bg-14-3763-2017>, 2017b.

Kinoshita, K., Wada, M., Kogure, K., and Furota, T.: Microbial activity and accumulation of organic matter in the burrow of the mud shrimp, *Upogebia major* (Crustacea: Thalassinidea), *Marine Biology*, 153, 277–283, 2008.

Kirwan, M. L. and Guntenspergen, G. R.: Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh, *Journal of Ecology*, 100, 764–770, <https://doi.org/10.1111/j.1365-2745.2012.01957.x>, 2012.

Klaassen, M., Moosdorf, N., and Zimmer, M.: Combined effect of burrowing mangrove crabs and tides on carbon fluxes, *Bulletin of Marine Science*, 101, 1221–1236, <https://doi.org/10.5343/bms.2024.0012>, 2025.

Krauss, K. W., McKee, K. L., Lovelock, C. E., Cahoon, D. R., Saintilan, N., Reef, R., and Chen, L.: How mangrove forests adjust to rising sea level, *New phytologist*, 202, 19–34, 2014.

Kristensen, E.: Impact of polychaetes (*Nereis* spp. and *Arenicola marina*) on carbon biogeochemistry in coastal marine sediments, *Geochemical Transactions*, 2, 92, <https://doi.org/10.1186/1467-4866-2-92>, 2001.

Kristensen, E.: Mangrove crabs as ecosystem engineers; with emphasis on sediment processes, *Journal of Sea Research*, 59, 30–43, <https://doi.org/10.1016/j.seares.2007.05.004>, 2008.

Kristensen, E., Bouillon, S., Dittmar, T., and Marchand, C.: Organic carbon dynamics in mangrove ecosystems: A review, *Aquatic Botany*, 89, 201–219, <https://doi.org/10.1016/j.aquabot.2007.12.005>, 2008.

Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C., and Banta, G.: What is bioturbation? The need for a precise definition for fauna in aquatic sciences, *Marine Ecology Progress Series*, 446, 285–302, <https://doi.org/10.3354/meps09506>, 2012.

Le Hir, P., Monbet, Y., and Orvain, F.: Sediment erodability in sediment transport modelling: Can we account for biota effects? *Continental Shelf Research*, 27, 1116–1142, <https://doi.org/10.1016/j.csr.2005.11.016>, 2007.

Leonardi, N., Carnacina, I., Donatelli, C., Ganju, N. K., Plater, A. J., Schuerch, M., and Temmerman, S.: Dynamic interactions between coastal storms and salt marshes: A review, *Geomorphology*, 301, 92–107, <https://doi.org/10.1016/j.geomorph.2017.11.001>, 2018.

Li, S., Cui, B., Xie, T., Bai, J., Wang, Q., and Shi, W.: What drives the distribution of crab burrows in different habitats of intertidal salt marshes, Yellow River Delta, China, *Ecological Indicators*, 92, 99–106, <https://doi.org/10.1016/j.ecolind.2017.11.003>, 2018.

Lovelock, C. E. and Duarte, C. M.: Dimensions of Blue Carbon and emerging perspectives, *Biology Letters*, 15, 20180781, <https://doi.org/10.1098/rsbl.2018.0781>, 2019.

Lovelock, C. E. and Reef, R.: Variable Impacts of Climate Change on Blue Carbon, *One Earth*, 3, 195–211, <https://doi.org/10.1016/j.oneear.2020.07.010>, 2020.

Lovelock, C. E., Feller, I. C., Ellis, J., Schwarz, A. M., Hancock, N., Nichols, P., and Sorrell, B.: Mangrove growth in New Zealand estuaries: the role of nutrient enrichment at sites with contrasting rates of sedimentation, *Oecologia*, 153, 633–641, <https://doi.org/10.1007/s00442-007-0750-y>, 2007.

Lynch, A. J., Cooke, S. J., Arthington, A. H., Baigun, C., Bossenbroek, L., Dickens, C., Harrison, I., Kimirei, I., Langhans, S. D., Murchie, K. J., Olden, J. D., Ormerod, S. J., Owuor, M., Raghavan, R., Samways, M. J., Schinegger, R., Sharma, S., Tachamo Shah, R., Tickner, D., Tweddle, D., Young, N., and Jähnig, S. C.: People need

freshwater biodiversity, WIREs Water, 10, e1633, <https://doi.org/10.1002/wat2.1633>, 2023.

