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Abstract.

The increased frequency and intensity of hydrological extremes, including drought, due to anthropogenic climate change will
drive the need for enhanced water supply resilience, even in water-rich countries. Previous studies have shown that small
reservoirs have considerable potential for expanding water supply for various purposes, including when repurposed from flood-
only reservoirs for both flood and drought protection. However, whether these repurposed reservoirs retain the same flood
protection ability when operating under forecasts is still unclear, as reservoir operation under forecasts has primarily been
researched in the context of large reservoirs. In this study, we investigated potential operating rules under forecasts for 30
small-to-midsize flood reservoirs to a) determine if the uncertainty introduced by forecasts degrades the performance of
repurposed reservoirs so significantly as to render the concept unusable, b) identify patterns in the relationship between forecast
accuracy and optimal reservoir performance, and c) identify patterns in optimal reservoir operation rules, under the constraint
that flood protection should not be compromised. Performance is determined by the modelled ability to either supplement
streamflow to avoid low flows or to provide water for irrigation purposes in the area of the reservoir. 1000 combinations of
three operation parameters—the warning threshold at which flood pre-release begins, the rate at which water is released from
the reservoir for flood pre-release, and the inflow at which the reservoir begins storing water—were tested for maintenance of
flood protection (viability) and benefit for the reservoir’s additional uses. While some reservoirs indeed were no longer
beneficial when optimized to operate under forecasts, many still maintained benefits above 40%, with a couple even surpassing
their performance under perfect knowledge. Comparing changes in benefit from the perfect-knowledge operation to forecast
accuracy indicated that high rates of hits, false alarms and misses, and misses (HFM) could explain the largest decreases in
performance, while other forecast accuracy metrics were less impactful. However, even if HFM were low but nonzero, a
poorly-timed false alarm could drain a reservoir’s storage before a spike in demand, causing a noticeable loss in performance.
Investigation of reservoirs’ potential benefits under forecasts should therefore be done via simulation rather than approximated
via characterizing indices. Optimal operation rules tended to be those that most closely mimicked the perfect knowledge
operation, i.e. aggressive storage thresholds and a tendency to hold onto the water storage for as long as is safe, but more

conservative operating rules were also able to provide benefits as well. The models for forecast operation and optimization
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produced for this study can be used by water managers to assess if existing small flood reservoirs can feasibly be used to

increase water supply resilience in a changing world.

1 Introduction

Droughts have long been recognized as significant natural hazards that impose severe impacts on multiple sectors worldwide.
Shortages in water, coupled with higher temperatures, reduce crop yields and can even impact livestock mortality, ultimately
resulting in massive economic losses (Caretta et al., 2022; Matiu et al., 2017). The increasing frequency and severity of
droughts due to climate change exacerbate these challenges (Spinoni et al., 2017), posing substantial threats to food security
as agricultural droughts become a major driver of yield reduction worldwide (Lesk et al., 2016; Naumann et al., 2021).
Prolonged lower river levels as a result of hydrological drought can affect river ecology—for example, low flow indices are
commonly part of an assessment of flows for ecological protection (Poff et al., 2017; Yarnell et al., 2020; Vigiak et al., 2018).
Lower river levels can also limit or reduce riverine transport, which may have significant effects on the economy
(Christodoulou et al., 2020; Jonkeren et al., 2007).

Small reservoirs have often been named as a potential decentralized solution to water scarcity in regions across the globe, such
as Italy, Slovakia, Ghana, Burkina Faso, Zimbabwe, and Brazil (Wisser et al., 2010; Jurik et al., 2018; Casadei et al., 2019;
Liebe et al., 2007; Mady et al., 2020; Sen, 2021; Owusu et al., 2022). These are reservoirs typically defined as having a dam
height of <15 m, a surface area of < 0.1 km?, and / or a storage volume of up to 1-2 million m® (Jurik et al., 2018; Casadei et
al., 2019). Because they are smaller, they are cheaper to construct and maintain, and can be implemented in otherwise remote
locations (Qadir et al., 2007). They can also be much more easily adapted to local conditions and can be managed locally
(Venot and Krishnan, 2011). Research has suggested that recommissioning small reservoirs could maintain or even increase
crop yields in an uncertain future (Heinzel et al., 2022), which could be a reason behind the high increase in the number of
remotely-sensed reservoirs in water-stressed Europe (Aminzadeh et al., 2024). As climate change impacts destabilize
traditional water availability patterns, decentralized small-scale solutions such as small reservoirs may play a leading role in
mitigating drought effects in more temperate regions of the globe.

Droughts are not the only natural hazards affected by reservoirs—in many temperate regions around the globe, the primary
hydrological hazard has long been floods. The disastrous floods in Germany, Belgium, and the Netherlands in 2021 (Ludwig
et al., 2023; Mohr et al., 2023)remain heavy on the public conscience, and many flood reservoirs have been built specifically
for this purpose. Bartholomeus et al. (2023) argue, however, that over-preparing for floods may have left these countries
underprepared for drought, and call for resilience measures that enable an integrated approach for managing both floods and
droughts. The combination of the two objectives in reservoir operations is difficult due to their inherently competing nature,
but can be effective when done correctly (Chang et al., 1995; Balley, 1997). Recent research in the state of Baden-

Wirttemberg, Germany, has suggested that repurposing small flood reservoirs for drought under perfect-knowledge conditions
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can be quite impactful for satisfying local agricultural irrigation demand and for improving low-flow conditions in rivers (Ho
et al., 2025; Ho and Ehret, 2025). However, their performance when operating under forecasts remains unproven.

