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Abstract. Earth System Models (ESMs) are the key tool for studying the climate under changing conditions. Over recent 21 

decades, it has been established to not only rely on projections of a single model but to combine various ESMs in multi-model 22 

ensembles (MMEs) to improve robustness and quantify the uncertainty of the projections. The data access for MME studies 23 

has been fundamentally facilitated by the World Climate Research Programme’s Coupled Model Intercomparison Project 24 

(CMIP) - a collaborative effort bringing together ESMs from modelling communities all over the world. Despite the CMIP 25 

https://doi.org/10.5194/egusphere-2025-4744
Preprint. Discussion started: 6 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 

2  
 

 

standardisation processes, addressing specific research questions using MMEs requires unique ensemble design, analysis, and 26 

interpretation choices. Based on the collective expertise within the Fresh Eyes on CMIP initiative, mainly composed of early-27 

career researchers engaged in CMIP, we have identified common issues and questions encountered while working with climate 28 

MMEs. In this project, we provide a comprehensive literature review addressing these questions. We provide statistics tracing 29 

the development of the climate MMEs analysis field throughout the last decades, and, synthesising existing studies, we outline 30 

guidelines regarding model evaluation, model dependence, weighting methods, and uncertainty treatment. We summarize a 31 

collection of useful resources for MME studies, we review common questions and strategies, and finally, we outline emerging 32 

scientific trends, such as the integration of machine learning (ML) techniques, single model initial-condition large ensembles 33 

(SMILES), and computational resource considerations. We thereby strive to support researchers working with climate MMEs 34 

particularly in the upcoming 7th phase of CMIP. 35 

1 Introduction  36 

The Earth system models (ESMs), whose data is provided by the World Climate Research Programme (WCRP) Coupled 37 

Model Intercomparison Project (CMIP), are the key tool for making future climate projections. These projections are essential 38 

for informing communities and policy-makers, helping develop both mitigation and adaptation strategies to climate change at 39 

the global and regional scales (Meehl et al., 2000). Starting from the seminal work of Manabe and Hasselmann (e.g., Manabe 40 

and Strickler, 1964; Manabe and Wetherald, 1967; Manabe and Bryan, 1969; Hasselmann, 1976), who were awarded the 2021 41 

Nobel Prize in Physics for laying the foundation of climate modelling, climate models have continuously evolved over decades. 42 

During this process, models have become progressively more complex encapsulating processes related to aerosols, atmospheric 43 

chemistry, the carbon cycle, and ocean biogeochemistry (IPCC, AR4, AR5, AR6).  This development of ESMs has been going 44 

“hand in hand” with advances in Earth system observations, high-resolution numerical models giving valuable insight into 45 

smaller-scale phenomena (e.g., detailed radiative transfer models, cloud-resolving models, large-eddy simulations), and 46 

growing computational power (e.g. Gettelman et al., 2022; Schneider et al., 2017) allowing horizontal and vertical model 47 

resolution to steadily improve. Concurrently, the ESM simulation output data has been steadily increasing (Williams et al., 48 

2016) and is stored at the Earth System Grid Federation (ESGF) central repository (Cinquini et al., 2012).  49 

The main components of an ESM are models describing the atmosphere, ocean, cryosphere, land, and increasingly, the carbon 50 

cycle and other biogeochemical processes. Each component involves a variety of interacting phenomena occurring at a wide 51 

range of spatial and temporal scales (e.g. Gettelman et al., 2022). For instance, the atmospheric component involves phenomena 52 

spanning from micro-scale events, such as formation of cloud droplets on aerosol particles, to global-scale dynamics like 53 

planetary Rossby waves. In all ESMs, the continuous behavior of the atmosphere is first  discretized in space and time via the 54 

so-called “model dynamical core,” which encompasses the governing equations that capture the resolved (grid-scale) 55 

phenomena as well as the physical parameterization schemes for representing unresolved (subgrid-scale) processes. Various 56 
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ESMs thereby generally differ in the choice of computational grids (e.g., latitude-longitude structured grid, icosahedral grid, 57 

variable resolution cube-sphere grid), numerical methods for solving the dynamical core equations, as well as in physical 58 

parameterization schemes.  59 

In summary, each ESM is an attempt to represent a multitude of highly complex, nonlinear processes, and what is even more 60 

difficult, the synchronized interplay among them. Within each of the model components, there are processes that are well 61 

represented by known and proved physical laws. However, our current knowledge of how the Earth system operates is still 62 

limited. Many processes are represented in models through parameterizations — relationships used to approximate behaviour 63 

of unresolved or poorly understood phenomena. While some parameterizations are based on well-established physical theory, 64 

others, particularly those related to clouds or turbulence, remain subject to substantial uncertainty. In addition to our incomplete 65 

knowledge about the climate system, there are also computational limitations that hinder the fidelity of the models to represent 66 

certain relevant processes. The decisions made at modeling centers in response to these limiting factors make each model a 67 

unique imperfect idealization of the Earth system, and depending on the processes of interest to the end user, some idealizations 68 

may be more suitable than others. To account for this model uncertainty, models are combined in multi-model ensembles 69 

(MMEs). 70 

Besides the possibility to quantify uncertainty and increase robustness, MMEs have been found to generally outperform the 71 

projections of individual models. Inspired by the findings within the weather forecasting community, where numerous studies 72 

have shown that ensemble forecasts are more reliable than individual forecasts (Doblas-Reyes et al., 2003; Krishnamurti et al., 73 

1999), studies in the climate context also analysed the potential benefits from working with MMEs. In climate model 74 

evaluation, the MME has proven to outperform individual models in numerous studies e.g. regarding the mean (Gleckler et 75 

al., 2008; Knutti et al., 2010a; Lambert and Boer, 2001; Palmer et al., 2005; Phillips and Gleckler, 2006; Pincus et al., 2008; 76 

Reichler and Kim, 2008) or variability (Zhang et al., 2007), further strengthening the motivation to use MMEs. 77 

Given these benefits, MME studies have become an established tool for climate studies addressing a broad range of research 78 

questions. In the process, they also became the standard method to analyse and present results in the Assessment Reports (ARs) 79 

of the Intergovernmental Panel on Climate Change (IPCC) where the state-of-the-art knowledge on climate change is reviewed. 80 

For researchers, MMEs provide an efficient way to get an overview of general tendencies for specific questions. Also for non-81 

experts, presenting results in a synthesised format as e.g. in the context of MME also facilitates accessibility and interpretation 82 

(Knutti et al., 2010a), underlining the benefits of MMEs for the users.  83 

Since the beginning of large-scale atmospheric modelling in the 1950s, such intercomparison among models has been carried 84 

out. Initially, this intercomparison was mostly performed for numerical weather prediction as computational resources limited 85 

the intercomparison of studies in the climate studies, and a clear experimental strategy was lacking (Gates, 1992). Since the 86 

1970s, the Working Group on Numerical Experimentation (WGNE), supporting the World Climate Research Programme, has 87 
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organised several intercomparison projects among climate models (Gates, 1992). The first international systematic 88 

intercomparison framework for climate models was established in 1990 in the context of the Atmospheric Model 89 

Intercomparison Project (AMIP; Gates, 1992). In the early 1990s, the Intergovernmental Panel on Climate Change (IPCC) 90 

provided an intercomparison of atmospheric models in their first assessment report (AR; Gates, 1992). Räisänen (1997) 91 

advocated the need for quantitative model comparison and raised the thought that the agreement between models can indirectly 92 

serve as a measure for the reliability of the simulations. Accordingly, Räisänen and Palmer (2001) introduced a probabilistic 93 

perspective on multi-model ensemble projections. The authors quantified the probability of specific climate events happening 94 

based on 17 coupled atmosphere-ocean general circulation models (AOGCMs). Contemporaneously, AMIP was followed by 95 

the Coupled Model Intercomparison Project (CMIP), which also incorporated results from AOGCMs (Meehl et al., 2000). 96 

While the first phase of CMIP was limited to control runs, new standardised scenarios were incorporated throughout the phases 97 

of CMIP with an increasing number of international model centres contributing simulations.  Also, in recent CMIP generations, 98 

a variety of supporting experiments is conducted (e.g. Eyring et al., 2016), including paleoclimate runs (simulations of the 99 

‘distant past’), historical runs (simulations of the ‘recent past’), control runs to study natural variability, as well as various 100 

developmental runs such as AMIP experiments. In AMIP simulations, for example, various modelling centres use prescribed 101 

global sea surface temperature (SST) fields which enables the intercomparison of the atmospheric model component across 102 

various ESMs, while excluding effects of differing ocean models. Finally, future climate change experiments are performed 103 

for various greenhouse gas emission scenarios such as abrupt carbon dioxide doubling or quadrupling to derive equilibrium 104 

climate sensitivity (measure of how much the Earth's climate system will warm under a doubling of atmospheric CO2 105 

concentration) as well as for multiple “shared socioeconomic pathways (SSPs)” (O’Neill et al., 2017; Riahi et al., 2017). The 106 

latter denote diverse scenarios of evolution of the global society (including population, economy, and technology) which thus 107 

lead to differing emissions of greenhouse gases (CO2, CH4, NO2) and other air pollutants until the end of the 21st century and 108 

are associated with different climate change mitigation and adaptation policies and challenges (IPCC, AR6). 109 

The availability of standardised climate model outputs facilitated model intercomparison and has naturally inspired the use of 110 

multi-model ensembles (MMEs) since the beginning of the 2000s (Tebaldi and Knutti, 2007). Consequently, the AR3 of the 111 

IPCC (2001) presented many results based on MME means, accompanied by measures of inter-model variability (Tebaldi and 112 

Knutti, 2007). In the AR4 of IPCC (2007), model projections were only included if the models were successors from previous 113 

generations, thus a model selection de facto has taken place (Knutti et al., 2010b) . To support IPCC lead authors for the AR5 114 

and later, a “Good Practice Guidance Paper” was published in 2010, summarising current recommendations for the work with 115 

MMEs (Knutti et al., 2010b).  116 

In the meantime, numerous studies have proposed diverse methods for MME studies (e.g., in the context of model selection 117 

or model weighting). However,  for individual researchers whose main focus is often on the specific atmospheric or ocean 118 

problem that they study, it is challenging to have an overview of these studies. There is still a lack of guidelines on how to 119 
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combine models within MMEs (Herger et al., 2018). The design of MME studies involves a set of decisions related to model 120 

selection, weighting, and uncertainty measures. Each of these decisions requires careful consideration of a broad range of 121 

aspects and often entails compromises that differ depending on the research question, as the advantages and disadvantages are 122 

highly dependent on the individual study’s details. We acknowledge that this individuality makes it challenging and sometimes 123 

even impossible to establish universally applicable guidelines for MME studies. However, we believe it is valuable to give an 124 

overview of the key aspects to consider, and in some cases, present approaches that the Fresh Eyes on CMIP community has 125 

found to be useful. With this, we hope to support researchers that have newly entered the field of MME studies, but also to 126 

provide an overview of existing resources and approaches for more experienced MME researchers, particularly for (but not 127 

restricted to) the upcoming 7th phase of CMIP.  128 

While the focus of this paper is on the challenges associated with working with climate MMEs, it should be pointed out there 129 

are other types of climate ensembles such as initial condition ensembles (ICE) and perturbed parameter ensembles (PPE) 130 

(IPCC, AR5). Similarly as in the weather forecasting community, the climate ICE is generated with a single climate model 131 

using varying initial conditions (i.e., perturbed initial state) to address the uncertainty due to natural or internal variability. If 132 

sufficiently many ensemble members are available, they are referred to as Single Model Initial-condition Large Ensembles 133 

(SMILEs). The perturbed parameter ensemble (frequently called also the perturbed physics ensemble) also compares multiple 134 

realizations from a single climate model, but in this case, a set of chosen physical parameters which are assumed to affect the 135 

quantity of interest (e.g., global mean surface temperature) is systematically varied to quantify the effect on model outcome 136 

(e.g. Eidhammer et al., 2024; Sexton et al., 2021). This enables a systematic exploration of intra-model uncertainty. Finally, 137 

the so-called grand ensembles are based on a combination (nesting) of various ensemble types - for example, PPE or MME 138 

followed by an ICE (IPCC, AR6). 139 

In the following section, we conduct a comprehensive literature review on studies regarding model evaluation (2.1),  systematic 140 

model biases (2.2), model dependence (2.3), model selection and weighting methods (2.4) and uncertainty characterization 141 

(2.5). In this context, we also provide a summary of useful tools for MME analysis (2.6). In the third section, we complement 142 

these guidelines with a collection of frequently asked questions and challenges that appear while working with MMEs based 143 

on the experience of the WCRP Fresh Eyes on CMIP community. We address these questions based on the literature. In the 144 

fourth section, we discuss emerging trends for working with MMEs such as ML, SMILEs and the necessity for more awareness 145 

of computational resources associated with MME studies.  146 

2 Guidelines for working with MMEs 147 

Over 84 General Circulation Models (GCMs) from at least 43 international institutes are available in the context of the CMIP 148 

network (https://wcrp-cmip.org/map/). When addressing any specific research question, the need for specific variables, 149 
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scenarios, resolutions or experiment participation narrows the pool of available models. However, the remaining number is 150 

often still rather large prompting the question: which of those models should be included for a specific analysis? Should all 151 

available models be utilised, or only a subset? How to identify the models that are most suitable? The choice of adequate 152 

selection criteria to distinguish between more and less suitable models for specific MME studies is central for the study design. 153 

The two primary objectives when selecting models are to firstly optimize model performance and secondly, reduce duplicated 154 

information, thus to create a subset of independent models (Herger et al., 2018). The subsection 2.1 focuses on how to perform 155 

a model evaluation and subsection 2.2. provides examples of existing model bias, while subsection 2.3 discusses model 156 

dependency. Subsection 2.4 gives an overview of selection and weighting methods and subsection 2.5 introduces the 157 

quantification of uncertainty. Subsection 2.5 lists useful tools and resources for MME analysis. 158 

2.1 Model Evaluation 159 

Observation datasets for model evaluation 160 

The reference data sets are a key element of model evaluation. These are typically observations or reanalysis data derived from 161 

observations. A wide array of observational datasets used in ESM evaluation comprise paleoclimate data, measurements from 162 

ground-based stations over land, various ocean observational platforms, ships and buoys, sail drones, aircraft and balloon (in-163 

situ) measurements, and satellite data. These observational datasets are frequently used in synergy, as they generally all have 164 

advantages and disadvantages (e.g., cover different spatial and temporal scales and time periods, are based on differing 165 

measurement techniques, have different accuracy, etc.). The paleoclimate data give insight into the state of the Earth’s climate 166 

hundreds to millions of years ago and simultaneously provide valuable constraints on climate models for paleoclimate 167 

simulations, which help us understand recent and future climate change in the context of longer-term climate variability. For 168 

the more recent past, most of the reference observations originated in land in-situ measurements. It is important to keep in 169 

mind that these ground-based observations are not equally distributed around the globe (e.g., there are more land measurement 170 

stations in the Northern Hemisphere than in the Southern Hemisphere). The advent of Earth observation satellites has 171 

revolutionized the availability of global reference data sets, which are of key importance for the evaluation of global climate 172 

models. However, satellite datasets are limited to the time after the 1970s or later, depending on the variable of interest.  173 

Moreover, model evaluation using observations is not always straightforward because observational sensors do not necessarily 174 

measure variables simulated by climate models. To ensure an “apple-to-apple comparison,” observed quantities must be 175 

properly converted into model-output-like variables, or vice versa. To that end, comprehensive satellite simulation software 176 

has been developed which enables simulating what a satellite would observe flying over the model atmosphere. Also it is 177 

important to keep in mind that each observational data set is associated with observational uncertainty, e.g. due to instrument 178 

uncertainty, calibration limitations, or the interpolation procedure. Accounting for uncertainty in the observational data sets 179 

used as reference can be done by including multiple data sets. Depending on the variable of interest, commonly used reanalysis 180 
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data sets are ERA5 (produced by ECMWF), MERRA-2 (produced by NASA GSFC), NCEP-NCAR reanalysis (produced by 181 

NOAA and UCAR), JRA-55 (produced by Japan Meteorological Agency). Also, it must be assured that observation and 182 

simulations have the same temporal and spatial resolution, including the horizontal grid and number of vertical levels (Simpson 183 

et al., 2025). This can be also achieved by appropriate regridding methods. However, the regridding has to be conducted with 184 

care as also conservative remapping of e.g. precipitation changes the statistical properties of the variable (Simpson et al., 2025). 185 

Another issue to bear in mind is the problem of “model tuning”, where model parameters are adjusted to best match the 186 

observational dataset, e.g., the observational dataset which is used for model evaluation was previously used for model tuning. 187 

In the case of reanalysis data, however, models are included in their creation and therefore using reanalysis data for reference 188 

is even more problematic, as the underlying data set should be independent.  189 

Generally, there are two approaches for model evaluation. The performance-oriented approach focuses on identifying the 190 

models that perform best concerning the research question, meaning their output is closest to observations or reanalysis data. 191 

The process-oriented approach seeks models that best capture the relevant dynamics. Regardless of the chosen approach, it is 192 

essential for any research project to report on the performance of all models available before applying any ranking or weighting 193 

methods, and the selection criteria should be reported transparently (Knutti et al., 2010a). Such evaluations are sometimes 194 

already available in the literature and can be referred to. But in that case it is important to make sure that they cover the 195 

variables, scales etc. as relevant to the specific research questions that are of interest in the new study.  196 

Performance-oriented evaluation  197 

In weather forecasting, predictions can be verified within days as actual weather observations become available.This is not the 198 

case in climate model projections where the scales are much longer than weather scales (decades to centuries) and prevent any 199 

immediate verification. Therefore, climate model performances are evaluated with reference to past and present-day 200 

climatology (Knutti, 2010). Performance-oriented model evaluation is based on the assumption that models that performed 201 

well for the past regarding some specific climate phenomena will also perform well for the future climate. 202 

