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Abstract.  

The increased frequency and intensity of hydrological extremes, including drought, due to anthropogenic climate change will 10 

drive the need for enhanced water supply resilience, even in water-rich countries. Previous studies have shown that small 

reservoirs have considerable potential for expanding water supply for various purposes, including when repurposed from flood-

only reservoirs for both flood and drought protection. However, whether these repurposed reservoirs retain the same flood 

protection ability when operating under forecasts is still unclear, as reservoir operation under forecasts has primarily been 

researched in the context of large reservoirs. In this study, we investigated potential operating rules under forecasts for 30 15 

small-to-midsize flood reservoirs to a) determine if the uncertainty introduced by forecasts degrades the performance of 

repurposed reservoirs so significantly as to render the concept unusable, b) identify patterns in the relationship between forecast 

accuracy and optimal reservoir performance, and c) identify patterns in optimal reservoir operation rules, under the constraint 

that flood protection should not be compromised. Performance is determined by the modelled ability to either supplement 

streamflow to avoid low flows or to provide water for irrigation purposes in the area of the reservoir. 1000 combinations of 20 

three operation parameters—the warning threshold at which flood pre-release begins, the rate at which water is released from 

the reservoir for flood pre-release, and the inflow at which the reservoir begins storing water—were tested for maintenance of 

flood protection (viability) and benefit for the reservoir’s additional uses. While some reservoirs indeed were no longer 

beneficial when optimized to operate under forecasts, many still maintained benefits above 40%, with a couple even surpassing 

their performance under perfect knowledge. Comparing changes in benefit from the perfect-knowledge operation to forecast 25 

accuracy indicated that high rates of hits, false alarms and misses, and misses (HFM) could explain the largest decreases in 

performance, while other forecast accuracy metrics were less impactful. However, even if HFM were low but nonzero, a 

poorly-timed false alarm could drain a reservoir’s storage before a spike in demand, causing a noticeable loss in performance. 

Investigation of reservoirs’ potential benefits under forecasts should therefore be done via simulation rather than approximated 

via characterizing indices. Optimal operation rules tended to be those that most closely mimicked the perfect knowledge 30 

operation, i.e. aggressive storage thresholds and a tendency to hold onto the water storage for as long as is safe, but more 

conservative operating rules were also able to provide benefits as well. The models for forecast operation and optimization 
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produced for this study can be used by water managers to assess if existing small flood reservoirs can feasibly be used to 

increase water supply resilience in a changing world.  

1 Introduction 35 

Droughts have long been recognized as significant natural hazards that impose severe impacts on multiple sectors worldwide. 

Shortages in water, coupled with higher temperatures, reduce crop yields and can even impact livestock mortality, ultimately 

resulting in massive economic losses (Caretta et al., 2022; Matiu et al., 2017). The increasing frequency and severity of 

droughts due to climate change exacerbate these challenges (Spinoni et al., 2017), posing substantial threats to food security 

as agricultural droughts become a major driver of yield reduction worldwide (Lesk et al., 2016; Naumann et al., 2021). 40 

Prolonged lower river levels as a result of hydrological drought can affect river ecology—for example, low flow indices are 

commonly part of an assessment of flows for ecological protection (Poff et al., 2017; Yarnell et al., 2020; Vigiak et al., 2018). 

Lower river levels can also limit or reduce riverine transport, which may have significant effects on the economy 

(Christodoulou et al., 2020; Jonkeren et al., 2007). 

Small reservoirs have often been named as a potential decentralized solution to water scarcity in regions across the globe, such 45 

as Italy, Slovakia, Ghana, Burkina Faso, Zimbabwe, and Brazil (Wisser et al., 2010; Jurík et al., 2018; Casadei et al., 2019; 

Liebe et al., 2007; Mady et al., 2020; Şen, 2021; Owusu et al., 2022). These are reservoirs typically defined as having a dam 

height of ≤15 m, a surface area of < 0.1 km2, and / or a storage volume of up to 1-2 million m3 (Jurík et al., 2018; Casadei et 

al., 2019). Because they are smaller, they are cheaper to construct and maintain, and can be implemented in otherwise remote 

locations (Qadir et al., 2007). They can also be much more easily adapted to local conditions and can be managed locally 50 

(Venot and Krishnan, 2011). Research has suggested that recommissioning small reservoirs could maintain or even increase 

crop yields in an uncertain future (Heinzel et al., 2022), which could be a reason behind the high increase in the number of 

remotely-sensed reservoirs in water-stressed Europe (Aminzadeh et al., 2024). As climate change impacts destabilize 

traditional water availability patterns, decentralized small-scale solutions such as small reservoirs may play a leading role in 

mitigating drought effects in more temperate regions of the globe.  55 

Droughts are not the only natural hazards affected by reservoirs—in many temperate regions around the globe, the primary 

hydrological hazard has long been floods. The disastrous floods in Germany, Belgium, and the Netherlands in 2021 (Ludwig 

et al., 2023; Mohr et al., 2023)remain heavy on the public conscience, and many flood reservoirs have been built specifically 

for this purpose. Bartholomeus et al. (2023) argue, however, that over-preparing for floods may have left these countries 

underprepared for drought, and call for resilience measures that enable an integrated approach for managing both floods and 60 

droughts. The combination of the two objectives in reservoir operations is difficult due to their inherently competing nature, 

but can be effective when done correctly (Chang et al., 1995; Balley, 1997).  Recent research in the state of Baden-

Württemberg, Germany, has suggested that repurposing small flood reservoirs for drought under perfect-knowledge conditions 
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can be quite impactful for satisfying local agricultural irrigation demand and for improving low-flow conditions in rivers (Ho 

et al., 2025; Ho and Ehret, 2025). However, their performance when operating under forecasts remains unproven. 65 