The impact of forecasts in reservoir operation and optimization has been an active topic. Forecasted reservoir operations have
often relied on the concept of hedging—in other words, that an increase in short-term risks, e.g. by continuing to keep water
storage despite incoming floods, can increase long-term benefits by increasing water supply (Zhao et al., 2014; Draper and
Lund, 2004; Hui et al., 2016). Many studies report that reservoir operations benefit from (or at the very least, are not negatively
affected by) operation under forecasts in comparison to the case where no future information is available (Delaney et al., 2020;
Chen et al., 2016; Mostaghimzadeh et al., 2022; Schwanenberg et al., 2015). The value of these forecasts are affected by two
factors: forecast uncertainty and forecast horizon (the time into the future which is forecasted). Zhao et al. (2011) found that
reservoir performance generally decreases with increasing uncertainty, but that the magnitude of this decrease depends on the
type of forecasting product used (probabilistic, deterministic, or semi-probabilistic forecasts). Forecast uncertainty tends to
increase with increasing forecast horizon; however, studies have shown that a balance between forecast uncertainty and horizon
can be achieved to benefit performance (Zhao et al., 2012; Zhao et al., 2019). Turner et al. (2017) argued that, when operating
for demands for water, this relationship breaks down—high forecast accuracy no longer necessitates improvement. Further
research suggests that the value of the forecasts may decrease or disappear altogether, depending on the specific objectives
and constraints (Doering et al., 2021). These results, however, are primarily in the context of large reservoirs. Given the
potential benefits of small repurposed flood reservoirs for drought resilience under perfect knowledge, the value of forecasts
in the operation of these reservoirs should be investigated.

This study aims to demonstrate the potential benefits of repurposing small flood reservoirs for drought protection when
operating under forecasts in comparison to perfect-knowledge scenarios,, particularly under the constraint that the reservoir
flood protection function should not be compromised. Specifically, we optimize the operation rules of 30 reservoirs in
southwest Germany, modified from Ho et al. (2025) for irrigation demand fulfilment and Ho and Ehret (2025) for streamflow
supplementation, to make decisions based on available streamflow forecasts without increasing downstream flooding. The
results aim to answer the following questions:

- Q1: Does the uncertainty introduced by using forecasts for decision-making significantly decrease the performance
of repurposed small reservoirs’ operation such that it is no longer beneficial?

- Q2: What is the relationship between forecast accuracy and decrease in optimal performance between the perfect-
knowledge and forecasting operations?

- Q3: What operating rules are most likely to be optimal, and how do these differ from current operation rules?

We begin with an overview of the study area and reservoirs selected for study, then describe the methods used to generate the
historical streamflow forecasts, inflow time series, streamflow supplementation demand and irrigation demand time series for
each reservoir. We continue with an explanation of the forecast operation model for optimization, the metrics for which the
reservoirs are optimized, and the metrics for comparing with perfect-knowledge optimization. Finally, results are presented in

the context of the three questions above and are discussed accordingly.
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2 Data and Methods

2.1  Study Area

The German state of Baden-Wirttemberg is in the southwest of Germany and shares borders with France and Switzerland.
The majority of the state belongs to subcatchments of the Rhine, with the rest belonging to those of the Danube catchments.
Two climate regimes dominate, according to the Képpen-Geiger classification (Beck et al., 2023). A temperate oceanic climate
(Cfb) covers the majority of the state, including most of the Black Forest and the major cities, such as Karlsruhe, Stuttgart, and
Freiburg im Breisgau. A humid and warm continental climate (Dfb) covers the Swabian Alb and the eastern parts of the Black
Forest. Average annual precipitation from 1991-2022 ranges from 600-1200 mm in the majority of the state, though
precipitation in the Black Forest is significantly higher (1400-2100 mm). Typical reference evapotranspiration in the same
time period ranges from 450 mm per year in the Black Forest and Swabian Alb to 700 mm per year in the Rhine Valley and
urban areas.

This study builds on previous work on the potential of flood reservoirs for drought protection (Ho and Ehret, 2025; Ho et al.,
2025). The curious reader may refer to these works for detailed discussion on the reservoir selection process. While the selected
reservoirs (Table 1) are small and at most mid-size on the global scale, they are named in this study by size according to the
German standard DIN19700 (Lubw, 2007), in which large reservoirs have a capacity of over 1 million cubic meters, medium
reservoirs a capacity of 100,000-1 million cubic meters, and small a capacity of 50,000-100,000 cubic meters, and by current
usage (flood-only or multipurpose). These reservoirs are currently primarily operated for flood protection, impounding floods
once the flooding limit Qcit is exceeded, and are modelled in this work as individual reservoirs without regards to their function
in a system.