MacKenzie, R., Sharma, S., and Rovai, A. R.: Environmental drivers of blue carbon burial and soil carbon stocks in mangrove forests, in: Dynamic Sedimentary Environments of Mangrove Coasts, Elsevier, 275–294, <https://doi.org/10.1016/B978-0-12-8164372.00006-9>, 2021.

MacKenzie, R. A., Krauss, K. W., Cormier, N., Eperiam, E., Van Aardt, J., Kargar, A. R., Grow, J., and Klump, J. V.: Relative Effectiveness of a Radionuclide (210Pb), Surface Elevation Table (SET), and LiDAR At Monitoring Mangrove Forest Surface Elevation Change, *Estuaries and Coasts*, 47, 2080–2092, <https://doi.org/10.1007/s12237-023-01301-y>, 2024.

Macreadie, P. I., Baird, M. E., Trevathan-Tackett, S. M., Larkum, A. W. D., and Ralph, P. J.: Quantifying and modelling the carbon sequestration capacity of seagrass meadows – A critical assessment, *Marine Pollution Bulletin*, 83, 430–439, <https://doi.org/10.1016/j.marpolbul.2013.07.038>, 2014.

Macreadie, P. I., Nielsen, D. A., Kelleway, J. J., Atwood, T. B., Seymour, J. R., Petrou, K., Connolly, R. M., Thomson, A. C., Trevathan Tackett, S. M., and Ralph, P. J.: Can we manage coastal ecosystems to sequester more blue carbon? *Frontiers in Ecology & the Environment*, 15, 206–213, <https://doi.org/10.1002/fee.1484>, 2017.

Macreadie, P. I., Costa, M. D., Atwood, T. B., Friess, D. A., Kelleway, J. J., Kennedy, H., Lovelock, C. E., Serrano, O., and Duarte, C. M.: Blue carbon as a natural climate solution, *Nature Reviews Earth & Environment*, 2, 826–839, 2021.

Maxwell, T. L., Spalding, M. D., Friess, D. A., Murray, N. J., Rogers, K., Rovai, A. S., Smart, L. S., Weilguny, L., Adame, M. F., and Adams, J. B.: Soil carbon in the world's tidal marshes, *Nature Communications*, 15, 10265, 2024.

McCarty, G., Pachepsky, Y., and Ritchie, J.: Impact of Sedimentation on Wetland Carbon Sequestration in an Agricultural Watershed, *Journal of Environmental Quality*, 38, 804–813, <https://doi.org/10.2134/jeq2008.0012>, 2009.

McKenzie, L. J., Nordlund, L. M., Jones, B. L., Cullen-Unsworth, L. C., Roelfsema, C., and Unsworth, R. K.: The global distribution of seagrass meadows, *Environmental Research Letters*, 15, 074041, 2020.

McLeod, E., Poulter, B., Hinkel, J., Reyes, E., and Salm, R.: Sea-level rise impact models and environmental conservation: A review of models and their applications, *Ocean & Coastal Management*, 53, 507–517, <https://doi.org/10.1016/j.ocecoaman.2010.06.009>, 2010.

McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO₂, *Frontiers in Ecology & the Environment*, 9, 552–560, <https://doi.org/10.1890/110004>, 2011.

McOwen, C., Weatherdon, L., Bochové, J.-W., Sullivan, E., Blyth, S., Zockler, C., StanwellSmith, D., Kingston, N., Martin, C., Spalding, M., and Fletcher, S.: A global map of saltmarshes, *Biodiversity Data Journal*, 5, e11764, <https://doi.org/10.3897/BDJ.5.e11764>, 2017.

Mentaschi, L., Voudoukas, M. I., Pekel, J.-F., Voukouvalas, E., and Feyen, L.: Global longterm observations of coastal erosion and accretion, *Scientific Reports*, 8, 12876, <https://doi.org/10.1038/s41598-018-30904-w>, 2018.

Meysman, F. J., Middelburg, J. J., and Heip, C. H.: Bioturbation: a fresh look at Darwin's last idea, *Trends in Ecology & Evolution*, 21, 688–695, 2006.

Min, W. W., Kandasamy, K., and Balakrishnan, B.: Crab Species-Specific Excavation and Architecture of Burrows in Restored Mangrove Habitat, *JMSE*, 11, 310, <https://doi.org/10.3390/jmse11020310>, 2023.

Montague, C. L.: The influence of fiddler crab burrows and burrowing on metabolic processes in salt marsh sediments, in: *Estuarine Comparisons*, Elsevier, 283–301, <https://doi.org/10.1016/B978-0-12-404070-0.50023-5>, 1982.