Taylor diagrams (Taylor, 2001) serve as a very useful tool to assess model performance against observations. Such analyses 203 

help to identify better performing models, which may be more useful than others. Also outliers can be identified.  Models 204 

closer to the observed standard deviation, along with higher correlation values and hence lesser root mean square errors are 205 

considered as better performing models for specific climate features  (Taylor, 2001) and those can also be used for evaluating 206 

future climate. For example, the Western Pacific pattern, a prominent teleconnection pattern during the boreal winter over the 207 

North Pacific was analysed for 56 CMIP6 models using a Taylor diagram (Fig. 1, Aru et al., 2023). It depicts that the spatial 208 

correlations of the geopotential height anomalies at 500-hPa over the Western North Pacific between individual CMIP6 models 209 

and observations generally exceed 0.6. Also, in reproducing spatial patterns, the mean of the MME  typically outperforms most 210 
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individual models, which is evidenced by a spatial root mean square deviation of 0.97.  This diagram  also makes it possible 211 

to identify outlier models, such as the MIROC-ES2L in this example. Finally, only the best performing models can be 212 

considered when estimating the final MME mean to improve results. This method can be used for different phenomena, e.g. 213 

for analysing the Indian Summer Monsoon (Roy et al., 2019) or for exploring seasonal mean temperature (Tang et al., 2016). 214 

 215 

 216 

Fig. 1. Taylor diagram showing the geopotential height anomalies at 500-hPa over the 217 

Western North Pacific (20°N–80°N, 120°E−120°W) in individual CMIP6 models, MME and 218 

observations, taken from Aru et al. (2023).                                                          219 

It is important to remember that models are calibrated with the aim to reduce anomalies compared to observational data before 220 

becoming available in the CMIP context. During this calibration, various parameters are adjusted to reduce model bias. 221 

Consequently, improvements in overall model performance may not necessarily stem from enhanced capabilities in capturing 222 

relevant processes but optimized calibration (Knutti, 2010). On the other hand, this complex calibration procedure does not 223 

only have to compromise one individual regional pattern and the associated circulation. Thus, the calibration was not designed 224 

to optimize for specific climate phenomena, and parameters are not tuned to get as close as possible to specific variable 225 

patterns. Additionally, observational data also influence model behavior through the forcings themselves — for instance, in 226 

concentration-driven CO₂ simulations, where observed atmospheric concentrations are prescribed directly for historical 227 
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simulations, rather than being computed from emissions (as in emission-driven models). This approach further constrains the 228 

model output, as the model does not simulate atmospheric CO₂ concentrations from emissions via an interactive carbon cycle. 229 

As a result, improvements in the model’s output do not necessarily indicate better representation of the carbon cycle itself. 230 

Another deficiency of this assumption is based on the fact that the climate is changing. While a reasonable performance in 231 

today’s climate might serve as a reasonably good proxy to decide if the model captures current and past dynamics well, the 232 

role of specific circulation patterns and their interactions might change throughout the 21st century. In this context, (Knutti et 233 

al., 2010a) found that the model performance evaluated for the past correlates only weakly with the magnitude of the projected 234 

change in the future, illustrating that constraining models based on their performance in the past does not necessarily reduce 235 

the intermodal spread in the future. Given these pitfalls, Mendlik and Gobiet (2016) propose to only remove the severely 236 

unrealistic models alternatively. A detailed assessment on how to deal with outliers can be found in subsection 3.4. However, 237 

it remains interesting and relevant to understand which models perform best concerning a specific question and the assumption 238 

(models that perform well in the past will also do so in the future) may provide relevant insights given the lack of alternatives.  239 

The praxis of performance-oriented model evaluation comes down to the choice of appropriate metrics. Model ranking has 240 

been found to be sensitive to this choice (Gleckler et al., 2008). However, for specific variables, it is possible that the model 241 

projections are independent of the choice of underlying metrics and ranking methods (Santer et al., 2009). Given the diversity 242 

of possible research questions, there is no single or combined performance metric that can reliably identify the “best” model 243 

independent of the research question). While this may sound disappointing since it prevents the standardization of model 244 

evaluation, it also has the advantage of reducing the effect of model convergence due to tuning (Knutti, 2010), which allows 245 

for a more reliable representation of future uncertainty and decreases the likelihood of making overconfident predictions. 246 

Generally, a metric is recommended if it’s as simple as possible while at the same time being as statistically robust as possible, 247 

meaning that the dependence on specifications of the metric is rather low (Knutti et al., 2010b). Therefore, for any study, it is 248 

essential to determine the metrics that are relevant to the specific research question. One relevant aspect is the spatial and 249 

temporal scale of the phenomenon in question. For example, if the analysis is supposed to quantify extremes on a daily basis, 250 

then the performance on a daily scale should be the focus of the evaluation procedure.  251 

A frequent challenge in climate model evaluation is determining whether models yield correct results for incorrect reasons, 252 

due to compensating errors (Eyring et al., 2016; Ivanova et al., 2016). There is a possibility that, while a model appears to 253 

accurately represent some variable, the underlying processes are not well-captured, which could mask inherent biases in the 254 

model. For example, analysing CMIP6 models, Zhao et al. (2022) reported that the cloud radiative effect reveals compensating 255 

errors between the modeled total cloud fraction and the liquid water path. These errors offset each other, resulting in a smaller 256 

net error in the cloud radiative effect. Di Luca et al. (2020a) addressed the issue of error compensation in CMIP5 simulations 257 

of hot temperature extremes by developing a new error metric called the “additive error.” This metric adds up the absolute 258 
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errors of four components contributing to temperature extremes: the long-term mean, seasonality, diurnal temperature range, 259 

and the local temperature anomaly on the day of the extreme. Compared to traditional bias or absolute error metrics, the 260 

additive error more sensitively captures the total error in extreme temperature estimates. Furthermore, Di Luca et al. (2020b) 261 

defined a new error estimator that aims to minimize error compensation.  262 

Ideally, the evaluation process also allows insights on how well basic dynamic processes relevant to the research questions are 263 

reproduced in models (Knutti et al., 2010b). For a research question regarding rainfall, for example, this could mean to not 264 

only analyze the precipitation pattern, but also inspect wind patterns to see if the associated circulation is captured well. 265 

Process-oriented model evaluation specifically targets the model performance concerning such dynamics.  266 

Process-oriented evaluation 267 

Process-oriented evaluation of climate ESMs, particularly within CMIP, focuses on assessing how well models simulate the 268 

individual physical processes driving climate behavior. This approach shifts from traditional performance-oriented evaluation 269 

to more detailed, process-oriented metrics, critical for advancing the next generation of climate ESMs. Almost two decades 270 

ago,  Eyring et al. (2005); Gleckler et al. (2008) emphasized the need to evaluate a wide range of climate processes, since 271 

accurate simulation of one aspect doesn't ensure accuracy in others. The authors recommended developing a comprehensive 272 

set of model metrics to assess important processes in climate simulations. Therefore, process-oriented evaluation identifies 273 

sources and limitations of predictability, enhancing model performance and more reliable climate projections (Eyring et al., 274 

2016). It also fosters collaboration across modeling centers, integrating model development and evaluation efforts to ensure 275 

consistency and improve accuracy. By incorporating process-oriented analysis into diagnostic packages, evaluations become 276 

reproducible, accelerating model improvements and establishing benchmarks for progress. In the MME framework, this 277 

approach helps identify which processes contribute most to inter-model differences, providing insights into the mechanisms 278 

behind model performance. Below, we highlight examples of process-oriented analysis applied to CMIP models. 279 

Using observations for processed-based evaluation: Ahmed and Neelin (2021) utilized the observed relationship between 280 

tropical precipitation and buoyancy as a foundation for a process-oriented analysis of CMIP6 models. They quantitatively 281 

assessed the thermodynamic sensitivities of convection across these models and applied regime-oriented diagnostics. Their 282 

findings indicated that several models exhibited excessive moisture sensitivity, potentially due to underactive convective 283 

schemes or tuning assumptions. Consequently, models with this excessive moisture sensitivity tended to have mean 284 

precipitation states biased toward grid-scale saturation.  285 

Another example is the Indian Summer monsoon (ISM) and the El Nino Southern Oscillation (ENSO) teleconnection what 286 

was captured well in MME of CMIP5 and CMIP6 models (Katzenberger et al., 2021; Roy et al., 2017; Roy and Tedeschi, 287 

2016). Around central northeast India, the teleconnection is strongest (Roy et al., 2017). For El Nino, there is a significant 288 
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deficit of rain, while for La Nina there is a significant excess rain. For the MME, the method used is simple mean (‘one-model-289 

one-vote’, Knutti, 2010), instead of  weighting or ranking models. Results are similar even when MME of only good models 290 

(as was identified for ISM by Jourdain et al., 2013) are considered. Anomalies in precipitation for different types of ENSO are 291 

captured well in most models and MME, agreeing with observation (see details in Roy et al., 2017). The model ensemble of 292 

ISM and SST in the Pacific showed a clear connection between Walker circulation and ISM across the central northeast India, 293 

matching observation. This region of India is the meeting point of Hadley and Walker circulation during ISM, that coupling 294 

process and teleconnection seems captured well by most CMIP models as well as MME, allowing us to understand why the 295 

teleconnection is captured well.   296 

Using observations for a multiple diagnostic ensemble regression: Karpechko et al. (2013) developed the multiple diagnostic 297 

ensemble regression (MDER) methodology to link future climate projections with process-oriented diagnostics evaluating 298 

twentieth century processes, applying it to Antarctic ozone columns. MDER identifies key processes influencing ozone and 299 

explains variability in projected ozone across climate chemistry models (CCMs). The regression model, based on observed 300 

diagnostics, is then applied to predict future ozone and its uncertainty. Validated in a pseudo-realistic setting, MDER 301 

outperforms the unweighted Multi-Model Mean in forecasting Antarctic ozone levels. Wenzel et al. (2016) applied MDER 302 

algorithm (represented as a diagnostic in ESMValTool, see Section 2.6) to analyze the austral jet position in projections of the 303 

twenty-first century under the RCP4.5 scenario of CMIP5 simulations.The authors state that MDER reduced uncertainty in the 304 

ensemble mean projection without significantly changing the jet's long-term position. 305 

Process-oriented evaluation to reduce model bias: Another key focus is the development of process-oriented metrics for 306 

phenomena that have a strong bias in the models, as e.g. MJO, the dominant mode of tropical intraseasonal variability. To 307 

address the reasons for these biases, a number of process-oriented diagnostics was developed to facilitate improvements in the 308 

representation of the MJO in weather and climate models (Ahn et al., 2020; Li et al., 2022; Wang et al., 2020). The first multi-309 

model comparison study on MJO teleconnections was conducted by Ahn et al. (2017) and  Henderson et al. (2017). The authors 310 

found that biases in simulating the Pacific westerly jet's position contribute to errors in MJO teleconnections, along with poor 311 

MJO representation. 312 

Another example are low-level clouds over tropical and subtropical oceans that have been poorly simulated in multiple CMIP 313 

generations when evaluated against satellite observations in the present-day climate (e.g. Nam et al., 2012), which inhibits 314 

reliable future climate projections. Črnivec et al. (2023) and Cesana et al. (2023) introduced a qualitative approach to 315 

discriminate stratocumulus (Sc) from shallow cumulus (Cu) low-cloud regimes to evaluate their horizontal extent (cloud 316 

cover), radiative effect at the top of the atmosphere (TOA) and cloud-radiative feedbacks in CMIP5 and CMIP6 models. This 317 

approach is essential for guiding model improvements, because Sc and Cu formation and evolution are driven by a distinct 318 
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interplay of coupled processes within the moist marine boundary layer (such as radiation, turbulence, convection); and Sc and 319 

Cu clouds also respond differently to global warming (Cesana and Del Genio, 2021). 320 

Using idealization or a hierarchy of models: Another possibility is to design a model setup in order to isolate specific processes 321 

in order to test their relevance for specific phenomena. As an example, Katzenberger et al. (2024) used an aquaplanet with a 322 

circumglobal land stripe to study the meridional circulation, particularly the Hadley cell, in an idealized setup. By moving the 323 

landstripe north and southwards, changing the surface albedo, or the aerosol concentrations the role of these features for 324 

monsoon dynamics could be studied in an idealized setup - undisturbed by the complexity of the real world topography. With 325 

this method,  a barrier dynamics in the surface pressure could be identified. By slowly adding different components and 326 

increasing the complexity and realism of the setup in a hierarchy of models, the contribution by these components can be 327 

identified as well, see e.g. Zhou and Xie (2018).  328 

Identifying the role of model configurations: Another significant aspect of process-oriented model evaluation is understanding 329 

how specific characteristics are influenced by model configurations, such as resolution and parameterization schemes. Kim et 330 

al. (2018) proposed a set of diagnostics to assess how model physics affect the representation of TCs, particularly their intensity 331 

in GCMs.  The findings suggest that model-specific factors, beyond large-scale environmental parameters, play a key role in 332 

shaping TC intensity, with differences in convection schemes contributing significantly to the intermodel spread. Wing et al. 333 

(2019) and Moon et al. (2020) further applied these methods, with Moon et al. (2020) showing that TC wind structures are 334 

strongly influenced by model resolution. Dirkes et al. (2023) emphasizes the necessity of applying the developed diagnostics 335 

for TC analysis in CMIP6 models. 336 

2.2 Systematic model biases 337 

Some systematic biases are present in the vast majority of CMIP models at the global and regional scale and might even persist 338 

over multiple CMIP generations, which requires special attention. In this section we review some long-standing biases in 339 

CMIP models and strive to discuss the origins and consequences of these systematic model biases. With this list we do not 340 

intend to provide a complete list of all bias reported, but to give some relevant examples of model biases and its background. 341 

For further details on this topic, we also recommend Simpson et al. (2025).  342 

General evaluation: Bock et al., 2020 employed the ESMValTool (see Section 2.6 and Eyring et al., 2020; Righi et al., 2020), 343 

to quantify the progress of climate models across different CMIP phases. Their analysis revealed significant advancements 344 

from CMIP3 to CMIP6 in simulating the vertical distributions of key variables, including temperature, water vapor, and zonal 345 

wind speed. The authors also demonstrated that high-resolution models in the historical CMIP6 simulations show a notable 346 

reduction of temperature and precipitation mean biases. 347 
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Sea surface temperature (SST) and ocean model biases: The ocean accumulates more than 90% of the excess energy from the 348 

global greenhouse effect (IPCC, AR6). The oceanic global circulation gyres transport excess heat from the tropics towards the 349 

poles. Furthermore, the oceanic surface fluxes of heat and moisture enter the atmosphere and thereby affect its dynamics. The 350 

ocean component also interacts with the cryosphere and influences processes therein (IPCC, AR6). These various oceanic 351 

processes have to be properly captured in ESMs. Long-standing SST biases result in biases when simulating other key 352 

phenomena such as tropical cyclones (e.g. Dutheil et al., 2020) and extratropical cyclones (e.g., Priestley et al., 2023a). Wills 353 

et al. (2022) investigated systematic biases in the large-scale patterns of recent sea-surface temperature (SST) and sea-level 354 

pressure change and showed that CMIP5 and CMIP6 ensembles are not able to reproduce the observed trends. Luo et al. 355 

(2023), moreover, discussed the origins of Southern Ocean warm SST bias in CMIP6 models. The Southern Ocean has namely 356 

been subjected to systematic warm SST bias in several generations of CMIP models (Sen Gupta et al., 2009; Wang et al., 357 

2014). Westen and Dijkstra (2024) recently discussed persistent climate model biases in the Atlantic Ocean's freshwater 358 

transport. These various aforementioned biases are linked to the Atlantic Meridional Overturning Circulation (AMOC), which 359 

consists of the northward flow in the upper oceanic layers and returning southward flow in the deep ocean (Luo et al., 2023; 360 

Wang et al., 2024). The AMOC is considered to be one of the major tipping elements in the global climate system (Armstrong 361 

McKay et al., 2022; Van Westen et al., 2024), which may weaken or even collapse with future global warming, thus a more 362 

reliable representation of SST/ocean model would be desirable e.g. to better foresee the future AMOC behaviour. 363 

The Intertropical Convergence Zone (ITCZ) bias:  ITCZ is a band of a zonally-oriented surface convergence zone near the 364 

equator associated with deep convective clouds and heavy precipitation (Schneider et al., 2014; Waliser and Gautier, 1993). 365 

The common problem of fully-coupled global climate models from the early stage of their development is that they simulate 366 

two ITCZs over the central and eastern Pacific and the Atlantic in both hemispheres, instead of one ITCZ over the northern 367 

hemisphere as in observations, which is referred to as the double-ITCZ bias (Adam et al., 2018; Li and Xie, 2014; Oueslati 368 

and Bellon, 2015; Tian and Dong, 2020; Xiang et al., 2017). Tian and Dong (2020), as an illustration, recently examined the 369 

double-ITCZ bias in CMIP3, CMIP5, and CMIP6 based on annual mean precipitation. They found that all three generations 370 

of CMIP models exhibit similar systematic annual MME mean precipitation errors in the tropics when evaluated against the 371 

NOAA Global Precipitation Climatology Project (GPCP; Adler et al., 2003) and the NASA Tropical Rainfall Measurement 372 

Mission (TRMM; Huffman et al., 2007) observational datasets. 373 

Biases in extratropical cyclones: Extratropical cyclones involving weather fronts and related overall storm tracks are an 374 

important component of the climate system since they transport heat poleward and are associated with a notable amount of 375 

precipitation and severe weather in the midlatitudes (Clark and Gray, 2020; Dacre, 2020; Schultz et al., 2019). The accurate 376 

representation of extratropical cyclones, including their thermodynamics, frontal structure, and track in CMIP models, 377 

however, remains challenging and has been subjected to biases (e.g. Chang et al., 2012; Priestley et al., 2023a, b). Priestley et 378 

al. (2023a) investigated drivers of biases in the CMIP6 extratropical storm tracks in the Northern Hemisphere (NH). Even 379 
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though the previous work demonstrated that the representation of extratropical storm tracks in the NH has improved from 380 