The impact of forecasts in reservoir operation and optimization has been an active topic. Forecasted reservoir operations have 

often relied on the concept of hedging—in other words, that an increase in short-term risks, e.g. by continuing to keep water 

storage despite incoming floods, can increase long-term benefits by increasing water supply (Zhao et al., 2014; Draper and 

Lund, 2004; Hui et al., 2016). Many studies report that reservoir operations benefit from (or at the very least, are not negatively 

affected by) operation under forecasts in comparison to the case where no future information is available (Delaney et al., 2020; 70 

Chen et al., 2016; Mostaghimzadeh et al., 2022; Schwanenberg et al., 2015). The value of these forecasts are affected by two 

factors: forecast uncertainty and forecast horizon (the time into the future which is forecasted). Zhao et al. (2011) found that 

reservoir performance generally decreases with increasing uncertainty, but that the magnitude of this decrease depends on the 

type of forecasting product used (probabilistic, deterministic, or semi-probabilistic forecasts). Forecast uncertainty tends to 

increase with increasing forecast horizon; however, studies have shown that a balance between forecast uncertainty and horizon 75 

can be achieved to benefit performance (Zhao et al., 2012; Zhao et al., 2019). Turner et al. (2017) argued that, when operating 

for demands for water, this relationship breaks down—high forecast accuracy no longer necessitates improvement. Further 

research suggests that the value of the forecasts may decrease or disappear altogether, depending on the specific objectives 

and constraints (Doering et al., 2021). These results, however, are primarily in the context of large reservoirs. Given the 

potential benefits of small repurposed flood reservoirs for drought resilience under perfect knowledge, the value of forecasts 80 

in the operation of these reservoirs should be investigated. 

This study aims to demonstrate the potential benefits of repurposing small flood reservoirs for drought protection when 

operating under forecasts in comparison to perfect-knowledge scenarios,, particularly under the constraint that the reservoir 

flood protection function should not be compromised. Specifically, we optimize the operation rules of 30 reservoirs in 

southwest Germany, modified from Ho et al. (2025) for irrigation demand fulfilment and Ho and Ehret (2025) for streamflow 85 

supplementation, to make decisions based on available streamflow forecasts without increasing downstream flooding. The 

results aim to answer the following questions: 

- Q1: Does the uncertainty introduced by using forecasts for decision-making significantly decrease the performance 

of repurposed small reservoirs’ operation such that it is no longer beneficial? 

- Q2: What is the relationship between forecast accuracy and decrease in optimal performance between the perfect-90 

knowledge and forecasting operations? 

- Q3: What operating rules are most likely to be optimal, and how do these differ from current operation rules? 

We begin with an overview of the study area and reservoirs selected for study, then describe the methods used to generate the 

historical streamflow forecasts, inflow time series, streamflow supplementation demand and irrigation demand time series for 

each reservoir. We continue with an explanation of the forecast operation model for optimization, the metrics for which the 95 

reservoirs are optimized, and the metrics for comparing with perfect-knowledge optimization. Finally, results are presented in 

the context of the three questions above and are discussed accordingly. 
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2 Data and Methods 

2.1 Study Area 

The German state of Baden-Württemberg is in the southwest of Germany and shares borders with France and Switzerland. 100 

The majority of the state belongs to subcatchments of the Rhine, with the rest belonging to those of the Danube catchments. 

Two climate regimes dominate, according to the Köppen-Geiger classification (Beck et al., 2023). A temperate oceanic climate 

(Cfb) covers the majority of the state, including most of the Black Forest and the major cities, such as Karlsruhe, Stuttgart, and 

Freiburg im Breisgau. A humid and warm continental climate (Dfb) covers the Swabian Alb and the eastern parts of the Black 

Forest. Average annual precipitation from 1991-2022 ranges from 600-1200 mm in the majority of the state, though 105 

precipitation in the Black Forest is significantly higher (1400-2100 mm). Typical reference evapotranspiration in the same 

time period ranges from 450 mm per year in the Black Forest and Swabian Alb to 700 mm per year in the Rhine Valley and 

urban areas. 

This study builds on previous work on the potential of flood reservoirs for drought protection (Ho and Ehret, 2025; Ho et al., 

2025). The curious reader may refer to these works for detailed discussion on the reservoir selection process. While the selected 110 

reservoirs (Table 1) are small and at most mid-size on the global scale, they are named in this study by size according to the 

German standard DIN19700 (Lubw, 2007), in which large reservoirs have a capacity of over 1 million cubic meters, medium 

reservoirs a capacity of 100,000-1 million cubic meters, and small a capacity of 50,000-100,000 cubic meters, and by current 

usage (flood-only or multipurpose). These reservoirs are currently primarily operated for flood protection, impounding floods 

once the flooding limit Qcrit is exceeded, and are modelled in this work as individual reservoirs without regards to their function 115 

in a system. 

Table 1. The 30 reservoirs from Ho and Ehret (2025), along with their operating parameters (the operating capacity and the 

flooding limit Qcrit), investigated in this study. ID numbers have been added for clarity. The maximum of the Q70 low-flow time 

series (section 2.3) is included as an indicator of the river regime. 