Table 1. The 30 reservoirs from Ho and Ehret (2025), along with their operating parameters (the operating capacity and the
flooding limit Qcrit), investigated in this study. 1D numbers have been added for clarity. The maximum of the Q7o low-flow time
series (section 2.3) is included as an indicator of the river regime.

Category Inundation Name ID Operating Qcrit [M3s?] Max(Qro)
Type Number | Capacity [m?] [m3s7]
LF Operational Bernau 1 1,020,000 22.00 1.013
Gottswald 2 4,720,000 830.00 20.619
Mittleres Kinzigtal 3 2,700,000 860.00 16.988
Wolterdingen 4 3,000,000 75.00 4.602
LM Permanent Federbach 5 652,652 0.400 0.090
Fetzachmoos 6 3,500,000 15.00 1.518
Nagoldtalsperre 7 1,741,000 15.00 0.865
Rehnenmuehle 8 2,930,000 7.00 0.523
MF Operational Schwaigern 9 151,880 3.32 0.134
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Seckach 10 64,000 50.30 0.747

Seebaechle 11 33,112 0.10 0.014

Unterbalbach 12 210,000 6.33 0.156

Permanent Doertel 13 168,400 0.79 0.060

Lindelbach 14 172,000 0.50 0.014

Weissacher Tal 15 185,000 2.41 0.070

MM Operational Heinzental 16 310,000 1.09 0.059
Hofwiesen 17 335,210 10.68 0.171

Woustgraben 18 276,181 0.50 0.053

Permanent Fischbach 19 181,625 3.70 0.101

Huettenbuehl 20 32,000 4.00 0.227

Kressbach 21 233,780 0.70 0.050

Michelbach 22 81,728 1.00 0.036

Salinensee 23 188,000 3.60 0.069

SF Operational Duffernbach 24 31,143 1.55 0.031
Goettelfinger Tal 25 83,400 4.10 0.154

Mittelurbach 26 60,000 0.50 0.092

Wollenberg 27 30,200 3.37 0.063

SM Permanent Hoelzern 28 7,703 1.50 0.003
Lennach 29 9,600 2.10 0.004

Nonnenbach 30 3,759 0.17 0.029

120 2.2  Weather and Streamflow Forecasts

2.2.1  Historical Weather Forecasts

To reproduce the exact forecasting situation of operational flood forecasting for the period 2010 through 2021, the original
weather forecast datasets archived by the flood forecasting center of Baden-Wirttemberg were used for this re-simulation
(Table 2). This meteorological dataset combines three forecasting products supplied by the German Meteorological Service
125 (DWD), namely COSMO-DE (Baldauf et al., 2016), COSMO-D2 (Baldauf et al., 2018), and ICON-D2 (Reinert et al., 2025),
which at the time were the most advanced products available for hydrological water-balance forecasting. Missing variables
were substituted with observed weather data at the time of forecasting. Further differences in these products are horizontal and

vertical model resolution and further optimization of meteorological sub-processes.
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Table 2. Weather forecast products and variables used to generate the historical streamflow forecasts.

Years Product Forecast Variables Spatial Forecast | Updating
Resolution | Horizon Interval
2010-2017 COSMO-DE | Precipitation 2.8 km 27 hrs 3hrs
2018-2020 COSMO-D2 | Precipitation, air temperature, global radiation, | 2.2 km 27 hrs 3 hrs
wind speed, air pressure, relative humidity
2021 ICON-D2 Precipitation, air temperature, global radiation, | 2 km Up to 48 | 3hrs
wind speed, air pressure, relative humidity hrs

2.2.2 Historical Streamflow Forecasts and Inflow Time Series

The historical streamflow forecasts were generated using the process-oriented water balance Large Area Runoff Simulation
Model, also known as LARSIM (Bremicker, 2000; Haag and Luce, 2008; Bremicker et al., 2013; Haag et al., 2022), and is
currently used operationally in several countries in Europe, including the study area Baden-Wirttemberg. Discharge
concentration and river routing are simulated in hourly resolution and on a 1 x 1 km grid, whereas evapotranspiration, snow
dynamics, the soil water balance and runoff generation are modelled using hydrological response units. For this evaluation,
the models were re-run in the same configuration currently used at the federal flood forecasting center of Baden-Wurttemberg
to produce deterministic forecasts and inflow time series for each reservoir. The forecast horizon was limited to a maximum
of 24 hours to limit forecast uncertainty, with a new forecast initiated every hour of the evaluation period (2010-2021) using
the most recent meteorological forecast.

At the transition point from measured data to actual forecasts, the model is automatically optimized at the gauge catchment
level on the basis of comparing simulated and measured discharge. If the configuration files allow optimization for the current
discharge range, and if deviations between simulated and observed discharge exceed a predefined threshold (5%), multiple
optimization routines are triggered. The system then automatically selects the most plausible adjustment process as described
in detail by Luce et al. (2006). When discrepancies are caused by localized rainfall or snowmelt errors, a correction factor
modifies the water supply over the forecast period. If mismatches instead result from storage dynamics (e.g. recession after a
flood peak), the model updates the filling levels of its hydrological storages (interflow, direct runoff, groundwater). These
corrections are constrained within predefined ranges of adjustment factors (Luce et al., 2006). Due to these corrections,
however, the resulting modelled streamflow for each reservoir differs slightly from those used in Ho and Ehret (2025) and Ho
et al. (2025).