CMIP5 to CMIP6, the persistent biases remain in CMIP6 (Priestley et al., 2023a). A follow-up study by Priestley et al. (2023b) 381 

investigated drivers of biases in the CMIP6 extratropical storm tracks in the Southern Hemisphere (SH). The Southern 382 

Hemisphere storm tracks have been commonly simulated too far equatorward in CMIP models during the historical period. 383 

This issue was somewhat reduced in CMIP6 compared to CMIP5, although it is still a problem. 384 

Marine tropical/subtropical low cloud biases: Črnivec et al. (2023) analyzed 12 CMIP6 ESMs and demonstrated that they all 385 

underestimate the aerial extent of low clouds and simultaneously overestimate their radiative effect at the top of the atmosphere. 386 

This well-known issue, referred to as the “too few, too bright” tropical low-cloud bias, was already present in previous 387 

generations of climate models such as CMIP5 and CMIP3 (e.g., Nam et al., 2012, and references therein). Cesana et al. (2023), 388 

moreover, addressed how the representation of marine tropical Sc and Cu clouds and associated feedbacks in the abrupt 4xCO2 389 

scenario changed between CMIP5 and CMIP6. They found that, collectively, CMIP6 models notably increased Sc cloud cover 390 

and slightly increased Cu cloud cover compared to their CMIP5 predecessors and are thus closer to observations. They further 391 

showed that CMIP6 models notably improved the representation of Sc feedback and slightly improved the representation of 392 

Cu feedback compared to CMIP5 models. Yet CMIP6 models still underestimate the magnitude of positive Sc and Cu 393 

feedbacks relative to observationally inferred estimates, which should drive further climate model development. 394 

Biases in the cryosphere: The global cryosphere plays an important role in determining the planetary climate since bright ice 395 

and snow surfaces reflect a significant portion of the solar radiation back to space and cool the planet (IPCC, AR6). In a 396 

warming world, sea ice is shrinking and thinning, with both Arctic and Antarctic sea ice approaching historic lows (NASA 397 

Earth Observatory; IPCC AR6). The melting of sea ice with global surface warming implies that an increasing area of dark 398 

and absorptive ocean surface is exposed to warming sunlight, which forms one of the principal climate feedback mechanisms 399 

– namely, the sea ice albedo feedback (IPCC, AR6). It is thus pivotal to best capture the cryosphere extent, properties, and its 400 

response to global warming. To that end, Frankignoul et al. (2024) investigated Arctic September sea ice concentration biases 401 

in CMIP6 models and their relationships with other model variables. They demonstrated that CMIP6 models exhibit large 402 

biases in Arctic sea ice climatology, which seem to be related to biases in seasonal oceanic and atmospheric circulations. Notz 403 

and the Sea-Ice Model Intercomparison Project (SIMIP) Community (2020) furthermore showed that CMIP6 models still fail 404 

to simulate a plausible evolution of Arctic sea-ice area (SIA), even though CMIP6 models better capture the sensitivity of 405 

Arctic sea ice to forcing changes compared to CMIP5 and CMIP3 models. Roach et al. (2020) evaluated the Antarctic sea ice 406 

in CMIP6 and demonstrated that the mean Antarctic sea-ice area is close to satellite observations, but inter-model spread 407 

remains substantial, with summer Antarctic SIA being consistently biased low across the ensemble. Nevertheless, they found 408 

modest improvements in the simulation of sea-ice area and concentration compared to CMIP5. 409 
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Biases in extremes: Human-induced global warming is expected to intensify extreme events such as severe thunderstorms, 410 

intense precipitation, heatwaves, droughts, etc. (IPCC, AR6). Extreme weather and climate events and related hazards already 411 

cause substantial economic damage and pose a serious threat to human lives (IPCC, AR6). Therefore, it is imperative to 412 

evaluate the CMIP ensemble for climate extremes as a first step towards more reliable prediction of extreme events affecting 413 

society and ecosystems globally in the near and distant future. This endeavor is well aligned with the WCRP Grand Challenge 414 

on Weather and Climate Extremes. To that end, Kim et al. (2020) evaluated the CMIP6 multi-model ensemble for climate 415 

extreme indices defined by the WCRP Expert Team on Climate Change Detection and Indices (ETCCDI). They reported 416 

several systematic biases even with strong amplitudes, such as the cold bias in cold extremes over high-latitude regions. When 417 

comparing CMIP6 with CMIP5, Kim et al. (2020) overall found only limited improvements in model skill simulating climate 418 

temperature and precipitation extremes, implying that further work is urgently required to advance the understanding of climate 419 

extreme phenomena and their representation in climate models. Moreover, Abdelmoaty et al. (2021) found biases in CMIP6 420 

models when simulating both the mean precipitation and its variability, and thereby emphasized shortcomings of CMIP6 421 

models in the Arctic, Tropics, arid, and semi-arid regions. 422 

2.3 Model dependence 423 

Current day ESMs, including those used for CMIP, are developed by multiple modeling groups worldwide. Ideally, each ESM 424 

included in a MME should be independent of the others so there is an adequate representation of the epistemic model 425 

uncertainty within the ensemble. Historically, climate projections are derived by calculating simple averages across the MME, 426 

with the assumption that the mean is the most accurate representation of the Earth system given all the individual modeling 427 

efforts (Abramowitz et al., 2019; Knutti et al., 2010a). Assuming that all models aim to represent the real climate system 428 

independently, it is expected that all ESMs, while differing in their approaches, would still be sufficiently independent, and 429 

reflect a broad range of uncertainties in a MME. The assumption of model independence allows for the aggregation of results 430 

that should smooth out individual model biases. However, the development of these models is often not independent (Pincus 431 

et al., 2008).  432 

Recent analysis of model errors in CMIP6  reveals an intriguing and concerning phenomenon: the number of independent 433 

climate models is smaller than the total number of models included in CMIP6 (Jun et al., 2008; Masson and Knutti, 2011; 434 

Pennell and Reichler, 2011). It has also been shown that the models included in MMEs have biases resulting from a lack of 435 

model independence (Jun et al., 2008; Knutti, 2008; Reichler and Kim, 2008; Tebaldi and Knutti, 2007), with errors across 436 

different models being correlated, which exacerbates the problem (Knutti et al., 2010a). The dynamical core for resolving grid-437 

scale dynamics is often shared among various ESMs. Furthermore, smaller model components (e.g., physical parameterization 438 

schemes) are exchanged between various modeling groups. Although widely accepted methodologies being shared may result 439 

from confidence in their correctness, this also implies that potential inadequacies shared across most ESMs also gain more 440 

relevance within a MME context (Knutti et al., 2010b). As an illustration, the radiation scheme McICA introduced by Pincus 441 
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et al. (2003) proved to be an efficient and flexible methodology to represent one-dimensional radiative transfer in a cloudy 442 

atmosphere and is thus implemented in multiple contemporary ESMs such as several US models (NSF NCAR CESM2, NOAA 443 

GFDL-CM4, DOE E3SM-1-0), the Canadian model (CanESM5), the UK model (HadGEM3), and the Norwegian model 444 

(NorESM2). Similarly, the NEMO ocean model is widely used across different modeling centers, including the UK Met Office 445 

HadGEM3 and the Norwegian NorESM2, further illustrating the sharing of key components across modeling systems. 446 

The lack of a clear, universally accepted and unambiguous definition of model independence complicates efforts to address 447 

model dependence in MMEs. Some definitions are more abstract, focusing on the idea of whether or not a model adds novel 448 

additional information (Masson and Knutti, 2011). Others, such as the statistical framework presented by Annan and 449 

Hargreaves (2017), provide a more analytical approach to understanding model dependence, offering examples for evaluating 450 

model dependence and using their framework. Their framework argues for a rigorous mathematical approach to best capture 451 

model dependence, and ensure that MMEs accurately reflect the uncertainty inherent in climate projections. Despite the 452 

absence of an unambiguous definition of model dependence, it is clear that climate models are interdependent as shown in 453 

Figure 3.  454 
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 455 

Fig. 2. Spiral plot of climate model dependencies, adapted from Kuma et al. (2023). The oldest model in any given family is 456 

in the center of the plot, spiralling out as more models are made. Model type is differentiated by shape of marker, and link type 457 

is differentiated by arrow type (solid for parent or dashed for predecessor). Models developed in different countries are assigned 458 

distinct colors. Markers indicate atmosphere general circulation models (AGCMs), atmosphere-ocean global circulation 459 

models (AOGCMs), and Earth system models (ESMs). Numbers of models from each country are indicated in brackets in the 460 

legend. ECMWF models are denoted by the country “Europe”.  461 
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Despite recent advances, a generalized solution to address the issue of model dependence has not yet been widely accepted. 462 

Proposed solutions to address model dependence are specific to the problem at hand, and while some solutions such as 463 

weighting schemes (Section 2.4.1) have been proposed, there is still work to be done in representing model dependencies in 464 

ensemble means effectively.  It is widely acknowledged that climate models are not independent, illustrated in Fig. 2, which 465 

leads to inherent flaws in ensemble means and giving the impression of greater model convergence than would otherwise be 466 

the case, there remains no consensus on the exact definition of independence and how this issue should be addressed in projects 467 

such as CMIP. In coming years, as updated model versions are published it will be crucial to continue developing methods to 468 

quantify and correct for model dependence, ensuring  that ensemble projections are more robust and better reflect the true 469 

uncertainty in climate projections.  470 

2.4 Model Selection and Weighting Methods 471 

CMIP MME weighting and selection techniques are used to categorize the CMIP models based on historical model 472 

performance and independence using several metrics (Palmer et al., 2023). Model weighting is crucial for optimizing accuracy 473 

and reliability in CMIP MME projections (Strobach and Bel, 2020). Several statistical and performance-based approaches are 474 

used for MME weighting (Bhowmik and Sankarasubramanian, 2020; Brunner et al., 2020). Statistical model weighting assigns 475 

weights based on statistical properties like independence and spread, while performance-based weighting assigns weights 476 

based on their ability to reproduce observed historical climate patterns (Brunner et al., 2020). Weighting methods are used for 477 

assessing model dependence, and for uncertainty reduction. In model dependence evaluation, weighting accounts for model 478 

redundancy due to shared components. In model uncertainty evaluation, higher weights are assigned to more accurate or 479 

reliable models based on specific criteria. Model weighting for detecting model outliers are discussed specifically in Section 480 

3.4.  481 

2.4.1 Weighting methods to deal with model dependence 482 

As highlighted in Section 2.3, climate models are not fully independent and a weighting scheme is needed to ensure that 483 

ensemble results reflect the true average of independent climate models. A common approach to address the issue of model 484 

dependency is by weighting models differently based on their independence from others. Sanderson et al. (2015) demonstrated 485 

a proof of concept for model weighting schemes that considers model dependence, and developed a mathematical formulation 486 

to determine model uniqueness. Knutti et al. (2017) later proposed a model weighting method that includes two distance 487 

metrics, from models to observations, and among models. Here the “effective repetition of a model” within an ensemble, 488 

outlined by Sanderson et al. (2015), is accounted for, along with the accuracy of a model with respect to observations. It is 489 

also argued by Boé (2018) that a better method of assessing model interdependencies is through code similarity, instead of 490 

through result similarity. While evaluating source code similarity is indeed challenging (due to issues such as the complexity 491 

of model architectures, differing programming languages, licensing issues and proprietary restrictions) it should offer valuable 492 
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insights into shared model components and algorithms that may not be evident from model output comparisons alone. 493 

Evaluating source code similarity as well as evaluating similarity of results allows for the identification of common 494 

methodologies that may lead to correlated predictions, which highlights potential redundancies within MMEs that could skew 495 

results. Integrating both model independence and code similarity into weighting schemes can enhance the robustness of MMEs, 496 

contributing to producing more reliable and unbiased outcomes. Recent model selection methods also emphasize model 497 

independence (Snyder et al., 2024) with tools being developed that account for model dependence such as ClimSIPS 498 

(Merrifield et al., 2023). 499 

2.4.2 Model weighting to reduce model uncertainty 500 

Model weighting can improve the accuracy and estimate the uncertainties of CMIP multi-model ensemble projections 501 

(Merrifield et al., 2020). The weighted MME’s estimates are more reliable since they consider the better-performing models 502 

and remove models with poor simulation capabilities (Shuaifeng and Xiaodong, 2022). Tang et al. (2021) compared weighted 503 

and unweighted MMEs projections in four extreme precipitation indices over the Indo-China peninsula and south China. The 504 

results indicate that weighted MMEs produce more robust results than unweighted MMEs and the reduction in uncertainty 505 

depends on the projection scenarios. Brunner et al. (2020) discovered a reduction in the projected warming when applying 506 

model weighting because some models showing high future warming have systematically lower performance weights. A Rank-507 

based weighting approach was utilized for the CMIP6 MMEs projection and uncertainty estimation of cold surges over 508 

northern China (Shuaifeng and Xiaodong, 2022).  509 

However, the weighting is a challenging process, as the basis for weights must be determined and by that other not yet identified 510 

but equally relevant factors may be excluded in the assessment. Also the relevance of features for phenomena may change 511 

with global warming, making it unjustified to use weights with regard to current relevance. Besides, similar models with 512 

“main-stream” results may be strengthened for the wrong reasons, while models that provide outlier results and could add 513 

valuable insights to the understanding may be wrongly penalized by low weights, see also subsection 3.4.  514 

Most studies in the literature use simple multi-model means, thus equally weighted MMEs to project future climate change 515 

impacts  (Shuaifeng and Xiaodong, 2022). However, equal weighting of MME (without any model selection) is criticized for 516 

not considering model performance (Shin et al., 2020). How the unequal weights reflect the model performance by applying a 517 

hybrid weighting scheme has been studied by Shin et al. (2020). In unequal weighting schemes, the chi-square statistics are 518 

used for the smoothening of unfairly high or low weights.  519 

2.4.3 Model Subselection to reduce uncertainty 520 
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Another way to account for uncertainty is by selecting a subset of models. This can also be considered as a weighting method, 521 

which uses the weight 1 for included models, and the weight 0 for excluded models. MMEs with optimized sub-selection can 522 

reduce the computational load, produce more reliable uncertainty estimates, and make predictions more accurate (Hamed et 523 

al., 2021; Snyder et al., 2024). Herger et al. (2018) compared different sub-selection approaches such as random ensemble, 524 

performance ranking, and optimal ensemble sub-selection and found improved performance over the multi-model is possible 525 

depending on the case, meanwhile maintaining model spread and interdependence. Random ensemble is one of the model 526 

subselection techniques, in which multiple models are combined randomly without an explicit optimization strategy. 527 

Performance ranking is another subselection technique where models are ranked based on certain performance metrics such 528 

as accuracy, Q-statistics, mean square error etc. In Optimal ensemble sub-selection, a subset of models is chosen that 529 

maximizes performance.   530 

Furthermore, Yang et al. (2020) studied the uncertainty contribution of ranking and optimal ensemble model sub-selection for 531 

the historical performance of precipitation and temperature. The results indicate that the optimal ensemble sub-selection of 532 

nine models has smaller uncertainties, indicating more accurate simulation of present and future climate patterns. Almazroui 533 

et al. (2017) have taken three categories of CMIP5 MMEs (all model ensembles, selected model ensembles, and best-534 

performing ensembles) to evaluate the projected temperature and precipitation uncertainties. Among the three categories, the 535 

best-performing model outperformed and showed better temperature and precipitation projection over the Arabian Peninsula. 536 

Studies further used all model ensembles and selected model ensembles to explore ENSO teleconnection (Roy et al., 2018) 537 

and lightning over South/South-east Asia (Chandra et al., 2022). 538 

Model weighting and selection can be valuable for enhancing both the accuracy and reliability of climate projections. 539 

Weighting schemes that account for model interdependence are crucial for reducing redundancy, and schemes that account for 540 

model performance can improve uncertainty estimation. By giving more weight to models that perform well and are 541 

independent from other models, MME weighting attempts to ensure projections are based on the most reliable data instead of 542 

relying on equal weighting distributions which introduces significant biases. It is important to note that past performance does 543 

not guarantee future performance, and one must always be careful of becoming overconfident in models that perform well in 544 

the past. Also, a study may be interested in the overall CMIP model performance. In this case, excluding models e.g. with 545 

outlier results by subselection of weighting is not useful.  546 

2.5 Uncertainty Characterization 547 

Uncertainty is inevitable when trying to predict the climate (Knutti et al., 2019). Characterizing and understanding uncertainty 548 

is essential not only for guiding model evaluation and development but also for science and risk communication, and for 549 

assessing climate change impacts (Deser et al., 2012a; Deser, 2020; Snyder et al., 2024). When using future projections from 550 

CMIP, three types of uncertainty must be dealt with (Hawkins and Sutton, 2009; Lehner et al., 2020; Simpson et al., 2021): 551 
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scenario or forcing uncertainty, natural variability uncertainty, and model uncertainty. The scenario uncertainty arises because 552 

it is not known how human emissions of greenhouse gases and other pollutants from all over the world will vary in the future, 553 

and it is accounted for by modeling different emission scenarios (O’Neill et al., 2014). The natural or internal variability 554 

uncertainty is due to the chaotic and, thus, unpredictable evolution of the climate system (Deser et al., 2012b), and it has a 555 

great impact on climate projections (Lehner and Deser, 2023). Our unique realization of the future climate is the response to 556 

the combined effect of anthropogenic forcing and internal Earth system variability. Although internal variability uncertainty 557 

cannot be reduced, it is quantifiable (Deser, 2020), and using large ensembles of a single model is helpful for this purpose 558 

(Tebaldi et al., 2021). Finally, the third type of uncertainty–model uncertainty–results from our imperfect attempts to predict 559 

the aforementioned real world realization. This uncertainty also includes the varying results that can be obtained within the 560 

same model when varying its parameters. Model uncertainty can be reduced, and the ways to interpret and quantify it need to 561 

be mindful of details about the ensemble's nature and how it is built (Knutti et al., 2019). Furthermore, an adequate treatment 562 

of uncertainty has the potential to help MMEs users with model selection and reduce computational burdens (Snyder et al., 563 