Montserrat, F., Suykerbuyk, W., Al-Busaidi, R., Bouma, T. J., Van Der Wal, D., and Herman, P. M. J.: Effects of mud sedimentation on lugworm ecosystem engineering, *Journal of Sea Research*, 65, 170–181, <https://doi.org/10.1016/j.seares.2010.09.003>, 2011.

Morelle, J., Huguet, A., Richard, A., Laverman, A. M., Roose-Amsaleg, C., Parlanti, E., Sourzac, M., Mesnage, V., Lecoq, N., Deloffre, J., Viollier, E., Maire, O., and Orvain, F.: Antagonistic impacts of benthic bioturbator species: Interconnected effects on sedimentary properties, biogeochemical variables, and microbial dynamics, *Journal of Experimental Marine Biology and Ecology*, 573, 152000, <https://doi.org/10.1016/j.jembe.2024.152000>, 2024.

Morris, J. T., Sundareshwar, P., Nietzch, C. T., Kjerfve, B., and Cahoon, D. R.: Responses of coastal wetlands to rising sea level, *Ecology*, 83, 2869–2877, 2002.

Morrisey, D. J., Swales, A., Dittmann, S., Morrison, M. A., Lovelock, C. E., and Beard, C. M.: The ecology and management of temperate mangroves, *Oceanography and marine biology: an annual review*, 48, 43–160, 2010.

Morrison, E. S., Bianchi, T. S., Kenney, W. F., Brenner, M., Prince, K., Williams, S., Ortals, C., Cordero, O., Crotty, S. M., and Angelini, C.: Influence of the Keystone Grazer, Sesarma reticulatum, on the Hydrology and Organic Matter Cycling in Salt Marshes of the Southeastern USA, *Estuaries and Coasts*, 47, 994–1011, <https://doi.org/10.1007/s12237-024-01336-9>, 2024.

Mudd, S. M., D'Alpaos, A., and Morris, J. T.: How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation, *Journal of Geophysical Research: Earth Surface*, 115, 2010.

Murray, N. J., Phinn, S. R., DeWitt, M., Ferrari, R., Johnston, R., Lyons, M. B., Clinton, N., Thau, D., and Fuller, R. A.: The global distribution and trajectory of tidal flats, *Nature*, 565, 222–225, 2019.

Nahlik, A. M. and Mitsch, W. J.: The Effect of River Pulsing on Sedimentation and Nutrients in Created Riparian Wetlands, *Journal of Environmental Quality*, 37, 1634–1643, <https://doi.org/10.2134/jeq2007.0116>, 2008.

Needham, H. R., Pilditch, C. A., Lohrer, A. M., and Thrush, S. F.: Density and habitat dependent effects of crab burrows on sediment erodibility, *Journal of Sea Research*, 76, 94–104, <https://doi.org/10.1016/j.seares.2012.12.004>, 2013.

Nellemann, C. and Corcoran, E.: Blue carbon: the role of healthy oceans in binding carbon: a rapid response assessment, UNEP/Earthprint, 2009.

Ngo-Massou, V. M., Din, N., Kenne, M., and Dongmo, A. B.: Brachyuran crab diversity and abundance patterns in the mangroves of Cameroon, *Regional Studies in Marine Science*, 24, 324–335, <https://doi.org/10.1016/j.rsma.2018.09.010>, 2018.

Nie, L., Li, Y., Hou, Y., Di, L., Xi, M., and Yu, Z.: Dynamics of organic carbon under bioturbation by mud crabs (*Macrophthalmus japonicus*) and clamworms (*Perinereis aibuhitensis*) in an estuary ecosystem, *Journal of Experimental Marine Biology and Ecology*, 534, 151474, <https://doi.org/10.1016/j.jembe.2020.151474>, 2021.

Ouyang, X., Connolly, R. M., and Lee, S. Y.: Revised global estimates of resilience to sea level rise for tidal marshes, *Environmental Challenges*, 9, 100593, 2022.

Pan, F., Xiao, K., Cai, Y., Li, H., Guo, Z., Wang, X., Zheng, Y., Zheng, C., Bostick, B. C., and Michael, H. A.: Integrated effects of bioturbation, warming and sea-level rise on mobility of sulfide and metalloids in sediment porewater of mangrove wetlands, *Water Research*, 233, 119788, <https://doi.org/10.1016/j.watres.2023.119788>, 2023.