2.3 Streamflow Demand Time Series
Streamflow demand is based on the hourly 70" percentile exceedance flow (Q7o) of the reservoir’s inflow time series. This Q7o
is calculated following the adjusted method of Cammalleri et al. (2016) presented in Ho and Ehret (2025) (Figure 1). For each

time step t within a year, we collect a 721 x n matrix of discharge values: 721 represents all the hourly time steps in a 30-day

6
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moving window (with an additional value to center the window on t), which is applied to all the years in the dataset (n). The
cumulative distribution function curves for discharge, and then the percentile exceedance curves, are derived based on the

values in this matrix. The threshold value at each timestep is the discharge corresponding to the chosen percentile exceedance.

Inflow time series
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Figure 1. Example calculation of the Qo time series, reprinted with permission from Ho and Ehret (2025).

2.4 Irrigation Demand Time Series

Time series of irrigation demand for each reservoir were taken from Ho et al. (2025). These were calculated for a 5 km? square-
shaped region around each reservoir for a variety of different crops. Crop cover and soil texture maps were obtained from
Schwieder et al. (2024) and Diiwel et al. (2007), respectively, and used to identify agricultural response units (ARUs)—areas
of the same crop and soil cover within a region. The irrigation demand (AID) of each ARU was calculated using the FAO-56
method (Allen et al., 1998) using a collection of plant growth and soil parameters from various sources (Allen et al., 1998;
Pereira et al., 2021a; Pereira et al., 2021b; Rallo et al., 2021; Ad-Hoc-Arbeitsgruppe, 2005). For more details, please refer to
Ho et al. (2025). The total AID time series of each reservoir is the sum of each ARU’s AID:

m
1
AID = Z AIDARU ( )
ARU=1

2.5  Forecast Operation Model
The reservoir’s operation under forecasts (Figure 2) is modelled by running forward in time by comparing various state
variables and threshold parameters (Table 3):
1. If the current inflow Qin is above the flooding limit Qgit, it impounds the floods by storing flow above the flooding
limit (flood operation module) until the operating capacity C is reached; else, it makes a decision based on the most
recent forecast.
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2. Ifaforecast is unavailable, the reservoir repeats the previous operation module.
3. If the highest forecasted value is larger than the flooding limit (max(Qin forecast) > Qcrit), the reservoir releases volume
such that the outflow is Qit (flood pre-release module).
4. Ifthe highest forecast value is greater than the warning threshold Qiresh (Max(Qin forecast) > Qthresh), the reservoir releases
volume such that the outflow is Qrelease (partial pre-release module).
5. If the forecast fails both of these conditions, the model operates based on the current inflow Qin—if Qi is greater than
the retention flow Q;, the reservoir will store water such that the outflow is Q; (drought fill module).
6. If there is a need for water—either Qin is below the streamflow drought threshold or there is irrigation demand—the
reservoir will release volume to meet the demand.
The model can be operated for either streamflow or irrigation operation (it cannot do both at the same time) and is a modified
version of the models in Ho et al. (2025) and Ho and Ehret (2025). For either use, the model is optimized for highest benefit
by adjusting Qr (as in the aforementioned studies), the Qunresh, and/or the Qreiease USING the following variables:
1. percQ_thresh, which is the threshold percentage of the flooding limit (Qcri) which we will indicate as a forecast warning
level (Qthresh):
Qtnresh = PercQinresn X Qerit @)

2. percQ_release, which is the percentage of Qcit that will be released to pre-empty the reservoir at the rate Qrelease:

Qrelease = perCQrelease X chit (3)

Table 3. Key variables for the forecast operation model.

Abbreviation Description

C Operational capacity of the reservoir (full minus permanent inundation volume)
Qorit Flooding limit; critical flow above which reservoir impounds floods

Qint Inflow to the reservoir at time t

Qin forecast Forecasted inflow to the reservoir

Q7o 70™ percentile exceedance flow at time t

AID; Agricultural irrigation demand of the reservoir’s area at time t

Qthresh Warning flow at which partial pre-release module begins

Qrelease Reservoir outflow during the partial pre-release module

Qr Retention flow at which water is stored in the reservoir; optimization variable
percQihresh Qunresh €Xpressed as a percentage of Qrir; optimization variable

percQrelease Qrelease €Xpressed as a percentage of Qcrit; optimization variable
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Figure 2. The decision tree for the forecast operation model.

2.6 Metrics for Comparison & Evaluation

2.6.1  Determination of Benefit

Streamflow Model
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Irrigation Model
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Benefits in this study are expressed as percent reduction of a negative outcome, which are in turn expressed via penalty

functions.

2.6.1.1  Flood Protection Benefit

Flood protection remains the cornerstone of the reservoir’s operation—in no circumstances are increases of flooding volume

acceptable. Flood penalty is simply defined in Ho and Ehret (2025) as
0 Qout,t

p { 4 = chit
fit =
_S(Qout,t - chit)’ Qout,t

> chit

@
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and expresses the amount of water above Qcrit that the reservoir cannot impound, multiplied by a scalar (here chosen arbitrarily
as b).