2024). 564 

Decomposing the total uncertainty of climate estimates into contributions from scenario, internal, and model uncertainty 565 

provides insights into projections’ reliability and potential uncertainty reductions. This process is called uncertainty 566 

partitioning, and it often involves quantifying the consistency among different members of a MME (Hawkins and Sutton, 567 

2009; Lehner et al., 2020; Woldemeskel et al., 2012; Yip et al., 2011). For long-term means of climate data, Hawkins and 568 

Sutton (2009) proposed a widely used method for uncertainty partitioning: they fit a polynomial to each model’s output in the 569 

time dimension to separate the forced response from the internal variability. The variance across different model’s polynomials 570 

corresponds to the model uncertainty, and the mean of the different residuals across models represents the internal variability. 571 

Finally, the scenario uncertainty is the variance across multi-model means for different forcings. This method assumes (i) that 572 

the forced response can be approximated by the polynomial and (ii) that the arithmetic sum of the different uncertainties 573 

comprises the total uncertainty. To consider the potential non-additive nature of the total uncertainty (ii), Yip et al. (2011) used 574 

analysis of variance (ANOVA)–an approach that partitions the total variance into components due to different sources of 575 

variation–to improve the uncertainty partitioning. Later, Woldemeskel et al. (2012) expanded the uncertainty quantification 576 

methodology to include also the spatial dimension, by introducing the Square Root Error Variance (SREV) method. This 577 

method has proven useful for highlighting regional differences in uncertainty. More recently, and exploiting the computational 578 

capabilities that allow running a high number of simulations using the same model, Lehner et al. (2020) overcame the 579 

assumption of the polynomial fit (i) from Hawkins and Sutton (2009), which produced significant regional biases by using 580 

several single-model large ensembles (SMILEs). The reduction of assumptions when using SMILES and subsequent 581 

improvement of results makes them a crucial tool currently to partition uncertainty in climate projections. As detailed in Section 582 

2.3, in a multi-model ensemble, models are not entirely independent, and the lack of independence complicates the 583 
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interpretation of any statistic extracted from the ensemble, including the spread or uncertainty. Consequently, the methods 584 

mentioned above often involve some weighting, which further details provided in Section 2.4. 585 

A question that should be considered, although it can only be partially answered, is whether the MME spread is too narrow, 586 

too broad, or about right. The uncertainty may be too wide if observations are not used correctly to tune models, or if the 587 

models have extensive and diverse structural errors. The ensemble may be overly confident if the models are structurally 588 

similar but incomplete or if uncertain processes are missing. One might answer this question using observations, which is 589 

addressed using weighting methods (see Section 2.4). However, present-day uncertainty arises from different sources than 590 

future uncertainty. Present-day uncertainty results from the models' inability to fit observations, while uncertainty in the future 591 

is due to variate representations of physical processes and feedbacks (Sanderson and Knutti, 2012). Additionally, it must be 592 

considered that observations-based products, which are often used to perform model-observation comparisons, also possess 593 

significant uncertainties (e.g., Chemke and Polvani, 2019). Care should be taken when assuming that the spread (attributed to 594 

any source of uncertainty) of present-day or historical simulations will be the same in the future.  595 

If the only tool for assigning confidence to climate change projections is a direct comparison between observations and 596 

historical simulations, then there is the risk that “good” models under this framework don’t really represent well the changes 597 

under future greenhouse gas scenarios. Similarly, “bad” models that may be disregarded due to their skill relative to 598 

observations may contain useful information about some characteristics of the future changes (Hall et al., 2019). An evaluation 599 

and uncertainty reduction technique that avoids this bias is the development of emergent constraints (Hall et al., 2019). 600 

Emergent constraints, based on data from an MME, exploit the relationship between a model’s representation of a present-day 601 

quantity (𝑥) and the projected future change (𝛥) in a quantity (𝑦) using a typically linear approximation (Simpson et al., 2021). 602 

An analysis of the probability distribution function of 𝛥𝑦 within the ensemble allows for a reduction of the uncertainty. This 603 

method has been used for assessing the uncertainty of many processes within different Earth system components (Keenan et 604 

al., 2023; Nijsse et al., 2020; Shaw et al., 2024; Simpson et al., 2021; Smith et al., 2022; Thackeray et al., 2022). ML approaches 605 

have also been used to demonstrate a potential to discover and explore emergent constraints (Nowack et al., 2020). Despite 606 

the usefulness of emergent constraints, care should also be taken when interpreting the results, since the method assumptions 607 

may produce overconfident predictions and may be vulnerable to artifacts within the model (Breul et al., 2023; Sanderson et 608 

al., 2021), similar to other uncertainty reduction methods. 609 

While climate models exhibit high confidence in thermodynamic aspects of climate change (e.g. global temperature increase) 610 

due to robust theoretical and observational evidence, dynamic aspects, particularly related to atmospheric circulation, present 611 

significant uncertainties due to their dependency on nonlinear dynamics and feedback mechanisms (Shepherd, 2014). Model 612 

uncertainties in these two components are uncorrelated (Zappa and Shepherd, 2017), meaning that errors in one component do 613 

not influence or predict the errors in the other, so separating them allows better understanding of where the biggest uncertainties 614 
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lie. Considering this, uncertainty in climate projections can be communicated through climate storylines (Shepherd et al., 615 

2018), which show different plausible future climates, emphasising exploring and understanding physically plausible events 616 

or pathways. The storyline approach differs from traditional methods of uncertainty evaluation in climate models, which are 617 

primarily probabilistic and rely on ensembles of simulations. Traditional methods of uncertainty evaluation in climate models, 618 

such as probabilistic approaches based on multi-model ensembles, often assume that model spread adequately represents 619 

uncertainty. However, this assumption may not hold for dynamically driven climate phenomena, where MME means may 620 

obscure critical regional details with individual climate models exhibiting atmospheric circulation patterns that can differ 621 

qualitatively from the multi-model mean (Bellomo et al., 2021; Zappa and Shepherd, 2017), further complicating the 622 

understanding of future climate impacts. Instead of quantifying the likelihood of events, storylines focus on causality and go 623 

through the physical drivers and interactions that make an event possible (Shepherd et al., 2018), constructing a causal network 624 

and conditioning on specific physical assumptions. If we know thermodynamic changes are robust, the thermodynamic aspects 625 

of the observed changes are regarded as certain and the dynamic aspects as uncertain. By explicitly linking causal mechanisms 626 

to regional climate hazards, storylines are especially useful for regional climate impacts and understanding extreme events 627 

(Bevacqua et al., 2022; Shepherd, 2019; Zappa and Shepherd, 2017), improving the interpretability and usability of projections 628 

for decision-makers (Kunimitsu et al., 2023). 629 

2.6 Available tools for MME analysis 630 

The analysis of comprehensive CMIP datasets is greatly facilitated with the aid of various tools that have been developed 631 

within the global climate community. However, the wide range of available tools was not centrally cataloged, making it 632 

difficult to gain a clear overview of their capabilities for climate data analysis. To address this, the WCRP CMIP has undertaken 633 

an effort to compile a central repository of these tools (https://wcrp-cmip.org/tools/). This collection encompasses various data 634 

access platforms (e.g., Earth System Grid Federation, Climate Data Store, IPCC data distribution centre, PANGEO, CAVA, 635 

Climate Information Portal), which notably facilitate accessing large and complex data volumes. The collection furthermore 636 

lists handy command line operators (e.g., ncview, NCO, CDO) as well as programming languages, which are suitable for 637 

climate data analysis (such as Python, R, Julia) together with useful packages (e.g., multiple Python packages such as 638 

matplotlib, scipy, pandas, Iris, xarray, xGCM, xMIP, xclim, xCDAT, UXarray, Metpy, aospy). The repository contains several 639 

comprehensive evaluation and benchmarking tools such as ESMValTool, bgcval2, RUBISCO, PCMDI Metrics Package, 640 

AMBER, the MDTF Diagnostic Package. These evaluation tools include a set of diagnostics designed to address specific 641 

scientific focuses. For example, among various diagnostics, ESMValTool incorporates the Climate Variability Diagnostics 642 

Package (CVDP, Eyring et al., 2020; Phillips et al., 2020, 2014) that facilitates the exploration of modes of climate variability 643 

and change in models and observations (Maher et al., 2024 and Section 4.2). The source code for the CVDP package is also 644 

available in the GitHub repository: https://github.com/NCAR/CVDP-ncl. Another important initiative in process-oriented 645 

analysis is led by the Model Diagnostics Task Force (MDTF) under NOAA's Climate Program Office (CPO) Modeling, 646 
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Analysis, Predictions, and Projections (MAPP) program. It promotes the development and use of process-oriented diagnostics 647 

(see Section 2.1) in climate and weather prediction models (Maloney et al., 2019; Neelin et al., 2023). Additionally, the WCRP 648 

repository includes various data analysis and visualization tools, including the IPCC WGI Interactive Atlas, Panoply, 649 

TempestExtremes, CAVA, TECA, KNMI Climate Explorer, Google Earth Engine. Figure 3 highlights some of these tools 650 

aiming to promote their usage across the wider climate community. The basic information about each tool can otherwise easily 651 

be deduced from “Tools description cards” at the CMIP website, which additionally provide links to tool websites as well as 652 

available documentation, tutorials and community support. It should finally be emphasized that the tools repository is being 653 

actively maintained and continuously updated. To enhance its utility for the broader climate science community,  new 654 

contributions are highly welcomed.  655 

While the CMIP tool repository is a key resource for many widely used climate analysis tools, it does not cover all available 656 

tool resources. Beyond this collection, the wider open-source ecosystem - especially within the Python community - provides 657 

additional tools and libraries for analyzing climate data, and at the same time is being supported by a large and active scientific 658 

community on platforms such as GitHub. 659 
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 660 

Figure 3: Collection of useful tools for using climate data available at https://wcrp-cmip.org/tools/. 661 

3. Specific challenges and common questions 662 

3.1 How can  observations be used to improve MME projections beyond model evaluation?  663 

Observations are integral to improving the reliability of MME projections, especially to reduce model bias and increase the 664 

physical realism of ESM simulations at the model evaluation stage (Haarsma et al., 2016). Using MME outputs in conjunction 665 

with observational datasets can also help bridge the gap between model outputs and real-world earth system processes, where 666 

such gaps exist (e.g. Tebaldi et al., 2005). Observations can also serve as ensemble members themselves when viewed as 667 

exchangeable with model simulations (Annan and Hargreaves, 2010).  668 
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Within CMIP6, activities such as the Detection and Attribution MIP (DAMIP), Polar Amplification MIP (PAMIP), and SIMIP, 669 

motivations for pairing observation data with MME simulations beyond those mentioned above exist. These include 670 

determining how anthropogenic activity contributes to climate change (Gillett et al., 2016), reducing intermodal 671 

spread/uncertainty by leveraging emergent relationships based at least in part on observations (Smith et al., 2019), and 672 

understanding how ice, air, and the ocean interact (Notz et al., 2016). 673 

As observational datasets are subject to uncertainty and vary in reported quantities, spatial coverage, and spatial and temporal 674 

resolution, it has become common practice to consider observational uncertainty when multiple observational datasets are 675 

employed (Notz et al., 2016). This practice emerged out of the need to account for structural uncertainty in observation data 676 

ensembles to improve signal detection for subsequent comparison with model ensemble outputs (Santer et al., 2008). 677 

Observational ensembles have been paired with MMEs in studies e.g. with regard to the tropical troposphere (Santer et al., 678 

2008) or to Antarctic sea ice (Roach et al., 2018). 679 

 680 

3.2 How many models to include? 681 

Any MME analysis has to face the question of how many models to include. However, determining the optimal number of 682 

models to include in an ensemble is not straightforward, as it involves balancing the trade-off between model diversity, 683 

computational cost, and the desired accuracy of the results. Increasing the number of ensemble members enhances the 684 

robustness of the results by reducing statistical uncertainty, at least as long as they are independent. At the same time, state-685 

of-the-art climate models remain computationally expensive. Downloading and processing these large datasets, particularly in 686 

the context of major intercomparison projects like CMIP, is also a resource-intensive challenge that limits the number of 687 

models used in MME studies. These challenges raise the question how many models are actually required to form a “good” 688 

ensemble size. A similar question exists in the context of large ensembles where the number of perturbed simulations is 689 

discussed. A lot of the arguments and findings as presented in the following apply for both contexts. 690 

Lower threshold of ensemble size: At least 5 models 691 

If the ensemble size is too small, the inter-model variability that also serves as a proxy for natural variability may not be fully 692 

captured. This variability has the potential to lead to an underestimation of uncertainties and can consequently result in an 693 

overestimation of the models’ performance in the procedure of evaluation and an overconfident interpretation of the results. It 694 

is even possible that a too small ensemble size leads to a qualitatively different finding, as shown by an example of two or 695 

three models in a study by Milinski et al. (2020). In this study, the small subsets showed a warming after a volcanic eruption, 696 

while the actual known response would be a cooling effect. So, how many models or simulations should be used as a minimum? 697 

Several studies have shown that the error (e.g. root mean squared error when compared to reference data) is reduced 698 
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substantially up to about five models in different contexts (Herger et al., 2018; Knutti et al., 2010a; Mendlik and Gobiet, 2016; 699 

Milinski et al., 2020; Steinman et al., 2015). Adding further models is generally beneficial, but the improvement per additional 700 

model is much smaller. Mendlik and Gobiet (2016) find that the subset size can be reduced from 25 to 5 while still being 701 

representative for the entire ensemble. As these studies refer to different quantities and research questions, and were conducted 702 

independently, but still share five as a lower “threshold”, we propose five models/simulations as an initial baseline minimum 703 

for MME studies. Depending on the research question however, the minimum number of required models might vary. It can 704 

be determined by a specific method, as explained below.  705 

Determining specific minimum ensemble size following Milinski et al. 706 

If feasible, an individual check for the appropriate minimum number depending on the specific research question and 707 

requirements is even better than a general minimum. A procedure for diverse research questions has been proposed by (Milinski 708 

et al., 2020). After (1) defining the research question, (2) an error metric (e.g. RMSE) as well as a maximum acceptable error 709 

has to be decided. As a next step (3), the error for randomly sampled subsets of different sizes has to be quantified. The number 710 

of required models can now be identified as the smallest subset size that has an error below the chosen threshold (4). If the 711 

identified model number is less than half of the initial sample (e.g. the identified subset included 40, thus less than 50 members, 712 

when evaluating 100 members) the estimated subset size is robust (5). While this method provides a straight-forward, rather 713 

simple method to identify the ideal number of models in an ensemble, it still requires the availability and analysis of a high 714 

number of model simulations. Consequently, this method might not be feasible for all studies. Therefore, we provide here a 715 

collection of studies that identified the optimal number of models for different research questions. It may be used as an 716 

orientation for future studies with limited capacities for the model selection process.  717 

List of studies with identification of ideal subset sizes for different research questions 718 

For a variable like temperature where the internal variability is rather low, 10 ensemble members can be used to sufficiently 719 

detect changes in global mean land temperature (Deser et al., 2012b). To robustly detect significant warming (at the 95% 720 

confidence level) in the 2050s relative to the 2010s, Deser et al. (2012b) only needed 1 ensemble member for nearly all 721 

locations. Alternatively, 3-6 ensemble members are needed for tropical and high latitude precipitation, while >15 ensemble 722 

members are needed for mid-latitude precipitation with 40 ensembles being a larger estimate (Deser et al., 2012a, b). When it 723 

comes to sea level pressure (SLP), they found they needed only 3-6 ensemble members in the tropics but 9-30 in the extra 724 

tropics. 725 

The number of required models might differ in different regions, as the signal itself and the local internal variability will vary 726 

(Bittner et al., 2016). Over the ocean, less SMILE members are required (Milinski et al., 2020). Table 1 highlights a small 727 

sample of papers that have employed large ensembles for a variety of research questions. 728 
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Table 1. Examples of large ensembles used and how many models were investigated.  729 

Variable/Metric No. of ensemble members Study 

Aridity and risk of consecutive 
drought years 

Two 10-member ensembles from 
CESM 

(Lehner et al., 2017) 
 

Precipitation and temperature Two 10-member atmosphere only 
ensembles from CESM and GFDL 
40 models (1 simulation each) from 
CMIP5 
40-member CESM1 Large Ensemble 
10-member GFDL Large Ensemble 

(Lehner et al., 2018) 
 

Ocean carbon uptake 38-member CESM1-LE 
9 models from CMIP5 

(Lovenduski et al., 2016) 

Temperature and precipitation 
influence on near-term snow trends 

40-member CESM1-LE (Mankin and Diffenbaugh, 2015) 

Irreducible uncertainty 100-member MPI Grand Ensemble (Marotzke, 2019) 

Ocean ecosystem drivers (warming, 
acidification, deoxygenation and 
perturbations to biological 
productivity) 

30-member GFDL Ensemble (Rodgers et al., 2015) 

Ocean carbon cycle 30-member GFDL Ensemble (Schlunegger et al., 2019) 

 730 

When multiple realizations (or variants) for a given simulation are available for the same model, it is considered good practice 731 

to average all members of a model ensemble and incorporate such means into the MME (Knutti et al., 2010b).  732 

Remarks for including more models 733 

For specific applications, higher number of simulations are necessary, e.g. for the quantification of internal variability, more 734 

simulations are necessary because higher-order moments of the distribution need to be estimated (Milinski et al., 2020). 735 

Generally, adding further models improves the statistical robustness of the MME analysis, but it has to be remembered that 736 

the added models should at least partly be independent of the existing models as otherwise only the weight of single models is 737 

increased without any physical reason (Knutti, 2010). See Section 2.4 and Section 2.5. for more details. A too large ensemble 738 

size has also the potential to increase the spread beyond a realistic range as the inclusion of outliers becomes more probable 739 
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(Knutti, 2010). In this context, Section 3.4 provides more detail regarding the question how to deal with outliers. Another 740 

consideration becomes relevant when working with different scenarios. As the range of uncertainty increases with the number 741 

of models, the same number of models should be used for all scenarios for comparability (Knutti et al., 2010a). 742 