Passeri, D. L., Hagen, S. C., Medeiros, S. C., Bilskie, M. V., Alizad, K., and Wang, D.: The dynamic effects of sea level rise on low gradient coastal landscapes: A review, *Earth's Future*, 3, 159–181, <https://doi.org/10.1002/2015EF000298>, 2015.

Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., Craft, C., Fourqurean, J. W., Kauffman, J. B., Marbà, N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., and Baldera, A.: Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems, *PLoS ONE*, 7, e43542, <https://doi.org/10.1371/journal.pone.0043542>, 2012.

Penha-Lopes, G., Bartolini, F., Limbu, S., Cannicci, S., Kristensen, E., and Paula, J.: Are fiddler crabs potentially useful ecosystem engineers in mangrove wastewater wetlands? *Marine Pollution Bulletin*, 58, 1694–1703, <https://doi.org/10.1016/j.marpolbul.2009.06.015>, 2009.

Perkins, M. J., Ng, T. P. T., Dudgeon, D., Bonebrake, T. C., and Leung, K. M. Y.: Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures? *Estuarine, Coastal and Shelf Science*, 167, 504–515, <https://doi.org/10.1016/j.ecss.2015.10.033>, 2015.

Phillips, J. D.: Coastal wetlands, sea level, and the dimensions of geomorphic resilience, *Geomorphology*, 305, 173–184, <https://doi.org/10.1016/j.geomorph.2017.03.022>, 2018.

Pillay, D. and Branch, G.: Bioengineering effects of burrowing thalassinidean shrimps on marine soft-bottom ecosystems, *Oceanography and Marine Biology: An Annual Review*, 49, 137–192, 2011.

Pillay, D., Branch, G. M., and Forbes, A. T.: The influence of bioturbation by the sandprawn *Callianassa kraussi* on feeding and survival of the bivalve *Eumarcia paupercula* and the gastropod *Nassarius kraussianus*, *Journal of Experimental Marine Biology and Ecology*, 344, 1–9, 2007.

Radabaugh, K. R., Moyer, R. P., Chappel, A. R., Powell, C. E., Bociu, I., Clark, B. C., and Smoak, J. M.: Coastal Blue Carbon Assessment of Mangroves, Salt Marshes, and Salt Barrens in Tampa Bay, Florida, USA, *Estuaries and Coasts*, 41, 1496–1510, <https://doi.org/10.1007/s12237-017-0362-7>, 2018.

Raw, J., Tsipa, V., Banda, S., Riddin, T., van Niekerk, L., and Adams, J.: Scoping Study: A Blue Carbon Sinks Assessment for South Africa, 2021.

Raw, J. L., Van Der Stocken, T., Carroll, D., Harris, L. R., Rajkaran, A., Van Niekerk, L., and Adams, J. B.: Dispersal and coastal geomorphology limit potential for mangrove range expansion under climate change, *Journal of Ecology*, 111, 139–155, <https://doi.org/10.1111/1365-2745.14020>, 2023.

Ren, L., Jensen, K., Porada, P., and Mueller, P.: Biota mediated carbon cycling—A synthesis of biotic interaction controls on blue carbon, *Ecology Letters*, 25, 521–540, <https://doi.org/10.1111/ele.13940>, 2022.

Rinehart, S. A., Dybiec, J. M., Walker, J. B., Simpson, L., and Cherry, J. A.: Effects of burrowing crabs on coastal sediments and their functions: A systematic meta analysis, *Ecosphere*, 15, e4927, <https://doi.org/10.1002/ecs2.4927>, 2024.

Rogers, K., Kelleway, J. J., Saintilan, N., Megonigal, J. P., Adams, J. B., Holmquist, J. R., Lu, M., Schile-Beers, L., Zawadzki, A., Mazumder, D., and Woodroffe, C. D.: Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise, *Nature*, 567, 91–95, <https://doi.org/10.1038/s41586-019-0951-7>, 2019.

Saintilan, N., Rogers, K., Mazumder, D., and Woodroffe, C.: Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands, *Estuarine, Coastal and Shelf Science*, 128, 84–92, <https://doi.org/10.1016/j.ecss.2013.05.010>, 2013.

Saintilan, N., Kovalenko, K., Guntenspergen, G., Rogers, K., Lynch, J., Cahoon, D., Lovelock, C., Friess, D., Ashe, E., Krauss, K., Cormier, N., Spencer, T., Adams, J., Raw, J., Ibanez, C., Scarton, F., Temmerman, S., Meire, P., Maris, T., Thorne, K., Brazner, J., Chmura, G., Bowron, T., Gamage, V., Cressman, K., Endris, C., Marconi, C., Marcum, P., Laurent, K., Reay, W., Raposa, K., Garwood, J., and Khan, N.: Constraints on the adjustment of tidal marshes to accelerating sea level rise, *Science*, 377, 523–527, 2022.