Category Inundation 

Type 

Name ID 

Number 

Operating 

Capacity [m3] 

Qcrit [m3s-1] Max(Q70) 

[m3s-1] 

LF Operational Bernau 1 1,020,000 22.00 1.013 

Gottswald 2 4,720,000 830.00 20.619 

Mittleres Kinzigtal 3 2,700,000 860.00 16.988 

Wolterdingen 4 3,000,000 75.00 4.602 

LM Permanent Federbach 5 652,652 0.400 0.090 

Fetzachmoos 6 3,500,000 15.00 1.518 

Nagoldtalsperre 7 1,741,000 15.00 0.865 

Rehnenmuehle 8 2,930,000 7.00 0.523 

MF Operational Schwaigern 9 151,880 3.32 0.134 
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Seckach 10 64,000 50.30 0.747 

Seebaechle 11 33,112 0.10 0.014 

Unterbalbach 12 210,000 6.33 0.156 

Permanent Doertel 13 168,400 0.79 0.060 

Lindelbach 14 172,000 0.50 0.014 

Weissacher Tal 15 185,000 2.41 0.070 

MM Operational Heinzental 16 310,000 1.09 0.059 

Hofwiesen 17 335,210 10.68 0.171 

Wustgraben 18 276,181 0.50 0.053 

Permanent Fischbach 19 181,625 3.70 0.101 

Huettenbuehl 20 32,000 4.00 0.227 

Kressbach 21 233,780 0.70 0.050 

Michelbach 22 81,728 1.00 0.036 

Salinensee 23 188,000 3.60 0.069 

SF Operational Duffernbach 24 31,143 1.55 0.031 

Goettelfinger Tal 25 83,400 4.10 0.154 

Mittelurbach 26 60,000 0.50 0.092 

Wollenberg 27 30,200 3.37 0.063 

SM Permanent Hoelzern 28 7,703 1.50 0.003 

Lennach 29 9,600 2.10 0.004 

Nonnenbach 30 3,759 0.17 0.029 

2.2 Weather and Streamflow Forecasts 120 

2.2.1 Historical Weather Forecasts 

To reproduce the exact forecasting situation of operational flood forecasting for the period 2010 through 2021, the original 

weather forecast datasets archived by the flood forecasting center of Baden-Württemberg were used for this re-simulation 

(Table 2). This meteorological dataset combines three forecasting products supplied by the German Meteorological Service 

(DWD), namely COSMO-DE (Baldauf et al., 2016), COSMO-D2 (Baldauf et al., 2018), and ICON-D2 (Reinert et al., 2025), 125 

which at the time were the most advanced products available for hydrological water-balance forecasting. Missing variables 

were substituted with observed weather data at the time of forecasting. Further differences in these products are horizontal and 

vertical model resolution and further optimization of meteorological sub-processes.  
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Table 2. Weather forecast products and variables used to generate the historical streamflow forecasts. 

Years Product Forecast Variables Spatial 

Resolution 

Forecast 

Horizon 

Updating 

Interval 

2010-2017 COSMO-DE  Precipitation 2.8 km 27 hrs 3 hrs 

2018-2020 COSMO-D2  Precipitation, air temperature, global radiation, 

wind speed, air pressure, relative humidity 

2.2 km 27 hrs 3 hrs 

2021 ICON-D2  Precipitation, air temperature, global radiation, 

wind speed, air pressure, relative humidity 

2 km Up to 48 

hrs 

3 hrs 

2.2.2 Historical Streamflow Forecasts and Inflow Time Series 130 

The historical streamflow forecasts were generated using the process-oriented water balance Large Area Runoff Simulation 

Model, also known as LARSIM (Bremicker, 2000; Haag and Luce, 2008; Bremicker et al., 2013; Haag et al., 2022), and is 

currently used operationally in several countries in Europe, including the study area Baden-Württemberg. Discharge 

concentration and river routing are simulated in hourly resolution and on a 1 x 1 km grid, whereas evapotranspiration, snow 

dynamics, the soil water balance and runoff generation are modelled using hydrological response units. For this evaluation, 135 

the models were re-run in the same configuration currently used at the federal flood forecasting center of Baden-Württemberg 

to produce deterministic forecasts and inflow time series for each reservoir. The forecast horizon was limited to a maximum 

of 24 hours to limit forecast uncertainty, with a new forecast initiated every hour of the evaluation period (2010–2021) using 

the most recent meteorological forecast. 

At the transition point from measured data to actual forecasts, the model is automatically optimized at the gauge catchment 140 

level on the basis of comparing simulated and measured discharge. If the configuration files allow optimization for the current 

discharge range, and if deviations between simulated and observed discharge exceed a predefined threshold (5%), multiple 

optimization routines are triggered. The system then automatically selects the most plausible adjustment process as described 

in detail by Luce et al. (2006). When discrepancies are caused by localized rainfall or snowmelt errors, a correction factor 

modifies the water supply over the forecast period. If mismatches instead result from storage dynamics (e.g. recession after a 145 

flood peak), the model updates the filling levels of its hydrological storages (interflow, direct runoff, groundwater). These 

corrections are constrained within predefined ranges of adjustment factors (Luce et al., 2006). Due to these corrections, 

however, the resulting modelled streamflow for each reservoir differs slightly from those used in Ho and Ehret (2025) and Ho 

et al. (2025).  

2.3 Streamflow Demand Time Series 150 

Streamflow demand is based on the hourly 70th percentile exceedance flow (Q70) of the reservoir’s inflow time series. This Q70 

is calculated following the adjusted method of Cammalleri et al. (2016) presented in Ho and Ehret (2025) (Figure 1). For each 

time step t within a year, we collect a 721 x n matrix of discharge values: 721 represents all the hourly time steps in a 30-day 
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moving window (with an additional value to center the window on t), which is applied to all the years in the dataset (n). The 

cumulative distribution function curves for discharge, and then the percentile exceedance curves, are derived based on the 155 

values in this matrix. The threshold value at each timestep is the discharge corresponding to the chosen percentile exceedance. 