3.3 What is important to consider when applying MMEs for extremes? 743 

Extreme weather and climate events have significant impacts on human society and ecosystems, so it is essential to understand 744 

their causes and produce reliable future projections for climate change adaptation planning. In the context of using MMEs to 745 

study extreme climate events, ensembles offer both strengths and challenges.  746 

MMEs such as CMIP or CORDEX are widely used in various studies (both global and regional) concerning climate extremes 747 

(Kim et al., 2020; Soares et al., 2023; Vogel et al., 2020; Yang et al., 2012) typically applying statistical approaches, such as 748 

probabilistic modeling, or using climate extremes indices defined by the Expert Team on Climate Change Detection and 749 

Indices (ETCCDI). Extreme Value Theory (EVT) provides a theoretical foundation for analyzing extreme events, offering 750 

statistical methods to model the tails of probability distributions (Coles, 2001; DelSole and Tippett, 2022). One widely used 751 

approach within EVT is Generalized Extreme Value (GEV) distribution analysis (Rypkema and Tuljapurkar, 2021), a 752 

statistical framework for modeling the tail of the distribution of rare events, such as extreme temperatures or precipitation. For 753 

example, studies use GEV to estimate return periods of extreme rainfall events, helping to assess how the likelihood of such 754 

events might change under future climate scenarios (Wehner, 2020). By fitting GEV to observed and modeled data, researchers 755 

can evaluate shifts in the intensity and frequency of extreme events. 756 

A major advantage of using the mean of the MME is its ability to amplify the climate change signal by reducing noise from 757 

internal variability, making it easier to identify trends in extreme events (Intergovernmental Panel on Climate Change (IPCC), 758 

2021), but it might not always be the best choice, particularly when examining the intensity and frequency of extreme events 759 

(Knutti et al., 2010b). Different models in a MME may have biases in how they simulate extremes, such as heatwaves, heavy 760 

precipitation, or droughts. MMEs allow for a sensitivity test for structural differences between models, helping researchers 761 

identify common trends in certain indices or events across models, increasing confidence in results where models agree. 762 

However, it should be noted that using MME’s median or mean can sometimes mask the severity of local extremes, as 763 

averaging across multiple ensemble members can obscure the range of possible outcomes of individual extreme events, 764 

especially if some models predict significantly different extreme event patterns, leading to an underestimation of risks in certain 765 

regions. Uncertainties exist for hot and cold extremes, with some models deviating considerably from the multi-model average 766 

and are particularly large for precipitation extremes, where despite a general trend towards heavier precipitation and longer 767 

dry periods, several models predict opposing trends in certain locations (Sillmann et al., 2013).  768 
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It is therefore important to evaluate how well each model performs for the region or variable of interest in simulating extremes 769 

(Kim et al., 2020; Sillmann et al., 2013) and to correct for biases when possible. As discussed in Section 2.1, model evaluation 770 

is generally conducted using performance-oriented or process-oriented approaches, which tend to focus on a model’s ability 771 

to capture mean climate states (mean and median performances) or large-scale circulation patterns, which may not prioritize 772 

models that best capture extreme events. Kim et al. (2020) evaluated the CMIP6 multi-model ensemble against ETCCDI 773 

climate indices and identified systematic biases, such as a persistent cold bias in cold extremes over high-latitude regions. 774 

When comparing CMIP6 models with CMIP5, they found only limited improvements in simulating temperature and 775 

precipitation extremes, highlighting the need for further advancements in the understanding and representation of extreme 776 

climate events in ESMs. More reliable predictions of climate extremes are enabled by the use of MMEs, but according to Kim 777 

et al. (2020) the choice of the methods for the assessment of these high-impact, low-frequency phenomena in the ensemble, as 778 

well as the choice of reference data is crucial for evaluating model performance. 779 

When it comes to studying extreme climate events, uncertainty is another aspect that is important to account for. As discussed 780 

in Section 3.2, the size of an ensemble plays a key role in reducing uncertainty and a larger ensemble allows for a more 781 

comprehensive assessment of the spread of possible outcomes. Many studies of climate extremes using MMEs typically use 782 

only a single ensemble member from each model to ensure comparability (Kim et al., 2020). The limited availability of large 783 

ensembles for all models within a MME also makes this approach practical. However, using only one ensemble member per 784 

model could miss some of the variability in extreme events that larger ensemble runs could capture. Nevertheless, given the 785 

constraints on computational resources and the availability of large ensembles, this method remains a common compromise. 786 

While increasing ensemble size can help mitigate uncertainties, it does not eliminate the challenges posed by model limitations. 787 

To address these limitations when applying MMEs for extreme weather and climate events, different methods are applied. 788 

Employing model weighting (Balhane et al., 2022) can enhance the accuracy and reliability of extreme event projections and 789 

downscaling techniques, either statistical or dynamical with the use of RCMs, can provide higher-resolution data to improve 790 

the representation of extremes in specific regions. For example, the bias-adjusted high-resolution RCM outputs in the EURO-791 

CORDEX project showed an improvement in the simulation of extreme temperature and precipitation indices across Europe, 792 

underscoring the value of RCMs for more reliable and region-specific climate projections (Coppola et al., 2021; Dosio, 2016). 793 

Highly vulnerable regions benefit from MME based on RCMs’ projections, which provide insights into future changes of local 794 

extreme events (Dosio, 2017; Tegegne et al., 2021) and help address issues such as water scarcity, food security and disaster 795 

preparedness. 796 

3.4 How to deal with outliers? 797 

Convergence has at times been criticized as a measure of model reliability on the grounds that it gives more weight to 798 

simulations that are more similar to the multi-model mean at the expense of sampling uncertainty over a broader probabilistic 799 
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space (Tebaldi and Knutti, 2007). In particular, the initial version of the reliability ensemble average (REA) weighting method 800 

penalized outliers for diverging from the ensemble mean because convergence, which may be due in part to the genealogical 801 

similarity of models exhibiting convergence towards the ensemble mean, was used as a metric in determining the REA weight 802 

for each member of an MME (Tebaldi and Knutti, 2007). However, there is a history of privileging MME convergence within 803 

the climate science community, as in the third IPCC assessment report where two models were discarded because of extreme 804 

estimates of warming, resulting in very large climate sensitivity (Tebaldi and Knutti, 2007). Unsurprisingly, the convergence 805 

principle is still found in MME subsetting efforts (Palmer et al., 2023) and to at least partially inform MME evaluation (Amali 806 

et al., 2024). Yet, privileging models whose values cluster around an MME mean can be more or less desirable depending on 807 

the particular aims of a study. In other words, there are cases where outlier inclusion–which deemphasizes convergence–is 808 

preferred, as in the study of climate extremes. Furthermore, in some cases, excluding models based on the results of overall 809 

evaluation has been shown to have little effect on projection spread (Knutti et al., 2010a). 810 

Before diving into the details of how outliers are or are not addressed within the recent literature, let us consider outlier 811 

detection. When defined quantitatively, outliers are commonly detected using the method employed in Sun and Archibald 812 

(2021), where such models are defined as those that exceed the 1st or 99th percentile. This method provides a statistical basis 813 

for identifying extreme deviations in model output. Another approach, used by Bracegirdle and Stephenson (2012) identifies 814 

"high-leverage" models with the 3p/N method developed by Hoaglin and Kempthorne (1986). In this method, p is the number 815 

of variables considered and N the number of models. The value of the expression 3p/N then serves as a high-leverage threshold 816 

for members of a given ensemble.  817 

So, when does it make sense to privilege MME member convergence and penalize or exclude outliers? As mentioned above, 818 

it depends on the goals of a study as well as what is being studied. For example, some variables such as sea ice extent, or 819 

regions such as the poles, are prone to significant model spread with increased spread in some locations depending on the 820 

season (Bracegirdle and Stephenson, 2012). Studies focused on understanding the average state of such variables or locations 821 

may benefit from outlier penalization or exclusion. That said, depending on the variable(s) and region(s) of interest, there may 822 

be alternatives to exclusion outliers, such as the use of emergent relationships, to constrain future projections (Sansom et al., 823 

2021). 824 

Inaction is a form of action when it comes to outliers models, so along with “active” approaches to handling outliers, doing 825 

nothing is also considered. The main approaches seen in recent CMIP studies include: (1) exclusion, (2) penalization, (3) 826 

methods in classical (or frequentist) statistics, (4) methods in Bayesian statistics, (5) presenting results with and without 827 

outliers, and (6) including outliers. Examples of these approaches and the context in which they were applied are summarized 828 

below. Although it is common for outliers to receive some form of special treatment in ML studies, these methods are often 829 

based on  statistical methods and so are not discussed separately here. 830 
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(1) Exclusion 831 

The first approach is exclusion, which is to remove models with outlier status from an ensemble. If considered from a model 832 

weighting perspective, these models are assigned a weight of zero within an MME. This approach risks omitting simulations 833 

with realistic but rare events, but in some cases the benefits of exclusion outweigh its drawbacks. For example, Mudryk et al. 834 

(2020) identified outlier models for some seasons and regions in their study of snow cover change in the Northern hemisphere, 835 

excluding such models to achieve better agreement between observation data and CMIP6 MME projections. This study focuses 836 

on trends in snow cover change and the outlier model, which is known to have higher than expected snow cover fractions in 837 

areas of low snow mass, contributed to unrealistic conclusions about MME spread. The Swiss Climate Scenarios CH2018 (CH 838 

in the abbreviated name for this dataset is from Confoederatio Helvetica, the latin name for Switzerland), are another example 839 

of exclusion. These scenarios are based on EURO-CORDEX, which excludes some outlier GCMs to narrow uncertainty ranges 840 

for temperature and precipitation. So CH2018 inherits outlier exclusion from another dataset (Sørland et al., 2020). While 841 

models with outlier projections may be excluded on to improve MME alignment with observations or to reduce uncertainty, 842 

caution ought to be taken with the latter unless the model is known to be deeply flawed, as excluding projections that include 843 

information about rare but possible events can impede proper evaluation of adaptation policy options (Knutti et al. 2010). 844 

(2) Penalization 845 

Penalization is where an outlier model is not removed from an MME, but is given a reduced weight. This can be done through 846 

model weighting (see Section 2.4), but it has also recently been achieved through bias correction and ridge regularization. Bias 847 

correction is used to calibrate historical and future MME projections against historical observations to reduce the influence of 848 

outlier models on uncertainty ranges to lessen uncertainty. This can be seen in a study of future precipitation over Northern 849 

Europe (Moradian et al., 2023), precipitation being a high-variability variable to begin with. Ridge regularization, used in ML 850 

context, is a form of linear regression that incorporates a penalty term to reign in variables with unusually high linear correlation 851 

to protect against overfitting. In Labe and Barnes (2022), ridge regularization is applied to limit the sensitivity of an artificial 852 

neural network to outlier influence. 853 

 854 

(3) Methods in classical (or frequentist) statistics 855 

Among the approaches seen within classical statistics is the use of outlier  insensitive methods. These are methods that retain 856 

outlier models without being disproportionately influenced by them. Such methods include taking the ensemble median instead 857 

of its mean as a measure of the MME’s center. This helps ensure that the result is not overly influenced by outliers (Ge et al., 858 

2021). Rank based tests of statistical significance can also be used. These tests are insensitive to outliers in that they are 859 
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calculated based on the rank, or position of a value within a distribution, rather than the value of a particular data point within 860 

a sample (DelSole and Tippett, 2022). Similarly, when analyzing data for the presence of trends, the rank-based Mann-Kendall 861 

correlation test can be used as per the World Meteorological Organization’s recommendation for working with hydrological 862 

data (Rojpratak and Supharatid, 2022). 863 

(4) Methods in Bayesian statistics 864 

However, including outlier models to sample uncertainty from a broader statistical space can be desirable. Toward this end, 865 

MME model weighting methods that apply Bayesian statistics have been developed. Compared to the frequentist statistics 866 

which uses a fixed population parameter to describe probability distributions, Bayesian statistics uses a conditional parameter 867 

that depends on the probability distribution of a given dataset (Clyde et al., 2022). In Shin et al. (2020), the authors define 868 

outlier models as those that generate projections that are unusually close to the hydrological variable observation data. 869 

Excessive model calibration to observations for certain regions is given as the reason for models with simulations that are very 870 

close to precipitation observations being considered outliers. They propose a Bayesian weighted average and bias correction 871 

hybrid method to reduce the influence of outliers. This method is also a form of penalization.  872 

Xu et al. (2019) provide another example of a Bayesian approach to model weighting in the context of downscaling 873 

precipitation data to study particular watersheds, agricultural fields, or water infrastructure sites. The authors argue that 874 

statistical downscaling is often preferable to dynamic downscaling because statistical downscaling requires less computation 875 

and produces data with finer spatial and temporal resolution which is useful at the very fine spatial scale they seek to study. 876 

However, Xu et al. (2019) also point out that dynamic downscaling can underestimate extremes and be overly sensitive to 877 

outliers, along with inheriting too many features from historical observations. This team therefore adopts a Bayesian weighted 878 

average approach to MME data that preserves the benefits of dynamical downscaling while diminishing its drawbacks. 879 

The Bayesian paradigm can also be seen in ML techniques. For example, in Sun and Archibald (2021) the authors combine 880 

data fusion–a form of post-simulation data mining–with a Bayesian neural network (a machine learning method) as an 881 

alternative to reanalysis. Sun and Archibald (2021) do this to improve future projections of surface ozone concentrations from 882 

Aerosol and Chemistry Model Intercomparison Project simulations. This study uses “aggressive” and “conservative” multi-883 

model fusion approaches to improve surface ozone predictions. The “aggressive” approach favors observation values over 884 

simulated values in a multi-layer learning process. Conversely, the “conservative” approach favors simulated over observed 885 

value within prescribed probability distribution functions (PDFs). The conservative approach performs better when compared 886 

1:1 with model outputs, but slightly worse overall due to reduced variability associated with weighting in this Bayesian method 887 

leading to the omission of outlier data exceeding the 1st and 99th  percentiles, as per the use of prescribed PDFs in their 888 

approach.  889 
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(5) Presenting results with and without outliers 890 

In using “aggressive” and “conservative” approaches, Sun and Archibald (2021) present results that allow and exclude outliers 891 

respectively and show that for their particular study the difference between the results for each approach is not overwhelming. 892 

Bracegirdle and Stephenson (2012) also present some of their results with and without outliers in a less recent study on how 893 

to increase precision of polar warming estimates to illustrate the sensitivity of different forms of regression to outlier inclusion. 894 

(6) Including outliers 895 

As mentioned at the start of this section, it can also be beneficial to include outlier models by weighting model ensemble 896 

members by RMSE skill score, as in Tegegne et al. (2020) where the authors preserve the full extent of model spread within 897 

an MME to study climate extremes (also see Section 3.3 of this article). To do this, the authors use the Katsavounidis–Kuo–898 

Zhang (KKZ) algorithm to select ensemble members based on their ability to help represent the full range variability that exists 899 

within the sampling space for climate extreme indices recommended by World Meteorological Organization’s ETCCDI. The 900 

IPCC report Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation characterizes this 901 

approach as being capable of detecting “moderate extremes”, that is to say, events that are expected to occur up to 10% of the 902 

time (Seneviratne et al., 2012). To identify models that represent more extreme events, extreme value theory, which is treated 903 

in detail in Statistical Methods for Climate Scientists, is needed. Researchers use EVT to identify values that lie in the tails of 904 

a probability distribution, often focussing on distribution minima or maxima (DelSole and Tippett, 2022). Including outliers 905 

offers a better estimate of worst-case scenarios. 906 

While this discussion of how to handle outliers in MMEs covers situations in which treating outlier models in a non-democratic 907 

way may or may not be desirable, related questions to outliers and model-weighting are discussed in Section 2.4 of this article. 908 

For a discussion that touches on why outliers may or may not be found in an MME in the first place, please see Section 2.3 on 909 

model genealogy. The reader is also directed to CMIP activity articles for simulation protocols designed to help investigate 910 

the process representation basis of outlier behavior for variables of interest. The Radiative Forcing Model Intercomparison 911 

Project is an example of this (Pincus et al., 2016).   912 

3.5 What should be considered when working with regional MMEs/downscaling? 913 

Acquiring regional information about climate change is crucial for climate change impact, vulnerability and adaptation studies, 914 

and hence the coarse-resolution GCMs have to be downscaled (i.e., the spatial and temporal resolution of the GCM output has 915 

to be increased) for policy decisions. CMIP GCMs are internationally established sources for climate projection data. In the 916 

CMIP6 GCM projected data, each grid cell has a resolution of 100 to 250 km (Liang-Liang et al., 2022; Weigel et al., 2010). 917 

So, this coarse resolution of GCM has limitations in producing locally relevant information (Grose et al., 2023). Downscaling 918 

is a set of methods used to improve the spatial and temporal resolution of GCMs (Baño-Medina et al., 2022). Downscaled 919 
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CMIP GCM data are crucial for understanding regional climate change impacts, and it is helpful to create targeted adaptation 920 

strategies at the regional level. Downscaling is especially crucial for regions with complex topography or localized climate 921 

phenomena (Wilby and Fowler, 2010). Various downscaling techniques exist such as statistical downscaling (Gebrechorkos 922 

et al., 2023; Wootten et al., 2024), dynamical downscaling (Knutson et al., 2013; Tapiador et al., 2020) as well as novel 923 

machine-learning based approaches (Sachindra et al., 2018; Soares et al., 2024), and they have their strengths and limitations 924 

(Hall, 2014).  925 

In dynamic downscaling, output fields from a GCM are used as input for a Regional Climate Model (RCM), which simulates 926 

climate on a limited-area domain and hence employs a finer resolution (Di Luca et al., 2015). Specifically, the WCRP 927 