Because the in-situ reservoir operation rules are currently optimized for flood protection, no increase in flood protection (i.e.
no flood protection benefit) is expected using the forecast operation model. However, in all optimization efforts, only parameter
sets that do not increase flood penalty shall be considered.

2.6.1.2  Streamflow Supplementation — Penalty Benefit

The streamflow penalty Py and the streamflow benefit B, are metrics developed for evaluating a reservoir’s performance for
streamflow supplementation in Ho and Ehret (2025).

The streamflow benefit B, refers to the reservoir’s ability to provide water and reduce streamflow penalty, represented as the
percentage of penalty reduced by the operation (ranging from 0 to 100%, where higher is better). This is based on the difference
between the penalty in the flood-only (i.e. current) operation and the penalty in a combined (flood and streamflow

supplementation) operation scheme:

Z Pd,flood—only - Z Pd,combined operation (4)

B, =100 x
P Z Pd,flood—only

2.6.1.3  Agricultural Irrigation Demand — Irrigation Benefit
The benefit from the reservoir in the case of irrigation demand is summarized as the percentage of the irrigation demand that

the reservoir can supply (ranging from 0 to 100%, where higher is better):

2 AIDfyifinea )
Z AIDtotal

The AlDqota is the sum of the irrigation demand time series for all crops within a reservoir’s area, and the AlDsyrsined is the water

BID =100 x

withdrawn for irrigation purposes by the irrigation model.

2.7 Optimization for Forecast Operation
The forecast operation models were tested using 1,000 different parameter sets consisting of combinations of 10 values each

of Qr, percQ_thresh, and percQ_release. These parameters were constrained as follows:

maX(Q70) < Qr < chit (3)
maX(Q70) < chit X perCchresh < chit (4)
0.05< perCchresh' perCQrelease <1 (5)

For comparing values of Qr across reservoirs, we normalize the optimal Qr with the reservoir’s Qcrit:

percQcriy = Qr /chit ©)

Each parameter set was tested in both the irrigation and streamflow cases to determine changes in flood penalty; i.e., if there

was any increase in flood volume that was not retained by the reservoir. Viable parameter sets were those that had no increase

10
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in flood penalty, and the optimal parameter set was the viable parameter set that had the highest benefit for the use case. It is

likely that a reservoir could have more than one optimal parameter set (i.e. a Pareto front).

2.7.1  Forecast Accuracy

The quality of forecasts for a given reservoir is evaluated based on their accuracy in comparison to the inflow time series, i.e.
the percentage of forecasts that correctly predict floods (hits; H), incorrectly predict floods (false alarms; F), incorrectly predict
no floods (misses; M), and correctly predict no floods (correct rejections; R). For this purpose, any instance of Qin forecast greater
than or equal to Qcrit Will result in a flood forecast, regardless of forecast horizon. A high rate of F+R indicates that the reservoir
did not have many flooding events. High percentages of H+F trigger frequent flood pre-release; in other words, there will be
less water available for the intended usage. A relatively high MM would likely indicate that the reservoir’s priority should
remain flood protection, as an empty reservoir would reduce the risk of flood damage due to faulty forecasts.

The quality of these forecasts can be further described using additional variations of the confusion matrix. The critical success
index (CSI) describes the rate of successful event identification over both forecasted and missed events, ranging from 0 (worst)
to 1 (best):

CSl = ———+— ")
H+M+F

The precision of the forecast describes the rate of successful flood forecasts compared to all predicted floods, where a higher
score (maximum 1, minimum 0) indicates that if a flood is forecasted, it is more often correct:

H ®)
H+F

precision =

The recall of the forecast describes the rate of successful flood forecasts compared to all true floods, where a higher score
(maximum 1, minimum 0) indicates that more of the flood events were identified:

©)

=
recall = -——

The F1 score is the harmonic mean between precision and recall, allowing for a balanced representation of both, where a higher
score (maximum 1, minimum 0) indicates better performance:

2 x (precision X recall) (10)

F1 —
precision + recall

Thus, the forecasts for the sample event (Figure 3) have a CSl of 0.474, a precision of 0.750, a recall of 0.563, and an F1 score
of 0.643. This could be interpreted as having a moderate ability of forecasting an event (medium CSI), a high accuracy when
predicting flood events (high precision), a moderate ability to identify an actual event (medium recall), and a moderate-to-high
overall accuracy (F1 score).

11
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Figure 3. A three-day sample of forecasts generated by LARSIM for Federbach reservoir (for clarity, only every other forecast is shown).
The marker, placed at the first value of each forecast, is a circle if a flood occurred during the forecast horizon and a triangle if no flood
occurred. Red color indicates the forecast predicted a flood event; gray indicates no flood predicted. In this sample, there are 9 hits, 7 misses,

3 false alarms, and 7 correct rejections.
2.7.2  Comparison with the Perfect Knowledge Scenario

The forecast model benefits for each reservoir is evaluated in comparison to its perfect-knowledge scenario to determine the
impact of forecasts in operation. Ho and Ehret (2025) and Ho et al. (2025) provide perfect-knowledge scenarios for the
streamflow and agricultural reuse models; however, due to differences in the model setup (see 2.2.2), the reservoir inflow time

series—and therefore the benefits—are different. Therefore, the perfect-knowledge benefits have been rerun with the new

inflow time series using the methods presented in Ho and Ehret (2025) and Ho et al. (2025).