 

Figure 1. Example calculation of the Q70 time series, reprinted with permission from Ho and Ehret (2025).  

2.4 Irrigation Demand Time Series 

Time series of irrigation demand for each reservoir were taken from Ho et al. (2025). These were calculated for a 5 km2 square-160 

shaped region around each reservoir for a variety of different crops. Crop cover and soil texture maps were obtained from 

Schwieder et al. (2024) and Düwel et al. (2007), respectively, and used to identify agricultural response units (ARUs)—areas 

of the same crop and soil cover within a region. The irrigation demand (AID) of each ARU was calculated using the FAO-56 

method (Allen et al., 1998) using a collection of plant growth and soil parameters from various sources (Allen et al., 1998; 

Pereira et al., 2021a; Pereira et al., 2021b; Rallo et al., 2021; Ad-Hoc-Arbeitsgruppe, 2005). For more details, please refer to 165 

Ho et al. (2025). The total AID time series of each reservoir is the sum of each ARU’s AID: 

 
𝐴𝐼𝐷 = ∑ 𝐴𝐼𝐷𝐴𝑅𝑈

𝑚

𝐴𝑅𝑈=1
 

(1) 

2.5 Forecast Operation Model 

The reservoir’s operation under forecasts (Figure 2) is modelled by running forward in time by comparing various state 

variables and threshold parameters (Table 3):  

1. If the current inflow Qin is above the flooding limit Qcrit, it impounds the floods by storing flow above the flooding 170 

limit (flood operation module) until the operating capacity C is reached; else, it makes a decision based on the most 

recent forecast. 
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2. If a forecast is unavailable, the reservoir repeats the previous operation module. 

3. If the highest forecasted value is larger than the flooding limit (max(Qin,forecast) > Qcrit), the reservoir releases volume 

such that the outflow is Qcrit (flood pre-release module). 175 

4. If the highest forecast value is greater than the warning threshold Qthresh (max(Qin,forecast) > Qthresh), the reservoir releases 

volume such that the outflow is Qrelease (partial pre-release module). 

5. If the forecast fails both of these conditions, the model operates based on the current inflow Qin—if Qin is greater than 

the retention flow Qr, the reservoir will store water such that the outflow is Qr (drought fill module). 

6. If there is a need for water—either Qin is below the streamflow drought threshold or there is irrigation demand—the 180 

reservoir will release volume to meet the demand. 

The model can be operated for either streamflow or irrigation operation (it cannot do both at the same time) and is a modified 

version of the models in Ho et al. (2025) and Ho and Ehret (2025). For either use, the model is optimized for highest benefit 

by adjusting Qr (as in the aforementioned studies), the Qthresh, and/or the Qrelease using the following variables: 

1. percQ_thresh, which is the threshold percentage of the flooding limit (Qcrit) which we will indicate as a forecast warning 185 

level (Qthresh): 

 𝑄𝑡ℎ𝑟𝑒𝑠ℎ = 𝑝𝑒𝑟𝑐𝑄𝑡ℎ𝑟𝑒𝑠ℎ × 𝑄𝑐𝑟𝑖𝑡 (2) 

2. percQ_release, which is the percentage of Qcrit that will be released to pre-empty the reservoir at the rate Qrelease: 

 𝑄𝑟𝑒𝑙𝑒𝑎𝑠𝑒 = 𝑝𝑒𝑟𝑐𝑄𝑟𝑒𝑙𝑒𝑎𝑠𝑒 × 𝑄𝑐𝑟𝑖𝑡  (3) 

 

Table 3. Key variables for the forecast operation model. 

Abbreviation Description 

C Operational capacity of the reservoir (full minus permanent inundation volume) 

Qcrit Flooding limit; critical flow above which reservoir impounds floods 

Qin,t Inflow to the reservoir at time t 

Qin,forecast Forecasted inflow to the reservoir 

Q70,t 70th percentile exceedance flow at time t 

AIDt Agricultural irrigation demand of the reservoir’s area at time t 

Qthresh Warning flow at which partial pre-release module begins 

Qrelease Reservoir outflow during the partial pre-release module 

Qr Retention flow at which water is stored in the reservoir; optimization variable 

percQthresh Qthresh expressed as a percentage of Qcrit; optimization variable 

percQrelease Qrelease expressed as a percentage of Qcrit; optimization variable 

 190 
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Figure 2. The decision tree for the forecast operation model. 

2.6 Metrics for Comparison & Evaluation 

2.6.1 Determination of Benefit 

Benefits in this study are expressed as percent reduction of a negative outcome, which are in turn expressed via penalty 195 

functions. 

2.6.1.1 Flood Protection Benefit 

Flood protection remains the cornerstone of the reservoir’s operation—in no circumstances are increases of flooding volume 

acceptable. Flood penalty is simply defined in Ho and Ehret (2025) as 

 
𝑃𝑓,𝑡 = {

0, 𝑄𝑜𝑢𝑡,𝑡 ≤ 𝑄𝑐𝑟𝑖𝑡

−5(𝑄𝑜𝑢𝑡,𝑡 − 𝑄𝑐𝑟𝑖𝑡), 𝑄𝑜𝑢𝑡,𝑡 > 𝑄𝑐𝑟𝑖𝑡

 
(1) 
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and expresses the amount of water above Qcrit that the reservoir cannot impound, multiplied by a scalar (here chosen arbitrarily 200 

as 5). 