Sarker, S., Masud, M. A., Alam, M., Hossain, M. S., Rahman Chowdhury, S., and Sharifuzzaman, S.: A review of bioturbation and sediment organic geochemistry in mangroves, *Geological Journal*, 56, 2439–2450, <https://doi.org/10.1002/gj.3808>, 2021.

Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., and Megonigal, J. P.: Limits on carbon sequestration in arid blue carbon ecosystems, *Ecological Applications*, 27, 859–874, <https://doi.org/10.1002/eap.1489>, 2017.

Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M. L., Wolff, C., Lincke, D., Mcowen, C., Pickering, M., Reef, R., Vafeidis, A., Hinkel, J., Nicholls, R., and Brown, S.: Future response of global coastal wetlands to sea-level rise, *Nature*, 561, 231–234, 2018.

Sen, S. and Homechaudhuri, S.: Comparative Burrow Architectures of Resident Fiddler Crabs (Ocypodidae) in Indian Sundarban Mangroves to Assess Their Suitability as Bioturbating Agents, *Proceedings of the Zoological Society*, 71, 17–24, <https://doi.org/10.1007/s12595-016-0178-7>, 2016.

Sharbaugh, M., Rinehart, S. A., Dybiec, J. M., and Cherry, J. A.: Burrowing Crab Effects on Plants and Sediments Peak in Early Successional Ecotones Along A Chronosequence of Tidal Marsh Restoration, *Ecosystems*, 28, 35, <https://doi.org/10.1007/s10021-025-00980-x>, 2025.

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray-Tortarolo, G., Ahlström, A., Doney, S. C., Graven, H., Heinze, C., Huntingford, C., Levis, S., Levy, P. E., Lomas, M., Poulter, B., Viovy, N., Zaehle, S., Zeng, N., Arneth, A., Bonan, G., Bopp, L., Canadell, J. G., Chevallier, F., Ciais, P., Ellis, R., Gloor, M., Peylin, P., Piao, S. L., Le Quéré, C., Smith, B., Zhu, Z., and Myneni, R.: Recent trends and drivers of regional sources and sinks of carbon dioxide, *Biogeosciences*, 12, 653–679, <https://doi.org/10.5194/bg-12-653-2015>, 2015.

Smit, L.-A., Adams, J. B., Hawkes, S. A., Peer, N., and Rishworth, G. M.: Proportional topdown effects of grapsoid crabs on growth of *Spartina maritima* cordgrass in southern African salt marshes, *Marine Ecology Progress Series*, 739, 49–64, 2024.

Sogard, S. M. and Able, K. W.: A comparison of eelgrass, sea lettuce macroalgae, and marsh creeks as habitats for epibenthic fishes and decapods, *Estuarine, Coastal and Shelf Science*, 33, 501–519, [https://doi.org/10.1016/0272-7714\(91\)90087-R](https://doi.org/10.1016/0272-7714(91)90087-R), 1991.

Spalding, M., Kainuma, M., and Collins, L.: *World Atlas of Mangroves*, Routledge, <https://doi.org/10.4324/9781849776608>, 2010.

Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A., and Hopkinson, C. S.: Globalchange controls on soil-carbon accumulation and loss in coastal vegetated ecosystems, *Nature Geoscience*, 12, 685–692, <https://doi.org/10.1038/s41561-0190435-2>, 2019.

Van Ardenne, L. B., Jolicouer, S., Bérubé, D., Burdick, D., and Chmura, G. L.: The importance of geomorphic context for estimating the carbon stock of salt marshes, *Geoderma*, 330, 264–275, <https://doi.org/10.1016/j.geoderma.2018.06.003>, 2018.

Van Der Wal, D. and Herman, P. M. J.: Ecosystem Engineering Effects of *Aster tripolium* and *Salicornia procumbens* Salt Marsh on Macrofaunal Community Structure, *Estuaries and Coasts*, 35, 714–726, <https://doi.org/10.1007/s12237-011-9465-8>, 2012.