3 Results

3.1  Optimization Results
The number and performance of resulting viable parameter sets varied greatly, with some reservoirs having no viable parameter

sets and others having more than 900 (Figure 4). The optimal parameter set is the one with the highest benefit—for some
reservoirs, there are multiple optimal sets (i.e. Pareto-optimal sets). Small reservoirs have considerably lower benefits,
especially those that are currently multipurpose reservoirs, as they often struggled to store water. Mid-sized and large

multipurpose reservoirs perform overall quite well; however, many non-optimal parameter sets still provide considerable
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benefit to both use cases. Should an optimal parameter set be deemed unfeasible for other reasons (e.g. a need to increase flood
safety margins), there remain many other viable options.

The distribution of the benefits can also be informative. Some reservoirs have large gaps between clusters of equally-
performing parameter sets, resulting in a very discontinuous distribution. In the irrigation usage case, this may not be too
surprising, as the demand itself is quite disjointed: due to the assumptions when calculating the demand time series, water for
an entire ARU is requested on the same day and is not staggered. Its fulfilment on any given day is also limited by the
reservoir’s volume—once the entire volume is given for the season, there are rarely additional increases in benefit. In the
streamflow usage case, however, this could indicate forecasts that require frequent pre-releases or consistent water shortages
limiting the overall viability of the reservoir.
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Figure 4. Distributions of the performance of viable parameter sets for the selected reservoirs.

The frequency patterns of successful viable parameter combinations differ considerably from those of optimal parameter
280 combinations (Figure 5, Figure 6). In both use cases (streamflow and irrigation), the frequency hotspots of viable parameter
sets indicate highly conservative rules: low warning thresholds (percQ_thresh), high release rates (percQ_release), and high

storage thresholds (percQ_crit) resulting in reduced storage serve to minimize volume stored and maximize volume released
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before a flood. These rules are similar to the in-situ operation rules (store only flood waves and release volume as soon as
possible) and are therefore most likely to result in no increased flood penalty; however, they are less likely to produce any
benefit (see A) due to reduced water storage.

In contrast, frequency hotspots of pareto-optimal sets indicate highly aggressive rules: high warning thresholds and low storage
thresholds serve to maximize volume stored and hold it for as long as possible. These mimic the optimal rules found in the
perfect-knowledge scenarios. This is also reflected in heatmaps of average benefit for parameter combinations (see Appendix
A). Indeed, in both uses, the vast majority of pareto-optimal sets occur when percQ_thresh is between 0.8 and 1.0 and
percQ_crit is between 0.1 and 0.2 (values under 0.1 are not permitted). An exception can be found in streamflow optimal sets
at percQ_thresh between 0.2 and 0.3—this is due to large multipurpose reservoirs, such as Federbach, which tend to have a
low Qcrit relative to its volume and thus need more time (enabled by a lower warning threshold) for a successful pre-release.
This is not reflected in irrigation due most likely to the shorter time series and the seasonal nature of the demand. The relatively
high occurrence frequencies at percQ_crit are due to reservoirs that experience little to no benefit. The variety of high

performing release rates indicate that this parameter will be the most impactful in the optimization scheme.
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Figure 5. Color indicates frequency of a given parameter combination in either all viable parameter sets or pareto-optimal sets for
streamflow-optimized forecast operation. The red square indicates the current (flood-optimized) operation rules, whereas the black circle
indicates the perfect-knowledge operation rules.
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Figure 6. Color indicates frequency of a given parameter combination in either all viable parameter sets or pareto-optimal sets for
irrigation-optimized forecast operation. The red square indicates the current (flood-optimized) operation rules, whereas the black circle
indicates the perfect-knowledge operation rules.

3.2  Comparing Forecasted to Perfect-Knowledge Conditions

The agricultural and streamflow benefits from the optimal parameter sets were compared with those from the perfect-
knowledge conditions (Figure 7). In most cases, and as to be expected, the perfect-knowledge operation for resulted in higher
benefits than the optimized forecast operation, with a median difference of 13% (mean 17%) for streamflow supplementation
and a median difference of 0% (mean 8.5%) for irrigation demand—while surprising, this is because 15 reservoirs maintained
their performance when operated for irrigation. Seven reservoirs operated for streamflow and 15 operated for irrigation still
maintain a benefit greater than 70% (compared to 14 for streamflow and 20 for irrigation in the perfect-knowledge scenario).
In fact, in some cases the reservoir’s performance actually increased under forecast operation—this occurred in two reservoirs
(Seebaechle and Doertel) in the streamflow operation case, and two (Federbach and Seebaechle) in the irrigation case. This is
because of a slight nuance in the partial pre-release module: in the perfect-knowledge optimization, the reservoir is required
to be completely empty before a flood. In contrast, the optimized forecast only requires that flooding conditions do not increase,
effectively increasing the flexibility of the reservoir and allowing water to remain in the reservoir before a flood. In reservoirs
with frequent flooding, this increases the water available for drought, as water storage is carried over from one flood event to
the next.
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the optimized forecast is visible, the optimized forecast and perfect knowledge performed equally well; if only the perfect
knowledge is visible, there were no viable parameter sets for operation under forecasts.
3.3 Influence of Forecast Accuracy
The accuracy of the reservoir forecasts from 2010-2021 was rather varied (Table 4). Forecasts at nine reservoirs correctly
325 found no flooding events. Of the remaining 20 reservoirs, seven had forecasts with F1 scores of less than 0.5 (indicating poor
performance), seven had forecasts with F1 scores between 0.5 and 0.75 (indicating good performance), and six had forecasts