COordinated Regional climate Downscaling EXperiment (CORDEX) (Giorgi, 2019; Gutowski Jr. et al., 2016) initiative unites 928 

multiple institutions from all over the world striving to best acquire regional climate change information from global climate 929 

models. The dynamic downscaling technique is highly dependent on the availability of RCMs. Moreover, dynamic 930 

downscaling can capture regional physical processes that GCMs cannot resolve (Giorgi and Gutowski, 2015). The statistical 931 

downscaling technique uses statistical relations between coarse-resolution GCM climate data and observed local climate data 932 

to generate fine-scale downscaled projections for a specific region (Oxarart and Parker, 2024), and it entirely relies on 933 

observations and data quality. ML-based downscaling methods have recently been used for high-resolution GCM simulations 934 

(Rampal et al., 2024). ML algorithms can handle non-linear, complex relations between large-scale GCM predictors and 935 

observed local climate variables. Furthermore, ML-based downscaling can handle large datasets and produce better resolution 936 

CMIP multi-variable long-term projections than traditional statistical techniques (Rampal et al., 2024).   937 

The dynamic downscaling technique was used to derive the bias-corrected global dataset from CMIP6 and the European Centre 938 

for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) dataset (Xu et al., 2021). Grose et al. (2023) used CMIP6 939 

multimodel ensemble downscaling to provide accurate, scenario-based climate change projections for the Australian region. 940 

They developed a sparse matrix framework to apply the downscaling method to a selected group of CMIP6 models to produce 941 

optimized climate change projection results for Australia. Di Virgilio et al. (2022) studied the effects of model subselection 942 

(based on performance, independence and diversity) on dynamic downscaling. The results indicate that  systematic biases in 943 

GCMs can degrade dynamic downscaling simulations.  944 

The limitation of the dynamic downscaling method has been addressed by Liu et al. (2021) by presenting a singular value 945 

decomposition (SVD)-multi-linear regression statistical downscaling model to predict the interannual variation of East Asian 946 

winter surface air temperature at a better resolution. The study found that the pattern correlation coefficient skill of the original 947 

MME is much lower than that of the statistical downscaled prediction model, indicating that statistical downscaling can 948 

overcome the limitations of the dynamic downscaling approach. Statistical downscaling refers to a set of methodologies to 949 

determine statistical relationships between GCM climate fields and observed (local) climate patterns in combination with 950 
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various bias correction techniques. Su et al. (2016) investigated the projected impacts of climate change in the Indus River 951 

Basins through one of the statistical downscaling methods, the Equidistant Cumulative Distribution Functions matching 952 

method (EDCDFm) and the regional ensemble results captured the dominant features of the temperature and precipitation 953 

variation. The statistical downscaling of extreme temperature data from the selected CMIP6 GCMs is done by Wang et al. 954 

(2016). The study found that statistically downscaled data from most of the GCMs gave the correct sign of recent trends in all 955 

the extreme temperature indices compared to the original GCM data. The Bias Correction and Spatial Downscaling (BCSD) 956 

technique is used to statistically downscale the projected daily maximum temperature over China from the selected CMIP5 957 

GCM models. The results indicate that statistical downscaling reduces the cool bias compared to the original CMIP5 958 

simulations (Xu and Wang, 2019). Furthermore, Wang et al. (2021) compared the spatial and temporal downscaling of the 959 

CMIP5 and CMIP6 MMEs over the Hanjiang River Basin in China. This multi-site downscaling method accurately 960 

downscaled the CMIP5-MME and CMIP6-MME precipitation. 961 

Even though the statistical downscaling technique reduces biases in regional climate change projection, ML-based 962 

downscaling techniques can outperform existing statistical approaches (Rampal et al., 2022). For the first time, deep learning 963 

has been used for the MME downscaling of temperature and precipitation projection over Europe by Baño-Medina et al. 964 

(2022). They used different convolutional neural networks (CNNs) for downscaling, and the results were compared with the 965 

European ensemble RCM. These results indicate that deep learning-based downscaling reduces distributional biases in the 966 

historical period. Besides, Xu et al. (2020) explored the use of advanced machine-learning techniques for downscaling multiple 967 

GCM precipitation data in the Upper Han River basin. They used Multilayer Perceptron, Support Vector Machine, and Random 968 

Forest algorithms for downscaling and found that downscaled models greatly improved model performance.  969 

CMIP multimodel ensemble downscaling can provide reliable and regionally-relevant climate projection data. Future 970 

advancements in computational methods, artificial intelligence, and hybrid approaches (combination of dynamic, statistical 971 

and ML-based downscaling) can enhance the accuracy and utility of MME downscaled datasets.  972 

3.6 How should MME data be regridded?  973 

Each model output is based on a specific underlying grid, often referred to as the ‘native’ grid. When combining several models 974 

with at least partly different native grids to a MME, researchers must decide on whether to keep the native grids (1) or to regrid 975 

their data to a uniform grid (2). A variety of approaches to working with data in different grids can be found in the literature 976 

that can be distinguished with these two categories. Methods that retain native grids avoid regridding altogether. Showing 977 

individual MME member results in the member’s native grid is one way to accomplish this (Quesada et al., 2017). An 978 

alternative to this is plotting the MME mean of the zonal means for each model, which allows data from different models to 979 

be combined without regridding (Boysen, 2020). Although there are cases where native grids are retained within an MME, it 980 

is more common to regrid to establish grid uniformity within an MME prior to analysis. Regridding involves several 981 
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considerations related to spatial and temporal dataset dimensions. For example, one must consider (a) whether it is best to 982 

adopt a coarser, intermediate, or finer grid, (b) how to interpolate, and (c) which calendar to use. 983 

Let us consider the question of which grid resolution to choose. A range of grid resolutions are likely to exist within an MME, 984 

with one or more of those grids being at the coarse end of the range. Some studies where the direction of regridding is 985 

mentioned are silent on why (Achugbu et al., 2022; Cook et al., 2020; Gergel et al., 2024; Hong et al., 2022; Song et al., 2021; 986 

Zhao and Dai, 2021) showing that it is common in literature to not disclose the direction of or rationale behind regridding. 987 

However, Iles et al. (2020) explain that selecting a coarser grid from multiple high-resolution grids can be acceptable where 988 

studies show similar sensitivity test results for the finer and coarser high-resolution grids. In addition, Teuling et al. (2019) 989 

regrid to a coarser grid only for data visualization purposes.   Iles et al. (2020) state that regridding to a finer grid has the ability 990 

to preserve localized extremes to a greater degree than lower resolution data. 991 

Next, one must consider how to interpolate the data that is being regridded. The default interpolation method in most Python 992 

packages, for example, is bilinear. This is suitable for many, but not all, variables depending on the type of analysis that is 993 

being carried out. Table 2 provides an introduction to the available interpolation methods, which data types they should be 994 

applied to, and some examples of CMIP variables for each data type. 995 

Table 2. Interpolation methods commonly used in climate data analysis 996 

Interpolation method When to use Data type Example variables 

None When no filling or averaging of the 
original data is desired 

Categorical treeFrac, cropFrac 

Bilinear When data point values vary 
smoothly across a surface 

Continuous tas, sst 

First-order conservative When fluxes must be conserved 
over a given area 

Conservative pr, evspsbl 

Second-order 
conservative 

When fluxes must be conserved 
over a given area (smoother than 
first-order conservative when 
going from coarser to finer grid) 

Conservative mrro, mrso 
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Nearest neighbor When strong contrast between 
areas with discrete or categorical 
values must be maintained 

Categorical treeFrac, cropFrac 

Patch When the computation of accurate 
derivatives is needed 

Conservative tauu, tauv 

 997 

Please note that other interpolation methods exist. Those mentioned here are simply those most commonly used in the 998 

regridding of climate data (National Center for Atmospheric Research Staff (Eds).2014). 999 

In addition to the variety of spatial resolutions present within an MME, multiple temporal differences may also exist among 1000 

members. This is because models may encode different calendars in the simulation files, which are often in netCDF format. 1001 

There are close to ten calendar options (NetCDF Users Guide: NetCDF Utilities, 2025) and the best choice of calendar for a 1002 

given study will depend on the study particulars and researcher preference. However, calendars should be brought into 1003 

alignment during the regridding process to avoid issues when attempting to analyze MME data. 1004 

4. Outlook 1005 

4.1 Machine Learning 1006 

With the rapid production and accumulation of prodigious volumes of climate data, the development and application of 1007 

automated and increasingly sophisticated analysis techniques are essential (Glymour et al., 2019; Rupe et al., 2017). ML has 1008 

demonstrated great potential and has emerged as a valuable tool in enhancing ensemble approaches, especially in climate 1009 

science, see Fig. 4. Over the past 5-10 years ML applications have offered significant advantages in addressing non-linear, 1010 

high-dimensional, and hierarchical problems (Li et al., 2021 and references therein) and have gained significant popularity by 1011 

using innovative methods such as neural networks (NN), causal inference, explainable artificial intelligence (XAI), and 1012 

nonlinear multivariate emergent constraints, and have thus become increasingly competitive with traditional numerical, 1013 

knowledge-based approaches (see Fig. 5 and de Burgh-Day and Leeuwenburg, 2023; Eyring et al., 2024). Owing to these 1014 

properties, ML is particularly well-suited for extracting crucial dynamical and physical processes from climate models, 1015 

enabling a more comprehensive exploration of the valuable information embedded within the data (Reichstein et al., 2019; 1016 

Wang et al., 2018). Nevertheless, the application of ML algorithms in constructing MMEs for climate impact assessments 1017 

remains in its early stages. By utilizing observational data as either a reference, benchmark or a constraint, ML offers 1018 

significant potential for extracting additional insights from MMEs. In short, ML has the potential to make climate models 1019 

better, faster and to reduce their high energy consumption. Below, we provide an overview of emerging ML approaches for 1020 
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analyzing MMEs, including downscaling and bias correction, causal discovery and process-oriented causal model evaluation, 1021 

ML for climate system emulation and surrogate modeling, and promising future ML avenues. 1022 

 1023 

 1024 

Figure 4. Number of publications per year involving different ML-related techniques and CMIP or general circulation models: 1025 

ML (y-axis on the right), ML and MMEs, Downscaling, Downscaling and MMEs, Causality, Emulators, and Explainable AI 1026 

(XAI). The data was extracted from the citation reports available at Web of Science 1027 

(https://www.webofscience.com/wos/woscc/basic-search) using the queries provided in Appendix 1. 1028 

Downscaling and Bias Correction 1029 

ESMs have horizontal resolutions often far coarser than those needed by decision makers, and also suffer from substantial 1030 

biases (Maraun et al., 2017). Recently, the capacity of ML algorithms to summarize large amounts of data and represent non-1031 

linear relationships has been exploited, mostly in a regional way, to bias-correct and downscale MME’s outputs–with both 1032 

processes often done simoultaneously. Multiple ML methods have been tested and compared during recent years to predict 1033 

variables such as temperature and precipitation from MMEs. Some studies have tested algorithms such as random forests 1034 

(RFs), support vector machines (SVMs), relevance vector machines (RVMs), and artificial neural networks (ANNs) to estimate 1035 

monthly precipitation, maximum temperature, and minimum temperature (Crawford et al., 2019; Sachindra et al., 2018; Wang 1036 
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et al., 2018; Xu et al., 2020) both at a daily (Dey et al., 2022; Jose et al., 2022; Shetty et al., 2023; Zebarjadian et al., 2024) 1037 

and yearly temporal  resolution (Li et al., 2021). The targets or predictands used in these studies are commonly gridded products 1038 

that have been interpolated from gauge stations, and it is a common practice to perform dimensionality reduction (e.g. 1039 

performing principal component analysis on the raw data) before the training process. The domain of these studies is generally 1040 

limited to the basin scale (Crawford et al., 2019; Dey et al., 2022; Jose et al., 2022; Sachindra et al., 2018; Shetty et al., 2023; 1041 

Xu et al., 2020; Zebarjadian et al., 2024), although Wang et al. (2018) and Li et al. (2021) obtained good results at a country 1042 

level for Australia and China, respectively. In many of these downscaling and bias correction studies, it has been found that 1043 

tree-based approaches (like RFs) commonly perform better than other algorithms. Therefore, they seem to be a good baseline 1044 

for future research that aims to improve bias correction or downscaling algorithms.  1045 

Although these approaches provide a practical way to leverage MME future projections and observations to obtain a “best 1046 

estimate” of future quantities, there are several critical limitations to consider. First, within these methods, it is assumed that 1047 

the relationships between model outputs and observations remain stationary, including model biases and errors (Maraun, 2016). 1048 

However, skillful or poor model performance during the historical period does not necessarily translate into the same for the 1049 

future, especially since model skill can vary depending on the specific emissions scenario that unfolds. This uncertainty cannot 1050 

be captured within the historical period, which serves as the only source of information for training algorithms. As a result, 1051 

such projections may become overly constrained and therefore require careful interpretation, as fundamentally wrong 1052 

projections come with the danger of influencing wrong policies or eroding public trust. Potential solutions for this aspect are 1053 

to use trend-preserving learning (Wang and Tian, 2024) or climate-invariant ML methods (Beucler et al., 2024).  1054 

Another critical aspect that requires further attention in future ML-based bias correction and downscaling efforts is the potential 1055 

degradation of the representation temporal variability in final estimates (Shetty et al., 2023). Among the studies mentioned 1056 

above, only Li et al. (2021) acknowledged that their model outputs showed a significant reduction in the amplitude of 1057 

interannual variability relative to the original CMIP models. Thus, it is necessary to implement evaluation metrics for the 1058 

algorithms that consider aspects such as the standard deviation of the generated time series, the frequency and persistence of 1059 

extreme events, and the amplitude of different modes of variability. Most approaches aim to minimize only one error metric, 1060 

which could be ignoring the skill regarding these aspects and the physics behind them. For example, the mean precipitation 1061 

could be improved but the representation of the extreme events or the number of wet days may not be addressed. Algorithms 1062 

that can minimize multiple loss functions simultaneously could be advantageous to preserve multiple statistical features of the 1063 

fields of interest (Lin et al., 2019; Sener and Koltun, 2018; Zuluaga et al., 2013). Furthermore, ML-based approaches normally 1064 

focus on predicting just one variable. Using methods that aim to predict multiple variables could help preserve inter-variable 1065 

relationships (while also helping preserve different modes of variability). Finally, most bias correction or downscaling 1066 

algorithms are trained to predict the outputs in one grid cell based on the nearest CMIP grid cell. This approach dismisses 1067 

spatial relationships contained either within the inputs or the desired outputs. ML methods that consider the spatial relationships 1068 
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within the field of interest could be of use, including convolutional neural networks (Gu et al., 2018; LeCun et al., 2015; Wang 1069 

and Tian, 2022, 2024). Considering spatial relationships, multiple variables, and multiple error metrics, also diminishes the 1070 

impact of observational uncertainty, since physical relationships are more easily preserved, and it also reduces the risk of 1071 

producing overly constrained projections. Considering the limitations of the approaches mentioned for detecting physically 1072 

plausible connections, it is essential to explore additional methodologies, with causal inference being one promising option. 1073 

Causal inference for climate models 1074 

A prominent example of supervised ML is causal inference, which strives to discover the causal structure of a complex system 1075 

like Earth and quantify causal effects by combining domain knowledge, ML models, and data from observations and climate 1076 

model simulations (Runge et al., 2023 and references therein). Structural causal models (SCMs) have gained traction in 1077 

statistics and ML for causal inference, maturing into a robust scientific approach (Runge et al., 2019). Widely adopted methods 1078 

often relying on simple descriptive statistics may not accurately capture the physical mechanisms, leading to 1079 

underdetermination or equifinality, where multiple incorrect models fit the data equally well (Beven and Freer, 2001). From 1080 

this perspective, causal dependencies, more closely tied to physical processes, offer a more robust framework against 1081 

overfitting than simple statistics. Models that reflect causal relationships observed in data are more likely to remain valid under 1082 

future climate scenarios. Moreover, in the long term, integrating observational data analysis and Earth system modelling is 1083 

envisioned as a robust approach. In particular, detecting similar causal connections in observations and model simulations 1084 

provides an opportunity to assess model performance that indicates whether models can correctly reproduce local and remote 1085 

processes in the climate system and do not simulate expected links for the wrong or unknown reasons. This framework was 1086 

first introduced by Nowack et al. (2020) and was termed causal model evaluation (CME). A similar approach was proposed 1087 

by Vázquez‐Patiño et al. (2020) for global climate models (GCMs). In this regard, causal inference can identify weaknesses 1088 

in physical models and guide their improvement, including the development of parameterization schemes. It can also optimize 1089 

computationally expensive physical model experiments by determining where numerical experiments will likely yield 1090 

significant results.  1091 

Another important development in this area is a causality benchmark platform causeme.net, which aims to advance more 1092 

focused methodological research in Earth System sciences and related fields (Runge et al., 2020), with potential for valuable 1093 

applications in future studies, particularly in refining approaches for MME analysis. The platform offers synthetic models 1094 

replicating real data challenges for comparing causal discovery methods, such as for example spatially aggregated vector-1095 

autoregressive (SAVAR) models, which can be used to benchmark causal discovery methods for teleconnections (Tibau et al., 1096 

2022). It also encourages submissions of real or modeled datasets with well-established causal structures. Therefore, defining 1097 

evaluation and comparison statistics based on causal networks is vital for building more realistic models, improving future 1098 

projections, and informing policy-making (Eyring et al., 2019, 2024).   1099 
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 Process-oriented causal analysis and model evaluation  1100 

Introduced by Nowack et al. (2020), the CME framework, based on sea level pressure (SLP) data and its components as proxies 1101 

for modes of variability, enhances the understanding of precipitation patterns in CMIP5 MMEs and meteorological reanalyses. 1102 