Because the in-situ reservoir operation rules are currently optimized for flood protection, no increase in flood protection (i.e. 

no flood protection benefit) is expected using the forecast operation model. However, in all optimization efforts, only parameter 

sets that do not increase flood penalty shall be considered. 

2.6.1.2 Streamflow Supplementation – Penalty Benefit 205 

The streamflow penalty Pd and the streamflow benefit Bp are metrics developed for evaluating a reservoir’s performance for 

streamflow supplementation in Ho and Ehret (2025).  

The streamflow benefit Bp refers to the reservoir’s ability to provide water and reduce streamflow penalty, represented as the 

percentage of penalty reduced by the operation (ranging from 0 to 100%, where higher is better). This is based on the difference 

between the penalty in the flood-only (i.e. current) operation and the penalty in a combined (flood and streamflow 210 

supplementation) operation scheme: 

 
𝐵𝑝 = 100 ×  

∑ 𝑃𝑑,𝑓𝑙𝑜𝑜𝑑−𝑜𝑛𝑙𝑦 − ∑ 𝑃𝑑,𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

∑ 𝑃𝑑,𝑓𝑙𝑜𝑜𝑑−𝑜𝑛𝑙𝑦

 
(4) 

2.6.1.3 Agricultural Irrigation Demand – Irrigation Benefit 

The benefit from the reservoir in the case of irrigation demand is summarized as the percentage of the irrigation demand that 

the reservoir can supply (ranging from 0 to 100%, where higher is better): 

 
𝐵𝐼𝐷 = 100 ×

∑ 𝐴𝐼𝐷𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑

∑ 𝐴𝐼𝐷𝑡𝑜𝑡𝑎𝑙

 
(2) 

The AIDtotal is the sum of the irrigation demand time series for all crops within a reservoir’s area, and the AIDfulfilled is the water 215 

withdrawn for irrigation purposes by the irrigation model. 

2.7 Optimization for Forecast Operation 

The forecast operation models were tested using 1,000 different parameter sets consisting of combinations of 10 values each 

of Qr, percQ_thresh, and percQ_release. These parameters were constrained as follows: 

 max(𝑄70) < 𝑄𝑟 < 𝑄𝑐𝑟𝑖𝑡  (3) 

 max(𝑄70) < 𝑄𝑐𝑟𝑖𝑡 × 𝑝𝑒𝑟𝑐𝑄𝑡ℎ𝑟𝑒𝑠ℎ < 𝑄𝑐𝑟𝑖𝑡  (4) 

 0.05 ≤ 𝑝𝑒𝑟𝑐𝑄𝑡ℎ𝑟𝑒𝑠ℎ , 𝑝𝑒𝑟𝑐𝑄𝑟𝑒𝑙𝑒𝑎𝑠𝑒 ≤ 1 (5) 

For comparing values of Qr across reservoirs, we normalize the optimal Qr with the reservoir’s Qcrit: 220 

 𝑝𝑒𝑟𝑐𝑄𝑐𝑟𝑖𝑡 =
𝑄𝑟 

𝑄𝑐𝑟𝑖𝑡 
⁄  (6) 

 

Each parameter set was tested in both the irrigation and streamflow cases to determine changes in flood penalty; i.e., if there 

was any increase in flood volume that was not retained by the reservoir.  Viable parameter sets were those that had no increase 
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in flood penalty, and the optimal parameter set was the viable parameter set that had the highest benefit for the use case. It is 

likely that a reservoir could have more than one optimal parameter set (i.e. a Pareto front). 225 

2.7.1 Forecast Accuracy 

The quality of forecasts for a given reservoir is evaluated based on their accuracy in comparison to the inflow time series, i.e. 

the percentage of forecasts that correctly predict floods (hits; H), incorrectly predict floods (false alarms; F), incorrectly predict 

no floods (misses; M), and correctly predict no floods (correct rejections; R). For this purpose, any instance of Qin,forecast greater 

than or equal to Qcrit will result in a flood forecast, regardless of forecast horizon. A high rate of F+R indicates that the reservoir 230 

did not have many flooding events. High percentages of H+F trigger frequent flood pre-release; in other words, there will be 

less water available for the intended usage. A relatively high MM would likely indicate that the reservoir’s priority should 

remain flood protection, as an empty reservoir would reduce the risk of flood damage due to faulty forecasts. 

The quality of these forecasts can be further described using additional variations of the confusion matrix. The critical success 

index (CSI) describes the rate of successful event identification over both forecasted and missed events, ranging from 0 (worst) 235 

to 1 (best): 

 
𝐶𝑆𝐼 =

𝐻

𝐻 + 𝑀 + 𝐹
 

(7) 

 

The precision of the forecast describes the rate of successful flood forecasts compared to all predicted floods, where a higher 

score (maximum 1, minimum 0) indicates that if a flood is forecasted, it is more often correct: 

 
precision =

𝐻

𝐻 + 𝐹
 

(8) 

 240 

The recall of the forecast describes the rate of successful flood forecasts compared to all true floods, where a higher score 

(maximum 1, minimum 0) indicates that more of the flood events were identified: 

 
recall =

𝐻

𝐻 + 𝑀
 

(9) 

The F1 score is the harmonic mean between precision and recall, allowing for a balanced representation of both, where a higher 

score (maximum 1, minimum 0) indicates better performance: 

 
F1 =

2 × (precision × recall)

precision + recall
 

(10) 

Thus, the forecasts for the sample event (Figure 3) have a CSI of 0.474, a precision of 0.750, a recall of 0.563, and an F1 score 245 

of 0.643. This could be interpreted as having a moderate ability of forecasting an event (medium CSI), a high accuracy when 

predicting flood events (high precision), a moderate ability to identify an actual event (medium recall), and a moderate-to-high 

overall accuracy (F1 score). 
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Figure 3. A three-day sample of forecasts generated by LARSIM for Federbach reservoir (for clarity, only every other forecast is shown). 250 
The marker, placed at the first value of each forecast, is a circle if a flood occurred during the forecast horizon and a triangle if no flood 

occurred. Red color indicates the forecast predicted a flood event; gray indicates no flood predicted. In this sample, there are 9 hits, 7 misses, 

3 false alarms, and 7 correct rejections. 