with F1 scores of at least 0.75 (indicating high performance).
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One could expect that high occurrence rates of H, F, and / or M would significantly impact benefits, as these would incur
action from the reservoir. Indeed, reservoirs with a change in benefit of at least 50% (Rehnenmuehle, Unterbalbach, Federbach,
and Mittelurbach) do have among the highest rates of HFM (Figure 8)—though in the case of Federbach’s irrigation
optimization, this benefit is in the positive direction. High HFM, however, is not a prerequisite for a large change in benefit—
other reservoirs with large changes (20-40%) have HFM of less than 2%, indicating that low flooding rates does not mean that
benefits will remain unchanged. Other accuracy metrics (CSI and F1 score) seem to have less of an explanatory impact, as the
four reservoirs with the greatest changes in benefit scored high in both CSI and F1.

Table 4. Forecast accuracy statistics (hits, H; misses, M; false alarms, F; correct rejections, R; critical success index, CSI =
H/(H+F+M), precision, H/(H+F); recall, H/(H+M); and F1 score, 2/(recall-*+precision)) at all reservoir locations. The names of
reservoirs with changes in benefit of more than 50% are bolded.

Reservoir H [#] M [#] F [#] R [#] Csl Precision  Recall F1

1 Bernau 54 42 18 105079 0.47 0.75 0.56 0.64
2 Gottswald 0 0 0 105193 - - - -

3 MittleresKinzig 0 0 0 105193 - - - -

4 Wolterdingen 234 40 92 115159 0.64 0.72 0.85 0.78
5  Federbach 6406 1648 1123 96016 0.70 0.85 0.80 0.82
6  Fetzachmoos 1183 524 416 103068 0.56 0.74 0.69 0.72
7  Nagold 48 16 25 105102 0.54 0.66 0.75 0.70
8 Rehnenmuehle 67828 2026 1407 33932 0.95 0.98 0.97 0.98
9  Schwaigern 5 19 19 105150 0.12 0.21 0.21 0.21
10 Seckach 1155 571 194 103273 0.60 0.86 0.67 0.75
11 Seebaechle 0 0 0 105193 - - - -

12 Unterbalbach 62825 1854 973 39539 0.96 0.98 0.97 0.98
13 Doertel 41 34 13 105103 0.47 0.76 0.55 0.64
14 Lindelbach 2 22 6 105163 0.07 0.25 0.08 0.13
15 WeissacherTal 0 0 0 105193 - - - -

16 Heinzental 140 72 88 104891 0.47 0.61 0.66 0.64
17 Hofwiesen 0 0 3 105188 0.00 0.00 - 0.00
18 Wustgraben 0 0 0 105192 - - - -

19 Fischbach 30 43 125 104995 0.15 0.19 0.41 0.26
20 Huettenbuehl 416 329 188 104260 0.45 0.69 0.56 0.62
21 Kressbach 1205 669 388 102931 0.53 0.76 0.64 0.70
22 Michelbach 6 64 12 105111 0.07 0.33 0.09 0.14
23 Salinensee 0 0 0 105192 - - - -
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24 Duffernbach 0 0 0 105193 - - - -
25 GoettelfingerTal 0 0 15 105178 0.00 0.00 - 0.00
26 Mittelurbach 646 339 118 104089 0.59 0.85 0.66 0.74
27 Wollenberg 15 38 2 105138 0.27 0.88 0.28 0.43
28 Hoelzern 0 0 0 105193 - - - -
29 Lennach 0 0 0 105193 - - - -
30 Nonnenbach 512 0 0 105193 1.00 1.00 1.00 1.00
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Figure 8. Relationships between different accuracy metrics and change in benefit for each reservoir and use case.

4 Discussion

The primary finding of the study is that, even when operating in a more realistic scenario (i.e. with uncertain forecasts), the
concept of repurposing small flood reservoirs for irrigation or/and streamflow supplementation as presented in Ho and Ehret
(2025) and Ho et al. (2025) can still provide significant benefits in a range of viable parameter sets. Though the performance
of most reservoirs was noticeably affected by the forecasts (indeed, some reservoirs were no longer beneficial to a particular
purpose), many were able to maintain benefits above 40%. These were generally reservoirs that did not experience a flood
event during the observation period and had well-performing forecasts. Small reservoirs—in particular, small multipurpose
reservoirs—had very little benefits whereas large and mid-size reservoirs generally performed quite well, which is consistent
with previous findings (Ho et al., 2025; Ho and Ehret, 2025). Ideal parameter sets were those that imitated the operation rules

under perfect knowledge: to store water at a storage threshold as low as possible, and to hold onto the water as long as is safe.
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Although these aggressive parameter sets were typically the highest-performing, more conservative rulesets could also viably
provide some benefit as well.