This approach enables a process-oriented evaluation of models, helping to reduce uncertainties in climate projections. To 1103 

facilitate the comparison of causal relationships and estimate the similarities among observed and modeled causal graphs, the 1104 

authors introduced a modified asymmetric F1 score method. The higher the score, the better the agreement between compared 1105 

causal graphs (with the F1-score ranging from 1 indicating perfect match to 0 indicating no match). Nowack et al. (2020) 1106 

showed that causal graphs estimated from different ensemble members of the same model are more consistent than graphs 1107 

estimated from two different models. Additionally, CME can also serve as a skill to recognize models with shared development 1108 

backgrounds. Moreover, the authors state that the models with causal fingerprints similar to those in observational data are 1109 

more effective in replicating significant precipitation patterns in populated regions. The authors find strong indications that 1110 

CME can help reduce uncertainty in predicting rainfall changes due to climate change, as past model accuracy doesn't guarantee 1111 

skill for future projections. Numerous examples demonstrate the successful application of the proposed CME in Earth system 1112 

science by analyzing MMEs. For instance, Karmouche et al. (2023) analyzed Atlantic–Pacific interactions and their phase-1113 

dependent changes using the CVDP diagnostic package (see Section 2.6) and regime-oriented CME, focusing on large-1114 

ensemble CMIP6 historical model simulations and reanalyses. They highlighted the importance of large ensembles in 1115 

addressing sampling issues and explained causal pathways specific to regimes that may not appear in reanalysis-based causal 1116 

networks. Intra-model comparison is crucial to assess differences within the same model ensemble. The study also emphasizes 1117 

the need for modeling groups to review the documentation regarding realization attributes. In the later study, Karmouche et al. 1118 

(2024)  separated external forcing from internal variability in Atlantic–Pacific climate connections using the CMIP6 multi-1119 

ensemble mean (MEM). The MEM, derived from models that realistically simulate the spatiotemporal characteristics of major 1120 

climate variability modes, was subtracted from the used datasets. This subtraction provided an estimate of the externally forced 1121 

component, which was further refined using the CME procedure. Process-oriented causal analysis was also successfully 1122 

applied to study Arctic processes and their connections to the mid-latitudes (Docquier et al., 2022, 2024; Galytska et al., 2023; 1123 

Kaufman et al., 2024; Kretschmer et al., 2020; Polkova* et al., 2021), subpolar gyre variability (Falkena and von der Heydt, 1124 

2024),  and evaluation of climate sensitivity (Ricard et al., 2024). 1125 

The recent work of Debeire et al. (2025) built their study upon the findings of Nowack et al. (2020) to address the practical 1126 

challenges of integrating CME with a novel causal multimodel weighting scheme in CMIP6 MMEs of SLP. Their study seeks 1127 

to improve projections of precipitation changes over land, enhancing the ability to anticipate and respond to the consequences 1128 

of climate change in populated and vulnerable areas and reduce uncertainties in multi-model climate projections, providing 1129 

more robust climate change information for more effective mitigation and adaptation strategies. Similarly to Nowack et al. 1130 

(2020), the authors adopted and adjusted the F1 score definition and complemented it with a measure of 1131 

https://doi.org/10.5194/egusphere-2025-4744
Preprint. Discussion started: 6 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 

43  
 

 

distance metric 1 − F1 score as the performance metric: smaller distance values indicate greater similarity, both in 1132 

terms of performance relative to the reference graph and in terms of dependence among the models. Debeire et al. (2025) 1133 

developed a new weighting scheme, termed causal weighting, inspired by the earlier works of Knutti et al. (2017) and Brunner 1134 

et al. (2020) is based on both the performance and interdependence of model causal networks. 1135 

They normalize a distance metric 1 − F1 score using the median score across all analyzed models, which enables 1136 

the weighting scheme to assign higher weights to models that closely match the reference causal network (e.g., observational), 1137 

signifying strong model performance while also favoring models with distinct causal structures, indicating greater 1138 

independence. Similarly to Nowack et al. (2020) and Debeire et al. (2025) confirm that evaluating the SLP causal networks 1139 

can identify models with similar physical cores and, consequently, similar dynamical sea-level pressure processes.  1140 

Causal (network-based) constraint for evaluation of model sensitivity 1141 

The study of Ricard et al. (2024) evaluates climate sensitivity, specifically Equilibrium Climate Sensitivity (ECS) and 1142 

Transient Climate Response (TCR), using a novel network-based approach built on the analysis of SST patterns and their 1143 

connectivity. The authors argue that the behavior of SST networks serves as a reliable proxy for how models respond to 1144 

increased CO2 levels. The network-based approach called netCS leverages sea surface temperature (SST) variability and 1145 

teleconnections to constrain climate sensitivity estimate differences from traditional emergent constraints (EC) by relying on 1146 

2-D metric space, such as the Weighted Wasserstein Distance (WWD) and Distance Average Causal Effect (DACE). These 1147 

metrics quantify the distance between simulated and observed SST patterns, focusing on fast-propagating perturbations over 1148 

short time scales (up to three months). The study finds that some models may capture regional SST distributions well but fail 1149 

to replicate connectivity patterns, and vice versa (see discussion to Fig. 5 in Ricard et al., 2024). This distinction is crucial for 1150 

evaluating model performance over historical periods, as models that accurately reproduce past SST patterns may have better-1151 

underlying physics (if not better tuned). While this does not guarantee that those models are the best for future projections 1152 

(Rasp et al., 2018; Zhu and Poulsen, 2021) it offers valuable evidence, especially when evaluation is based on climate-relevant 1153 

parameters that are less influenced by tuning, such as for example detrended SST patterns. Runge et al. (2019) has previously 1154 

stated that the current relationships between predictors and climate sensitivity represent actual physical processes likely to hold 1155 

under future climate change. Based on their analysis, Ricard et al. (2024) defined two clusters of models that best reproduce 1156 

the SST variability: low-sensitivity and high-sensitivity models, and the dominant one is persistently in the low ECS/TCR, 1157 

which might suggest that the warming will be less than the average one from the models. The authors propose that causal 1158 

networks, used alongside traditional ECs, provide a more reliable ranking of models for future climate projections. Ultimately, 1159 

the authors recommend combining netCS with other ECs to improve the plausibility of future climate projections and provide 1160 

robust estimates of ECS and TCR. The application of causal discovery algorithms helps bridge the gap between physical 1161 

understanding and statistical tools, enabling more comprehensive insights into Earth system processes. 1162 
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Machine Learning for Climate System Emulation  1163 

Climate model emulators, including surrogate models, are simplified representations of the complex systems included in 1164 

climate models, allowing for faster computations and predictions. They can mimic the behaviour of a climate model without 1165 

needing to solve the underlying equations in full. ML presents a unique opportunity to replicate parts of the climate system in 1166 

novel and computationally viable parameterizations. These approaches have the potential to increase both the accuracy and 1167 

efficiency of climate simulations while significantly reducing computational costs and enabling higher resolution simulations 1168 

(Eyring et al., 2021; Gentine et al., 2018). Traditional climate models, which often rely on complex numerical methods, can 1169 

be computationally expensive when simulating small scale processes. ML based emulation of these processes provides a 1170 

computationally cheaper alternative that can capture these dynamics with, in some cases, comparable or even improved 1171 

accuracy compared to observations. The success of ML emulation of the climate system varies depending on the choice of 1172 

algorithm, temporal resolution, type of training data, and model complexity (Dueben and Bauer, 2018; Scher, 2018). The ML 1173 

emulation of MME is of particular interest. As discussed previously, conventional MME approaches face challenges such as 1174 

high computational costs and model biases, and ML-based MME frameworks could help overcome these computational costs 1175 

while also reducing biases and uncertainties (Wang et al., 2018).  1176 

Efforts to overcome initial barriers of the use of ML in the climate sciences have recently gained momentum (see Figure 4). 1177 

One notable initiative is ClimSim, a hybrid physics-ML dataset designed to provide high-quality data for training ML 1178 

emulators of climate processes (Yu et al., 2023). These datasets have been tested for deterministic and stochastic parameters, 1179 

and show promise for future climate simulations if used properly. Future studies could include using MME as training data to 1180 

train novel ML emulator models. Complimenting the available data to train emulators, Lu and Ricciuto (2019) highlight an 1181 

innovative approach integrating SVD, Bayesian optimization, and neural networks to create a computationally efficient 1182 

surrogate model. Weber et al. (2020) provides valuable technical notes of ML, using the example of forecasting precipitation 1183 

under CO2 forcing, for creating surrogate models to overcome potential computational burdens. The continued development 1184 

and advancement of ML emulators and surrogate models for climate systems, particularly in the context of MME, will require 1185 

ongoing innovation in interpretability, generalization, and reliability. The remarkable computational efficiency and ability of 1186 

ML emulators to replicate complex climate processes with high precision demonstrates their immense potential. However, 1187 

several challenges remain, including the high cost of running models, limited diversity in training data, and the need for more 1188 

robust methods to evaluate simulations. As these tools develop further, they show promise to play a transformative role in 1189 

enhancing the speed, resolution, and reliability of future climate projections.  1190 

Promising Future ML Avenues 1191 

There are many avenues of promising research involving ML to process CMIP outputs. Work that aims to predict end-user 1192 

variables that are not directly available in GCMs, including crop yield (Crane-Droesch, 2018; Sidhu et al., 2023; Veenadhari 1193 
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et al., 2014) and power generation potential (Jung et al., 2021; Nwokolo et al., 2023; Yeganeh-Bakhtiary et al., 2022), 1194 

highlights the potential of AI for increasing MMEs applicability to end-users, including decision-makers and stakeholders. 1195 

Explainable AI, which aims to obtain physical interpretations from the initially black-box-like ML models, is especially helpful 1196 

in inferring physical changes in the Earth system based on CMIP simulations (Rader et al., 2022). Layer-wise relevance 1197 

propagation (LRP), for example, has been used to provide insights into the regions and features that a neural network relies on 1198 

for making predictions (Toms et al., 2020). LRP has proven to be particularly useful in climate science, allowing for the 1199 

interpretability of a neural networks decision making process by visualizing heatmaps of relevant regions (Hilburn et al., 2020; 1200 

Labe et al., 2024; Labe and Barnes, 2022; Sonnewald and Lguensat, 2021). This interpretability adds value to ensemble 1201 

evaluation, providing critical information that can inform model weighting schemes, as discussed in Section 2.4. These types 1202 

of methods, in addition to ML algorithms, are useful to move toward process-informed or process-oriented correction or 1203 

downscaling of MME outputs (Maraun et al., 2017). ML also serves as an effective tool for evaluating both the performance 1204 

and independence of climate models within MMEs, offering valuable potential for assessing model individuality and 1205 

developing ensemble weighting metrics to address interdependencies among models (Brunner and Sippel, 2023). Given the 1206 

potential that ML has to improve climate projections or help with their interpretability and applications, AI-ready databases 1207 

such as ClimateSet (Kaltenborn et al., 2023) are of great help to the climate research community. Real world applications of 1208 

ML based climate emulation highlight the value of this approach. For example, ML emulation models have been employed to 1209 

predict crop yields (Folberth et al., 2019; Leng and Hall, 2020). CNN surrogates also show promise in modelling spatio-1210 

temporal precipitation patterns, with deeper networks offering greater accuracy, improving long-term forecasting (Weber et 1211 

al., 2020).  1212 

The integration of causal discovery and deep learning (DL) presents a promising avenue for improving climate simulations 1213 

(Iglesias‐Suarez et al., 2024; Kyono et al., 2020; Luo et al., 2020; Russo and Toni, 2022; Wang et al., 2024; Yoon and Schaar, 1214 

2017; Zhang et al., 2023). This combination aims to enhance the stability and trustworthiness of models, particularly addressing 1215 

biases and uncertainties associated with subgrid-scale processes, such as clouds and convection, which are significant 1216 

contributors to climate projection uncertainties. Previous research has demonstrated DL's capability to represent small-scale 1217 

processes effectively, such as deep convection, using storm-resolving model simulations (Eyring et al., 2021; Gentine et al., 1218 

2018; Grundner et al., 2022). Despite this potential, DL algorithms have faced criticism for robustness issues, poor 1219 

generalization, and the reliance on spurious, non-physical relationships, particularly when conditions diverge from the training 1220 

data (Brenowitz et al., 2020; Scholkopf et al., 2021; Thuy and Benoit, 2024). However, Iglesias‐Suarez et al. (2024) 1221 

demonstrated that causal discovery can effectively identify the physical drivers of subgrid-scale processes across different 1222 

climate regimes, thereby enhancing the interpretability and reliability of DL algorithms. Their causally-informed, data-driven 1223 

approach operates stably within the reference climate conditions, generating climate means and variability that closely match 1224 

original simulations. Moreover, their findings suggest that causally-informed NN help prevent spurious links typically seen in 1225 

traditional DL-based parameterizations, directing more focus on physical drivers. This aligns with previous work by Zhang et 1226 
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al., 2023 emphasizing the value of integrating domain knowledge to address the limitations of purely data-driven models. 1227 

While these studies currently do not pertain to multi-model analysis, their methodologies hold significant potential for future 1228 

applications in this area. The integration of causal discovery and deep learning thus represents a novel strategy that could lead 1229 

to more stable and reliable climate simulations, paving the way for advancements in climate modeling methodologies. 1230 

4.2 SMILES  1231 

Using several simulations per model in MMEs 1232 

For the majority of models in CMIP5 and CMIP6, only one ensemble member is available (Milinski et al., 2020; Olonscheck 1233 

and Notz, 2017). Thus, modeling groups strive to provide their best performing models, carefully calibrated to the same 1234 

internationally available observational datasets. In this context, Sanderson et al. (2008) found that the standard model 1235 

performed comparatively to the best-performing model. Therefore, there is an indirect incentive for modelling groups to add 1236 

simulations to the CMIP MME that are less extreme, potentially leading to a MME that underestimates the uncertainties. As 1237 

one consequence, the seemingly reduced uncertainty throughout different climate model generations might be at least partly 1238 

originated in improved calibration and model selection rather than improvements in capturing the physical dynamics (Knutti, 1239 

2010). 1240 

To overcome this issue, including several simulations from individual models into MMEs might be the next step forward. 1241 

When the ensemble size reaches 10-100 members, ICEs are referred to as SMILES (Deser et al., 2020). Olonscheck and Notz 1242 

(2017) found that for annual global-mean surface air temperature and sea ice volume and area, even small ensemble sizes 1243 

greater than one, as provided in CMIP5, are representative for the model’s total internal variability as demonstrated by the 1244 

CESM1 and MPI-ESM-LR large ensembles. The authors highlight that incorporating multiple small ensembles from different 1245 

models can improve projections compared to single model ensembles, particularly for extreme events. Additionally, such 1246 

ensembles can also be useful for quantifying the response uncertainty across different models. Such multi-model collection of 1247 

SMILEs can be used for robust comparison of both the forced response on regional or decadal scales across models and internal 1248 

variability across models (Deser et al., 2020). However, accessing and processing large data sets from various sources can be 1249 

challenging and is probably a key reason why most SMILE studies so far included only one, maximum two large ensembles  1250 

(Deser et al., 2020). To overcome this issue and to facilitate future usage of multi-model large ensembles, a data repository for 1251 

large ensembles from CMIP5 models was created including gridded fields of key variables at daily and monthly resolution for 1252 

historic and future emission scenarios, the ‘Multi-Model Large Ensemble Archive (MMLEA)’ (US CLIVAR, 2020). When 1253 

more ensemble members are used, it is important to remember that the ensemble size available for the individual models should 1254 

not influence the weight given to this model in the MME (Knutti et al., 2010a). Future studies should provide a methodological 1255 

framework on how to combine SMILES and MMEs in the most productive and meaningful way.  1256 

https://doi.org/10.5194/egusphere-2025-4744
Preprint. Discussion started: 6 October 2025
c© Author(s) 2025. CC BY 4.0 License.