2.7.2 Comparison with the Perfect Knowledge Scenario 

The forecast model benefits for each reservoir is evaluated in comparison to its perfect-knowledge scenario to determine the 255 

impact of forecasts in operation. Ho and Ehret (2025) and Ho et al. (2025) provide perfect-knowledge scenarios for the 

streamflow and agricultural reuse models; however, due to differences in the model setup (see 2.2.2), the reservoir inflow time 

series—and therefore the benefits—are different. Therefore, the perfect-knowledge benefits have been rerun with the new 

inflow time series using the methods presented in Ho and Ehret (2025) and Ho et al. (2025). 

3 Results 260 

3.1 Optimization Results 

The number and performance of resulting viable parameter sets varied greatly, with some reservoirs having no viable parameter 

sets and others having more than 900 (Figure 4). The optimal parameter set is the one with the highest benefit—for some 

reservoirs, there are multiple optimal sets (i.e. Pareto-optimal sets). Small reservoirs have considerably lower benefits, 

especially those that are currently multipurpose reservoirs, as they often struggled to store water. Mid-sized and large 265 

multipurpose reservoirs perform overall quite well; however, many non-optimal parameter sets still provide considerable 
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benefit to both use cases. Should an optimal parameter set be deemed unfeasible for other reasons (e.g. a need to increase flood 

safety margins), there remain many other viable options. 

The distribution of the benefits can also be informative. Some reservoirs have large gaps between clusters of equally-

performing parameter sets, resulting in a very discontinuous distribution. In the irrigation usage case, this may not be too 270 

surprising, as the demand itself is quite disjointed: due to the assumptions when calculating the demand time series, water for 

an entire ARU is requested on the same day and is not staggered. Its fulfilment on any given day is also limited by the 

reservoir’s volume—once the entire volume is given for the season, there are rarely additional increases in benefit. In the 

streamflow usage case, however, this could indicate forecasts that require frequent pre-releases or consistent water shortages 

limiting the overall viability of the reservoir. 275 
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Figure 4. Distributions of the performance of viable parameter sets for the selected reservoirs. 

The frequency patterns of successful viable parameter combinations differ considerably from those of optimal parameter 

combinations (Figure 5, Figure 6). In both use cases (streamflow and irrigation), the frequency hotspots of viable parameter 280 

sets indicate highly conservative rules: low warning thresholds (percQ_thresh), high release rates (percQ_release), and high 

storage thresholds (percQ_crit) resulting in reduced storage serve to minimize volume stored and maximize volume released 
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before a flood. These rules are similar to the in-situ operation rules (store only flood waves and release volume as soon as 

possible) and are therefore most likely to result in no increased flood penalty; however, they are less likely to produce any 

benefit (see A) due to reduced water storage. 285 

In contrast, frequency hotspots of pareto-optimal sets indicate highly aggressive rules: high warning thresholds and low storage 

thresholds serve to maximize volume stored and hold it for as long as possible. These mimic the optimal rules found in the 

perfect-knowledge scenarios. This is also reflected in heatmaps of average benefit for parameter combinations (see Appendix 

A). Indeed, in both uses, the vast majority of pareto-optimal sets occur when percQ_thresh is between 0.8 and 1.0 and 

percQ_crit is between 0.1 and 0.2 (values under 0.1 are not permitted). An exception can be found in streamflow optimal sets 290 

at percQ_thresh between 0.2 and 0.3—this is due to large multipurpose reservoirs, such as Federbach, which tend to have a 

low Qcrit relative to its volume and thus need more time (enabled by a lower warning threshold) for a successful pre-release. 

This is not reflected in irrigation due most likely to the shorter time series and the seasonal nature of the demand. The relatively 

high occurrence frequencies at percQ_crit are due to reservoirs that experience little to no benefit. The variety of high 

performing release rates indicate that this parameter will be the most impactful in the optimization scheme.  295 

  

Figure 5. Color indicates frequency of a given parameter combination in either all viable parameter sets or pareto-optimal sets for 

streamflow-optimized forecast operation. The red square indicates the current (flood-optimized) operation rules, whereas the black circle 

indicates the perfect-knowledge operation rules. 
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  300 

Figure 6. Color indicates frequency of a given parameter combination in either all viable parameter sets or pareto-optimal sets for 

irrigation-optimized forecast operation. The red square indicates the current (flood-optimized) operation rules, whereas the black circle 

indicates the perfect-knowledge operation rules. 