While forecast quality remains the biggest uncertainty in this study, as LARSIM is not typically used to model small
catchments (and forecasting in small catchments is already quite tricky), these are the best forecasts that we can currently
generate for most of these reservoirs: the model setup is the same as the current operational setup in use in the study area, and
the forecast horizon is a brief 24 hours. Our results showed that typical forecast metrics—namely the critical success index
(CSI) and the F1 score—alone did not explain large changes in reservoir benefits from the perfect knowledge case. Indeed, it
seemed that flood occurrences were the deciding factor here. Reservoirs with high HFM in their forecasts were emptied
frequently for flood protection and thus have the greatest change in reservoir benefits—if this is the only (or the biggest)
reservoir in this basin, this may make the reservoir critical for flood protection, and could potentially be deprioritized as a
candidate for scope expansion on the basis of flood safety and reduced benefit. On the other hand, while most reservoirs with
low HFM in their forecasts had little change in their benefit, others still had noticeable decreases in performance. This is
primarily due to timing—a loss of water storage due to HFM before an incurrence of demand means that less demand can be
fulfilled. Thus, although high HFM is generally indicative of frequent pre-release and therefore lowered benefit, low HFM
does not necessarily mean high benefit, a finding that is consistent with Turner et al. (2017), who found that high forecast
accuracy (i.e. low HF) had diminishing returns in reservoirs operated for water demand. Because the success of a reservoir is
effectively decoupled from these quality metrics, investigations of a reservoir’s potential should thus be conducted via

simulations as outlined in this study and not estimated on the basis of forecast quality.

5 Conclusion

This study demonstrated that, with modified operating rules, small flood reservoirs can be converted to additionally provide
streamflow or irrigation supplementation—even when operating under uncertain forecasts, and without compromising flood
protection. This approach can also be applied to other regions to help water managers evaluate potential changes to their
reservoirs as well. In particular, the three questions posed in the introduction can be answered as follows:

- QL: For most reservoirs tested, the use of forecasts still resulted in tangible benefits for reservoirs optimized for
streamflow or irrigation supplementation.

- Q2: Two common forecast metrics—critical success index (CSI) and F1 score—were shown to be less impactful for
explaining drops in reservoir success than simple flood occurrence statistics (i.e. the ratio of hits, misses, and false
alarms, HFM). Although high HFM was shown to noticeably change the benefits gained from a reservoir, low HFM
is not a guarantee that benefits will remain unchanged. The timing of the flood events is also important.

- Q3: The operating rules that are most optimal are aggressive rules that mimic the rules found in Ho and Ehret
(2025) and Ho et al. (2025)— rules that maximize water stored and that maximize how long the water is held.
Current rules are, in contrast, those that minimize water storage and maximize the time the reservoir is empty.

The presented results can also be used to guide selection of future rulesets. Because the performance distributions of viable

rulesets are rather discontinuous for some reservoirs, it is more advisable to optimize a reservoir individually using the
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developed toolbox than to attempt to pick a ruleset based on previous reservoirs. The computational resources consumed in
this endeavor depends on the volume of forecasts available and the number of parameter sets tested. However, an optimal
ruleset may ultimately be undesirable for other reasons—for example, if increased safety margins are desired to account for
future river regime changes due to climate change, more conservative rulesets might be better. Understanding whether a ruleset
is aggressive or conservative can guide the decision in the proper direction for its usage.

Ultimately, whether or not a small flood reservoir should be converted for either of these purposes is a subjective question.
While this study attempts to solve for the water supply benefit part of this equation, other considerations (such as impacts to
water quality and downstream ecosystems, cost, and necessary safety margins) must be taken into account when deciding on
potential scope expansion of a reservoir. Indeed, research has suggested that a reservoir effect (i.e. dependability of water
infrastructure drives increased demand, analogous to the levee effect in flood protection) may, in the long term, result in
worsened water shortages in the future (Di Baldassarre et al., 2018). We hope, however, that the tools and results presented in
this study enable water managers to initiate informed discussions about using their existing reservoirs to enhance water supply

resilience.

6  Appendix

A. Heatmaps of Benefit
Heatmaps of the average benefit, where the color indicates the average benefit of the parameter combination across all
reservoirs, reveal that aggressive parameter sets are higher-performing. Given that they are more frequently optimal, this

should not be surprising; however, these plots indicate that a variety of parameter combinations can yield similar benefits.
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Figure Al. Average streamflow benefit of each parameter combination.
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Figure A2. Average streamflow benefit of each parameter combination.

410

7  Code and Data Availability

The data and MATLAB scripts developed to run these models—along with a detailed documentation package—can be
downloaded at doi:10.5281/zen0do.17183389.
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