 

47  
 

 

What  are SMILEs and how do we benefit from them 1257 

SMILEs represent valuable resources for studying the climate system. A SMILE consists of many simulations from a single 1258 

climate model based on the same model physics and under the same external forcings, but each starting from slightly different 1259 

initial states (Maher et al., 2021). Although MMEs are useful for examining the combined influence of three types of 1260 

uncertainties in climate projections (model uncertainty, internal variability uncertainty, and scenario uncertainty), it remains a 1261 

challenge to distinguish internal variability from the forced response with a limited number of ensemble members of each 1262 

model. For addressing uncertainties related to both internal variability and unknown future pathways (scenario uncertainty), 1263 

SMILEs can be very powerful (Deser et al., 2012b; Lehner et al., 2020), especially when it comes to regional detection and 1264 

attribution and extreme climate events (Lehner et al., 2017; McKenna and Maycock, 2021; von Trentini et al., 2020; van der 1265 

Wiel et al., 2021).  1266 

A large ensemble provides more instances of extreme events, allowing researchers to better estimate changes in their frequency, 1267 

intensity and future likelihood.  This is particularly important for assessing the risk and impacts of climate extremes in a 1268 

changing climate, as a single realization of a model might not capture a sufficient number of examples. Such information is 1269 

crucial for decision makers and policy makers in developing climate change adaptation and mitigation strategies, providing 1270 

them with the data necessary to understand the full range of potential outcomes.  1271 

While large ensemble simulations are known to be important to study extreme univariate events, they are even more relevant 1272 

for the analysis of compound events (such as simultaneous drought and heatwave) (Bevacqua et al., 2022, 2023; Wu et al., 1273 

2023). Compound events result from combinations of multiple weather and climate drivers, characterized by complex 1274 

interactions between extreme conditions across variables, space, or time. Because of these multivariate relationships, a 1275 

univariate approach for examining hazards may underestimate risks and potential changes in dependence between variables 1276 

may lead to even larger uncertainties. As internal variability can obscure the detection of trends or make the estimation of 1277 

event probabilities less certain, SMILEs can reduce this uncertainty by providing a larger sample size, and enabling a clearer 1278 

distinction between internal variability and forced responses. Bevacqua et al. (2023) showed that attributing compound events 1279 

requires larger sample sizes than univariate events, especially when the drivers are weakly correlated and have similar trends. 1280 

Sampling a wide range of possible atmospheric conditions using SMILEs helps avoid underestimating the frequency and 1281 

severity of compound events and provides deeper insights into their physical drivers and potential future changes. 1282 

SMILES as a way of employing MME 1283 

Given the value of integrating SMILEs into MME analysis (see Figure 5), we highlight their potential to improve uncertainty 1284 

quantification and the robustness of climate projections. One challenge to employing SMILEs can be accessing the data. To 1285 

address this the Multi-Model Large Ensemble Archive (MMLEA) was developed (Deser et al., 2020). The newly published 1286 
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MMLEAv2 expands beyond the original MMLEA by including more models (the original included 7, the new version includes 1287 

18) and more three-dimensional variables (Maher et al., 2024). The MMLEAv2 and a suite of corresponding observational 1288 

datasets have been regridded onto a 2.5° common horizontal grid, reducing data size, allowing for straightforward model-to-1289 

model comparison, and model-to-observation comparisons. An additional tool that is being published with the MMLEAv2 1290 

archive is the newest version (version 6) of the CVDP (CVDPv6; Phillips et al., 2020) mentioned in Section 2.6. 1291 

 1292 

Figure 5. Number of publications per year involving SMILEs. The data was extracted from the citation report available at 1293 

Web of Science (https://www.webofscience.com/wos/woscc/basic-search) for the queries provided in Appendix 1. 1294 

4.3 Computational Resources and Energy Costs 1295 

MMEs, such as CMIP6, are powerful tools for exploring past climates, assessing our current changing climate, and projecting 1296 

future scenarios, but they come with significant computational and energy demands. MMEs rely on ensemble runs across 1297 

multiple models or multiple versions of a single model, generating a large volume of data that requires careful management 1298 

and optimization. These simulations are run on high-performance computing (HPC) platforms, which must process large 1299 

amounts of data and perform calculations across many parallel cores. Simulating a century-scale global climate model with 1300 

high spatial and temporal resolutions can take weeks, even on high-performance computing systems. For example, the MPI-1301 

ESM1.2 model, in its standard low-resolution configuration (approximately 200 km grid spacing), runs at around 45 years per 1302 

day up to approximately 85 simulated years per physical day, which is a significant improvement over the 17 years per day 1303 

achieved during CMIP5 simulations (Mauritsen et al., 2019). On the other hand, running an ultrahigh-resolution climate model 1304 

in a near-global setup, with a ~1 km horizontal resolution attains a performance of approximately 0.043 simulated years per 1305 
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day (~15.7 simulated days per day) (Fuhrer et al., 2018).  Computational performance is a key limitation when designing ESM 1306 

experiments, requiring trade-offs between resolution, complexity, and the size of ensembles.  1307 

CPMIP metrics for climate modelling 1308 

The demand for computing power has continued to increase over time. Several factors contribute to this: increasing resolution, 1309 

explicit resolving of complex processes within the climate system replacing parameterization, the need for larger ensemble 1310 

sizes, and the associated need for more storage space for the large amounts of data (input and output). Balaji et al. (2017) 1311 

introduced a universal set of metrics to evaluate HPC and ESM performance and emphasize that traditional metrics (e.g., 1312 

floating point operations per second) are becoming insufficient to represent the generations of new machines and the diversity 1313 

of ESMs. Given the complexity of ESMs and the diverse computational characteristics of their components, they advocated 1314 

making these metrics a standard in globally coordinated modeling initiatives and proposed collecting them in the 1315 

Computational Performance MIP (CPMIP). The metrics (Table 3) are intended to serve as a uniform basis for assessing the 1316 

advances and technological progress of climate models and take into account the structure of ESM and production runs. The 1317 

advantage is that they are universally accessible and easily collected during routine production runs without special additional 1318 

tools, reflect real-world performance (rather than idealized estimates) and are designed to capture performance over the entire 1319 

modeling lifecycle.  1320 

 1321 

Table 3. List of metrics introduced in CPMIP, table is adapted from Acosta et al. (2024). 1322 

Metric Short description of the metric 

Resolution (spatial degrees of freedom) Number of grid points per model component  

Complexity Number of prognostic variables per component 

Platform Description of the computational hardware (core count, clock speed, and 
double-precision operations per clock cycle) 

Simulation years per day (SYPD) Number of simulated years per day for the ESM in a 24-hour period on a 
given platform 

Actual SYPD (ASYPD) Actual simulated years per day for a long-running simulation on a given 
platform (system interruptions, queue wait time, or issues with the model 
workflow accounted) 

 Core hours per simulated year (CHSY) Cost, measured in core hours per simulated year 
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 Parallelization Total number of cores allocated for the run 

 Joules per simulated year (JPSY)  Energy cost per simulated year 

Coupling cost  Computing cost of the coupling algorithm and load imbalance 

Memory bloat Ratio of actual memory size to ideal memory size 

 Data output cost Computing cost for performing input/output (I/O)  

 Data intensity Measure of data produced per computing hour 

 1323 

Evaluating models’ performances using CPMIP metrics  1324 

Each model in a MME may have different performance characteristics, and addressing these can lead to more balanced and 1325 

effective use of computational resources. Recent main findings from the CPMIP (Acosta et al., 2024) represents analysis of 1326 

metrics proposed by Balaji et al. (2017), collected during long, real-time model runs, from the 14 institutions that conducted a 1327 

total of 33 experiments used in CMIP6 (almost 500,000 years of simulations on 14 different HPC machines).  Acosta et al. 1328 

(2024) extends the foundational work CPMIP by incorporating empirical data from CMIP6, emphasizing energy consumption, 1329 

addressing data storage challenges, and offering strategic recommendations for future climate modeling efforts. 1330 

Improving model accuracy through higher resolutions and increased complexity in representing physical, chemical, and 1331 

biological processes, which provide more detailed spatial and temporal outputs, would require immense computational 1332 

resources. For example, Flato (2011) found that increasing model resolution from 200 km to 20 km demands roughly 10,000 1333 

times more computing power. As shown in the CPMIP study, institutions found that increasing model resolution tends to 1334 

increase execution costs due to both the computational power required and the challenges posed by coupling independent 1335 

model components like atmosphere, ocean, land and cryosphere (Acosta et al., 2024).  1336 

Kilometer-scale simulations of individual models and multi-model ensembles of these high-resolution simulations are being 1337 

actively developed (Ban et al., 2021; Coppola et al., 2020; Pichelli et al., 2021; Rackow et al., 2025). Alongside these 1338 

developments, coordinated intercomparisons for global storm-resolving models (GSRM) are emerging, including a recently 1339 

introduced protocol for one-year simulations (Takasuka et al., 2024), aimed at extending GSRM evaluations toward climatic 1340 

timescales. The increase in resolution and process detail comes with significantly higher computational demands, requiring 1341 

substantial computing power and storage resources (Schär et al., 2020). To cope with the high computational and energy 1342 

demands, high-resolution simulations are usually regional and provide information for different specific geographical regions 1343 

(Coppola et al., 2020; Nolan and Flanagan, 2020) or rely on some simplified parameterizations (for processes such as radiation 1344 

or soil interactions), as more complex and advanced schemes are computationally expensive and would significantly increase 1345 
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the computational load in long-term simulations. Another constraint that arises for such high-resolution modeling, is that while 1346 

regional models can simulate periods up to a decade, global models are typically confined to high-resolution simulations 1347 

spanning only a few weeks (Schär et al., 2020). However, this limitation is rapidly being overcome, with multi-year global 1348 

simulations at such resolutions already conducted using models such as ICON in its Sapphire configuration (Hohenegger et 1349 

al., 2023), the eXperimental System for High-resolution prediction on Earth-to-Local Domains (X-SHiELD) (Guendelman et 1350 

al., 2024; Merlis et al., 2024), and the IFS model coupled to the Finite-volumE Sea ice-Ocean Model (Rackow et al., 2025).  1351 

ESMs are structured with a component-based architecture, which means different climate components are modular, allowing 1352 

scientists to update or add new components over time. This architecture enables continuous innovation, but it also brings 1353 

software engineering challenges by changing the model's computational demands, affecting aspects such as data processing, 1354 

I/O operations, and network traffic (Wang and Yuan, 2020). As shown in Acosta et al. (2024) coupling components, which 1355 

synchronize different processes, adds up to 5–15% overhead to execution costs.  1356 

Queue times significantly impact overall execution speed and efficiency, although they can vary across different institutions 1357 

(Acosta et al., 2024). Consistent and minimal queue times are beneficial for MMEs in terms of ensuring timely completion of 1358 

simulations and data availability and reducing them would allow for more simulations to be run in parallel, enhancing the 1359 

overall throughput of the ensemble.  1360 

Estimated carbon footprint of climate modeling: Towards "greener" hardware  1361 

Running climate models, especially in large-scale MMEs, requires significant computational power which can have a notable 1362 

carbon footprint, since HPC facilities are consuming large amounts of energy. The climate modeling community is aware of 1363 

this and is exploring ways to optimize code efficiency and transition to greener energy sources to minimize the carbon impact 1364 

of their research efforts. One unique aspect of CPMIP is its focus on capturing the real energy costs of running models, aiming 1365 

to help climate scientists make eco-friendly decisions in computing. With the CPMIP metrics and the efforts of the 1366 

Infrastructure for the European Network for Earth System Modelling Phase 3 (IS-ENES3) project (Joussaume and Budich, 1367 

2013) consortium's Carbon Footprint Group assessing the total computational energy costs of climate experiments enabled 1368 

(Acosta et al., 2024) the estimation of carbon footprint related to those experiments. For 8 out of 49 institutions that were 1369 

involved in CMIP6, the estimation is 1,692 t CO2 in total (with total energy costs ranging from 0.41 TJ to 26.70 TJ). According 1370 

to the International Energy Agency (IEA), the “global average energy-related carbon footprint” is ~ 4.7 t CO2 per person and 1371 

per year. For the context, given that the total emissions from CMIP6 modeling centers are estimated at 1,692 tons of CO₂, this 1372 

is equivalent to the annual emissions of 360 people.  1373 

Eco-friendly hardware is increasingly becoming a consideration in HPC for climate modeling as researchers recognize the 1374 

environmental impact of extensive model runs. One example of this good practice is the Energy-efficient climate simulations 1375 
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on heterogeneous supercomputers through co-design (EECliPs) project led by German Climate Computing Centre (Deutsches 1376 

Klimarechenzentrum, DKRZ) (https://www.dkrz.de/en/projects-and-partners/projects-1/eeclips), aiming to improve 1377 

simulation quality with lower energy requirements of the ESM ICON (Adamidis et al., 2025). By encouraging institutions to 1378 

collect the data needed to estimate their carbon footprint and adopting eco-friendly hardware and thoughtful modeling 1379 

practices, the climate modeling community can reduce its carbon footprint while advancing its scientific mission. 1380 

HPC facilities: petascale and beyond 1381 

As climate models continue to evolve, HPC facilities operating at the petascale and beyond are necessary to handle the spatial 1382 

and temporal resolutions required by these models, especially for simulating more complex interactions or high-impact short-1383 

term events and regional processes that require finer spatial scale and higher accuracy, as well as advanced data management 1384 

systems to handle large data sets required for model validation, diagnostic analysis and impact studies. The development of 1385 

exascale computing systems, capable of achieving 1018 floating-point operations per second, holds significant potential for 1386 

advancing our understanding of the predictability boundaries in ESMs through sophisticated mathematical and statistical 1387 

methods, which led to the launch of many projects aiming to develop and optimize the parallel execution on exascale systems 1388 

(Adamidis et al., 2025; Taylor et al., 2023; https://www.fz-juelich.de/en/ias/jsc/projects/ifces2).  1389 

Addressing the computational and energy challenges of MMEs requires standardized performance metrics, efficient computing 1390 

and eco-friendly practices. Findings from the CPMIP and  performance metrics applied to CMIP6 experiments, highlight the 1391 

need for better optimization of model configurations, improved coupling mechanisms, and more efficient use of HPC 1392 

resources, which is particularly important as modeling centers strive to improve projections while managing resource 1393 

limitations. The intercomparison reveals significant differences in computational costs between models and institutions, 1394 

highlighting the need for strategic advancements in model optimization to balance scientific accuracy with practical 1395 

constraints. Joint efforts are needed to integrate the latest technological advances such as AI-driven model optimization, novel 1396 

HPC architectures and energy-efficient computing. Using standardized measurements of computational and energy costs 1397 

across different MMEs is highly encouraged, ensuring that model performance is comparable and consistent, allowing 1398 

researchers to identify areas for improvement and make informed decisions for hardware, software, and resource planning in 1399 

climate modelling.  1400 

5. Concluding remarks 1401 

Climate modeling has been key to the understanding of past, present, and future  changing climates. It is a dynamic field, 1402 

profiting from growing computational capacities and advances as well as benefits from the increasing understanding of 1403 

physical and chemical phenomena. Climate projections rely on MMEs to assess uncertainties and improve their robustness. 1404 

This review synthesizes key practices, challenges, and emerging approaches in working with MMEs, drawing on the collective 1405 
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insights of the Fresh Eyes on CMIP community. By examining model evaluation strategies, systematic biases, model 1406 

dependence, selection and weighting methods, and uncertainty quantification, we aim to support researchers in making 1407 

informed choices when designing MME studies—while fully acknowledging that the diversity of research questions makes it 1408 

impossible to create a set of universally transferable recommendations. We further highlight the growing relevance of ML and 1409 

SMILEss, which are shaping the future of climate ensemble analysis, particularly in the context of CMIP7. Finally, we 1410 

advocate for awareness of the computational costs associated with climate modeling and analyses.  1411 
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 1444 

Total ML: 1445 

TS=("machine learning" OR "artificial intelligence" OR "neural networks" OR "random forest" OR "decision trees" OR 1446 

"deep learning" OR "supervised learning" OR "unsupervised learning") AND TS=("CMIP" OR "CMIP3" OR "CMIP5"  OR 1447 

"CMIP6" OR "Coupled Model Intercomparison Project" OR "climate model" OR "climate models" OR "general circulation 1448 

model" OR "general circulation models" OR "Earth system model" OR "Earth system models") 1449 

ML-MME: 1450 

TS=("machine learning" OR "artificial intelligence" OR "neural networks" OR "random forest" OR "decision trees" OR 1451 

"deep learning" OR "supervised learning" OR "unsupervised learning") AND TS=("CMIP" OR "CMIP3" OR "CMIP5"  OR 1452 

"CMIP6" OR "Coupled Model Intercomparison Project" OR "climate model" OR "climate models" OR "general circulation 1453 

model" OR "general circulation models" OR "Earth system model" OR "Earth system models") AND TS=("multi-model 1454 

ensemble" OR" multi-model ensembles") 1455 

ML-Downscaling: 1456 

TS=("machine learning" OR "artificial intelligence" OR "neural networks" OR "random forest" OR "decision trees" OR 1457 

"deep learning" OR "supervised learning" OR "unsupervised learning") AND TS=("CMIP" OR "CMIP3" OR "CMIP5"  OR 1458 

"CMIP6" OR "Coupled Model Intercomparison Project" OR "climate model" OR "climate models" OR "general circulation 1459 

model" OR "general circulation models" OR "Earth system model" OR "Earth system models") AND TS=("downscaling" 1460 

OR "bias correction") 1461 

ML-Downscaling MME: 1462 

TS=("machine learning" OR "artificial intelligence" OR "neural networks" OR "random forest" OR "decision trees" OR 1463 

"deep learning" OR "supervised learning" OR "unsupervised learning") AND TS=("CMIP" OR "CMIP3" OR "CMIP5"  OR 1464 

"CMIP6" OR "Coupled Model Intercomparison Project" OR "climate model" OR "climate models" OR "general circulation 1465 

model" OR "general circulation models" OR "Earth system model" OR "Earth system models") AND TS=("downscaling" 1466 

OR "bias correction") AND TS=("multi-model ensemble" OR" multi-model ensembles") 1467 

ML Causality: 1468 
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TS=("CMIP" OR "CMIP3" OR "CMIP5"  OR "CMIP6" OR "Coupled Model Intercomparison Project" OR "climate model" 1469 

OR "climate models" OR "general circulation model" OR "general circulation models" OR "Earth system model" OR "Earth 1470 

system models")  AND TS=("causal discovery" OR "causality" OR "causal inference" OR "causal") 1471 

ML Emulators: 1472 

TS=("machine learning" OR "artificial intelligence" OR "neural networks" OR "random forest" OR "decision trees" OR 1473 

"deep learning" OR "supervised learning" OR "unsupervised learning") AND TS=("CMIP" OR "CMIP3" OR "CMIP5"  OR 1474 

"CMIP6" OR "Coupled Model Intercomparison Project" OR "climate model" OR "climate models" OR "general circulation 1475 

model" OR "general circulation models" OR "Earth system model" OR "Earth system models") AND TS=("emulation" or 1476 

"surrogate" or "emulator" or "emulators" or "surrogates") 1477 

ML XAI: 1478 

TS=("machine learning" OR "artificial intelligence" OR "neural networks" OR "random forest" OR "decision trees" OR 1479 

"deep learning" OR "supervised learning" OR "unsupervised learning") AND TS=("CMIP" OR "CMIP3" OR "CMIP5"  OR 1480 

"CMIP6" OR "Coupled Model Intercomparison Project" OR "climate model" OR "climate models" OR "general circulation 1481 

model" OR "general circulation models" OR "Earth system model" OR "Earth system models") AND TS=( "XAI" OR 1482 

"explainable AI" OR  "Layer-wise Relevance Propagation" OR "LRP" OR "Feature importance analysis" OR "feature 1483 

importance") 1484 

Model Independence: 1485 

TS=("climate" OR "Earth" OR "Earth System") AND TS=("CMIP" OR "Coupled Model Intercomparison Project" OR 1486 

"climate model" OR "general circulation model") AND TS=("ensemble" OR "multi-model ensemble") AND 1487 

TS=("dependence" OR "independence" OR "genealogy") 1488 

SMILEs: 1489 

TS=(“Multi-model ensemble” OR  “coupled model intercomparison”  OR  “cmip”) AND TS= (“large ensemble” OR  “grand 1490 

ensemble” OR “smile”) 1491 

 1492 

  1493 
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