Van Katwijk, M. M., Thorhaug, A., Marbà, N., Orth, R. J., Duarte, C. M., Kendrick, G. A., Althuizen, I. H. J., Balestri, E., Bernard, G., Cambridge, M. L., Cunha, A., Durance, C., Giesen, W., Han, Q., Hosokawa, S., Kiswara, W., Komatsu, T., Lardicci, C., Lee, K., Meinesz, A., Nakaoka, M., O'Brien, K. R., Paling, E. I., Pickerell, C., Ransijn, A. M. A., and Verduin, J. J.: Global analysis of seagrass restoration: the importance of large scale planting, *Journal of Applied Ecology*, 53, 567–578, <https://doi.org/10.1111/1365-2664.12562>, 2016.

Van Wijnen, H. and Bakker, J.: Long-term surface elevation change in salt marshes: a prediction of marsh response to future sea-level rise, *Estuarine, Coastal and Shelf Science*, 52, 381–390, 2001.

Vanni, M. J.: Nutrient Cycling by Animals in Freshwater Ecosystems, *Annual Review of Ecology, Evolution, and Systematics*, 33, 341–370, <https://doi.org/10.1146/annurev.ecolsys.33.010802.150519>, 2002.

Voulgaris, G. and Meyers, S. T.: Net effect of rainfall activity on salt-marsh sediment distribution, *Marine Geology*, 207, 115–129, <https://doi.org/10.1016/j.margeo.2004.03.009>, 2004.

Vu, H. D., Wie-ski, K., and Pennings, S. C.: Ecosystem engineers drive creek formation in salt marshes, *Ecology*, 98, 162–174, <https://doi.org/10.1002/ecy.1628>, 2017.

Wang, J. Q., Zhang, X. D., Jiang, L. F., Bertness, M. D., Fang, C. M., Chen, J. K., Hara, T., and Li, B.: Bioturbation of Burrowing Crabs Promotes Sediment Turnover and Carbon and Nitrogen Movements in an Estuarine Salt Marsh, *Ecosystems*, 13, 586–599, <https://doi.org/10.1007/s10021-010-9342-5>, 2010.

Warren, J. H. and Underwood, A. J.: Effects of burrowing crabs on the topography of mangrove swamps in New South Wales, *Journal of Experimental Marine Biology and Ecology*, 102, 223–235, [https://doi.org/10.1016/0022-0981\(86\)90178-4](https://doi.org/10.1016/0022-0981(86)90178-4), 1986.

Watling, L.: The sedimentary milieu and its consequences for resident organisms, *American Zoologist*, 31, 789–796, 1991.

Wilson, C. A. and Allison, M. A.: An equilibrium profile model for retreating marsh shorelines in southeast Louisiana, *Estuarine, Coastal and Shelf Science*, 80, 483–494, <https://doi.org/10.1016/j.ecss.2008.09.004>, 2008.

Wilson, C. A., Hughes, Z. J., and FitzGerald, D. M.: The effects of crab bioturbation on Mid-Atlantic saltmarsh tidal creek extension: Geotechnical and geochemical changes, *Estuarine, Coastal and Shelf Science*, 106, 33–44, <https://doi.org/10.1016/j.ecss.2012.04.019>, 2012.

Wilson, C. A., Hughes, Z. J., and FitzGerald, D. M.: Causal relationships among sea level rise, marsh crab activity, and salt marsh geomorphology, *Proceedings of the National Academy of the United States of America*, 119, e2111535119, <https://doi.org/10.1073/pnas.2111535119>, 2022.

Wittenberg, S. S., Johnson, D. S., Chen, Y., and Kirwan, M. L.: A grazing crab drives saltmarsh carbon storage and recovery, *Ecology*, 105, e4385, <https://doi.org/10.1002/ecy.4385>, 2024.

Worthington, T., Spalding, M., Landis, E., Maxwell, T. L., Navarro, A., Smart, L. S., and Murray, N. J.: The global distribution of tidal marshes from earth observation data, 2024.

Xie, T., Dou, P., Li, S., Cui, B., Bai, J., Wang, Q., and Ning, Z.: Potential Effect of Bioturbation by Burrowing Crabs on Sediment Parameters in Coastal Salt Marshes, *Wetlands*, 40, 2775–2784, <https://doi.org/10.1007/s13157-020-01341-1>, 2020.

Zhang, Z. and Colle, B. A.: Impact of Dynamically Downscaling Two CMIP5 Models on the Historical and Future Changes in Winter Extratropical Cyclones along the East Coast of North America, *Journal of Climate*, 31, 8499–8525, <https://doi.org/10.1175/JCLI-D18-0178.1>, 2018.