3.2 Comparing Forecasted to Perfect-Knowledge Conditions 

The agricultural and streamflow benefits from the optimal parameter sets were compared with those from the perfect-305 

knowledge conditions (Figure 7). In most cases, and as to be expected, the perfect-knowledge operation for resulted in higher 

benefits than the optimized forecast operation, with a median difference of 13% (mean 17%) for streamflow supplementation 

and a median difference of  0% (mean 8.5%) for irrigation demand—while surprising, this is because 15 reservoirs maintained 

their performance when operated for irrigation. Seven reservoirs operated for streamflow and 15 operated for irrigation still 

maintain a benefit greater than 70% (compared to 14 for streamflow and 20 for irrigation in the perfect-knowledge scenario). 310 

In fact, in some cases the reservoir’s performance actually increased under forecast operation—this occurred in two reservoirs 

(Seebaechle and Doertel) in the streamflow operation case, and two (Federbach and Seebaechle) in the irrigation case. This is 

because of a slight nuance in the partial pre-release module: in the perfect-knowledge optimization, the reservoir is required 

to be completely empty before a flood. In contrast, the optimized forecast only requires that flooding conditions do not increase, 

effectively increasing the flexibility of the reservoir and allowing water to remain in the reservoir before a flood. In reservoirs 315 

with frequent flooding, this increases the water available for drought, as water storage is carried over from one flood event to 

the next. 
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Figure 7. Differences in performance between the optimal performance under perfect knowledge and uncertain forecasts. If only 320 
the optimized forecast is visible, the optimized forecast and perfect knowledge performed equally well; if only the perfect 

knowledge is visible, there were no viable parameter sets for operation under forecasts. 

3.3 Influence of Forecast Accuracy 

The accuracy of the reservoir forecasts from 2010-2021 was rather varied (Table 4). Forecasts at nine reservoirs correctly 

found no flooding events. Of the remaining 20 reservoirs, seven had forecasts with F1 scores of less than 0.5 (indicating poor 325 

performance), seven had forecasts with F1 scores between 0.5 and 0.75 (indicating good performance), and six had forecasts 

with F1 scores of at least 0.75 (indicating high performance). 
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One could expect that high occurrence rates of H, F, and / or M would significantly impact benefits, as these would incur 

action from the reservoir. Indeed, reservoirs with a change in benefit of at least 50% (Rehnenmuehle, Unterbalbach, Federbach, 330 

and Mittelurbach) do have among the highest rates of HFM (Figure 8)—though in the case of Federbach’s irrigation 

optimization, this benefit is in the positive direction. High HFM, however, is not a prerequisite for a large change in benefit—

other reservoirs with large changes (20-40%) have HFM of less than 2%, indicating that low flooding rates does not mean that 

benefits will remain unchanged. Other accuracy metrics (CSI and F1 score) seem to have less of an explanatory impact, as the 

four reservoirs with the greatest changes in benefit scored high in both CSI and F1. 335 

Table 4. Forecast accuracy statistics (hits, H; misses, M; false alarms, F; correct rejections, R; critical success index, CSI = 

H/(H+F+M), precision, H/(H+F); recall, H/(H+M); and F1 score, 2/(recall-1+precision-1)) at all reservoir locations. The names of 

reservoirs with changes in benefit of more than 50% are bolded. 

  Reservoir H [#] M [#] F [#] R [#] CSI Precision Recall F1 

1 Bernau 54 42 18 105079 0.47 0.75 0.56 0.64 

2 Gottswald 0 0 0 105193 - - - - 

3 MittleresKinzig 0 0 0 105193 - - - - 

4 Wolterdingen 234 40 92 115159 0.64 0.72 0.85 0.78 

5 Federbach 6406 1648 1123 96016 0.70 0.85 0.80 0.82 

6 Fetzachmoos 1183 524 416 103068 0.56 0.74 0.69 0.72 

7 Nagold 48 16 25 105102 0.54 0.66 0.75 0.70 

8 Rehnenmuehle 67828 2026 1407 33932 0.95 0.98 0.97 0.98 

9 Schwaigern 5 19 19 105150 0.12 0.21 0.21 0.21 

10 Seckach 1155 571 194 103273 0.60 0.86 0.67 0.75 

11 Seebaechle 0 0 0 105193 - - - - 

12 Unterbalbach 62825 1854 973 39539 0.96 0.98 0.97 0.98 

13 Doertel 41 34 13 105103 0.47 0.76 0.55 0.64 

14 Lindelbach 2 22 6 105163 0.07 0.25 0.08 0.13 

15 WeissacherTal 0 0 0 105193 - - - - 

16 Heinzental 140 72 88 104891 0.47 0.61 0.66 0.64 

17 Hofwiesen 0 0 3 105188 0.00 0.00 - 0.00 

18 Wustgraben 0 0 0 105192 - - - - 

19 Fischbach 30 43 125 104995 0.15 0.19 0.41 0.26 

20 Huettenbuehl 416 329 188 104260 0.45 0.69 0.56 0.62 

21 Kressbach 1205 669 388 102931 0.53 0.76 0.64 0.70 

22 Michelbach 6 64 12 105111 0.07 0.33 0.09 0.14 

23 Salinensee 0 0 0 105192 - - - - 
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24 Duffernbach 0 0 0 105193 - - - - 

25 GoettelfingerTal 0 0 15 105178 0.00 0.00 - 0.00 

26 Mittelurbach 646 339 118 104089 0.59 0.85 0.66 0.74 

27 Wollenberg 15 38 2 105138 0.27 0.88 0.28 0.43 

28 Hoelzern 0 0 0 105193 - - - - 

29 Lennach 0 0 0 105193 - - - - 

30 Nonnenbach 512 0 0 105193 1.00 1.00 1.00 1.00 

 

 340 

Figure 8. Relationships between different accuracy metrics and change in benefit for each reservoir and use case. 

4 Discussion 

The primary finding of the study is that, even when operating in a more realistic scenario (i.e. with uncertain forecasts), the 

concept of repurposing small flood reservoirs for irrigation or/and streamflow supplementation as presented in Ho and Ehret 

(2025) and Ho et al. (2025) can still provide significant benefits in a range of viable parameter sets. Though the performance 345 

of most reservoirs was noticeably affected by the forecasts (indeed, some reservoirs were no longer beneficial to a particular 

purpose), many were able to maintain benefits above 40%. These were generally reservoirs that did not experience a flood 

event during the observation period and had well-performing forecasts. Small reservoirs—in particular, small multipurpose 

reservoirs—had very little benefits whereas large and mid-size reservoirs generally performed quite well, which is consistent 

with previous findings (Ho et al., 2025; Ho and Ehret, 2025). Ideal parameter sets were those that imitated the operation rules 350 

under perfect knowledge: to store water at a storage threshold as low as possible, and to hold onto the water as long as is safe. 
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Although these aggressive parameter sets were typically the highest-performing, more conservative rulesets could also viably 

provide some benefit as well. 

While forecast quality remains the biggest uncertainty in this study, as LARSIM is not typically used to model small 

catchments (and forecasting in small catchments is already quite tricky), these are the best forecasts that we can currently 355 

generate for most of these reservoirs: the model setup is the same as the current operational setup in use in the study area, and 

the forecast horizon is a brief 24 hours. Our results showed that typical forecast metrics—namely the critical success index 

(CSI) and the F1 score—alone did not explain large changes in reservoir benefits from the perfect knowledge case. Indeed, it 

seemed that flood occurrences were the deciding factor here. Reservoirs with high HFM in their forecasts were emptied 

frequently for flood protection and thus have the greatest change in reservoir benefits—if this is the only (or the biggest) 360 

reservoir in this basin, this may make the reservoir critical for flood protection, and could potentially be deprioritized as a 

candidate for scope expansion on the basis of flood safety and reduced benefit. On the other hand, while most reservoirs with 

low HFM in their forecasts had little change in their benefit, others still had noticeable decreases in performance. This is 

primarily due to timing—a loss of water storage due to HFM before an incurrence of demand means that less demand can be 

fulfilled. Thus, although high HFM is generally indicative of frequent pre-release and therefore lowered benefit, low HFM 365 

does not necessarily mean high benefit, a finding that is consistent with Turner et al. (2017), who found that high forecast 

accuracy (i.e. low HF) had diminishing returns in reservoirs operated for water demand. Because the success of a reservoir is 

effectively decoupled from these quality metrics, investigations of a reservoir’s potential should thus be conducted via 

simulations as outlined in this study and not estimated on the basis of forecast quality. 

5 Conclusion 370 

This study demonstrated that, with modified operating rules, small flood reservoirs can be converted to additionally provide 

streamflow or irrigation supplementation—even when operating under uncertain forecasts, and without compromising flood 

protection. This approach can also be applied to other regions to help water managers evaluate potential changes to their 

reservoirs as well. In particular, the three questions posed in the introduction can be answered as follows: 

- Q1: For most reservoirs tested, the use of forecasts still resulted in tangible benefits for reservoirs optimized for 375 

streamflow or irrigation supplementation. 

- Q2: Two common forecast metrics—critical success index (CSI) and F1 score—were shown to be less impactful for 

explaining drops in reservoir success than simple flood occurrence statistics (i.e. the ratio of hits, misses, and false 

alarms, HFM). Although high HFM was shown to noticeably change the benefits gained from a reservoir, low HFM 

is not a guarantee that benefits will remain unchanged. The timing of the flood events is also important. 380 

- Q3: The operating rules that are most optimal are aggressive rules that mimic the rules found in Ho and Ehret 

(2025) and Ho et al. (2025)— rules that maximize water stored and that maximize how long the water is held. 

Current rules are, in contrast, those that minimize water storage and maximize the time the reservoir is empty. 

The presented results can also be used to guide selection of future rulesets. Because the performance distributions of viable 

rulesets are rather discontinuous for some reservoirs, it is more advisable to optimize a reservoir individually using the 385 
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developed toolbox than to attempt to pick a ruleset based on previous reservoirs. The computational resources consumed in 

this endeavor depends on the volume of forecasts available and the number of parameter sets tested. However, an optimal 

ruleset may ultimately be undesirable for other reasons—for example, if increased safety margins are desired to account for 

future river regime changes due to climate change, more conservative rulesets might be better. Understanding whether a ruleset 

is aggressive or conservative can guide the decision in the proper direction for its usage. 390 

Ultimately, whether or not a small flood reservoir should be converted for either of these purposes is a subjective question. 

While this study attempts to solve for the water supply benefit part of this equation, other considerations (such as impacts to 

water quality and downstream ecosystems, cost, and necessary safety margins) must be taken into account when deciding on 

potential scope expansion of a reservoir. Indeed, research has suggested that a reservoir effect (i.e. dependability of water 

infrastructure drives increased demand, analogous to the levee effect in flood protection) may, in the long term, result in 395 

worsened water shortages in the future (Di Baldassarre et al., 2018). We hope, however, that the tools and results presented in 

this study enable water managers to initiate informed discussions about using their existing reservoirs to enhance water supply 

resilience.  

6 Appendix 

A. Heatmaps of Benefit 400 

Heatmaps of the average benefit, where the color indicates the average benefit of the parameter combination across all 

reservoirs, reveal that aggressive parameter sets are higher-performing. Given that they are more frequently optimal, this 

should not be surprising; however, these plots indicate that a variety of parameter combinations can yield similar benefits. 
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Figure A1. Average streamflow benefit of each parameter combination. 
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Figure A2. Average streamflow benefit of each parameter combination. 

 410 

7 Code and Data Availability 

The data and MATLAB scripts developed to run these models—along with a detailed documentation package—can be 

downloaded at doi:10.5281/zenodo.17183389. 
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